Properties

Label 81.5.f.a.8.1
Level $81$
Weight $5$
Character 81.8
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.1
Character \(\chi\) \(=\) 81.8
Dual form 81.5.f.a.71.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-7.34334 - 1.29483i) q^{2} +(37.2130 + 13.5444i) q^{4} +(22.9421 + 27.3414i) q^{5} +(14.0427 - 5.11111i) q^{7} +(-152.408 - 87.9929i) q^{8} +(-133.070 - 230.483i) q^{10} +(-35.3079 + 42.0783i) q^{11} +(-0.746352 - 4.23277i) q^{13} +(-109.738 + 19.3498i) q^{14} +(519.869 + 436.222i) q^{16} +(309.675 - 178.791i) q^{17} +(-273.006 + 472.860i) q^{19} +(483.423 + 1328.19i) q^{20} +(313.762 - 263.278i) q^{22} +(-130.510 + 358.573i) q^{23} +(-112.679 + 639.035i) q^{25} +32.0491i q^{26} +591.797 q^{28} +(-36.0636 - 6.35898i) q^{29} +(803.077 + 292.296i) q^{31} +(-1442.80 - 1719.46i) q^{32} +(-2505.56 + 911.948i) q^{34} +(461.914 + 266.686i) q^{35} +(245.703 + 425.571i) q^{37} +(2617.05 - 3118.88i) q^{38} +(-1090.72 - 6185.80i) q^{40} +(-2325.15 + 409.987i) q^{41} +(444.443 + 372.932i) q^{43} +(-1883.84 + 1087.63i) q^{44} +(1422.67 - 2464.14i) q^{46} +(1267.80 + 3483.25i) q^{47} +(-1668.20 + 1399.79i) q^{49} +(1654.88 - 4546.75i) q^{50} +(29.5565 - 167.623i) q^{52} -597.366i q^{53} -1960.52 q^{55} +(-2589.96 - 456.680i) q^{56} +(256.593 + 93.3924i) q^{58} +(2190.28 + 2610.27i) q^{59} +(530.905 - 193.234i) q^{61} +(-5518.80 - 3186.28i) q^{62} +(2939.43 + 5091.23i) q^{64} +(98.6069 - 117.515i) q^{65} +(533.761 + 3027.11i) q^{67} +(13945.6 - 2458.98i) q^{68} +(-3046.68 - 2556.47i) q^{70} +(-1579.71 + 912.046i) q^{71} +(2766.22 - 4791.24i) q^{73} +(-1253.24 - 3443.25i) q^{74} +(-16564.0 + 13898.9i) q^{76} +(-280.750 + 771.353i) q^{77} +(-423.277 + 2400.52i) q^{79} +24221.8i q^{80} +17605.3 q^{82} +(5141.02 + 906.501i) q^{83} +(11993.0 + 4365.10i) q^{85} +(-2780.81 - 3314.04i) q^{86} +(9083.80 - 3306.23i) q^{88} +(-3582.86 - 2068.56i) q^{89} +(-32.1149 - 55.6247i) q^{91} +(-9713.34 + 11575.9i) q^{92} +(-4799.67 - 27220.3i) q^{94} +(-19192.0 + 3384.07i) q^{95} +(-10080.0 - 8458.14i) q^{97} +(14062.6 - 8119.07i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.34334 1.29483i −1.83584 0.323707i −0.855013 0.518607i \(-0.826451\pi\)
−0.980823 + 0.194900i \(0.937562\pi\)
\(3\) 0 0
\(4\) 37.2130 + 13.5444i 2.32581 + 0.846527i
\(5\) 22.9421 + 27.3414i 0.917686 + 1.09366i 0.995316 + 0.0966730i \(0.0308201\pi\)
−0.0776305 + 0.996982i \(0.524735\pi\)
\(6\) 0 0
\(7\) 14.0427 5.11111i 0.286585 0.104308i −0.194728 0.980857i \(-0.562382\pi\)
