Properties

Label 81.5.f.a.8.10
Level $81$
Weight $5$
Character 81.8
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.10
Character \(\chi\) \(=\) 81.8
Dual form 81.5.f.a.71.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.19782 + 1.09284i) q^{2} +(22.1836 + 8.07418i) q^{4} +(7.06026 + 8.41408i) q^{5} +(62.3269 - 22.6852i) q^{7} +(41.4621 + 23.9381i) q^{8} +(34.5629 + 59.8648i) q^{10} +(-18.2440 + 21.7424i) q^{11} +(38.7578 + 219.806i) q^{13} +(411.083 - 72.4850i) q^{14} +(-58.5343 - 49.1161i) q^{16} +(-287.497 + 165.987i) q^{17} +(283.914 - 491.754i) q^{19} +(88.6853 + 243.661i) q^{20} +(-136.834 + 114.818i) q^{22} +(50.3714 - 138.394i) q^{23} +(87.5805 - 496.694i) q^{25} +1404.68i q^{26} +1565.80 q^{28} +(-1292.76 - 227.949i) q^{29} +(-1356.31 - 493.655i) q^{31} +(-801.497 - 955.187i) q^{32} +(-1963.25 + 714.566i) q^{34} +(630.919 + 364.261i) q^{35} +(630.312 + 1091.73i) q^{37} +(2297.06 - 2737.53i) q^{38} +(91.3153 + 517.875i) q^{40} +(-264.956 + 46.7189i) q^{41} +(184.572 + 154.874i) q^{43} +(-580.271 + 335.020i) q^{44} +(463.437 - 802.696i) q^{46} +(458.931 + 1260.90i) q^{47} +(1530.76 - 1284.46i) q^{49} +(1085.62 - 2982.71i) q^{50} +(-914.968 + 5189.04i) q^{52} +1318.19i q^{53} -311.750 q^{55} +(3127.25 + 551.418i) q^{56} +(-7763.20 - 2825.58i) q^{58} +(-893.408 - 1064.72i) q^{59} +(2681.63 - 976.034i) q^{61} +(-7866.66 - 4541.82i) q^{62} +(-3312.38 - 5737.21i) q^{64} +(-1575.83 + 1878.00i) q^{65} +(252.937 + 1434.48i) q^{67} +(-7717.94 + 1360.88i) q^{68} +(3512.24 + 2947.12i) q^{70} +(880.106 - 508.129i) q^{71} +(-1701.39 + 2946.89i) q^{73} +(2713.47 + 7455.20i) q^{74} +(10268.8 - 8616.51i) q^{76} +(-643.865 + 1769.01i) q^{77} +(250.938 - 1423.14i) q^{79} -839.284i q^{80} -1693.21 q^{82} +(9629.68 + 1697.97i) q^{83} +(-3426.43 - 1247.12i) q^{85} +(974.689 + 1161.59i) q^{86} +(-1276.91 + 464.756i) q^{88} +(10139.4 + 5854.01i) q^{89} +(7402.00 + 12820.6i) q^{91} +(2234.84 - 2663.38i) q^{92} +(1466.40 + 8316.39i) q^{94} +(6142.16 - 1083.03i) q^{95} +(4082.19 + 3425.36i) q^{97} +(10891.1 - 6287.97i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.19782 + 1.09284i 1.54946 + 0.273211i 0.881932 0.471377i \(-0.156243\pi\)
0.667524 + 0.744588i \(0.267354\pi\)
\(3\) 0 0
\(4\) 22.1836 + 8.07418i 1.38648 + 0.504637i
\(5\) 7.06026 + 8.41408i 0.282410 + 0.336563i 0.888537 0.458804i \(-0.151722\pi\)
−0.606127 + 0.795368i \(0.707278\pi\)
\(6\) 0 0
\(7\) 62.3269 22.6852i 1.27198 0.462962i 0.384207 0.923247i \(-0.374475\pi\)
0.887771 + 0.460285i \(0.152253\pi\)
\(8\) 41.4621 + 23.9381i 0.647845 + 0.374033i
\(9\) 0 0
\(10\) 34.5629 + 59.8648i 0.345629 + 0.598648i
\(11\) −18.2440 + 21.7424i −0.150777 + 0.179689i −0.836146 0.548507i \(-0.815196\pi\)
0.685369 + 0.728196i \(0.259641\pi\)
\(12\) 0 0
\(13\) 38.7578 + 219.806i 0.229336 + 1.30063i 0.854220 + 0.519912i \(0.174035\pi\)
−0.624884 + 0.780718i \(0.714854\pi\)
\(14\) 411.083 72.4850i 2.09736 0.369821i
\(15\) 0 0
\(16\) −58.5343 49.1161i −0.228649 0.191860i
\(17\) −287.497 + 165.987i −0.994800 + 0.574348i −0.906706 0.421764i \(-0.861411\pi\)
−0.0880945 + 0.996112i \(0.528078\pi\)
\(18\) 0 0
\(19\) 283.914 491.754i 0.786466 1.36220i −0.141654 0.989916i \(-0.545242\pi\)
0.928120 0.372282i \(-0.121425\pi\)
\(20\) 88.6853 + 243.661i 0.221713 + 0.609152i
\(21\) 0 0
\(22\) −136.834 + 114.818i −0.282716 + 0.237227i
\(23\) 50.3714 138.394i 0.0952201 0.261615i −0.882934 0.469498i \(-0.844435\pi\)
0.978154 + 0.207883i \(0.0666572\pi\)
\(24\) 0 0
\(25\) 87.5805 496.694i 0.140129 0.794710i
\(26\) 1404.68i 2.07793i
\(27\) 0 0
\(28\) 1565.80 1.99720
\(29\) −1292.76 227.949i −1.53717 0.271045i −0.660017 0.751251i \(-0.729451\pi\)
−0.877156 + 0.480205i \(0.840562\pi\)
\(30\) 0 0
\(31\) −1356.31 493.655i −1.41135 0.513689i −0.479823 0.877365i \(-0.659299\pi\)
−0.931525 + 0.363677i \(0.881521\pi\)
\(32\) −801.497 955.187i −0.782712 0.932800i
\(33\) 0 0
\(34\) −1963.25 + 714.566i −1.69832 + 0.618137i
\(35\) 630.919 + 364.261i 0.515036 + 0.297356i
\(36\) 0 0
\(37\) 630.312 + 1091.73i 0.460418 + 0.797467i 0.998982 0.0451175i \(-0.0143662\pi\)
−0.538564 + 0.842585i \(0.681033\pi\)
\(38\) 2297.06 2737.53i 1.59076 1.89580i
\(39\) 0 0
\(40\) 91.3153 + 517.875i 0.0570721 + 0.323672i
\(41\) −264.956 + 46.7189i −0.157618 + 0.0277924i −0.251900 0.967753i \(-0.581056\pi\)
0.0942821 + 0.995546i \(0.469944\pi\)
\(42\) 0 0
\(43\) 184.572 + 154.874i 0.0998224 + 0.0837609i 0.691333 0.722536i \(-0.257024\pi\)
−0.591511 + 0.806297i \(0.701468\pi\)
\(44\) −580.271 + 335.020i −0.299727 + 0.173047i
\(45\) 0 0
\(46\) 463.437 802.696i 0.219015 0.379346i
\(47\) 458.931 + 1260.90i 0.207755 + 0.570802i 0.999181 0.0404627i \(-0.0128832\pi\)
−0.791426 + 0.611265i \(0.790661\pi\)
\(48\) 0 0
\(49\) 1530.76 1284.46i 0.637551 0.534968i
\(50\) 1085.62 2982.71i 0.434247 1.19308i
\(51\) 0 0
\(52\) −914.968 + 5189.04i −0.338376 + 1.91902i
\(53\) 1318.19i 0.469274i 0.972083 + 0.234637i \(0.0753902\pi\)
−0.972083 + 0.234637i \(0.924610\pi\)
\(54\) 0 0
\(55\) −311.750 −0.103058
\(56\) 3127.25 + 551.418i 0.997208 + 0.175835i
\(57\) 0 0
\(58\) −7763.20 2825.58i −2.30773 0.839945i
\(59\) −893.408 1064.72i −0.256653 0.305867i 0.622297 0.782781i \(-0.286200\pi\)
−0.878950 + 0.476915i \(0.841755\pi\)
\(60\) 0 0
\(61\) 2681.63 976.034i 0.720675 0.262304i 0.0444625 0.999011i \(-0.485842\pi\)
0.676212 + 0.736707i \(0.263620\pi\)
\(62\) −7866.66 4541.82i −2.04648 1.18153i
\(63\) 0 0
\(64\) −3312.38 5737.21i −0.808687 1.40069i
\(65\) −1575.83 + 1878.00i −0.372977 + 0.444497i
\(66\) 0 0
\(67\) 252.937 + 1434.48i 0.0563460 + 0.319554i 0.999933 0.0115704i \(-0.00368306\pi\)
−0.943587 + 0.331125i \(0.892572\pi\)
\(68\) −7717.94 + 1360.88i −1.66911 + 0.294308i
\(69\) 0 0
\(70\) 3512.24 + 2947.12i 0.716785 + 0.601454i
\(71\) 880.106 508.129i 0.174590 0.100799i −0.410159 0.912014i \(-0.634527\pi\)
0.584748 + 0.811215i \(0.301193\pi\)
\(72\) 0 0
\(73\) −1701.39 + 2946.89i −0.319270 + 0.552992i −0.980336 0.197336i \(-0.936771\pi\)
0.661066 + 0.750328i \(0.270104\pi\)
\(74\) 2713.47 + 7455.20i 0.495521 + 1.36143i
\(75\) 0 0
\(76\) 10268.8 8616.51i 1.77783 1.49178i
