Properties

Label 81.5.f.a.8.11
Level $81$
Weight $5$
Character 81.8
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.11
Character \(\chi\) \(=\) 81.8
Dual form 81.5.f.a.71.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.11993 + 1.25544i) q^{2} +(34.0822 + 12.4049i) q^{4} +(16.3502 + 19.4854i) q^{5} +(-60.7132 + 22.0978i) q^{7} +(126.911 + 73.2722i) q^{8} +(91.9496 + 159.261i) q^{10} +(86.4395 - 103.015i) q^{11} +(-27.2976 - 154.812i) q^{13} +(-460.017 + 81.1133i) q^{14} +(367.064 + 308.004i) q^{16} +(124.536 - 71.9009i) q^{17} +(79.9738 - 138.519i) q^{19} +(315.536 + 866.929i) q^{20} +(744.772 - 624.938i) q^{22} +(-193.010 + 530.290i) q^{23} +(-3.82186 + 21.6748i) q^{25} -1136.52i q^{26} -2343.37 q^{28} +(-929.364 - 163.872i) q^{29} +(298.389 + 108.605i) q^{31} +(719.645 + 857.639i) q^{32} +(976.955 - 355.583i) q^{34} +(-1423.26 - 821.718i) q^{35} +(-1074.59 - 1861.25i) q^{37} +(743.309 - 885.841i) q^{38} +(647.283 + 3670.93i) q^{40} +(162.159 - 28.5930i) q^{41} +(795.721 + 667.689i) q^{43} +(4223.94 - 2438.69i) q^{44} +(-2039.96 + 3533.31i) q^{46} +(879.993 + 2417.76i) q^{47} +(1358.51 - 1139.93i) q^{49} +(-54.4228 + 149.525i) q^{50} +(990.071 - 5614.97i) q^{52} +422.118i q^{53} +3420.58 q^{55} +(-9324.34 - 1644.13i) q^{56} +(-6411.28 - 2333.52i) q^{58} +(-677.524 - 807.441i) q^{59} +(-3638.45 + 1324.29i) q^{61} +(1988.16 + 1147.87i) q^{62} +(213.764 + 370.251i) q^{64} +(2570.26 - 3063.11i) q^{65} +(1308.73 + 7422.17i) q^{67} +(5136.39 - 905.685i) q^{68} +(-9101.88 - 7637.39i) q^{70} +(-4732.58 + 2732.36i) q^{71} +(2690.68 - 4660.39i) q^{73} +(-5314.34 - 14601.0i) q^{74} +(4444.00 - 3728.96i) q^{76} +(-2971.62 + 8164.47i) q^{77} +(-714.746 + 4053.52i) q^{79} +12188.3i q^{80} +1190.46 q^{82} +(6700.74 + 1181.52i) q^{83} +(3437.20 + 1251.04i) q^{85} +(4827.24 + 5752.88i) q^{86} +(18518.2 - 6740.08i) q^{88} +(-145.184 - 83.8223i) q^{89} +(5078.33 + 8795.93i) q^{91} +(-13156.4 + 15679.2i) q^{92} +(3230.15 + 18319.1i) q^{94} +(4006.68 - 706.485i) q^{95} +(6516.98 + 5468.39i) q^{97} +(11103.6 - 6410.67i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.11993 + 1.25544i 1.77998 + 0.313859i 0.964334 0.264688i \(-0.0852689\pi\)
0.815649 + 0.578547i \(0.196380\pi\)
\(3\) 0 0
\(4\) 34.0822 + 12.4049i 2.13014 + 0.775308i
\(5\) 16.3502 + 19.4854i 0.654007 + 0.779416i 0.986513 0.163686i \(-0.0523383\pi\)
−0.332505 + 0.943101i \(0.607894\pi\)
\(6\) 0 0
\(7\) −60.7132 + 22.0978i −1.23905 + 0.450976i −0.876686 0.481063i \(-0.840251\pi\)
−0.362359 + 0.932038i \(0.618029\pi\)
\(8\) 126.911 + 73.2722i 1.98299 + 1.14488i
\(9\) 0 0
\(10\) 91.9496 + 159.261i 0.919496 + 1.59261i
\(11\) 86.4395 103.015i 0.714376 0.851360i −0.279695 0.960089i \(-0.590234\pi\)
0.994071 + 0.108729i \(0.0346779\pi\)
\(12\) 0 0
\(13\) −27.2976 154.812i −0.161524 0.916048i −0.952576 0.304300i \(-0.901578\pi\)
0.791052 0.611748i \(-0.209534\pi\)
\(14\) −460.017 + 81.1133i −2.34702 + 0.413844i
\(15\) 0 0
\(16\) 367.064 + 308.004i 1.43385 + 1.20314i
\(17\) 124.536 71.9009i 0.430920 0.248792i −0.268818 0.963191i \(-0.586633\pi\)
0.699739 + 0.714399i \(0.253300\pi\)
\(18\) 0 0
\(19\) 79.9738 138.519i 0.221534 0.383708i −0.733740 0.679430i \(-0.762227\pi\)
0.955274 + 0.295722i \(0.0955603\pi\)
\(20\) 315.536 + 866.929i 0.788841 + 2.16732i
\(21\) 0 0
\(22\) 744.772 624.938i 1.53878 1.29119i
\(23\) −193.010 + 530.290i −0.364857 + 1.00244i 0.612431 + 0.790524i \(0.290192\pi\)
−0.977288 + 0.211914i \(0.932030\pi\)
\(24\) 0 0
\(25\) −3.82186 + 21.6748i −0.00611498 + 0.0346798i
\(26\) 1136.52i 1.68125i
\(27\) 0 0
\(28\) −2343.37 −2.98899
\(29\) −929.364 163.872i −1.10507 0.194854i −0.408793 0.912627i \(-0.634050\pi\)
−0.696277 + 0.717773i \(0.745161\pi\)
\(30\) 0 0
\(31\) 298.389 + 108.605i 0.310498 + 0.113012i 0.492569 0.870273i \(-0.336058\pi\)
−0.182071 + 0.983285i \(0.558280\pi\)
\(32\) 719.645 + 857.639i 0.702778 + 0.837539i
\(33\) 0 0
\(34\) 976.955 355.583i 0.845117 0.307597i
\(35\) −1423.26 821.718i −1.16184 0.670790i
\(36\) 0 0
\(37\) −1074.59 1861.25i −0.784946 1.35957i −0.929031 0.370001i \(-0.879357\pi\)
0.144085 0.989565i \(-0.453976\pi\)
\(38\) 743.309 885.841i 0.514757 0.613464i
\(39\) 0 0
\(40\) 647.283 + 3670.93i 0.404552 + 2.29433i
\(41\) 162.159 28.5930i 0.0964658 0.0170095i −0.125207 0.992131i \(-0.539959\pi\)
0.221673 + 0.975121i \(0.428848\pi\)
\(42\) 0 0
\(43\) 795.721 + 667.689i 0.430352 + 0.361108i 0.832085 0.554649i \(-0.187147\pi\)
−0.401732 + 0.915757i \(0.631592\pi\)
\(44\) 4223.94 2438.69i 2.18179 1.25966i
\(45\) 0 0
\(46\) −2039.96 + 3533.31i −0.964064 + 1.66981i
\(47\) 879.993 + 2417.76i 0.398367 + 1.09450i 0.963080 + 0.269217i \(0.0867649\pi\)
−0.564712 + 0.825288i \(0.691013\pi\)
\(48\) 0 0
\(49\) 1358.51 1139.93i 0.565810 0.474771i
\(50\) −54.4228 + 149.525i −0.0217691 + 0.0598102i
\(51\) 0 0
\(52\) 990.071 5614.97i 0.366150 2.07654i
\(53\) 422.118i 0.150273i 0.997173 + 0.0751366i \(0.0239393\pi\)
−0.997173 + 0.0751366i \(0.976061\pi\)
\(54\) 0 0
\(55\) 3420.58 1.13077
\(56\) −9324.34 1644.13i −2.97332 0.524277i
\(57\) 0 0
\(58\) −6411.28 2333.52i −1.90585 0.693673i
\(59\) −677.524 807.441i −0.194635 0.231957i 0.659897 0.751356i \(-0.270600\pi\)
−0.854531 + 0.519400i \(0.826156\pi\)
\(60\) 0 0
\(61\) −3638.45 + 1324.29i −0.977815 + 0.355896i −0.780990 0.624543i \(-0.785285\pi\)
−0.196825 + 0.980439i \(0.563063\pi\)
\(62\) 1988.16 + 1147.87i 0.517212 + 0.298612i
\(63\) 0 0
\(64\) 213.764 + 370.251i 0.0521886 + 0.0903933i
\(65\) 2570.26 3063.11i 0.608344 0.724997i
\(66\) 0 0
\(67\) 1308.73 + 7422.17i 0.291541 + 1.65341i 0.680936 + 0.732343i \(0.261573\pi\)
−0.389395 + 0.921071i \(0.627316\pi\)
\(68\) 5136.39 905.685i 1.11081 0.195866i
\(69\) 0 0
\(70\) −9101.88 7637.39i −1.85753 1.55865i
\(71\) −4732.58 + 2732.36i −0.938818 + 0.542027i −0.889590 0.456760i \(-0.849010\pi\)
−0.0492287 + 0.998788i \(0.515676\pi\)
\(72\) 0 0
\(73\) 2690.68 4660.39i 0.504913 0.874534i −0.495071 0.868852i \(-0.664858\pi\)
0.999984 0.00568195i \(-0.00180863\pi\)
\(74\) −5314.34 14601.0i −0.970478 2.66637i
\(75\) 0 0
\(76\) 4444.00 3728.96i 0.769390 0.645595i