0.481313 + 0.876549i \(0.340160\pi\)
\(8\) −152.408 87.9929i −2.38138 1.37489i
\(9\) 0 0
\(10\) −133.070 230.483i −1.33070 2.30483i
\(11\) −35.3079 + 42.0783i −0.291801 + 0.347754i −0.891950 0.452133i \(-0.850663\pi\)
0.600150 + 0.799888i \(0.295108\pi\)
\(12\) 0 0
\(13\) −0.746352 4.23277i −0.00441628 0.0250460i 0.982520 0.186157i \(-0.0596034\pi\)
−0.986936 + 0.161111i \(0.948492\pi\)
\(14\) −109.738 + 19.3498i −0.559888 + 0.0987234i
\(15\) 0 0
\(16\) 519.869 + 436.222i 2.03074 + 1.70399i
\(17\) 309.675 178.791i 1.07154 0.618655i 0.142939 0.989731i \(-0.454345\pi\)
0.928602 + 0.371077i \(0.121011\pi\)
\(18\) 0 0
\(19\) −273.006 + 472.860i −0.756250 + 1.30986i 0.188501 + 0.982073i \(0.439637\pi\)
−0.944751 + 0.327790i \(0.893696\pi\)
\(20\) 483.423 + 1328.19i 1.20856 + 3.32048i
\(21\) 0 0
\(22\) 313.762 263.278i 0.648269 0.543962i
\(23\) −130.510 + 358.573i −0.246711 + 0.677832i 0.753091 + 0.657917i \(0.228562\pi\)
−0.999802 + 0.0199158i \(0.993660\pi\)
\(24\) 0 0
\(25\) −112.679 + 639.035i −0.180287 + 1.02246i
\(26\) 32.0491i 0.0474099i
\(27\) 0 0
\(28\) 591.797 0.754843
\(29\) −36.0636 6.35898i −0.0428818 0.00756122i 0.152166 0.988355i \(-0.451375\pi\)
−0.195048 + 0.980794i \(0.562486\pi\)
\(30\) 0 0
\(31\) 803.077 + 292.296i 0.835668 + 0.304158i 0.724183 0.689608i \(-0.242217\pi\)
0.111485 + 0.993766i \(0.464439\pi\)
\(32\) −1442.80 1719.46i −1.40898 1.67916i
\(33\) 0 0
\(34\) −2505.56 + 911.948i −2.16744 + 0.788883i
\(35\) 461.914 + 266.686i 0.377072 + 0.217703i
\(36\) 0 0
\(37\) 245.703 + 425.571i 0.179476 + 0.310862i 0.941701 0.336450i \(-0.109226\pi\)
−0.762225 + 0.647312i \(0.775893\pi\)
\(38\) 2617.05 3118.88i 1.81236 2.15989i
\(39\) 0 0
\(40\) −1090.72 6185.80i −0.681702 3.86612i
\(41\) −2325.15 + 409.987i −1.38320 + 0.243895i −0.815220 0.579151i \(-0.803384\pi\)
−0.567975 + 0.823046i \(0.692273\pi\)
\(42\) 0 0
\(43\) 444.443 + 372.932i 0.240369 + 0.201694i 0.755012 0.655711i \(-0.227631\pi\)
−0.514643 + 0.857405i \(0.672075\pi\)
\(44\) −1883.84 + 1087.63i −0.973057 + 0.561795i
\(45\) 0 0
\(46\) 1422.67 2464.14i 0.672340 1.16453i
\(47\) 1267.80 + 3483.25i 0.573925 + 1.57684i 0.798247 + 0.602330i \(0.205761\pi\)
−0.224323 + 0.974515i \(0.572017\pi\)
\(48\) 0 0
\(49\) −1668.20 + 1399.79i −0.694794 + 0.583001i
\(50\) 1654.88 4546.75i 0.661953 1.81870i
\(51\) 0 0
\(52\) 29.5565 167.623i 0.0109307 0.0619908i
\(53\) 597.366i 0.212661i −0.994331 0.106331i \(-0.966090\pi\)
0.994331 0.106331i \(-0.0339102\pi\)