\(77\) −643.865 + 1769.01i −0.108596 + 0.298365i
\(78\) 0 0
\(79\) 250.938 1423.14i 0.0402079 0.228030i −0.958082 0.286496i \(-0.907510\pi\)
0.998289 + 0.0584653i \(0.0186207\pi\)
\(80\) 839.284i 0.131138i
\(81\) 0 0
\(82\) −1693.21 −0.251816
\(83\) 9629.68 + 1697.97i 1.39783 + 0.246476i 0.821253 0.570564i \(-0.193275\pi\)
0.576581 + 0.817040i \(0.304386\pi\)
\(84\) 0 0
\(85\) −3426.43 1247.12i −0.474246 0.172612i
\(86\) 974.689 + 1161.59i 0.131786 + 0.157056i
\(87\) 0 0
\(88\) −1276.91 + 464.756i −0.164890 + 0.0600150i
\(89\) 10139.4 + 5854.01i 1.28007 + 0.739050i 0.976861 0.213874i \(-0.0686082\pi\)
0.303210 + 0.952924i \(0.401941\pi\)
\(90\) 0 0
\(91\) 7402.00 + 12820.6i 0.893853 + 1.54820i
\(92\) 2234.84 2663.38i 0.264041 0.314672i
\(93\) 0 0
\(94\) 1466.40 + 8316.39i 0.165958 + 0.941194i
\(95\) 6142.16 1083.03i 0.680572 0.120003i
\(96\) 0 0
\(97\) 4082.19 + 3425.36i 0.433860 + 0.364052i 0.833406 0.552662i \(-0.186388\pi\)
−0.399546 + 0.916713i \(0.630832\pi\)
\(98\) 10891.1 6287.97i 1.13402 0.654724i
\(99\) 0 0
\(100\) 5953.25 10311.3i 0.595325 1.03113i
\(101\) −5579.65 15330.0i −0.546971 1.50279i −0.837780 0.546009i \(-0.816147\pi\)
0.290809 0.956781i \(-0.406076\pi\)
\(102\) 0 0
\(103\) 5565.88 4670.32i 0.524637 0.440223i −0.341608 0.939843i \(-0.610971\pi\)
0.866245 + 0.499620i \(0.166527\pi\)
\(104\) −3654.78 + 10041.4i −0.337905 + 0.928386i
\(105\) 0 0
\(106\) −1440.58 + 8169.92i −0.128211 + 0.727120i
\(107\) 20589.5i 1.79836i 0.437575 + 0.899182i \(0.355837\pi\)
−0.437575 + 0.899182i \(0.644163\pi\)
\(108\) 0 0
\(109\) 6506.21 0.547614 0.273807 0.961785i \(-0.411717\pi\)
0.273807 + 0.961785i \(0.411717\pi\)
\(110\) −1932.17 340.694i −0.159684 0.0281565i
\(111\) 0 0
\(112\) −4762.47 1733.40i −0.379661 0.138185i
\(113\) −3348.18 3990.21i −0.262212 0.312492i 0.618835 0.785521i \(-0.287605\pi\)
−0.881047 + 0.473029i \(0.843161\pi\)
\(114\) 0 0
\(115\) 1520.10 553.270i 0.114941 0.0418352i
\(116\) −26837.7 15494.7i −1.99448 1.15151i
\(117\) 0 0
\(118\) −4373.61 7575.31i −0.314106 0.544047i
\(119\) −14153.4 + 16867.4i −0.999463 + 1.19111i
\(120\) 0 0
\(121\) 2402.50 + 13625.2i 0.164094 + 0.930622i
\(122\) 17686.9 3118.68i 1.18832 0.209533i
\(123\) 0 0
\(124\) −26101.9 21902.1i −1.69758 1.42444i
\(125\) 10742.7 6202.31i 0.687534 0.396948i
\(126\) 0 0
\(127\) −8010.15 + 13874.0i −0.496630 + 0.860189i −0.999992 0.00388641i \(-0.998763\pi\)
0.503362 + 0.864076i \(0.332096\pi\)
\(128\) −7436.20 20430.8i −0.453869 1.24700i
\(129\) 0 0
\(130\) −11819.1 + 9917.38i −0.699354 + 0.586827i
\(131\) 3109.27 8542.66i 0.181183 0.497795i −0.815539 0.578702i \(-0.803559\pi\)
0.996722 + 0.0809069i \(0.0257817\pi\)
\(132\) 0 0
\(133\) 6539.99 37090.1i 0.369721 2.09679i
\(134\) 9167.07i 0.510530i
\(135\) 0 0
\(136\) −15893.6 −0.859302
\(137\) −31865.7 5618.77i −1.69778 0.299365i −0.760863 0.648913i \(-0.775224\pi\)
−0.936918 + 0.349548i \(0.886335\pi\)
\(138\) 0 0
\(139\) 92.1216 + 33.5295i 0.00476795 + 0.00173539i 0.344403 0.938822i \(-0.388081\pi\)
−0.339635 + 0.940557i \(0.610304\pi\)
\(140\) 11055.0 + 13174.8i 0.564029 + 0.672183i
\(141\) 0 0
\(142\) 6010.05 2187.48i 0.298058 0.108484i
\(143\) −5486.21 3167.47i −0.268288 0.154896i
\(144\) 0 0
\(145\) −7209.25 12486.8i −0.342890 0.593902i
\(146\) −13765.4 + 16405.0i −0.645778 + 0.769608i
\(147\) 0 0
\(148\) 5167.77 + 29307.9i 0.235928 + 1.33801i
\(149\) 748.137 131.917i 0.0336983 0.00594193i −0.156774 0.987635i \(-0.550109\pi\)
0.190472 + 0.981693i \(0.438998\pi\)
\(150\) 0 0
\(151\) −10700.5 8978.81i −0.469301 0.393790i 0.377238 0.926116i \(-0.376874\pi\)
−0.846540 + 0.532326i \(0.821318\pi\)
\(152\) 23543.3 13592.8i 1.01902 0.588329i
\(153\) 0 0
\(154\) −5923.81 + 10260.3i −0.249781 + 0.432634i
\(155\) −5422.21 14897.4i −0.225690 0.620079i
\(156\) 0 0
\(157\) −18051.3 + 15146.9i −0.732336 + 0.614503i −0.930767 0.365612i \(-0.880860\pi\)
0.198431 + 0.980115i \(0.436415\pi\)
\(158\) 3110.53 8546.12i 0.124601 0.342338i
\(159\) 0 0
\(160\) 2378.25 13487.7i 0.0929004 0.526865i
\(161\) 9768.38i 0.376852i
\(162\) 0 0
\(163\) −11897.4 −0.447791 −0.223895 0.974613i \(-0.571877\pi\)
−0.223895 + 0.974613i \(0.571877\pi\)
\(164\) −6254.91 1102.91i −0.232559 0.0410065i
\(165\) 0 0
\(166\) 57827.4 + 21047.5i 2.09854 + 0.763807i
\(167\) 11583.2 + 13804.3i 0.415332 + 0.494974i 0.932631 0.360831i \(-0.117507\pi\)
−0.517299 + 0.855805i \(0.673062\pi\)
\(168\) 0 0
\(169\) −19974.1 + 7269.98i −0.699349 + 0.254542i
\(170\) −19873.5 11474.0i −0.687664 0.397023i
\(171\) 0 0
\(172\) 2843.99 + 4925.93i 0.0961327 + 0.166507i
\(173\) 28468.3 33927.2i 0.951196 1.13359i −0.0397341 0.999210i \(-0.512651\pi\)
0.990930 0.134381i \(-0.0429045\pi\)
\(174\) 0 0
\(175\) −5808.95 32944.2i −0.189680 1.07573i
\(176\) 2135.80 376.599i 0.0689502 0.0121578i
\(177\) 0 0
\(178\) 56445.0 + 47363.0i 1.78150 + 1.49485i
\(179\) 23089.5 13330.7i 0.720625 0.416053i −0.0943579 0.995538i \(-0.530080\pi\)
0.814983 + 0.579485i \(0.196746\pi\)
\(180\) 0 0
\(181\) −1292.58 + 2238.81i −0.0394547 + 0.0683375i −0.885078 0.465442i \(-0.845895\pi\)
0.845624 + 0.533779i \(0.179229\pi\)
\(182\) 31865.3 + 87549.3i 0.962001 + 2.64308i
\(183\) 0 0
\(184\) 5401.41 4532.32i 0.159541 0.133871i
\(185\) −4735.77 + 13011.4i −0.138372 + 0.380173i
\(186\) 0 0
\(187\) 1636.16 9279.14i 0.0467890 0.265353i
\(188\) 31676.9i 0.896245i
\(189\) 0 0
\(190\) 39251.6 1.08730
\(191\) −10928.8 1927.04i −0.299574 0.0528230i 0.0218407 0.999761i \(-0.493047\pi\)
−0.321415 + 0.946938i \(0.604158\pi\)
\(192\) 0 0
\(193\) 8390.83 + 3054.01i 0.225263 + 0.0819892i 0.452186 0.891924i \(-0.350644\pi\)
−0.226923 + 0.973913i \(0.572867\pi\)
\(194\) 21557.3 + 25691.0i 0.572784 + 0.682617i
\(195\) 0 0
\(196\) 44328.8 16134.4i 1.15391 0.419990i
\(197\) 9119.33 + 5265.05i 0.234980 + 0.135666i 0.612867 0.790186i \(-0.290016\pi\)
−0.377888 + 0.925852i \(0.623349\pi\)
\(198\) 0 0
\(199\) 13293.1 + 23024.3i 0.335675 + 0.581406i 0.983614 0.180286i \(-0.0577023\pi\)
−0.647939 + 0.761692i \(0.724369\pi\)
\(200\) 15521.2 18497.4i 0.388030 0.462436i
\(201\) 0 0
\(202\) −17828.4 101110.i −0.436929 2.47795i
\(203\) −85745.0 + 15119.2i −2.08073 + 0.366890i