\(77\) −2971.62 + 8164.47i −0.501202 + 1.37704i
\(78\) 0 0
\(79\) −714.746 + 4053.52i −0.114524 + 0.649499i 0.872460 + 0.488685i \(0.162523\pi\)
−0.986985 + 0.160814i \(0.948588\pi\)
\(80\) 12188.3i 1.90442i
\(81\) 0 0
\(82\) 1190.46 0.177046
\(83\) 6700.74 + 1181.52i 0.972673 + 0.171508i 0.637333 0.770589i \(-0.280038\pi\)
0.335340 + 0.942097i \(0.391149\pi\)
\(84\) 0 0
\(85\) 3437.20 + 1251.04i 0.475738 + 0.173154i
\(86\) 4827.24 + 5752.88i 0.652682 + 0.777837i
\(87\) 0 0
\(88\) 18518.2 6740.08i 2.39130 0.870362i
\(89\) −145.184 83.8223i −0.0183291 0.0105823i 0.490807 0.871268i \(-0.336702\pi\)
−0.509137 + 0.860686i \(0.670035\pi\)
\(90\) 0 0
\(91\) 5078.33 + 8795.93i 0.613251 + 1.06218i
\(92\) −13156.4 + 15679.2i −1.55440 + 1.85246i
\(93\) 0 0
\(94\) 3230.15 + 18319.1i 0.365567 + 2.07323i
\(95\) 4006.68 706.485i 0.443953 0.0782809i
\(96\) 0 0
\(97\) 6516.98 + 5468.39i 0.692632 + 0.581188i 0.919667 0.392699i \(-0.128459\pi\)
−0.227035 + 0.973887i \(0.572903\pi\)
\(98\) 11103.6 6410.67i 1.15614 0.667500i
\(99\) 0 0
\(100\) −399.132 + 691.318i −0.0399132 + 0.0691318i
\(101\) 4276.87 + 11750.6i 0.419260 + 1.15191i 0.952126 + 0.305707i \(0.0988928\pi\)
−0.532866 + 0.846200i \(0.678885\pi\)
\(102\) 0 0
\(103\) 5064.75 4249.83i 0.477401 0.400587i −0.372084 0.928199i \(-0.621357\pi\)
0.849486 + 0.527612i \(0.176912\pi\)
\(104\) 7879.06 21647.5i 0.728463 2.00144i
\(105\) 0 0
\(106\) −529.942 + 3005.45i −0.0471646 + 0.267484i
\(107\) 11926.4i 1.04170i −0.853648 0.520851i \(-0.825615\pi\)
0.853648 0.520851i \(-0.174385\pi\)
\(108\) 0 0
\(109\) −18526.7 −1.55935 −0.779677 0.626182i \(-0.784617\pi\)
−0.779677 + 0.626182i \(0.784617\pi\)
\(110\) 24354.3 + 4294.32i 2.01275 + 0.354903i
\(111\) 0 0
\(112\) −29091.9 10588.6i −2.31919 0.844115i
\(113\) 4547.75 + 5419.79i 0.356155 + 0.424449i 0.914138 0.405403i \(-0.132869\pi\)
−0.557983 + 0.829853i \(0.688424\pi\)
\(114\) 0 0
\(115\) −13488.6 + 4909.47i −1.01994 + 0.371226i
\(116\) −29642.0 17113.8i −2.20288 1.27184i
\(117\) 0 0
\(118\) −3810.23 6599.52i −0.273645 0.473967i
\(119\) −5972.13 + 7117.31i −0.421731 + 0.502599i
\(120\) 0 0
\(121\) −597.834 3390.49i −0.0408329 0.231575i
\(122\) −27568.1 + 4860.99i −1.85220 + 0.326592i
\(123\) 0 0
\(124\) 8822.53 + 7402.98i 0.573786 + 0.481463i
\(125\) 13283.0 7668.95i 0.850113 0.490813i
\(126\) 0 0
\(127\) 9865.36 17087.3i 0.611653 1.05941i −0.379308 0.925270i \(-0.623838\pi\)
0.990962 0.134145i \(-0.0428286\pi\)
\(128\) −5069.48 13928.3i −0.309416 0.850115i
\(129\) 0 0
\(130\) 22145.6 18582.4i 1.31039 1.09955i
\(131\) −1495.58 + 4109.07i −0.0871499 + 0.239442i −0.975610 0.219512i \(-0.929554\pi\)
0.888460 + 0.458954i \(0.151776\pi\)
\(132\) 0 0
\(133\) −1794.51 + 10177.2i −0.101448 + 0.575338i
\(134\) 54488.4i 3.03455i
\(135\) 0 0
\(136\) 21073.3 1.13935
\(137\) 16547.9 + 2917.84i 0.881662 + 0.155461i 0.596110 0.802902i \(-0.296712\pi\)
0.285552 + 0.958363i \(0.407823\pi\)
\(138\) 0 0
\(139\) −5476.56 1993.31i −0.283451 0.103168i 0.196382 0.980527i \(-0.437081\pi\)
−0.479833 + 0.877360i \(0.659303\pi\)
\(140\) −38314.5 45661.4i −1.95482 2.32966i
\(141\) 0 0
\(142\) −37126.0 + 13512.8i −1.84120 + 0.670142i
\(143\) −18307.5 10569.8i −0.895276 0.516888i
\(144\) 0 0
\(145\) −12002.2 20788.4i −0.570852 0.988745i
\(146\) 25008.3 29803.7i 1.17322 1.39819i
\(147\) 0 0
\(148\) −13535.9 76765.7i −0.617963 3.50464i
\(149\) −22092.9 + 3895.57i −0.995130 + 0.175468i −0.647420 0.762134i \(-0.724152\pi\)
−0.347711 + 0.937602i \(0.613041\pi\)
\(150\) 0 0
\(151\) 8648.32 + 7256.80i 0.379296 + 0.318267i 0.812426 0.583064i \(-0.198147\pi\)
−0.433130 + 0.901331i \(0.642591\pi\)
\(152\) 20299.1 11719.7i 0.878597 0.507258i
\(153\) 0 0
\(154\) −31407.7 + 54399.8i −1.32433 + 2.29380i
\(155\) 2762.51 + 7589.93i 0.114985 + 0.315918i
\(156\) 0 0
\(157\) −12754.3 + 10702.1i −0.517436 + 0.434180i −0.863737 0.503943i \(-0.831882\pi\)
0.346301 + 0.938123i \(0.387438\pi\)
\(158\) −10177.9 + 27963.5i −0.407702 + 1.12015i
\(159\) 0 0
\(160\) −4945.11 + 28045.1i −0.193168 + 1.09551i
\(161\) 36460.7i 1.40661i
\(162\) 0 0
\(163\) 21562.3 0.811557 0.405779 0.913971i \(-0.367000\pi\)
0.405779 + 0.913971i \(0.367000\pi\)
\(164\) 5881.44 + 1037.06i 0.218673 + 0.0385580i
\(165\) 0 0
\(166\) 46225.5 + 16824.7i 1.67751 + 0.610564i
\(167\) 3007.54 + 3584.25i 0.107840 + 0.128518i 0.817264 0.576263i \(-0.195490\pi\)
−0.709425 + 0.704781i \(0.751045\pi\)
\(168\) 0 0
\(169\) 3616.92 1316.45i 0.126639 0.0460927i
\(170\) 22902.1 + 13222.5i 0.792459 + 0.457526i
\(171\) 0 0
\(172\) 18837.3 + 32627.2i 0.636740 + 1.10287i
\(173\) 12546.9 14952.9i 0.419223 0.499611i −0.514558 0.857456i \(-0.672044\pi\)
0.933781 + 0.357845i \(0.116488\pi\)
\(174\) 0 0
\(175\) −246.929 1400.40i −0.00806299 0.0457275i
\(176\) 63457.7 11189.3i 2.04861 0.361225i
\(177\) 0 0
\(178\) −928.470 779.079i −0.0293041 0.0245890i
\(179\) −42317.5 + 24432.0i −1.32073 + 0.762523i −0.983845 0.179023i \(-0.942706\pi\)
−0.336884 + 0.941546i \(0.609373\pi\)
\(180\) 0 0
\(181\) 25257.1 43746.6i 0.770951 1.33533i −0.166092 0.986110i \(-0.553115\pi\)
0.937042 0.349216i \(-0.113552\pi\)
\(182\) 25114.7 + 69001.9i 0.758201 + 2.08314i
\(183\) 0 0
\(184\) −63350.5 + 53157.4i −1.87118 + 1.57010i
\(185\) 18697.4 51370.6i 0.546307 1.50097i
\(186\) 0 0
\(187\) 3357.99 19044.1i 0.0960276 0.544600i
\(188\) 93319.0i 2.64031i
\(189\) 0 0
\(190\) 29414.2 0.814798
\(191\) −55496.5 9785.52i −1.52124 0.268236i −0.650322 0.759659i \(-0.725366\pi\)
−0.870921 + 0.491423i \(0.836477\pi\)
\(192\) 0 0
\(193\) −15733.4 5726.48i −0.422384 0.153735i 0.122079 0.992520i \(-0.461044\pi\)
−0.544462 + 0.838785i \(0.683266\pi\)
\(194\) 39535.2 + 47116.2i 1.05046 + 1.25189i
\(195\) 0 0
\(196\) 60441.8 21999.0i 1.57335 0.572652i
\(197\) −37267.5 21516.4i −0.960281 0.554418i −0.0640212 0.997949i \(-0.520393\pi\)
−0.896259 + 0.443530i \(0.853726\pi\)
\(198\) 0 0
\(199\) −9807.79 16987.6i −0.247665 0.428969i 0.715212 0.698907i \(-0.246330\pi\)
−0.962878 + 0.269939i \(0.912997\pi\)
\(200\) −2073.20 + 2470.74i −0.0518300 + 0.0617686i
\(201\) 0 0
\(202\) 15698.9 + 89032.8i 0.384739 + 2.18196i
\(203\) 60045.9 10587.7i 1.45711 0.256927i
\(204\) 0 0
\(205\) 3208.48 + 2692.23i 0.0763469 + 0.0640626i
\(206\) 41396.1 23900.0i 0.975494 0.563202i
\(207\) 0 0
\(208\) 37662.7 65233.8i 0.870533 1.50781i
\(209\) −7356.55 20211.9i −0.168415 0.462717i
\(210\) 0 0
\(211\) −22807.2 + 19137.5i −0.512280 + 0.429854i −0.861931 0.507026i \(-0.830745\pi\)
0.349650 + 0.936880i \(0.386300\pi\)
\(212\) −5236.34 + 14386.7i −0.116508 + 0.320103i
\(213\) 0 0
\(214\) 14972.9 84915.4i 0.326947 1.85421i
\(215\) 26421.8i 0.571591i
\(216\) 0 0
\(217\) −20516.1 −0.435687
\(218\) −131909. 23259.1i −2.77562 0.489417i
\(219\) 0 0
\(220\) 116581. + 42432.1i 2.40870 + 0.876695i
\(221\) −14530.7 17317.0i −0.297509 0.354558i
\(222\) 0 0
\(223\) −63805.7 + 23223.4i −1.28307 + 0.466998i −0.891446 0.453128i \(-0.850308\pi\)
−0.391622 + 0.920126i \(0.628086\pi\)
\(224\) −62643.9 36167.5i −1.24848 0.720813i
\(225\) 0 0
\(226\) 25575.5 + 44298.0i 0.500733 + 0.867295i
\(227\) −26848.4 + 31996.7i −0.521035 + 0.620946i −0.960825 0.277155i \(-0.910608\pi\)
0.439790 + 0.898101i \(0.355053\pi\)
\(228\) 0 0
\(229\) −16155.0 91619.4i −0.308060 1.74710i −0.608740 0.793370i \(-0.708325\pi\)
0.300680 0.953725i \(-0.402786\pi\)
\(230\) −102202. + 18020.9i −1.93198 + 0.340660i
\(231\) 0 0
\(232\) −105939. 88893.7i −1.96826 1.65156i
\(233\) 21030.6 12142.0i 0.387381 0.223655i −0.293643 0.955915i \(-0.594868\pi\)
0.681025 + 0.732260i \(0.261535\pi\)
\(234\) 0 0
\(235\) −32723.0 + 56677.9i −0.592539 + 1.02631i
\(236\) −13075.3 35924.0i −0.234762 0.645002i
\(237\) 0 0
\(238\) −51456.5 + 43177.1i −0.908419 + 0.762254i
\(239\) −407.704 + 1120.16i −0.00713755 + 0.0196102i −0.943210 0.332196i \(-0.892210\pi\)
0.936073 + 0.351807i \(0.114433\pi\)
\(240\) 0 0
\(241\) 11258.8 63851.8i 0.193846 1.09936i −0.720206 0.693761i \(-0.755953\pi\)
0.914052 0.405597i \(-0.132936\pi\)
\(242\) 24890.6i 0.425015i
\(243\) 0 0
\(244\) −140434. −2.35881
\(245\) 44423.8 + 7833.12i 0.740089 + 0.130498i
\(246\) 0 0
\(247\) −23627.4 8599.69i −0.387278 0.140958i
\(248\) 29911.2 + 35646.7i 0.486329 + 0.579584i
\(249\) 0 0
\(250\) 104202. 37926.4i 1.66723 0.606823i
\(251\) 90618.3 + 52318.5i 1.43836 + 0.830439i 0.997736 0.0672507i \(-0.0214227\pi\)
0.440627 + 0.897690i \(0.354756\pi\)
\(252\) 0 0
\(253\) 37943.9 + 65720.8i 0.592790 + 1.02674i
\(254\) 91692.7 109275.i 1.42124 1.69377i
\(255\) 0 0
\(256\) −19796.1 112269.i −0.302065 1.71309i
\(257\) 71229.6 12559.7i 1.07844 0.190157i 0.393912 0.919148i \(-0.371121\pi\)
0.684523 + 0.728991i \(0.260010\pi\)
\(258\) 0 0
\(259\) 106371. + 89256.2i 1.58572 + 1.33057i
\(260\) 125598. 72513.9i 1.85795 1.07269i
\(261\) 0 0
\(262\) −15807.1 + 27378.7i −0.230277 + 0.398851i
\(263\) 3335.94 + 9165.43i 0.0482289 + 0.132508i 0.961468 0.274915i \(-0.0886498\pi\)
−0.913240 + 0.407423i \(0.866428\pi\)
\(264\) 0 0
\(265\) −8225.13 + 6901.70i −0.117125 + 0.0982798i
\(266\) −25553.5 + 70207.8i −0.361150 + 0.992252i
\(267\) 0 0
\(268\) −47467.1 + 269199.i −0.660880 + 3.74804i
\(269\) 50483.0i 0.697655i 0.937187 + 0.348827i \(0.113420\pi\)
−0.937187 + 0.348827i \(0.886580\pi\)
\(270\) 0 0
\(271\) 122387. 1.66647 0.833237 0.552916i \(-0.186485\pi\)
0.833237 + 0.552916i \(0.186485\pi\)
\(272\) 67858.5 + 11965.3i 0.917205 + 0.161728i
\(273\) 0 0
\(274\) 114157. + 41549.7i 1.52055 + 0.553435i
\(275\) 1902.47 + 2267.27i 0.0251566 + 0.0299804i
\(276\) 0 0
\(277\) −76806.7 + 27955.3i −1.00101 + 0.364339i −0.789975 0.613139i \(-0.789906\pi\)
−0.211037 + 0.977478i \(0.567684\pi\)
\(278\) −36490.3 21067.7i −0.472158 0.272601i
\(279\) 0 0
\(280\) −120418. 208570.i −1.53595 2.66033i
\(281\) −43102.4 + 51367.5i −0.545870 + 0.650543i −0.966493 0.256693i \(-0.917367\pi\)
0.420623 + 0.907236i \(0.361812\pi\)
\(282\) 0 0
\(283\) 12353.7 + 70061.5i 0.154250 + 0.874796i 0.959468 + 0.281817i \(0.0909371\pi\)
−0.805218 + 0.592979i \(0.797952\pi\)
\(284\) −195192. + 34417.6i −2.42005 + 0.426721i
\(285\) 0 0
\(286\) −117078. 98240.4i −1.43135 1.20104i
\(287\) −9213.36 + 5319.33i −0.111855 + 0.0645793i
\(288\) 0 0
\(289\) −31421.0 + 54422.8i −0.376205 + 0.651606i
\(290\) −59356.2 163080.i −0.705781 1.93912i
\(291\) 0 0
\(292\) 149516. 125459.i 1.75357 1.47142i
\(293\) 10515.9 28892.3i 0.122493 0.336548i −0.863256 0.504766i \(-0.831579\pi\)
0.985750 + 0.168218i \(0.0538011\pi\)
\(294\) 0 0
\(295\) 4655.67 26403.6i 0.0534981 0.303403i
\(296\) 314950.i 3.59467i
\(297\) 0 0
\(298\) −162191. −1.82639
\(299\) 87363.9 + 15404.6i 0.977214 + 0.172309i
\(300\) 0 0
\(301\) −63065.3 22953.9i −0.696077 0.253351i
\(302\) 52465.0 + 62525.4i 0.575249 + 0.685555i
\(303\) 0 0
\(304\) 72019.7 26213.0i 0.779300 0.283642i
\(305\) −85293.6 49244.3i −0.916889 0.529366i
\(306\) 0 0
\(307\) −35558.1 61588.4i −0.377278 0.653465i 0.613387 0.789782i \(-0.289807\pi\)
−0.990665 + 0.136318i \(0.956473\pi\)
\(308\) −202559. + 241401.i −2.13526 + 2.54470i
\(309\) 0 0
\(310\) 10140.2 + 57508.0i 0.105517 + 0.598418i
\(311\) 74518.4 13139.6i 0.770447 0.135851i 0.225412 0.974264i \(-0.427627\pi\)
0.545035 + 0.838413i \(0.316516\pi\)
\(312\) 0 0
\(313\) 98496.9 + 82648.7i 1.00539 + 0.843621i 0.987722 0.156223i \(-0.0499319\pi\)
0.0176665 + 0.999844i \(0.494376\pi\)
\(314\) −104245. + 60186.1i −1.05730 + 0.610431i
\(315\) 0 0
\(316\) −74643.8 + 129287.i −0.747514 + 1.29473i
\(317\) 9129.74 + 25083.8i 0.0908532 + 0.249617i 0.976794 0.214181i \(-0.0687084\pi\)
−0.885941 + 0.463798i \(0.846486\pi\)
\(318\) 0 0
\(319\) −97215.0 + 81573.1i −0.955327 + 0.801614i
\(320\) −3719.40 + 10219.0i −0.0363222 + 0.0997945i
\(321\) 0 0
\(322\) 45774.1 259598.i 0.441477 2.50374i
\(323\) 23000.7i 0.220464i
\(324\) 0 0
\(325\) 3459.86 0.0327560
\(326\) 153522. + 27070.0i 1.44456 + 0.254715i
\(327\) 0 0
\(328\) 22674.9 + 8252.97i 0.210764 + 0.0767119i
\(329\) −106854. 127344.i −0.987190 1.17649i
\(330\) 0 0
\(331\) 186022. 67706.5i 1.69789 0.617980i 0.702305 0.711876i \(-0.252154\pi\)
0.995582 + 0.0938957i \(0.0299320\pi\)
\(332\) 213720. + 123391.i 1.93896 + 1.11946i
\(333\) 0 0
\(334\) 16913.7 + 29295.4i 0.151616 + 0.262607i
\(335\) −123226. + 146855.i −1.09803 + 1.30858i
\(336\) 0 0