\(204\) 0 0
\(205\) −2263.76 1899.52i −0.0538669 0.0451997i
\(206\) 39600.3 22863.2i 0.933176 0.538769i
\(207\) 0 0
\(208\) 8527.37 14769.8i 0.197101 0.341388i
\(209\) 5512.16 + 15144.5i 0.126191 + 0.346708i
\(210\) 0 0
\(211\) 27035.8 22685.8i 0.607260 0.509552i −0.286510 0.958077i \(-0.592495\pi\)
0.893770 + 0.448525i \(0.148051\pi\)
\(212\) −10643.3 + 29242.3i −0.236813 + 0.650638i
\(213\) 0 0
\(214\) −22501.1 + 127610.i −0.491333 + 2.78649i
\(215\) 2646.45i 0.0572515i
\(216\) 0 0
\(217\) −95733.0 −2.03302
\(218\) 40324.3 + 7110.27i 0.848505 + 0.149614i
\(219\) 0 0
\(220\) −6915.75 2517.13i −0.142887 0.0520067i
\(221\) −47627.7 56760.4i −0.975158 1.16215i
\(222\) 0 0
\(223\) −40539.8 + 14755.3i −0.815214 + 0.296714i −0.715776 0.698330i \(-0.753927\pi\)
−0.0994383 + 0.995044i \(0.531705\pi\)
\(224\) −71623.5 41351.8i −1.42744 0.824135i
\(225\) 0 0
\(226\) −16390.8 28389.7i −0.320910 0.555832i
\(227\) 34396.1 40991.7i 0.667509 0.795507i −0.320933 0.947102i \(-0.603997\pi\)
0.988443 + 0.151595i \(0.0484410\pi\)
\(228\) 0 0
\(229\) −10270.1 58244.6i −0.195841 1.11067i −0.911216 0.411929i \(-0.864855\pi\)
0.715375 0.698741i \(-0.246256\pi\)
\(230\) 10025.9 1767.84i 0.189526 0.0334186i
\(231\) 0 0
\(232\) −48144.0 40397.6i −0.894470 0.750550i
\(233\) −12167.6 + 7024.97i −0.224126 + 0.129399i −0.607859 0.794045i \(-0.707972\pi\)
0.383733 + 0.923444i \(0.374638\pi\)
\(234\) 0 0
\(235\) −7369.17 + 12763.8i −0.133439 + 0.231123i
\(236\) −11222.3 30832.9i −0.201492 0.553593i
\(237\) 0 0
\(238\) −106154. + 89073.5i −1.87405 + 1.57251i
\(239\) −20692.1 + 56851.1i −0.362250 + 0.995274i 0.615982 + 0.787760i \(0.288759\pi\)
−0.978232 + 0.207514i \(0.933463\pi\)
\(240\) 0 0
\(241\) 9558.73 54210.2i 0.164576 0.933356i −0.784925 0.619591i \(-0.787298\pi\)
0.949501 0.313765i \(-0.101590\pi\)
\(242\) 87072.4i 1.48679i
\(243\) 0 0
\(244\) 67369.0 1.13157
\(245\) 21615.1 + 3811.33i 0.360102 + 0.0634956i
\(246\) 0 0
\(247\) 119094. + 43346.8i 1.95208 + 0.710499i
\(248\) −44418.1 52935.4i −0.722198 0.860682i
\(249\) 0 0
\(250\) 73359.7 26700.7i 1.17375 0.427212i
\(251\) 2594.71 + 1498.06i 0.0411852 + 0.0237783i 0.520451 0.853891i \(-0.325764\pi\)
−0.479266 + 0.877670i \(0.659097\pi\)
\(252\) 0 0
\(253\) 2090.05 + 3620.07i 0.0326524 + 0.0565556i
\(254\) −64807.6 + 77234.7i −1.00452 + 1.19714i
\(255\) 0 0
\(256\) −5354.54 30367.1i −0.0817038 0.463365i
\(257\) 106120. 18711.8i 1.60669 0.283302i 0.702901 0.711288i \(-0.251888\pi\)
0.903786 + 0.427985i \(0.140777\pi\)
\(258\) 0 0
\(259\) 64051.5 + 53745.6i 0.954839 + 0.801205i
\(260\) −50121.0 + 28937.3i −0.741434 + 0.428067i
\(261\) 0 0
\(262\) 28606.5 49548.0i 0.416738 0.721811i
\(263\) 11348.9 + 31180.8i 0.164075 + 0.450791i 0.994298 0.106640i \(-0.0340092\pi\)
−0.830223 + 0.557431i \(0.811787\pi\)
\(264\) 0 0
\(265\) −11091.4 + 9306.77i −0.157941 + 0.132528i
\(266\) 81067.4 222731.i 1.14573 3.14787i
\(267\) 0 0
\(268\) −5971.18 + 33864.2i −0.0831362 + 0.471489i
\(269\) 68153.7i 0.941857i −0.882171 0.470928i \(-0.843919\pi\)
0.882171 0.470928i \(-0.156081\pi\)
\(270\) 0 0
\(271\) 82407.6 1.12209 0.561046 0.827784i \(-0.310399\pi\)
0.561046 + 0.827784i \(0.310399\pi\)
\(272\) 24981.0 + 4404.83i 0.337655 + 0.0595376i
\(273\) 0 0
\(274\) −191357. 69648.4i −2.54885 0.927705i
\(275\) 9201.49 + 10965.9i 0.121673 + 0.145004i
\(276\) 0 0
\(277\) −132172. + 48106.5i −1.72258 + 0.626966i −0.998058 0.0622896i \(-0.980160\pi\)
−0.724518 + 0.689256i \(0.757938\pi\)
\(278\) 534.311 + 308.485i 0.00691361 + 0.00399157i
\(279\) 0 0
\(280\) 17439.5 + 30206.1i 0.222442 + 0.385281i
\(281\) 34857.1 41541.1i 0.441448 0.526097i −0.498741 0.866751i \(-0.666204\pi\)
0.940189 + 0.340654i \(0.110649\pi\)
\(282\) 0 0
\(283\) 27319.8 + 154938.i 0.341118 + 1.93458i 0.355491 + 0.934680i \(0.384314\pi\)
−0.0143731 + 0.999897i \(0.504575\pi\)
\(284\) 23626.7 4166.02i 0.292932 0.0516517i
\(285\) 0 0
\(286\) −30541.0 25627.0i −0.373381 0.313304i
\(287\) −15454.1 + 8922.42i −0.187620 + 0.108323i
\(288\) 0 0
\(289\) 13342.6 23110.1i 0.159752 0.276698i
\(290\) −31035.6 85269.5i −0.369032 1.01391i
\(291\) 0 0
\(292\) −61536.7 + 51635.5i −0.721720 + 0.605595i
\(293\) −30733.6 + 84439.9i −0.357996 + 0.983586i 0.621728 + 0.783234i \(0.286431\pi\)
−0.979724 + 0.200353i \(0.935791\pi\)
\(294\) 0 0
\(295\) 2650.97 15034.4i 0.0304622 0.172760i
\(296\) 60354.0i 0.688847i
\(297\) 0 0
\(298\) 4780.99 0.0538375
\(299\) 32372.2 + 5708.10i 0.362102 + 0.0638483i
\(300\) 0 0
\(301\) 15017.1 + 5465.79i 0.165750 + 0.0603281i
\(302\) −56507.6 67343.1i −0.619574 0.738379i
\(303\) 0 0
\(304\) −40771.7 + 14839.7i −0.441176 + 0.160575i
\(305\) 27145.4 + 15672.4i 0.291808 + 0.168475i
\(306\) 0 0
\(307\) −15111.7 26174.3i −0.160338 0.277714i 0.774652 0.632388i \(-0.217925\pi\)
−0.934990 + 0.354674i \(0.884592\pi\)
\(308\) −28566.6 + 34044.3i −0.301132 + 0.358875i
\(309\) 0 0
\(310\) −17325.4 98257.1i −0.180285 1.02245i
\(311\) −20942.7 + 3692.77i −0.216527 + 0.0381796i −0.280859 0.959749i \(-0.590619\pi\)
0.0643321 + 0.997929i \(0.479508\pi\)
\(312\) 0 0
\(313\) −48381.3 40596.7i −0.493843 0.414384i 0.361558 0.932350i \(-0.382245\pi\)
−0.855401 + 0.517966i \(0.826689\pi\)
\(314\) −128432. + 74150.4i −1.30261 + 0.752063i
\(315\) 0 0
\(316\) 17057.4 29544.3i 0.170820 0.295869i
\(317\) −50318.9 138250.i −0.500741 1.37577i −0.890553 0.454879i \(-0.849682\pi\)
0.389813 0.920894i \(-0.372540\pi\)
\(318\) 0 0
\(319\) 28541.4 23949.0i 0.280474 0.235346i
\(320\) 24887.1 68376.8i 0.243038 0.667743i
\(321\) 0 0
\(322\) 10675.3 60542.7i 0.102960 0.583916i
\(323\) 188504.i 1.80682i
\(324\) 0 0
\(325\) 112571. 1.06576
\(326\) −73737.7 13002.0i −0.693832 0.122341i
\(327\) 0 0
\(328\) −12104.0 4405.50i −0.112507 0.0409494i
\(329\) 57207.5 + 68177.3i 0.528520 + 0.629866i
\(330\) 0 0
\(331\) 13320.8 4848.39i 0.121584 0.0442529i −0.280512 0.959851i \(-0.590504\pi\)
0.402096 + 0.915598i \(0.368282\pi\)
\(332\) 199912. + 115419.i 1.81368 + 1.04713i
\(333\) 0 0
\(334\) 56704.7 + 98215.4i 0.508307 + 0.880413i
\(335\) −10284.0 + 12256.0i −0.0916375 + 0.109209i
\(336\) 0 0
\(337\) −8248.02 46776.8i −0.0726256 0.411880i −0.999347 0.0361312i \(-0.988497\pi\)
0.926721 0.375749i \(-0.122615\pi\)
\(338\) −131741. + 23229.5i −1.15315 + 0.203332i
\(339\) 0 0
\(340\) −65941.2 55331.2i −0.570426 0.478644i
\(341\) 35477.7 20483.1i 0.305103 0.176151i
\(342\) 0 0
\(343\) −13356.1 + 23133.5i −0.113525 + 0.196631i
\(344\) 3945.33 + 10839.7i 0.0333400 + 0.0916010i
\(345\) 0 0
\(346\) 213519. 179164.i 1.78355 1.49657i
\(347\) −48527.4 + 133328.i −0.403021 + 1.10729i 0.557765 + 0.829999i \(0.311659\pi\)
−0.960786 + 0.277292i \(0.910563\pi\)
\(348\) 0 0
\(349\) −11095.9 + 62927.9i −0.0910985 + 0.516645i 0.904775 + 0.425890i \(0.140039\pi\)
−0.995873 + 0.0907548i \(0.971072\pi\)
\(350\) 210530.i 1.71862i
\(351\) 0 0
\(352\) 35390.6 0.285629
\(353\) 82029.3 + 14464.0i 0.658293 + 0.116075i 0.492809 0.870138i \(-0.335970\pi\)
0.165484 + 0.986212i \(0.447081\pi\)
\(354\) 0 0
\(355\) 10489.2 + 3817.76i 0.0832312 + 0.0302937i
\(356\) 177663. + 211731.i 1.40184 + 1.67065i
\(357\) 0 0
\(358\) 157673. 57388.4i 1.23025 0.447773i
\(359\) −24583.0 14193.0i −0.190742 0.110125i 0.401588 0.915820i \(-0.368458\pi\)
−0.592330 + 0.805696i \(0.701792\pi\)
\(360\) 0 0
\(361\) −96053.9 166370.i −0.737056 1.27662i
\(362\) −10457.8 + 12463.1i −0.0798039 + 0.0951066i
\(363\) 0 0
\(364\) 60687.1 + 344173.i 0.458029 + 2.59761i
\(365\) −36807.6 + 6490.18i −0.276282 + 0.0487159i
\(366\) 0 0
\(367\) 148368. + 124495.i 1.10156 + 0.924316i 0.997529 0.0702587i \(-0.0223825\pi\)
0.104028 + 0.994574i \(0.466827\pi\)
\(368\) −9745.84 + 5626.76i −0.0719654 + 0.0415492i
\(369\) 0 0
\(370\) −43570.9 + 75467.0i −0.318268 + 0.551256i
\(371\) 29903.4 + 82158.8i 0.217256 + 0.596907i
\(372\) 0 0
\(373\) 89100.8 74764.4i 0.640418 0.537375i −0.263728 0.964597i \(-0.584952\pi\)
0.904147 + 0.427222i \(0.140508\pi\)
\(374\) 20281.3 55722.4i 0.144995 0.398370i
\(375\) 0 0
\(376\) −11155.4 + 63265.6i −0.0789061 + 0.447499i
\(377\) 292992.i 2.06145i
\(378\) 0 0
\(379\) −162689. −1.13261 −0.566303 0.824197i \(-0.691627\pi\)
−0.566303 + 0.824197i \(0.691627\pi\)
\(380\) 145000. + 25567.4i 1.00416 + 0.177060i
\(381\) 0 0
\(382\) −65628.7 23886.9i −0.449745 0.163694i
\(383\) −66642.3 79421.2i −0.454310 0.541425i 0.489461 0.872025i \(-0.337193\pi\)
−0.943771 + 0.330600i \(0.892749\pi\)
\(384\) 0 0
\(385\) −19430.4 + 7072.09i −0.131087 + 0.0477119i
\(386\) 48667.4 + 28098.1i 0.326635 + 0.188583i
\(387\) 0 0
\(388\) 62900.8 + 108947.i 0.417823 + 0.723691i
\(389\) −174142. + 207534.i −1.15081 + 1.37148i −0.233964 + 0.972245i \(0.575170\pi\)
−0.916847 + 0.399238i \(0.869275\pi\)
\(390\) 0 0
\(391\) 8489.97 + 48149.0i 0.0555332 + 0.314944i
\(392\) 94216.0 16612.8i 0.613130 0.108111i
\(393\) 0 0
\(394\) 50766.1 + 42597.8i 0.327025 + 0.274407i
\(395\) 13746.1 7936.31i 0.0881018 0.0508656i
\(396\) 0 0
\(397\) −30297.8 + 52477.3i −0.192234 + 0.332959i −0.945990 0.324195i \(-0.894907\pi\)
0.753756 + 0.657154i \(0.228240\pi\)
\(398\) 57226.2 + 157228.i 0.361267 + 0.992573i
\(399\) 0 0
\(400\) −29522.1 + 24772.0i −0.184513 + 0.154825i
\(401\) 32918.4 90442.5i 0.204715 0.562450i −0.794267 0.607569i \(-0.792145\pi\)
0.998982 + 0.0451196i \(0.0143669\pi\)
\(402\) 0 0
\(403\) 55941.1 317258.i 0.344446 1.95345i
\(404\) 385125.i 2.35961i
\(405\) 0 0
\(406\) −547955. −3.32425
\(407\) −35236.3 6213.11i −0.212717 0.0375077i
\(408\) 0 0
\(409\) −118507. 43133.1i −0.708432 0.257848i −0.0374253 0.999299i \(-0.511916\pi\)
−0.671007 + 0.741451i \(0.734138\pi\)
\(410\) −11954.5 14246.8i −0.0711153 0.0847520i
\(411\) 0 0
\(412\) 161180. 58664.9i 0.949550 0.345608i
\(413\) −79836.7 46093.8i −0.468061 0.270235i
\(414\) 0 0
\(415\) 53701.1 + 93013.1i 0.311808 + 0.540067i
\(416\) 178892. 213195.i 1.03372 1.23194i
\(417\) 0 0
\(418\) 17612.8 + 99887.1i 0.100804 + 0.571685i
\(419\) 169373. 29865.1i 0.964755 0.170112i 0.330987 0.943635i \(-0.392618\pi\)
0.633768 + 0.773523i \(0.281507\pi\)
\(420\) 0 0
\(421\) 178528. + 149803.i 1.00726 + 0.845193i 0.987974 0.154621i \(-0.0494157\pi\)
0.0192879 + 0.999814i \(0.493860\pi\)
\(422\) 192355. 111056.i 1.08014 0.623618i
\(423\) 0 0
\(424\) −31555.1 + 54655.0i −0.175524 + 0.304017i
\(425\) 57265.3 + 157335.i 0.317040 + 0.871060i
\(426\) 0 0
\(427\) 144996. 121666.i 0.795246 0.667290i
\(428\) −166243. + 456749.i −0.907520 + 2.49339i
\(429\) 0 0
\(430\) −2892.16 + 16402.2i −0.0156417 + 0.0887087i
\(431\) 155134.i 0.835126i 0.908648 + 0.417563i \(0.137116\pi\)
−0.908648 + 0.417563i \(0.862884\pi\)
\(432\) 0 0
\(433\) −3126.89 −0.0166777 −0.00833887 0.999965i \(-0.502654\pi\)
−0.00833887 + 0.999965i \(0.502654\pi\)
\(434\) −593336. 104621.i −3.15008 0.555444i
\(435\) 0 0
\(436\) 144331. + 52532.3i 0.759255 + 0.276346i
\(437\) −53754.8 64062.4i −0.281484 0.335460i
\(438\) 0 0
\(439\) −242506. + 88264.8i −1.25833 + 0.457993i −0.883207 0.468984i \(-0.844620\pi\)
−0.375118 + 0.926977i \(0.622398\pi\)
\(440\) −12925.8 7462.71i −0.0667655 0.0385471i
\(441\) 0 0
\(442\) −233158. 403841.i −1.19345 2.06712i
\(443\) 150984. 179936.i 0.769351 0.916877i −0.229049 0.973415i \(-0.573562\pi\)
0.998400 + 0.0565377i \(0.0180061\pi\)
\(444\) 0 0
\(445\) 22330.9 + 126645.i 0.112768 + 0.639540i
\(446\) −267384. + 47147.0i −1.34420 + 0.237019i
\(447\) 0 0
\(448\) −336600. 282441.i −1.67710 1.40725i
\(449\) −188149. + 108628.i −0.933274 + 0.538826i −0.887846 0.460142i \(-0.847799\pi\)
−0.0454285 + 0.998968i \(0.514465\pi\)
\(450\) 0 0
\(451\) 3818.09 6613.12i 0.0187712 0.0325127i
\(452\) −42057.2 115551.i −0.205856 0.565585i
\(453\) 0 0
\(454\) 257978. 216470.i 1.25162 1.05023i
\(455\) −55613.9 + 152798.i −0.268634 + 0.738065i
\(456\) 0 0
\(457\) 13225.3 75004.7i 0.0633249 0.359133i −0.936636 0.350304i \(-0.886078\pi\)
0.999961 0.00882954i \(-0.00281057\pi\)
\(458\) 372213.i 1.77444i
\(459\) 0 0
\(460\) 38188.5 0.180475
\(461\) −179478. 31646.8i −0.844519 0.148912i −0.265384 0.964143i \(-0.585499\pi\)
−0.579135 + 0.815231i \(0.696610\pi\)
\(462\) 0 0
\(463\) −302626. 110147.i −1.41171 0.513819i −0.480076 0.877227i \(-0.659391\pi\)
−0.931630 + 0.363408i \(0.881613\pi\)
\(464\) 64474.9 + 76838.2i 0.299471 + 0.356896i
\(465\) 0 0
\(466\) −83089.8 + 30242.2i −0.382627 + 0.139265i