\(337\) −9308.32 52790.1i −0.0819618 0.464828i −0.997971 0.0636711i \(-0.979719\pi\)
0.916009 0.401157i \(-0.131392\pi\)
\(338\) 27405.0 4832.24i 0.239881 0.0422975i
\(339\) 0 0
\(340\) 101629. + 85276.5i 0.879140 + 0.737686i
\(341\) 36980.4 21350.7i 0.318027 0.183613i
\(342\) 0 0
\(343\) 20274.2 35115.9i 0.172328 0.298480i
\(344\) 52062.8 + 143041.i 0.439957 + 1.20877i
\(345\) 0 0
\(346\) 108106. 90711.4i 0.903018 0.757722i
\(347\) −65936.4 + 181159.i −0.547604 + 1.50453i 0.289333 + 0.957228i \(0.406566\pi\)
−0.836937 + 0.547300i \(0.815656\pi\)
\(348\) 0 0
\(349\) 24859.7 140986.i 0.204101 1.15751i −0.694747 0.719254i \(-0.744484\pi\)
0.898848 0.438260i \(-0.144405\pi\)
\(350\) 10280.8i 0.0839248i
\(351\) 0 0
\(352\) 150555. 1.21509
\(353\) −141463. 24943.8i −1.13526 0.200177i −0.425728 0.904851i \(-0.639982\pi\)
−0.709531 + 0.704674i \(0.751093\pi\)
\(354\) 0 0
\(355\) −130620. 47541.7i −1.03646 0.377240i
\(356\) −3908.40 4657.85i −0.0308389 0.0367524i
\(357\) 0 0
\(358\) −331970. + 120827.i −2.59020 + 0.942756i
\(359\) 62230.5 + 35928.8i 0.482852 + 0.278775i 0.721604 0.692306i \(-0.243405\pi\)
−0.238752 + 0.971081i \(0.576738\pi\)
\(360\) 0 0
\(361\) 52368.9 + 90705.6i 0.401845 + 0.696017i
\(362\) 234750. 279764.i 1.79138 2.13489i
\(363\) 0 0
\(364\) 63968.1 + 362781.i 0.482793 + 2.73805i
\(365\) 134803. 23769.4i 1.01184 0.178415i
\(366\) 0 0
\(367\) 153282. + 128619.i 1.13804 + 0.954931i 0.999373 0.0354072i \(-0.0112728\pi\)
0.138670 + 0.990339i \(0.455717\pi\)
\(368\) −234178. + 135203.i −1.72922 + 0.998366i
\(369\) 0 0
\(370\) 197616. 342282.i 1.44351 2.50023i
\(371\) −9327.87 25628.1i −0.0677696 0.186195i
\(372\) 0 0
\(373\) 131103. 110009.i 0.942313 0.790695i −0.0356731 0.999364i \(-0.511358\pi\)
0.977986 + 0.208669i \(0.0669131\pi\)
\(374\) 47817.3 131377.i 0.341855 0.939239i
\(375\) 0 0
\(376\) −65473.7 + 371320.i −0.463117 + 2.62647i
\(377\) 148350.i 1.04377i
\(378\) 0 0
\(379\) −129847. −0.903971 −0.451985 0.892025i \(-0.649284\pi\)
−0.451985 + 0.892025i \(0.649284\pi\)
\(380\) 145320. + 25623.9i 1.00637 + 0.177451i
\(381\) 0 0
\(382\) −382846. 139345.i −2.62360 0.954912i
\(383\) −8002.77 9537.33i −0.0545560 0.0650173i 0.738076 0.674717i \(-0.235734\pi\)
−0.792632 + 0.609700i \(0.791290\pi\)
\(384\) 0 0
\(385\) −207675. + 75587.4i −1.40108 + 0.509950i
\(386\) −104831. 60524.4i −0.703585 0.406215i
\(387\) 0 0
\(388\) 154278. + 267218.i 1.02480 + 1.77501i
\(389\) 90611.4 107986.i 0.598803 0.713625i −0.378469 0.925614i \(-0.623549\pi\)
0.977272 + 0.211988i \(0.0679939\pi\)
\(390\) 0 0
\(391\) 14091.6 + 79917.7i 0.0921740 + 0.522745i
\(392\) 255935. 45128.2i 1.66555 0.293681i
\(393\) 0 0
\(394\) −238330. 199982.i −1.53527 1.28825i
\(395\) −90670.7 + 52348.8i −0.581129 + 0.335515i
\(396\) 0 0
\(397\) 16565.0 28691.4i 0.105102 0.182042i −0.808678 0.588252i \(-0.799817\pi\)
0.913780 + 0.406210i \(0.133150\pi\)
\(398\) −48504.0 133264.i −0.306204 0.841289i
\(399\) 0 0
\(400\) −8078.80 + 6778.92i −0.0504925 + 0.0423682i
\(401\) 39602.8 108808.i 0.246285 0.676662i −0.753530 0.657414i \(-0.771650\pi\)
0.999815 0.0192483i \(-0.00612732\pi\)
\(402\) 0 0
\(403\) 8668.03 49158.9i 0.0533716 0.302686i
\(404\) 453541.i 2.77878i
\(405\) 0 0
\(406\) 440815. 2.67427
\(407\) −284623. 50186.6i −1.71823 0.302970i
\(408\) 0 0
\(409\) 165867. + 60370.7i 0.991548 + 0.360894i 0.786320 0.617820i \(-0.211984\pi\)
0.205229 + 0.978714i \(0.434206\pi\)
\(410\) 19464.2 + 23196.6i 0.115790 + 0.137993i
\(411\) 0 0
\(412\) 225337. 82015.9i 1.32751 0.483174i
\(413\) 58977.3 + 34050.6i 0.345768 + 0.199629i
\(414\) 0 0
\(415\) 86536.0 + 149885.i 0.502459 + 0.870284i
\(416\) 113128. 134821.i 0.653710 0.779061i
\(417\) 0 0
\(418\) −27003.3 153143.i −0.154548 0.876487i
\(419\) −262487. + 46283.6i −1.49513 + 0.263632i −0.860607 0.509269i \(-0.829916\pi\)
−0.634526 + 0.772901i \(0.718805\pi\)
\(420\) 0 0
\(421\) −236361. 198330.i −1.33356 1.11899i −0.983232 0.182360i \(-0.941626\pi\)
−0.350326 0.936628i \(-0.613929\pi\)
\(422\) −186412. + 107625.i −1.04676 + 0.604349i
\(423\) 0 0
\(424\) −30929.5 + 53571.4i −0.172044 + 0.297990i
\(425\) 1082.48 + 2974.09i 0.00599298 + 0.0164656i
\(426\) 0 0
\(427\) 191638. 160804.i 1.05106 0.881942i
\(428\) 147947. 406480.i 0.807639 2.21897i
\(429\) 0 0
\(430\) −33170.9 + 188121.i −0.179399 + 1.01742i
\(431\) 275720.i 1.48427i −0.670249 0.742137i \(-0.733813\pi\)
0.670249 0.742137i \(-0.266187\pi\)
\(432\) 0 0
\(433\) 176040. 0.938933 0.469467 0.882950i \(-0.344446\pi\)
0.469467 + 0.882950i \(0.344446\pi\)
\(434\) −146073. 25756.6i −0.775516 0.136744i
\(435\) 0 0
\(436\) −631431. 229822.i −3.32164 1.20898i
\(437\) 58019.3 + 69144.7i 0.303815 + 0.362073i
\(438\) 0 0
\(439\) −146875. + 53458.3i −0.762114 + 0.277387i −0.693694 0.720270i \(-0.744018\pi\)
−0.0684202 + 0.997657i \(0.521796\pi\)
\(440\) 434110. + 250633.i 2.24230 + 1.29459i
\(441\) 0 0
\(442\) −81717.0 141538.i −0.418281 0.724483i
\(443\) 189936. 226357.i 0.967831 1.15342i −0.0202982 0.999794i \(-0.506462\pi\)
0.988130 0.153623i \(-0.0490940\pi\)
\(444\) 0 0
\(445\) −740.483 4199.49i −0.00373934 0.0212069i
\(446\) −483447. + 85244.8i −2.43041 + 0.428547i
\(447\) 0 0
\(448\) −21160.1 17755.4i −0.105429 0.0884656i
\(449\) −39669.7 + 22903.3i −0.196773 + 0.113607i −0.595150 0.803615i \(-0.702907\pi\)
0.398376 + 0.917222i \(0.369574\pi\)
\(450\) 0 0
\(451\) 11071.4 19176.3i 0.0544316 0.0942784i
\(452\) 87765.3 + 241133.i 0.429582 + 1.18027i
\(453\) 0 0
\(454\) −231329. + 194108.i −1.12232 + 0.941741i
\(455\) −88360.5 + 242768.i −0.426811 + 1.17265i
\(456\) 0 0
\(457\) 36843.1 208948.i 0.176410 1.00047i −0.760093 0.649814i \(-0.774847\pi\)
0.936504 0.350658i \(-0.114042\pi\)
\(458\) 672606.i 3.20649i
\(459\) 0 0
\(460\) −520625. −2.46042
\(461\) 279504. + 49284.1i 1.31518 + 0.231902i 0.786855 0.617138i \(-0.211708\pi\)
0.528328 + 0.849040i \(0.322819\pi\)
\(462\) 0 0
\(463\) 100368. + 36530.9i 0.468201 + 0.170411i 0.565337 0.824860i \(-0.308746\pi\)
−0.0971364 + 0.995271i \(0.530968\pi\)
\(464\) −290663. 346399.i −1.35006 1.60894i
\(465\) 0 0
\(466\) 164980. 60047.7i 0.759729 0.276519i
\(467\) −139206. 80370.9i −0.638301 0.368523i 0.145659 0.989335i \(-0.453470\pi\)
−0.783960 + 0.620812i \(0.786803\pi\)
\(468\) 0 0
\(469\) −243471. 421704.i −1.10688 1.91718i
\(470\) −304141. + 362461.i −1.37683 + 1.64084i
\(471\) 0 0
\(472\) −26822.3 152117.i −0.120396 0.682800i
\(473\) 137563. 24256.1i 0.614866 0.108418i
\(474\) 0 0
\(475\) 2696.72 + 2262.82i 0.0119522 + 0.0100291i
\(476\) −291833. + 168490.i −1.28802 + 0.743636i
\(477\) 0 0
\(478\) −4309.11 + 7463.60i −0.0188596 + 0.0326657i
\(479\) 73210.5 + 201144.i 0.319082 + 0.876670i 0.990736 + 0.135805i \(0.0433620\pi\)
−0.671654 + 0.740865i \(0.734416\pi\)
\(480\) 0 0
\(481\) −258810. + 217167.i −1.11864 + 0.938651i
\(482\) 160324. 440486.i 0.690087 1.89600i
\(483\) 0 0
\(484\) 21683.2 122971.i 0.0925619 0.524945i
\(485\) 216395.i 0.919950i
\(486\) 0 0
\(487\) −55350.1 −0.233378 −0.116689 0.993168i \(-0.537228\pi\)
−0.116689 + 0.993168i \(0.537228\pi\)
\(488\) −558793. 98530.3i −2.34645 0.413742i
\(489\) 0 0
\(490\) 306461. + 111543.i 1.27639 + 0.464567i
\(491\) −12022.5 14327.8i −0.0498690 0.0594316i 0.740533 0.672020i \(-0.234573\pi\)
−0.790402 + 0.612588i \(0.790129\pi\)
\(492\) 0 0
\(493\) −127522. + 46414.2i −0.524676 + 0.190966i
\(494\) −157429. 90892.0i −0.645108 0.372453i
\(495\) 0 0
\(496\) 76077.3 + 131770.i 0.309237 + 0.535614i
\(497\) 226951. 270470.i 0.918798 1.09498i
\(498\) 0 0
\(499\) 60131.6 + 341023.i 0.241492 + 1.36957i 0.828501 + 0.559987i \(0.189194\pi\)
−0.587010 + 0.809580i \(0.699695\pi\)
\(500\) 547848. 96600.3i 2.19139 0.386401i
\(501\) 0 0
\(502\) 579514. + 486270.i 2.29962 + 1.92961i
\(503\) 186309. 107566.i 0.736374 0.425146i −0.0843753 0.996434i \(-0.526889\pi\)
0.820750 + 0.571288i \(0.193556\pi\)
\(504\) 0 0
\(505\) −159038. + 275461.i −0.623615 + 1.08013i
\(506\) 187650. + 515564.i 0.732904 + 2.01364i
\(507\) 0 0
\(508\) 548200. 459995.i 2.12428 1.78248i
\(509\) −125785. + 345591.i −0.485503 + 1.33391i 0.419210 + 0.907889i \(0.362307\pi\)
−0.904714 + 0.426020i \(0.859915\pi\)
\(510\) 0 0
\(511\) −60375.4 + 342406.i −0.231216 + 1.31129i
\(512\) 587049.i 2.23941i
\(513\) 0 0
\(514\) 522918. 1.97928
\(515\) 165619. + 29203.1i 0.624448 + 0.110107i
\(516\) 0 0
\(517\) 325131. + 118338.i 1.21640 + 0.442734i
\(518\) 645302. + 769040.i 2.40493 + 2.86609i
\(519\) 0 0
\(520\) 550635. 200415.i 2.03637 0.741178i
\(521\) 29333.5 + 16935.7i 0.108066 + 0.0623919i 0.553059 0.833142i \(-0.313460\pi\)
−0.444993 + 0.895534i \(0.646794\pi\)
\(522\) 0 0
\(523\) −205272. 355541.i −0.750456 1.29983i −0.947602 0.319454i \(-0.896500\pi\)
0.197145 0.980374i \(-0.436833\pi\)
\(524\) −101945. + 121494.i −0.371283 + 0.442478i
\(525\) 0 0
\(526\) 12245.1 + 69445.3i 0.0442578 + 0.250999i
\(527\) 44968.9 7929.24i 0.161917 0.0285503i
\(528\) 0 0
\(529\) −29583.7 24823.6i −0.105716 0.0887062i
\(530\) −67227.0 + 38813.5i −0.239327 + 0.138176i
\(531\) 0 0
\(532\) −187408. + 324600.i −0.662162 + 1.14690i
\(533\) −8853.09 24323.7i −0.0311631 0.0856199i
\(534\) 0 0
\(535\) 232391. 194999.i 0.811918 0.681280i
\(536\) −377746. + 1.03785e6i −1.31483 + 3.61247i
\(537\) 0 0
\(538\) −63378.2 + 359436.i −0.218965 + 1.24181i
\(539\) 238481.i 0.820874i
\(540\) 0 0
\(541\) −210371. −0.718772 −0.359386 0.933189i \(-0.617014\pi\)
−0.359386 + 0.933189i \(0.617014\pi\)
\(542\) 871391. + 153650.i 2.96629 + 0.523038i
\(543\) 0 0
\(544\) 151287. + 55063.9i 0.511214 + 0.186067i
\(545\) −302915. 361000.i −1.01983 1.21538i
\(546\) 0 0
\(547\) −162076. + 58990.7i −0.541680 + 0.197155i −0.598346 0.801238i \(-0.704175\pi\)
0.0566659 + 0.998393i \(0.481953\pi\)
\(548\) 527795. + 304722.i 1.75753 + 1.01471i
\(549\) 0 0
\(550\) 10699.0 + 18531.2i 0.0353686 + 0.0612603i
\(551\) −97024.1 + 115629.i −0.319578 + 0.380858i
\(552\) 0 0
\(553\) −46179.5 261897.i −0.151008 0.856407i
\(554\) −581955. + 102614.i −1.89614 + 0.334340i
\(555\) 0 0
\(556\) −161927. 135873.i −0.523804 0.439524i
\(557\) 127707. 73731.6i 0.411627 0.237653i −0.279862 0.960040i \(-0.590289\pi\)
0.691489 + 0.722387i \(0.256955\pi\)
\(558\) 0 0
\(559\) 81645.1 141414.i 0.261280 0.452551i
\(560\) −269335. 739992.i −0.858849 2.35967i
\(561\) 0 0
\(562\) −371375. + 311621.i −1.17582 + 0.986629i
\(563\) 91822.0 252279.i 0.289688 0.795911i −0.706422 0.707791i \(-0.749692\pi\)
0.996110 0.0881198i \(-0.0280858\pi\)
\(564\) 0 0
\(565\) −31250.3 + 177229.i −0.0978943 + 0.555186i
\(566\) 514343.i 1.60553i
\(567\) 0 0
\(568\) −800823. −2.48222
\(569\) 169548. + 29895.9i 0.523684 + 0.0923396i 0.429240 0.903191i \(-0.358782\pi\)
0.0944440 + 0.995530i \(0.469893\pi\)
\(570\) 0 0
\(571\) −66547.8 24221.4i −0.204109 0.0742895i 0.237943 0.971279i \(-0.423527\pi\)
−0.442051 + 0.896990i \(0.645749\pi\)
\(572\) −492842. 587347.i −1.50632 1.79516i
\(573\) 0 0
\(574\) −72276.6 + 26306.5i −0.219368 + 0.0798435i
\(575\) −10756.3 6210.15i −0.0325332 0.0187831i
\(576\) 0 0
\(577\) 267806. + 463853.i 0.804393 + 1.39325i 0.916700 + 0.399577i \(0.130843\pi\)
−0.112306 + 0.993674i \(0.535824\pi\)
\(578\) −292040. + 348040.i −0.874151 + 1.04177i
\(579\) 0 0
\(580\) −151183. 857400.i −0.449414 2.54875i
\(581\) −432933. + 76337.7i −1.28253 + 0.226145i
\(582\) 0 0
\(583\) 43484.3 + 36487.6i 0.127937 + 0.107352i
\(584\) 682954. 394304.i 2.00247 1.15613i
\(585\) 0 0
\(586\) 111145. 192509.i 0.323665 0.560604i
\(587\) −153583. 421967.i −0.445726 1.22462i −0.935672 0.352870i \(-0.885206\pi\)
0.489946 0.871753i \(-0.337017\pi\)
\(588\) 0 0
\(589\) 38907.0 32646.9i 0.112150 0.0941047i
\(590\) 66296.2 182147.i 0.190451 0.523261i
\(591\) 0 0
\(592\) 178826. 1.01417e6i 0.510256 2.89381i
\(593\) 240988.i 0.685310i 0.939461 + 0.342655i \(0.111326\pi\)
−0.939461 + 0.342655i \(0.888674\pi\)
\(594\) 0 0
\(595\) −236329. −0.667549
\(596\) −801299. 141291.i −2.25581 0.397760i
\(597\) 0 0
\(598\) 602686. + 219360.i 1.68534 + 0.613415i
\(599\) 260613. + 310587.i 0.726345 + 0.865624i 0.995231 0.0975482i \(-0.0311000\pi\)
−0.268886 + 0.963172i \(0.586656\pi\)
\(600\) 0 0
\(601\) 217746. 79253.1i 0.602839 0.219415i −0.0225280 0.999746i \(-0.507172\pi\)
0.625367 + 0.780331i \(0.284949\pi\)