\(467\) 23093.6 + 13333.1i 0.105891 + 0.0611359i 0.552010 0.833837i \(-0.313861\pi\)
−0.446119 + 0.894973i \(0.647194\pi\)
\(468\) 0 0
\(469\) 48306.2 + 83668.8i 0.219612 + 0.380380i
\(470\) −59621.6 + 71054.3i −0.269903 + 0.321658i
\(471\) 0 0
\(472\) −11555.1 65532.1i −0.0518667 0.294151i
\(473\) −6734.66 + 1187.50i −0.0301019 + 0.00530777i
\(474\) 0 0
\(475\) −219386. 184086.i −0.972346 0.815895i
\(476\) −450164. + 259902.i −1.98681 + 1.14709i
\(477\) 0 0
\(478\) −190375. + 329740.i −0.833210 + 1.44316i
\(479\) −47067.5 129317.i −0.205140 0.563617i 0.793871 0.608086i \(-0.208063\pi\)
−0.999011 + 0.0444692i \(0.985840\pi\)
\(480\) 0 0
\(481\) −215540. + 180860.i −0.931619 + 0.781721i
\(482\) 118487. 325539.i 0.510006 1.40123i
\(483\) 0 0
\(484\) −56716.5 + 321655.i −0.242113 + 1.37309i
\(485\) 58531.8i 0.248833i
\(486\) 0 0
\(487\) 327215. 1.37967 0.689834 0.723967i \(-0.257683\pi\)
0.689834 + 0.723967i \(0.257683\pi\)
\(488\) 134550. + 23724.9i 0.564996 + 0.0996241i
\(489\) 0 0
\(490\) 129801. + 47243.9i 0.540614 + 0.196767i
\(491\) −238624. 284382.i −0.989810 1.17961i −0.983735 0.179629i \(-0.942510\pi\)
−0.00607590 0.999982i \(-0.501934\pi\)
\(492\) 0 0
\(493\) 409502. 149047.i 1.68485 0.613237i
\(494\) 690755. + 398808.i 2.83055 + 1.63422i
\(495\) 0 0
\(496\) 55143.9 + 95512.1i 0.224148 + 0.388235i
\(497\) 43327.3 51635.5i 0.175408 0.209043i
\(498\) 0 0
\(499\) −24139.4 136901.i −0.0969449 0.549802i −0.994134 0.108155i \(-0.965506\pi\)
0.897189 0.441646i \(-0.145605\pi\)
\(500\) 288391. 50851.2i 1.15357 0.203405i
\(501\) 0 0
\(502\) 14444.4 + 12120.3i 0.0573182 + 0.0480957i
\(503\) 105718. 61036.5i 0.417844 0.241243i −0.276310 0.961068i \(-0.589112\pi\)
0.694155 + 0.719826i \(0.255778\pi\)
\(504\) 0 0
\(505\) 89593.8 155181.i 0.351314 0.608493i
\(506\) 8997.57 + 24720.6i 0.0351418 + 0.0965514i
\(507\) 0 0
\(508\) −289716. + 243100.i −1.12265 + 0.942015i
\(509\) 67757.9 186163.i 0.261532 0.718552i −0.737533 0.675311i \(-0.764009\pi\)
0.999065 0.0432413i \(-0.0137684\pi\)
\(510\) 0 0
\(511\) −39191.7 + 222267.i −0.150090 + 0.851203i
\(512\) 153810.i 0.586739i
\(513\) 0 0
\(514\) 678163. 2.56689
\(515\) 78593.0 + 13858.1i 0.296326 + 0.0522502i
\(516\) 0 0
\(517\) −35787.8 13025.7i −0.133892 0.0487326i
\(518\) 338245. + 403104.i 1.26058 + 1.50230i
\(519\) 0 0
\(520\) −110293. + 40143.4i −0.407888 + 0.148459i
\(521\) 330879. + 191033.i 1.21897 + 0.703773i 0.964698 0.263359i \(-0.0848305\pi\)
0.254273 + 0.967132i \(0.418164\pi\)
\(522\) 0 0
\(523\) 187042. + 323966.i 0.683811 + 1.18440i 0.973809 + 0.227368i \(0.0730120\pi\)
−0.289998 + 0.957027i \(0.593655\pi\)
\(524\) 137950. 164402.i 0.502411 0.598750i
\(525\) 0 0
\(526\) 36262.6 + 205656.i 0.131065 + 0.743308i
\(527\) 471874. 83204.2i 1.69905 0.299588i
\(528\) 0 0
\(529\) 197755. + 165936.i 0.706669 + 0.592966i
\(530\) −78913.2 + 45560.6i −0.280930 + 0.162195i
\(531\) 0 0
\(532\) 444553. 769989.i 1.57073 2.72058i
\(533\) −20538.2 56428.4i −0.0722951 0.198629i
\(534\) 0 0
\(535\) −173241. + 145367.i −0.605263 + 0.507876i
\(536\) −23851.5 + 65531.3i −0.0830205 + 0.228097i
\(537\) 0 0
\(538\) 74481.3 422405.i 0.257326 1.45937i
\(539\) 56716.1i 0.195222i
\(540\) 0 0
\(541\) −179687. −0.613936 −0.306968 0.951720i \(-0.599314\pi\)
−0.306968 + 0.951720i \(0.599314\pi\)
\(542\) 510748. + 90058.6i 1.73863 + 0.306568i
\(543\) 0 0
\(544\) 388977. + 141576.i 1.31439 + 0.478400i
\(545\) 45935.5 + 54743.8i 0.154652 + 0.184307i
\(546\) 0 0
\(547\) −188810. + 68721.1i −0.631030 + 0.229676i −0.637679 0.770302i \(-0.720106\pi\)
0.00664982 + 0.999978i \(0.497883\pi\)
\(548\) −661529. 381934.i −2.20286 1.27182i
\(549\) 0 0
\(550\) 45045.2 + 78020.5i 0.148910 + 0.257919i
\(551\) −479128. + 571003.i −1.57815 + 1.88077i
\(552\) 0 0
\(553\) −16643.9 94392.4i −0.0544259 0.308665i
\(554\) −871749. + 153713.i −2.84035 + 0.500830i
\(555\) 0 0
\(556\) 1772.87 + 1487.61i 0.00573492 + 0.00481217i
\(557\) −51655.6 + 29823.4i −0.166497 + 0.0961272i −0.580933 0.813951i \(-0.697312\pi\)
0.414436 + 0.910079i \(0.363979\pi\)
\(558\) 0 0
\(559\) −26888.7 + 46572.6i −0.0860490 + 0.149041i
\(560\) −19039.3 52310.0i −0.0607120 0.166805i
\(561\) 0 0
\(562\) 261436. 219371.i 0.827739 0.694556i
\(563\) 207044. 568850.i 0.653201 1.79465i 0.0476268 0.998865i \(-0.484834\pi\)
0.605574 0.795789i \(-0.292944\pi\)
\(564\) 0 0
\(565\) 9934.94 56343.8i 0.0311220 0.176502i
\(566\) 990137.i 3.09074i
\(567\) 0 0
\(568\) 48654.7 0.150809
\(569\) −174871. 30834.4i −0.540122 0.0952381i −0.103070 0.994674i \(-0.532867\pi\)
−0.437053 + 0.899436i \(0.643978\pi\)
\(570\) 0 0
\(571\) 10666.5 + 3882.28i 0.0327151 + 0.0119073i 0.358326 0.933597i \(-0.383348\pi\)
−0.325611 + 0.945504i \(0.605570\pi\)
\(572\) −96129.5 114563.i −0.293809 0.350147i
\(573\) 0 0
\(574\) −105533. + 38410.7i −0.320304 + 0.116581i
\(575\) −64328.1 37139.8i −0.194565 0.112332i
\(576\) 0 0
\(577\) −111023. 192298.i −0.333474 0.577593i 0.649717 0.760176i \(-0.274888\pi\)
−0.983190 + 0.182583i \(0.941554\pi\)
\(578\) 107951. 128651.i 0.323125 0.385085i
\(579\) 0 0
\(580\) −59106.8 335211.i −0.175704 0.996467i
\(581\) 638707. 112621.i 1.89212 0.333633i
\(582\) 0 0
\(583\) −28660.6 24049.1i −0.0843235 0.0707558i
\(584\) −141086. + 81456.2i −0.413675 + 0.238835i
\(585\) 0 0
\(586\) −282761. + 489757.i −0.823426 + 1.42622i
\(587\) 6758.00 + 18567.4i 0.0196129 + 0.0538860i 0.949113 0.314937i \(-0.101983\pi\)
−0.929500 + 0.368823i \(0.879761\pi\)
\(588\) 0 0
\(589\) −627831. + 526813.i −1.80972 + 1.51854i
\(590\) 32860.5 90283.6i 0.0943997 0.259361i
\(591\) 0 0
\(592\) 16726.8 94862.2i 0.0477275 0.270676i
\(593\) 550403.i 1.56521i −0.622521 0.782603i \(-0.713892\pi\)
0.622521 0.782603i \(-0.286108\pi\)
\(594\) 0 0
\(595\) −241850. −0.683144
\(596\) 17661.5 + 3114.20i 0.0497205 + 0.00876707i
\(597\) 0 0
\(598\) 194399. + 70755.6i 0.543617 + 0.197860i
\(599\) −128103. 152667.i −0.357031 0.425493i 0.557394 0.830248i \(-0.311801\pi\)
−0.914425 + 0.404755i \(0.867357\pi\)
\(600\) 0 0
\(601\) 133684. 48657.0i 0.370110 0.134709i −0.150268 0.988645i \(-0.548014\pi\)
0.520377 + 0.853936i \(0.325791\pi\)
\(602\) 87100.2 + 50287.3i 0.240340 + 0.138760i
\(603\) 0 0
\(604\) −164880. 285581.i −0.451954 0.782808i
\(605\) −97681.6 + 116412.i −0.266871 + 0.318045i
\(606\) 0 0
\(607\) −90199.7 511548.i −0.244809 1.38838i −0.820936 0.571021i \(-0.806548\pi\)
0.576127 0.817361i \(-0.304564\pi\)
\(608\) −697273. + 122948.i −1.88624 + 0.332594i
\(609\) 0 0
\(610\) 151115. + 126801.i 0.406114 + 0.340770i
\(611\) −259367. + 149746.i −0.694757 + 0.401118i
\(612\) 0 0
\(613\) 164250. 284490.i 0.437104 0.757087i −0.560360 0.828249i \(-0.689337\pi\)
0.997465 + 0.0711618i \(0.0226707\pi\)
\(614\) −65055.4 178738.i −0.172563 0.474112i
\(615\) 0 0
\(616\) −69042.7 + 57933.7i −0.181952 + 0.152676i
\(617\) −200393. + 550576.i −0.526396 + 1.44626i 0.336889 + 0.941544i \(0.390625\pi\)
−0.863285 + 0.504717i \(0.831597\pi\)
\(618\) 0 0
\(619\) −5535.97 + 31396.1i −0.0144482 + 0.0819396i −0.991179 0.132528i \(-0.957691\pi\)
0.976731 + 0.214468i \(0.0688017\pi\)
\(620\) 374258.i 0.973617i
\(621\) 0 0
\(622\) −133835. −0.345930
\(623\) 764760. + 134848.i 1.97038 + 0.347430i
\(624\) 0 0
\(625\) −168179. 61212.2i −0.430538 0.156703i
\(626\) −255493. 304485.i −0.651974 0.776993i
\(627\) 0 0
\(628\) −522743. + 190263.i −1.32547 + 0.482431i
\(629\) −362426. 209247.i −0.916048 0.528880i
\(630\) 0 0
\(631\) −25960.6 44965.1i −0.0652013 0.112932i 0.831582 0.555402i \(-0.187436\pi\)
−0.896783 + 0.442470i \(0.854102\pi\)
\(632\) 44471.7 52999.3i 0.111340 0.132689i
\(633\) 0 0
\(634\) −160782. 911840.i −0.399999 2.26851i
\(635\) −173291. + 30555.8i −0.429762 + 0.0757786i
\(636\) 0 0
\(637\) 341661. + 286688.i 0.842009 + 0.706530i
\(638\) 203067. 117241.i 0.498882 0.288030i
\(639\) 0 0
\(640\) 119405. 206815.i 0.291516 0.504920i
\(641\) 16727.5 + 45958.4i 0.0407113 + 0.111853i 0.958383 0.285487i \(-0.0921554\pi\)
−0.917671 + 0.397341i \(0.869933\pi\)
\(642\) 0 0
\(643\) 99454.3 83452.1i 0.240548 0.201844i −0.514542 0.857465i \(-0.672038\pi\)
0.755089 + 0.655622i \(0.227593\pi\)
\(644\) 78871.7 216698.i 0.190173 0.522497i
\(645\) 0 0
\(646\) −206005. + 1.16831e6i −0.493643 + 2.79959i
\(647\) 219579.i 0.524544i 0.964994 + 0.262272i \(0.0844717\pi\)
−0.964994 + 0.262272i \(0.915528\pi\)
\(648\) 0 0
\(649\) 39448.9 0.0936582
\(650\) 697694. + 123022.i 1.65135 + 0.291177i
\(651\) 0 0
\(652\) −263927. 96061.5i −0.620852 0.225972i
\(653\) 12945.7 + 15428.1i 0.0303598 + 0.0361814i 0.781011 0.624518i \(-0.214704\pi\)
−0.750651 + 0.660699i \(0.770260\pi\)
\(654\) 0 0
\(655\) 93830.9 34151.7i 0.218707 0.0796030i
\(656\) 17803.7 + 10279.0i 0.0413716 + 0.0238859i
\(657\) 0 0
\(658\) 280055. + 485070.i 0.646832 + 1.12035i
\(659\) 482438. 574947.i 1.11089 1.32391i 0.169904 0.985461i \(-0.445654\pi\)
0.940986 0.338446i \(-0.109901\pi\)
\(660\) 0 0
\(661\) −28440.2 161292.i −0.0650923 0.369157i −0.999902 0.0140075i \(-0.995541\pi\)
0.934810 0.355149i \(-0.115570\pi\)
\(662\) 87858.8 15491.9i 0.200479 0.0353499i
\(663\) 0 0
\(664\) 358620. + 300918.i 0.813390 + 0.682515i
\(665\) 358254. 206838.i 0.810116 0.467721i
\(666\) 0 0
\(667\) −96665.2 + 167429.i −0.217279 + 0.376339i
\(668\) 145499. + 399755.i 0.326067 + 0.895862i
\(669\) 0 0
\(670\) −77132.5 + 64721.8i −0.171826 + 0.144179i
\(671\) −27702.4 + 76111.9i −0.0615280 + 0.169047i
\(672\) 0 0
\(673\) −84265.1 + 477891.i −0.186045 + 1.05511i 0.738561 + 0.674187i \(0.235506\pi\)
−0.924606 + 0.380926i \(0.875605\pi\)
\(674\) 298928.i 0.658032i
\(675\) 0 0
\(676\) −501798. −1.09808
\(677\) −744551. 131284.i −1.62449 0.286441i −0.714053 0.700091i \(-0.753143\pi\)
−0.910436 + 0.413650i \(0.864254\pi\)
\(678\) 0 0
\(679\) 332135. + 120887.i 0.720402 + 0.262205i
\(680\) −112213. 133730.i −0.242676 0.289210i
\(681\) 0 0
\(682\) 242269. 88178.9i 0.520871 0.189581i
\(683\) −331391. 191329.i −0.710393 0.410146i 0.100813 0.994905i \(-0.467856\pi\)
−0.811207 + 0.584760i \(0.801189\pi\)
\(684\) 0 0
\(685\) −177703. 307790.i −0.378716 0.655955i
\(686\) −108060. + 128781.i −0.229624 + 0.273655i
\(687\) 0 0
\(688\) −3196.96 18130.9i −0.00675399 0.0383038i
\(689\) −289747. + 51090.2i −0.610352 + 0.107621i
\(690\) 0 0
\(691\) −569224. 477636.i −1.19214 1.00032i −0.999820 0.0189914i \(-0.993954\pi\)
−0.192320 0.981332i \(-0.561601\pi\)
\(692\) 905466. 522771.i 1.89086 1.09169i
\(693\) 0 0
\(694\) −446471. + 773310.i −0.926988 + 1.60559i
\(695\) 368.282 + 1011.85i 0.000762449 + 0.00209481i
\(696\) 0 0
\(697\) 68419.5 57410.8i 0.140836 0.118176i
\(698\) −137541. + 377890.i −0.282306 + 0.775630i
\(699\) 0 0
\(700\) 137134. 777724.i 0.279865 1.58719i
\(701\) 357201.i 0.726902i 0.931613 + 0.363451i \(0.118402\pi\)
−0.931613 + 0.363451i \(0.881598\pi\)
\(702\) 0 0
\(703\) 715818. 1.44841
\(704\) 185172. + 32650.8i 0.373620 + 0.0658792i
\(705\) 0 0
\(706\) 492596. + 179290.i 0.988284 + 0.359706i
\(707\) −695525. 828894.i −1.39147 1.65829i
\(708\) 0 0
\(709\) 121993. 44401.9i 0.242685 0.0883301i −0.217814 0.975990i \(-0.569893\pi\)
0.460499 + 0.887660i \(0.347670\pi\)
\(710\) 60838.1 + 35124.9i 0.120687 + 0.0696784i
\(711\) 0 0
\(712\) 280268. + 485439.i 0.552859 + 0.957579i
\(713\) −136638. + 162839.i −0.268777 + 0.320316i
\(714\) 0 0
\(715\) −12082.7 68524.6i −0.0236349 0.134040i
\(716\) 619845. 109295.i 1.20909 0.213194i
\(717\) 0 0
\(718\) −136850. 114831.i −0.265459 0.222746i
\(719\) −667081. + 385139.i −1.29039 + 0.745007i −0.978723 0.205185i \(-0.934220\pi\)
−0.311666 + 0.950192i \(0.600887\pi\)
\(720\) 0 0
\(721\) 240957. 417350.i 0.463521 0.802841i
\(722\) −413509. 1.13611e6i −0.793250 2.17944i
\(723\) 0 0
\(724\) −46750.6 + 39228.4i −0.0891887 + 0.0748382i
\(725\) −226442. + 622143.i −0.430804 + 1.18363i
\(726\) 0 0
\(727\) −72177.6 + 409339.i −0.136563 + 0.774488i 0.837195 + 0.546904i \(0.184194\pi\)
−0.973758 + 0.227584i \(0.926917\pi\)
\(728\) 708760.i 1.33732i
\(729\) 0 0
\(730\) −235220. −0.441396
\(731\) −78770.8 13889.4i −0.147411 0.0259926i
\(732\) 0 0
\(733\) 79575.9 + 28963.2i 0.148106 + 0.0539063i 0.415010 0.909817i \(-0.363778\pi\)
−0.266903 + 0.963723i \(0.586000\pi\)
\(734\) 783502. + 933742.i 1.45428 + 1.73314i
\(735\) 0 0
\(736\) −172565. + 62808.6i −0.318565 + 0.115948i