\(602\) −420203. 242605.i −1.15949 0.669431i
\(603\) 0 0
\(604\) 204734. + 354610.i 0.561198 + 0.972024i
\(605\) 56290.3 67084.1i 0.153788 0.183277i
\(606\) 0 0
\(607\) −26009.7 147508.i −0.0705924 0.400350i −0.999545 0.0301517i \(-0.990401\pi\)
0.928953 0.370198i \(-0.120710\pi\)
\(608\) 176352. 31095.6i 0.477060 0.0841185i
\(609\) 0 0
\(610\) −545462. 457697.i −1.46590 1.23004i
\(611\) 350277. 202233.i 0.938273 0.541712i
\(612\) 0 0
\(613\) 43415.0 75197.0i 0.115536 0.200115i −0.802458 0.596709i \(-0.796475\pi\)
0.917994 + 0.396594i \(0.129808\pi\)
\(614\) −175851. 483146.i −0.466453 1.28157i
\(615\) 0 0
\(616\) −975361. + 818425.i −2.57042 + 2.15684i
\(617\) −212153. + 582885.i −0.557286 + 1.53113i 0.266271 + 0.963898i \(0.414208\pi\)
−0.823557 + 0.567233i \(0.808014\pi\)
\(618\) 0 0
\(619\) 74877.2 424650.i 0.195420 1.10828i −0.716400 0.697689i \(-0.754212\pi\)
0.911820 0.410590i \(-0.134677\pi\)
\(620\) 292951.i 0.762098i
\(621\) 0 0
\(622\) 547062. 1.41402
\(623\) 10666.9 + 1880.86i 0.0274829 + 0.00484598i
\(624\) 0 0
\(625\) 379538. + 138141.i 0.971618 + 0.353640i
\(626\) 597531. + 712110.i 1.52480 + 1.81718i
\(627\) 0 0
\(628\) −567453. + 206536.i −1.43883 + 0.523692i
\(629\) −267651. 154528.i −0.676499 0.390577i
\(630\) 0 0
\(631\) 113366. + 196356.i 0.284724 + 0.493156i 0.972542 0.232727i \(-0.0747647\pi\)
−0.687818 + 0.725883i \(0.741431\pi\)
\(632\) −387720. + 462066.i −0.970697 + 1.15683i
\(633\) 0 0
\(634\) 33512.1 + 190057.i 0.0833725 + 0.472829i
\(635\) 494253. 87150.2i 1.22575 0.216133i
\(636\) 0 0
\(637\) −213558. 179197.i −0.526305 0.441623i
\(638\) −794574. + 458747.i −1.95206 + 1.12702i
\(639\) 0 0
\(640\) 188511. 326511.i 0.460232 0.797145i
\(641\) −135909. 373408.i −0.330775 0.908797i −0.987911 0.155025i \(-0.950454\pi\)
0.657135 0.753773i \(-0.271768\pi\)
\(642\) 0 0
\(643\) −106086. + 89016.4i −0.256587 + 0.215302i −0.762003 0.647574i \(-0.775784\pi\)
0.505416 + 0.862876i \(0.331339\pi\)
\(644\) 452292. 1.24266e6i 1.09055 2.99627i
\(645\) 0 0
\(646\) 28876.0 163764.i 0.0691945 0.392421i
\(647\) 303133.i 0.724144i −0.932150 0.362072i \(-0.882069\pi\)
0.932150 0.362072i \(-0.117931\pi\)
\(648\) 0 0
\(649\) −141743. −0.336521
\(650\) 24633.9 + 4343.63i 0.0583052 + 0.0102808i
\(651\) 0 0
\(652\) 734890. + 267478.i 1.72873 + 0.629207i
\(653\) −291500. 347396.i −0.683615 0.814701i 0.306953 0.951725i \(-0.400691\pi\)
−0.990568 + 0.137024i \(0.956246\pi\)
\(654\) 0 0
\(655\) −104520. + 38042.1i −0.243622 + 0.0886711i
\(656\) 68329.6 + 39450.1i 0.158782 + 0.0916728i
\(657\) 0 0
\(658\) −600924. 1.04083e6i −1.38793 2.40397i
\(659\) −182083. + 216998.i −0.419274 + 0.499671i −0.933796 0.357806i \(-0.883525\pi\)
0.514522 + 0.857477i \(0.327969\pi\)
\(660\) 0 0
\(661\) 84714.7 + 480441.i 0.193890 + 1.09961i 0.913991 + 0.405736i \(0.132985\pi\)
−0.720100 + 0.693870i \(0.755904\pi\)
\(662\) 1.40947e6 248527.i 3.21617 0.567097i
\(663\) 0 0
\(664\) 763826. + 640926.i 1.73244 + 1.45369i
\(665\) −227646. + 131432.i −0.514775 + 0.297206i
\(666\) 0 0
\(667\) 266276. 461203.i 0.598522 1.03667i
\(668\) 58041.4 + 159468.i 0.130072 + 0.357371i
\(669\) 0 0
\(670\) −1.06173e6 + 890896.i −2.36518 + 1.98462i
\(671\) −178085. + 489284.i −0.395532 + 1.08672i
\(672\) 0 0
\(673\) 61594.7 349321.i 0.135992 0.771248i −0.838172 0.545406i \(-0.816375\pi\)
0.974164 0.225842i \(-0.0725134\pi\)
\(674\) 387548.i 0.853111i
\(675\) 0 0
\(676\) 139603. 0.305494
\(677\) −120244. 21202.3i −0.262353 0.0462599i 0.0409243 0.999162i \(-0.486970\pi\)
−0.303277 + 0.952902i \(0.598081\pi\)
\(678\) 0 0
\(679\) −516506. 187993.i −1.12030 0.407757i
\(680\) 344553. + 410622.i 0.745141 + 0.888024i
\(681\) 0 0
\(682\) 290103. 105589.i 0.623710 0.227012i
\(683\) 439872. + 253960.i 0.942942 + 0.544408i 0.890881 0.454236i \(-0.150088\pi\)
0.0520609 + 0.998644i \(0.483421\pi\)
\(684\) 0 0
\(685\) 213706. + 370150.i 0.455445 + 0.788854i
\(686\) 188437. 224570.i 0.400421 0.477204i
\(687\) 0 0
\(688\) 86430.2 + 490170.i 0.182595 + 1.03555i
\(689\) 65348.9 11522.8i 0.137658 0.0242727i
\(690\) 0 0
\(691\) −306096. 256845.i −0.641065 0.537917i 0.263280 0.964719i \(-0.415196\pi\)
−0.904345 + 0.426802i \(0.859640\pi\)
\(692\) 613117. 353983.i 1.28036 0.739214i
\(693\) 0 0
\(694\) −696896. + 1.20706e6i −1.44694 + 2.50616i
\(695\) −50702.5 139304.i −0.104969 0.288399i
\(696\) 0 0
\(697\) 18138.8 15220.2i 0.0373373 0.0313297i
\(698\) 353999. 972604.i 0.726593 1.99630i
\(699\) 0 0
\(700\) 8956.01 50792.1i 0.0182776 0.103657i
\(701\) 51063.9i 0.103915i −0.998649 0.0519574i \(-0.983454\pi\)
0.998649 0.0519574i \(-0.0165460\pi\)
\(702\) 0 0
\(703\) −343756. −0.695569
\(704\) 56618.9 + 9983.44i 0.114239 + 0.0201435i
\(705\) 0 0
\(706\) −975895. 355197.i −1.95791 0.712623i
\(707\) −519325. 618908.i −1.03896 1.23819i
\(708\) 0 0
\(709\) 219521. 79899.1i 0.436701 0.158946i −0.114308 0.993445i \(-0.536465\pi\)
0.551009 + 0.834499i \(0.314243\pi\)
\(710\) −870318. 502478.i −1.72648 0.996783i
\(711\) 0 0
\(712\) −12283.7 21276.0i −0.0242308 0.0419690i
\(713\) −115184. + 137271.i −0.226575 + 0.270022i
\(714\) 0 0
\(715\) −93373.5 529548.i −0.182647 1.03584i
\(716\) −1.74535e6 + 307753.i −3.40453 + 0.600310i
\(717\) 0 0
\(718\) 397971. + 333937.i 0.771973 + 0.647762i
\(719\) −390392. + 225393.i −0.755167 + 0.435996i −0.827558 0.561380i \(-0.810270\pi\)
0.0723907 + 0.997376i \(0.476937\pi\)
\(720\) 0 0
\(721\) −213585. + 369941.i −0.410867 + 0.711642i
\(722\) 258988. + 711564.i 0.496827 + 1.36502i
\(723\) 0 0
\(724\) 1.40349e6 1.17767e6i 2.67752 2.24671i
\(725\) 7103.80 19517.5i 0.0135150 0.0371321i
\(726\) 0 0
\(727\) −42168.2 + 239148.i −0.0797841 + 0.452478i 0.918577 + 0.395243i \(0.129340\pi\)
−0.998361 + 0.0572351i \(0.981772\pi\)
\(728\) 1.48840e6i 2.80839i
\(729\) 0 0
\(730\) 989627. 1.85706
\(731\) 147103. + 25938.3i 0.275288 + 0.0485408i
\(732\) 0 0
\(733\) 553098. + 201311.i 1.02942 + 0.374679i 0.800861 0.598850i \(-0.204375\pi\)
0.228562 + 0.973529i \(0.426598\pi\)
\(734\) 929884. + 1.10819e6i 1.72598 + 2.05695i
\(735\) 0 0
\(736\) −593696. + 216088.i −1.09599 + 0.398909i