\(737\) −35803.6 20671.2i −0.0659161 0.0380567i
\(738\) 0 0
\(739\) −343960. 595756.i −0.629824 1.09089i −0.987587 0.157074i \(-0.949794\pi\)
0.357763 0.933812i \(-0.383540\pi\)
\(740\) −210113. + 250403.i −0.383698 + 0.457274i
\(741\) 0 0
\(742\) 95549.1 + 541886.i 0.173548 + 0.984237i
\(743\) 23488.6 4141.68i 0.0425481 0.00750238i −0.152334 0.988329i \(-0.548679\pi\)
0.194882 + 0.980827i \(0.437568\pi\)
\(744\) 0 0
\(745\) 6392.00 + 5363.52i 0.0115166 + 0.00966357i
\(746\) 633937. 366004.i 1.13912 0.657669i
\(747\) 0 0
\(748\) 111218. 192634.i 0.198779 0.344295i
\(749\) 467075. + 1.28328e6i 0.832574 + 2.28748i
\(750\) 0 0
\(751\) 806672. 676878.i 1.43027 1.20014i 0.484712 0.874674i \(-0.338924\pi\)
0.945555 0.325462i \(-0.105520\pi\)
\(752\) 35067.4 96346.9i 0.0620109 0.170373i
\(753\) 0 0
\(754\) 320195. 1.81591e6i 0.563211 3.19413i
\(755\) 153428.i 0.269160i
\(756\) 0 0
\(757\) 7573.14 0.0132155 0.00660776 0.999978i \(-0.497897\pi\)
0.00660776 + 0.999978i \(0.497897\pi\)
\(758\) −1.00832e6 177793.i −1.75492 0.309441i
\(759\) 0 0
\(760\) 280593. + 102127.i 0.485790 + 0.176813i
\(761\) 559188. + 666414.i 0.965580 + 1.15073i 0.988534 + 0.150997i \(0.0482484\pi\)
−0.0229542 + 0.999737i \(0.507307\pi\)
\(762\) 0 0
\(763\) 405512. 147594.i 0.696554 0.253525i
\(764\) −226881. 130990.i −0.388697 0.224414i
\(765\) 0 0
\(766\) −326242. 565068.i −0.556010 0.963037i
\(767\) 199406. 237643.i 0.338959 0.403956i
\(768\) 0 0
\(769\) 139267. + 789822.i 0.235502 + 1.33560i 0.841553 + 0.540175i \(0.181642\pi\)
−0.606051 + 0.795426i \(0.707247\pi\)
\(770\) −128155. + 22597.2i −0.216149 + 0.0381130i
\(771\) 0 0
\(772\) 161481. + 135498.i 0.270948 + 0.227352i
\(773\) 728698. 420714.i 1.21952 0.704090i 0.254705 0.967019i \(-0.418022\pi\)
0.964815 + 0.262929i \(0.0846884\pi\)
\(774\) 0 0
\(775\) −363981. + 630434.i −0.606004 + 1.04963i
\(776\) 87259.2 + 239743.i 0.144906 + 0.398127i
\(777\) 0 0
\(778\) −1.30610e6 + 1.09595e6i −2.15784 + 1.81064i
\(779\) −52250.6 + 143557.i −0.0861026 + 0.236565i
\(780\) 0 0
\(781\) −5008.73 + 28405.9i −0.00821156 + 0.0465701i
\(782\) 307697.i 0.503165i
\(783\) 0 0
\(784\) −152689. −0.248414
\(785\) −254894. 44944.7i −0.413638 0.0729356i
\(786\) 0 0
\(787\) −372205. 135472.i −0.600943 0.218725i 0.0235926 0.999722i \(-0.492490\pi\)
−0.624536 + 0.780996i \(0.714712\pi\)
\(788\) 159789. + 190429.i 0.257332 + 0.306677i
\(789\) 0 0
\(790\) 93869.0 34165.5i 0.150407 0.0547436i
\(791\) −299201. 172744.i −0.478200 0.276089i
\(792\) 0 0
\(793\) 318473. + 551611.i 0.506437 + 0.877175i
\(794\) −245130. + 292134.i −0.388826 + 0.463384i
\(795\) 0 0
\(796\) 108986. + 618093.i 0.172007 + 0.975500i
\(797\) 1.05154e6 185415.i 1.65542 0.291896i 0.733623 0.679557i \(-0.237828\pi\)
0.921802 + 0.387661i \(0.126717\pi\)
\(798\) 0 0
\(799\) −341234. 286330.i −0.534514 0.448511i
\(800\) −544631. + 314443.i −0.850986 + 0.491317i
\(801\) 0 0
\(802\) 302862. 524572.i 0.470864 0.815561i
\(803\) −33032.3 90755.4i −0.0512280 0.140748i
\(804\) 0 0
\(805\) 82192.0 68967.3i 0.126835 0.106427i
\(806\) 693426. 1.90517e6i 1.06741 2.93268i
\(807\) 0 0
\(808\) 135627. 769178.i 0.207741 1.17816i
\(809\) 689350.i 1.05328i 0.850089 + 0.526639i \(0.176548\pi\)
−0.850089 + 0.526639i \(0.823452\pi\)
\(810\) 0 0
\(811\) −693300. −1.05409 −0.527047 0.849836i \(-0.676701\pi\)
−0.527047 + 0.849836i \(0.676701\pi\)
\(812\) −2.02421e6 356923.i −3.07004 0.541331i
\(813\) 0 0
\(814\) −211599. 77015.6i −0.319348 0.116233i
\(815\) −83998.4 100105.i −0.126461 0.150710i
\(816\) 0 0
\(817\) 128562. 46792.8i 0.192606 0.0701028i
\(818\) −687349. 396841.i −1.02724 0.593076i
\(819\) 0 0
\(820\) −34881.3 60416.2i −0.0518758 0.0898516i
\(821\) 180372. 214959.i 0.267599 0.318911i −0.615466 0.788164i \(-0.711032\pi\)
0.883064 + 0.469252i \(0.155476\pi\)
\(822\) 0 0
\(823\) 132869. + 753539.i 0.196167 + 1.11252i 0.910748 + 0.412963i \(0.135506\pi\)
−0.714581 + 0.699553i \(0.753383\pi\)
\(824\) 342572. 60404.6i 0.504542 0.0889643i
\(825\) 0 0
\(826\) −444441. 372930.i −0.651409 0.546597i
\(827\) 320685. 185148.i 0.468886 0.270712i −0.246887 0.969044i \(-0.579408\pi\)
0.715773 + 0.698333i \(0.246074\pi\)
\(828\) 0 0
\(829\) 138822. 240446.i 0.201999 0.349872i −0.747174 0.664629i \(-0.768590\pi\)
0.949172 + 0.314757i \(0.101923\pi\)
\(830\) 231181. + 635166.i 0.335580 + 0.922000i
\(831\) 0 0
\(832\) 1.13270e6 950444.i 1.63631 1.37303i
\(833\) −226886. + 623364.i −0.326977 + 0.898363i
\(834\) 0 0
\(835\) −34370.4 + 194924.i −0.0492959 + 0.279571i
\(836\) 380467.i 0.544383i
\(837\) 0 0
\(838\) 1.08238e6 1.54132
\(839\) 290551. + 51232.0i 0.412761 + 0.0727808i 0.376173 0.926550i \(-0.377240\pi\)
0.0365880 + 0.999330i \(0.488351\pi\)
\(840\) 0 0
\(841\) 954648. + 347463.i 1.34974 + 0.491266i
\(842\) 942775. + 1.12356e6i 1.32979 + 1.58478i
\(843\) 0 0
\(844\) 782922. 284960.i 1.09909 0.400037i
\(845\) −202193. 116736.i −0.283173 0.163490i
\(846\) 0 0
\(847\) 458831. + 794718.i 0.639566 + 1.10776i
\(848\) 64744.4 77159.3i 0.0900348 0.107299i
\(849\) 0 0
\(850\) 182978. + 1.03772e6i 0.253256 + 1.43629i
\(851\) 182839. 32239.5i 0.252470 0.0445174i
\(852\) 0 0
\(853\) −302369. 253718.i −0.415565 0.348701i 0.410908 0.911677i \(-0.365212\pi\)
−0.826473 + 0.562976i \(0.809656\pi\)
\(854\) 1.03162e6 595609.i 1.41451 0.816667i
\(855\) 0 0
\(856\) −492874. + 853682.i −0.672648 + 1.16506i
\(857\) −159679. 438714.i −0.217413 0.597338i 0.782259 0.622954i \(-0.214067\pi\)
−0.999672 + 0.0256160i \(0.991845\pi\)
\(858\) 0 0
\(859\) −35253.9 + 29581.5i −0.0477772 + 0.0400898i −0.666364 0.745627i \(-0.732150\pi\)
0.618586 + 0.785717i \(0.287706\pi\)
\(860\) −21367.9 + 58707.9i −0.0288912 + 0.0793779i
\(861\) 0 0
\(862\) −169537. + 961492.i −0.228166 + 1.29399i
\(863\) 489117.i 0.656737i −0.944550 0.328369i \(-0.893501\pi\)
0.944550 0.328369i \(-0.106499\pi\)
\(864\) 0 0
\(865\) 486460. 0.650153
\(866\) −19379.9 3417.21i −0.0258414 0.00455654i
\(867\) 0 0
\(868\) −2.12371e6 772966.i −2.81874 1.02594i
\(869\) 26364.3 + 31419.8i 0.0349122 + 0.0416067i
\(870\) 0 0
\(871\) −305504. + 111194.i −0.402699 + 0.146571i
\(872\) 269761. + 155747.i 0.354769 + 0.204826i
\(873\) 0 0
\(874\) −263152. 455793.i −0.344496 0.596685i
\(875\) 528861. 630272.i 0.690757 0.823212i
\(876\) 0 0
\(877\) 110165. + 624775.i 0.143233 + 0.812315i 0.968769 + 0.247966i \(0.0797620\pi\)
−0.825536 + 0.564350i \(0.809127\pi\)
\(878\) −1.59947e6 + 282029.i −2.07485 + 0.365852i
\(879\) 0 0
\(880\) 18248.0 + 15311.9i 0.0235641 + 0.0197726i
\(881\) −329154. + 190037.i −0.424079 + 0.244842i −0.696821 0.717245i \(-0.745403\pi\)
0.272742 + 0.962087i \(0.412070\pi\)
\(882\) 0 0
\(883\) 669958. 1.16040e6i 0.859263 1.48829i −0.0133692 0.999911i \(-0.504256\pi\)
0.872633 0.488377i \(-0.162411\pi\)
\(884\) −598261. 1.64371e6i −0.765572 2.10339i
\(885\) 0 0
\(886\) 1.13242e6 950211.i 1.44258 1.21047i
\(887\) −225118. + 618507.i −0.286130 + 0.786135i 0.710469 + 0.703729i \(0.248483\pi\)
−0.996599 + 0.0824068i \(0.973739\pi\)
\(888\) 0 0
\(889\) −184515. + 1.04644e6i −0.233468 + 1.32406i
\(890\) 809328.i 1.02175i
\(891\) 0 0
\(892\) −1.01846e6 −1.28001
\(893\) 750350. + 132307.i 0.940938 + 0.165913i
\(894\) 0 0
\(895\) 275184. + 100159.i 0.343540 + 0.125038i
\(896\) −926951. 1.10470e6i −1.15462 1.37603i
\(897\) 0 0
\(898\) −1.28483e6 + 467639.i −1.59328 + 0.579907i
\(899\) 1.64085e6 + 947347.i 2.03025 + 1.17217i
\(900\) 0 0
\(901\) −218802. 378976.i −0.269527 0.466834i
\(902\) 30891.0 36814.4i 0.0379681 0.0452486i
\(903\) 0 0
\(904\) −43304.5 245592.i −0.0529902 0.300523i
\(905\) −27963.4 + 4930.70i −0.0341423 + 0.00602021i
\(906\) 0 0
\(907\) −458046. 384346.i −0.556794 0.467205i 0.320440 0.947269i \(-0.396169\pi\)
−0.877234 + 0.480063i \(0.840614\pi\)
\(908\) 1.09400e6 631624.i 1.32693 0.766102i
\(909\) 0 0
\(910\) −511670. + 886238.i −0.617884 + 1.07021i
\(911\) −223451. 613928.i −0.269244 0.739742i −0.998461 0.0554595i \(-0.982338\pi\)
0.729217 0.684283i \(-0.239885\pi\)
\(912\) 0 0
\(913\) −212602. + 178394.i −0.255050 + 0.214013i
\(914\) 163937. 450412.i 0.196238 0.539160i
\(915\) 0 0
\(916\) 242450. 1.37500e6i 0.288955 1.63875i
\(917\) 602972.i 0.717065i
\(918\) 0 0
\(919\) −1.18656e6 −1.40495 −0.702473 0.711710i \(-0.747921\pi\)
−0.702473 + 0.711710i \(0.747921\pi\)
\(920\) 76270.7 + 13448.6i 0.0901118 + 0.0158891i
\(921\) 0 0
\(922\) −1.07779e6 392283.i −1.26786 0.461464i
\(923\) 145801. + 173759.i 0.171142 + 0.203959i
\(924\) 0 0
\(925\) 597460. 217458.i 0.698273 0.254151i
\(926\) −1.75525e6 1.01339e6i −2.04700 1.18183i
\(927\) 0 0
\(928\) 818412. + 1.41753e6i 0.950333 + 1.64603i
\(929\) −480817. + 573015.i −0.557119 + 0.663949i −0.968934 0.247319i \(-0.920451\pi\)
0.411815 + 0.911267i \(0.364895\pi\)
\(930\) 0 0
\(931\) −197033. 1.11743e6i −0.227322 1.28920i
\(932\) −326643. + 57595.9i −0.376046 + 0.0663070i
\(933\) 0 0
\(934\) 128559. + 107874.i 0.147370 + 0.123658i
\(935\) 89627.2 51746.3i 0.102522 0.0591911i
\(936\) 0 0
\(937\) −340190. + 589226.i −0.387474 + 0.671124i −0.992109 0.125378i \(-0.959986\pi\)
0.604635 + 0.796502i \(0.293319\pi\)
\(938\) 207956. + 571355.i 0.236356 + 0.649383i
\(939\) 0 0
\(940\) −266532. + 223647.i −0.301643 + 0.253109i
\(941\) −90092.8 + 247528.i −0.101745 + 0.279541i −0.980112 0.198445i \(-0.936411\pi\)
0.878367 + 0.477986i \(0.158633\pi\)
\(942\) 0 0
\(943\) −6880.59 + 39021.8i −0.00773753 + 0.0438817i
\(944\) 106203.i 0.119177i
\(945\) 0 0
\(946\) −43038.0 −0.0480917
\(947\) 1.01479e6 + 178935.i 1.13156 + 0.199525i 0.707911 0.706302i \(-0.249638\pi\)
0.423649 + 0.905826i \(0.360749\pi\)
\(948\) 0 0
\(949\) −713688. 259761.i −0.792457 0.288431i
\(950\) −1.15854e6 1.38069e6i −1.28370 1.52985i
\(951\) 0 0
\(952\) −990602. + 360550.i −1.09301 + 0.397824i
\(953\) −1.32645e6 765824.i −1.46051 0.843225i −0.461474 0.887154i \(-0.652679\pi\)
−0.999035 + 0.0439291i \(0.986012\pi\)
\(954\) 0 0
\(955\) −60945.7 105561.i −0.0668246 0.115744i
\(956\) −918052. + 1.09409e6i −1.00450 + 1.19712i
\(957\) 0 0
\(958\) −150393. 852921.i −0.163869 0.929347i
\(959\) −2.11355e6 + 372676.i −2.29814 + 0.405223i
\(960\) 0 0
\(961\) 888412. + 745466.i 0.961983 + 0.807200i
\(962\) −1.53353e6 + 885385.i −1.65708 + 0.956714i
\(963\) 0 0
\(964\) 649751. 1.12540e6i 0.699186 1.21103i
\(965\) 33544.7 + 92163.3i 0.0360221 + 0.0989700i
\(966\) 0 0
\(967\) 670376. 562512.i 0.716912 0.601560i −0.209617 0.977783i \(-0.567222\pi\)
0.926529 + 0.376223i \(0.122777\pi\)
\(968\) −226550. + 622442.i −0.241776 + 0.664275i
\(969\) 0 0
\(970\) −63966.1 + 362770.i −0.0679839 + 0.385556i
\(971\) 836356.i 0.887059i −0.896260 0.443530i \(-0.853726\pi\)
0.896260 0.443530i \(-0.146274\pi\)
\(972\) 0 0
\(973\) 6502.28 0.00686816
\(974\) 2.02802e6 + 357594.i 2.13774 + 0.376940i
\(975\) 0 0
\(976\) −204906. 74579.8i −0.215107 0.0782927i
\(977\) −160169. 190882.i −0.167799 0.199975i 0.675591 0.737276i \(-0.263888\pi\)
−0.843391 + 0.537301i \(0.819444\pi\)
\(978\) 0 0
\(979\) −312265. + 113655.i −0.325805 + 0.118583i
\(980\) 448728. + 259073.i 0.467231 + 0.269756i
\(981\) 0 0
\(982\) −1.16817e6 2.02333e6i −1.21139 2.09818i
\(983\) −449001. + 535098.i −0.464665 + 0.553766i −0.946587 0.322448i \(-0.895494\pi\)
0.481922 + 0.876214i \(0.339939\pi\)
\(984\) 0 0
\(985\) 20084.2 + 113903.i 0.0207006 + 0.117399i
\(986\) 2.70091e6 476243.i 2.77815 0.489863i
\(987\) 0 0
\(988\) 2.29196e6 + 1.92318e6i 2.34797 + 1.97018i
\(989\) 30730.8 17742.4i 0.0314182 0.0181393i
\(990\) 0 0
\(991\) −684350. + 1.18533e6i −0.696836 + 1.20696i 0.272722 + 0.962093i \(0.412076\pi\)
−0.969558 + 0.244863i \(0.921257\pi\)
\(992\) 615543. + 1.69119e6i 0.625511 + 1.71858i
\(993\) 0 0
\(994\) 324965. 272678.i 0.328900 0.275980i
\(995\) −99875.7 + 274406.i −0.100882 + 0.277171i
\(996\) 0 0
\(997\) −4282.13 + 24285.2i −0.00430794 + 0.0244315i −0.986886 0.161419i \(-0.948393\pi\)
0.982578 + 0.185851i \(0.0595040\pi\)
\(998\) 874870.i 0.878380i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.8.10 66
3.2 odd 2 27.5.f.a.2.2 66
27.13 even 9 27.5.f.a.14.2 yes 66
27.14 odd 18 inner 81.5.f.a.71.10 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.2.2 66 3.2 odd 2
27.5.f.a.14.2 yes 66 27.13 even 9
81.5.f.a.8.10 66 1.1 even 1 trivial
81.5.f.a.71.10 66 27.14 odd 18 inner