\(737\) 877718. + 506751.i 1.61592 + 0.932952i
\(738\) 0 0
\(739\) −193191. 334617.i −0.353751 0.612716i 0.633152 0.774027i \(-0.281761\pi\)
−0.986903 + 0.161312i \(0.948427\pi\)
\(740\) 1.27450e6 1.51888e6i 2.32742 2.77371i
\(741\) 0 0
\(742\) −34239.4 194181.i −0.0621896 0.352695i
\(743\) 679396. 119796.i 1.23068 0.217002i 0.479763 0.877398i \(-0.340723\pi\)
0.750918 + 0.660396i \(0.229612\pi\)
\(744\) 0 0
\(745\) −437130. 366795.i −0.787585 0.660863i
\(746\) 1.07155e6 618662.i 1.92547 1.11167i
\(747\) 0 0
\(748\) 350688. 607410.i 0.626785 1.08562i
\(749\) 263548. + 724092.i 0.469782 + 1.29072i
\(750\) 0 0
\(751\) −314821. + 264166.i −0.558193 + 0.468379i −0.877704 0.479203i \(-0.840926\pi\)
0.319511 + 0.947582i \(0.396481\pi\)
\(752\) −421665. + 1.15851e6i −0.745644 + 2.04864i
\(753\) 0 0
\(754\) −186244. + 1.05624e6i −0.327597 + 1.85790i
\(755\) 287166.i 0.503778i
\(756\) 0 0
\(757\) 235863. 0.411594 0.205797 0.978595i \(-0.434021\pi\)
0.205797 + 0.978595i \(0.434021\pi\)
\(758\) −924504. 163015.i −1.60905 0.283719i
\(759\) 0 0
\(760\) 560257. + 203917.i 0.969975 + 0.353042i
\(761\) −458695. 546651.i −0.792053 0.943932i 0.207357 0.978265i \(-0.433514\pi\)
−0.999410 + 0.0343333i \(0.989069\pi\)
\(762\) 0 0
\(763\) 1.12481e6 409399.i 1.93211 0.703230i
\(764\) −1.77006e6 1.02194e6i −3.03250 1.75081i
\(765\) 0 0
\(766\) −45005.7 77952.1i −0.0767025 0.132853i
\(767\) −106507. + 126930.i −0.181045 + 0.215761i
\(768\) 0 0
\(769\) −167796. 951617.i −0.283745 1.60920i −0.709734 0.704469i \(-0.751185\pi\)
0.425989 0.904728i \(-0.359926\pi\)
\(770\) −1.57352e6 + 277455.i −2.65395 + 0.467962i
\(771\) 0 0
\(772\) −465192. 390342.i −0.780544 0.654954i
\(773\) −730930. + 422003.i −1.22325 + 0.706246i −0.965610 0.259993i \(-0.916280\pi\)
−0.257644 + 0.966240i \(0.582946\pi\)
\(774\) 0 0
\(775\) −3494.39 + 6052.46i −0.00581792 + 0.0100769i
\(776\) 426396. + 1.17151e6i 0.708092 + 1.94547i
\(777\) 0 0
\(778\) 780717. 655100.i 1.28984 1.08230i
\(779\) 9007.80 24748.7i 0.0148438 0.0407829i
\(780\) 0 0
\(781\) −127609. + 723709.i −0.209209 + 1.18648i
\(782\) 586700.i 0.959406i
\(783\) 0 0
\(784\) 849762. 1.38250
\(785\) −417069. 73540.6i −0.676813 0.119340i
\(786\) 0 0
\(787\) −349313. 127140.i −0.563982 0.205273i 0.0442659 0.999020i \(-0.485905\pi\)
−0.608248 + 0.793747i \(0.708127\pi\)
\(788\) −1.00325e6 1.19563e6i −1.61569 1.92550i
\(789\) 0 0
\(790\) −711290. + 258888.i −1.13971 + 0.414819i
\(791\) −395874. 228558.i −0.632709 0.365295i
\(792\) 0 0
\(793\) 304336. + 527126.i 0.483958 + 0.838240i
\(794\) 153962. 183485.i 0.244215 0.291044i
\(795\) 0 0
\(796\) −123542. 700640.i −0.194979 1.10578i
\(797\) −465192. + 82025.9i −0.732345 + 0.129132i −0.527371 0.849635i \(-0.676822\pi\)
−0.204974 + 0.978767i \(0.565711\pi\)
\(798\) 0 0
\(799\) 283430. + 237826.i 0.443969 + 0.372534i
\(800\) −21339.6 + 12320.4i −0.0333431 + 0.0192507i
\(801\) 0 0
\(802\) 418571. 724986.i 0.650759 1.12715i
\(803\) −247508. 680021.i −0.383846 1.05461i
\(804\) 0 0
\(805\) 710451. 596139.i 1.09633 0.919932i
\(806\) 123432. 339126.i 0.190001 0.522024i
\(807\) 0 0
\(808\) −318210. + 1.80466e6i −0.487406 + 2.76422i
\(809\) 712287.i 1.08832i 0.838980 + 0.544162i \(0.183152\pi\)
−0.838980 + 0.544162i \(0.816848\pi\)
\(810\) 0 0
\(811\) 169586. 0.257839 0.128919 0.991655i \(-0.458849\pi\)
0.128919 + 0.991655i \(0.458849\pi\)
\(812\) 2.17784e6 + 384012.i 3.30304 + 0.582415i
\(813\) 0 0
\(814\) −1.96349e6 714651.i −2.96333 1.07856i
\(815\) 352547. + 420149.i 0.530764 + 0.632540i
\(816\) 0 0
\(817\) 156124. 56824.6i 0.233898 0.0851318i
\(818\) 1.10517e6 + 638071.i 1.65167 + 0.953592i
\(819\) 0 0
\(820\) 75955.2 + 131558.i 0.112961 + 0.195655i
\(821\) 464808. 553937.i 0.689584 0.821815i −0.301721 0.953396i \(-0.597561\pi\)
0.991305 + 0.131582i \(0.0420056\pi\)
\(822\) 0 0
\(823\) 198478. + 1.12563e6i 0.293031 + 1.66186i 0.675099 + 0.737727i \(0.264101\pi\)
−0.382068 + 0.924134i \(0.624788\pi\)
\(824\) 954167. 168245.i 1.40530 0.247793i
\(825\) 0 0
\(826\) 377166. + 316480.i 0.552806 + 0.463859i
\(827\) 1.06404e6 614325.i 1.55578 0.898229i 0.558126 0.829756i \(-0.311521\pi\)
0.997653 0.0684732i \(-0.0218128\pi\)
\(828\) 0 0
\(829\) −678194. + 1.17467e6i −0.986836 + 1.70925i −0.353361 + 0.935487i \(0.614961\pi\)
−0.633475 + 0.773763i \(0.718372\pi\)
\(830\) 427960. + 1.17581e6i 0.621222 + 1.70679i
\(831\) 0 0
\(832\) 51484.1 43200.3i 0.0743749 0.0624079i
\(833\) 87221.8 239640.i 0.125700 0.345358i
\(834\) 0 0
\(835\) −20666.6 + 117206.i −0.0296413 + 0.168104i
\(836\) 780126.i 1.11623i
\(837\) 0 0
\(838\) −1.92700e6 −2.74406
\(839\) −746116. 131560.i −1.05994 0.186897i −0.383612 0.923494i \(-0.625320\pi\)
−0.676331 + 0.736598i \(0.736431\pi\)
\(840\) 0 0
\(841\) 172237. + 62689.2i 0.243520 + 0.0886341i
\(842\) −1.43388e6 1.70884e6i −2.02251 2.41033i
\(843\) 0 0
\(844\) −1.01472e6 + 369328.i −1.42450 + 0.518475i
\(845\) 84789.0 + 48952.9i 0.118748 + 0.0685591i
\(846\) 0 0
\(847\) 111219. + 192637.i 0.155028 + 0.268517i
\(848\) −130014. + 154944.i −0.180800 + 0.215469i
\(849\) 0 0
\(850\) 3973.41 + 22534.3i 0.00549953 + 0.0311894i
\(851\) 1.19441e6 210606.i 1.64927 0.290811i
\(852\) 0 0
\(853\) 601574. + 504780.i 0.826782 + 0.693752i 0.954550 0.298052i \(-0.0963369\pi\)
−0.127768 + 0.991804i \(0.540781\pi\)
\(854\) 1.56633e6 904321.i 2.14767 1.23996i
\(855\) 0 0
\(856\) 873876. 1.51360e6i 1.19262 2.06568i
\(857\) 351199. + 964912.i 0.478180 + 1.31379i 0.911036 + 0.412327i \(0.135284\pi\)
−0.432856 + 0.901463i \(0.642494\pi\)
\(858\) 0 0
\(859\) −805269. + 675701.i −1.09133 + 0.915732i −0.996812 0.0797913i \(-0.974575\pi\)
−0.0945154 + 0.995523i \(0.530130\pi\)
\(860\) −327760. + 900514.i −0.443159 + 1.21757i
\(861\) 0 0
\(862\) 346149. 1.96311e6i 0.465853 2.64198i
\(863\) 369062.i 0.495539i 0.968819 + 0.247770i \(0.0796976\pi\)
−0.968819 + 0.247770i \(0.920302\pi\)
\(864\) 0 0
\(865\) 496507. 0.663580
\(866\) 1.25339e6 + 221007.i 1.67129 + 0.294693i
\(867\) 0 0
\(868\) −699234. 254500.i −0.928075 0.337792i
\(869\) 355790. + 424014.i 0.471144 + 0.561488i
\(870\) 0 0
\(871\) 1.11332e6 405214.i 1.46752 0.534132i
\(872\) −2.35124e6 1.35749e6i −3.09218 1.78527i
\(873\) 0 0
\(874\) 326287. + 565145.i 0.427146 + 0.739839i
\(875\) −636988. + 759132.i −0.831984 + 0.991520i
\(876\) 0 0
\(877\) 213744. + 1.21220e6i 0.277904 + 1.57607i 0.729583 + 0.683892i \(0.239714\pi\)
−0.451679 + 0.892180i \(0.649175\pi\)
\(878\) −1.11286e6 + 196227.i −1.44361 + 0.254548i
\(879\) 0 0
\(880\) 1.25557e6 + 1.05355e6i 1.62135 + 1.36047i
\(881\) −495635. + 286155.i −0.638572 + 0.368680i −0.784064 0.620679i \(-0.786857\pi\)
0.145492 + 0.989359i \(0.453524\pi\)
\(882\) 0 0
\(883\) 353760. 612730.i 0.453719 0.785864i −0.544895 0.838504i \(-0.683430\pi\)
0.998614 + 0.0526404i \(0.0167637\pi\)
\(884\) −280422. 770453.i −0.358845 0.985920i
\(885\) 0 0
\(886\) 1.63651e6 1.37319e6i 2.08473 1.74930i
\(887\) −141090. + 387641.i −0.179328 + 0.492700i −0.996490 0.0837080i \(-0.973324\pi\)
0.817162 + 0.576408i \(0.195546\pi\)
\(888\) 0 0
\(889\) −221366. + 1.25543e6i −0.280096 + 1.58850i
\(890\) 30829.7i 0.0389215i
\(891\) 0 0
\(892\) −2.46272e6 −3.09518
\(893\) 405281. + 71462.0i 0.508222 + 0.0896133i
\(894\) 0 0
\(895\) −1.16797e6 425105.i −1.45809 0.530701i
\(896\) 615569. + 733607.i 0.766762 + 0.913792i
\(897\) 0 0
\(898\) −311199. + 113267.i −0.385910 + 0.140460i
\(899\) −259515. 149831.i −0.321102 0.185388i
\(900\) 0 0
\(901\) 30350.6 + 52568.8i 0.0373868 + 0.0647558i
\(902\) 102903. 122635.i 0.126478 0.150730i
\(903\) 0 0
\(904\) 180040. + 1.02106e6i 0.220308 + 1.24943i
\(905\) 1.26538e6 223120.i 1.54498 0.272422i
\(906\) 0 0
\(907\) −1.20036e6 1.00722e6i −1.45914 1.22436i −0.925552 0.378620i \(-0.876399\pi\)
−0.533588 0.845745i \(-0.679157\pi\)
\(908\) −1.31197e6 + 757467.i −1.59130 + 0.918739i
\(909\) 0 0
\(910\) −933901. + 1.61756e6i −1.12776 + 1.95334i
\(911\) −93821.4 257772.i −0.113049 0.310598i 0.870247 0.492616i \(-0.163959\pi\)
−0.983295 + 0.182018i \(0.941737\pi\)
\(912\) 0 0
\(913\) 700923. 588144.i 0.840869 0.705573i
\(914\) 524641. 1.44144e6i 0.628015 1.72546i
\(915\) 0 0
\(916\) 585934. 3.32300e6i 0.698325 3.96040i
\(917\) 282524.i 0.335983i
\(918\) 0 0
\(919\) 833152. 0.986491 0.493246 0.869890i \(-0.335810\pi\)
0.493246 + 0.869890i \(0.335810\pi\)
\(920\) −2.07159e6 365276.i −2.44753 0.431565i
\(921\) 0 0
\(922\) 1.92818e6 + 701799.i 2.26822 + 0.825565i
\(923\) 552190. + 658075.i 0.648165 + 0.772452i
\(924\) 0 0
\(925\) 44449.2 16178.2i 0.0519494 0.0189080i
\(926\) 668749. + 386103.i 0.779905 + 0.450278i
\(927\) 0 0
\(928\) −528269. 914989.i −0.613422 1.06248i
\(929\) −413834. + 493188.i −0.479507 + 0.571454i −0.950516 0.310674i \(-0.899445\pi\)
0.471010 + 0.882128i \(0.343890\pi\)
\(930\) 0 0
\(931\) −49255.7 279343.i −0.0568274 0.322284i
\(932\) 867389. 152944.i 0.998578 0.176076i
\(933\) 0 0
\(934\) −890240. 747000.i −1.02050 0.856302i
\(935\) 425986. 245943.i 0.487272 0.281327i
\(936\) 0 0
\(937\) −174761. + 302695.i −0.199051 + 0.344767i −0.948221 0.317611i \(-0.897119\pi\)
0.749170 + 0.662378i \(0.230453\pi\)
\(938\) −1.20407e6 3.30817e6i −1.36851 3.75995i
\(939\) 0 0
\(940\) −1.81836e6 + 1.52578e6i −2.05790 + 1.72678i
\(941\) 239502. 658026.i 0.270477 0.743128i −0.727874 0.685711i \(-0.759491\pi\)
0.998350 0.0574171i \(-0.0182865\pi\)
\(942\) 0 0
\(943\) −16135.7 + 91510.0i −0.0181453 + 0.102907i
\(944\) 505063.i 0.566763i
\(945\) 0 0
\(946\) 1.00989e6 1.12848
\(947\) −764050. 134723.i −0.851965 0.150224i −0.269420 0.963023i \(-0.586832\pi\)
−0.582545 + 0.812798i \(0.697943\pi\)
\(948\) 0 0
\(949\) −794934. 289332.i −0.882671 0.321266i
\(950\) 16359.7 + 19496.7i 0.0181270 + 0.0216030i
\(951\) 0 0
\(952\) −1.27943e6 + 465675.i −1.41170 + 0.513817i
\(953\) 42843.8 + 24735.9i 0.0471740 + 0.0272359i 0.523401 0.852086i \(-0.324663\pi\)
−0.476228 + 0.879322i \(0.657996\pi\)
\(954\) 0 0
\(955\) −716703. 1.24137e6i −0.785837 1.36111i
\(956\) −27790.9 + 33119.9i −0.0304079 + 0.0362388i
\(957\) 0 0
\(958\) 268730. + 1.52404e6i 0.292809 + 1.66060i
\(959\) −1.06916e6 + 188521.i −1.16253 + 0.204985i
\(960\) 0 0
\(961\) −630217. 528815.i −0.682407 0.572607i
\(962\) −2.11535e6 + 1.22130e6i −2.28577 + 1.31969i
\(963\) 0 0
\(964\) 1.17580e6 2.03655e6i 1.26526 2.19150i
\(965\) −145661. 400200.i −0.156419 0.429756i
\(966\) 0 0
\(967\) −702808. + 589726.i −0.751595 + 0.630663i −0.935924 0.352202i \(-0.885433\pi\)
0.184329 + 0.982865i \(0.440989\pi\)
\(968\) 172556. 474095.i 0.184154 0.505958i
\(969\) 0 0
\(970\) −271670. + 1.54072e6i −0.288735 + 1.63749i
\(971\) 498736.i 0.528972i −0.964390 0.264486i \(-0.914798\pi\)
0.964390 0.264486i \(-0.0852023\pi\)
\(972\) 0 0
\(973\) 376547. 0.397735
\(974\) −394089. 69488.5i −0.415410 0.0732479i
\(975\) 0 0
\(976\) −1.74343e6 634557.i −1.83023 0.666148i
\(977\) −483694. 576444.i −0.506736 0.603904i 0.450655 0.892698i \(-0.351190\pi\)
−0.957391 + 0.288794i \(0.906746\pi\)
\(978\) 0 0
\(979\) −21184.6 + 7710.56i −0.0221032 + 0.00804490i
\(980\) 1.41689e6 + 818044.i 1.47532 + 0.851775i
\(981\) 0 0
\(982\) −67611.5 117107.i −0.0701129 0.121439i
\(983\) 320924. 382463.i 0.332120 0.395806i −0.573979 0.818870i \(-0.694601\pi\)
0.906100 + 0.423064i \(0.139045\pi\)
\(984\) 0 0
\(985\) −190075. 1.07797e6i −0.195908 1.11105i
\(986\) −966217. + 170370.i −0.993850 + 0.175243i
\(987\) 0 0
\(988\) −698598. 586193.i −0.715671 0.600519i
\(989\) −507650. + 293092.i −0.519006 + 0.299648i
\(990\) 0 0
\(991\) −7420.51 + 12852.7i −0.00755591 + 0.0130872i −0.869779 0.493442i \(-0.835738\pi\)
0.862223 + 0.506529i \(0.169072\pi\)
\(992\) 121590. + 334067.i 0.123559 + 0.339477i
\(993\) 0 0
\(994\) 1.95544e6 1.64081e6i 1.97911 1.66067i
\(995\) 170651. 468859.i 0.172370 0.473583i
\(996\) 0 0
\(997\) 11310.5 64145.1i 0.0113787 0.0645317i −0.978590 0.205821i \(-0.934014\pi\)
0.989968 + 0.141289i \(0.0451247\pi\)
\(998\) 2.50356e6i 2.51360i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.8.11 66
3.2 odd 2 27.5.f.a.2.1 66
27.13 even 9 27.5.f.a.14.1 yes 66
27.14 odd 18 inner 81.5.f.a.71.11 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.2.1 66 3.2 odd 2
27.5.f.a.14.1 yes 66 27.13 even 9
81.5.f.a.8.11 66 1.1 even 1 trivial
81.5.f.a.71.11 66 27.14 odd 18 inner