\(54\) 0 0
\(55\) −1960.52 −0.648105
\(56\) −2589.96 456.680i −0.825880 0.145625i
\(57\) 0 0
\(58\) 256.593 + 93.3924i 0.0762763 + 0.0277623i
\(59\) 2190.28 + 2610.27i 0.629210 + 0.749863i 0.982625 0.185604i \(-0.0594241\pi\)
−0.353415 + 0.935467i \(0.614980\pi\)
\(60\) 0 0
\(61\) 530.905 193.234i 0.142678 0.0519306i −0.269694 0.962946i \(-0.586923\pi\)
0.412372 + 0.911015i \(0.364700\pi\)
\(62\) −5518.80 3186.28i −1.43569 0.828897i
\(63\) 0 0
\(64\) 2939.43 + 5091.23i 0.717633 + 1.24298i
\(65\) 98.6069 117.515i 0.0233389 0.0278142i
\(66\) 0 0
\(67\) 533.761 + 3027.11i 0.118904 + 0.674339i 0.984743 + 0.174016i \(0.0556743\pi\)
−0.865839 + 0.500323i \(0.833215\pi\)
\(68\) 13945.6 2458.98i 3.01591 0.531787i
\(69\) 0 0
\(70\) −3046.68 2556.47i −0.621771 0.521728i
\(71\) −1579.71 + 912.046i −0.313372 + 0.180926i −0.648435 0.761270i \(-0.724576\pi\)
0.335062 + 0.942196i \(0.391243\pi\)
\(72\) 0 0
\(73\) 2766.22 4791.24i 0.519088 0.899087i −0.480666 0.876904i \(-0.659605\pi\)
0.999754 0.0221832i \(-0.00706171\pi\)
\(74\) −1253.24 3443.25i −0.228861 0.628790i
\(75\) 0 0
\(76\) −16564.0 + 13898.9i −2.86773 + 2.40631i
\(77\) −280.750 + 771.353i −0.0473520 + 0.130098i
\(78\) 0 0
\(79\) −423.277 + 2400.52i −0.0678220 + 0.384638i 0.931936 + 0.362624i \(0.118119\pi\)
−0.999758 + 0.0220141i \(0.992992\pi\)
\(80\) 24221.8i 3.78465i
\(81\) 0 0
\(82\) 17605.3 2.61827
\(83\) 5141.02 + 906.501i 0.746266 + 0.131587i 0.533834 0.845589i \(-0.320751\pi\)
0.212431 + 0.977176i \(0.431862\pi\)
\(84\) 0 0
\(85\) 11993.0 + 4365.10i 1.65993 + 0.604166i
\(86\) −2780.81 3314.04i −0.375989 0.448086i
\(87\) 0 0
\(88\) 9083.80 3306.23i 1.17301 0.426941i
\(89\) −3582.86 2068.56i −0.452324 0.261149i 0.256487 0.966548i \(-0.417435\pi\)
−0.708811 + 0.705398i \(0.750768\pi\)
\(90\) 0 0
\(91\) −32.1149 55.6247i −0.00387815 0.00671715i
\(92\) −9713.34 + 11575.9i −1.14761 + 1.36766i
\(93\) 0 0
\(94\) −4799.67 27220.3i −0.543195 3.08061i
\(95\) −19192.0 + 3384.07i −2.12654 + 0.374966i
\(96\) 0 0
\(97\) −10080.0 8458.14i −1.07132 0.898942i −0.0761458 0.997097i \(-0.524261\pi\)
−0.995171 + 0.0981550i \(0.968706\pi\)
\(98\) 14062.6 8119.07i 1.46425 0.845385i
\(99\) 0 0
\(100\) −12848.5 + 22254.2i −1.28485 + 2.22542i
\(101\) −5913.44 16247.1i −0.579693 1.59269i −0.788700 0.614778i \(-0.789245\pi\)
0.209007 0.977914i \(-0.432977\pi\)
\(102\) 0 0
\(103\) 9925.23 8328.26i 0.935548 0.785018i −0.0412568 0.999149i \(-0.513136\pi\)
0.976805 + 0.214130i \(0.0686917\pi\)
\(104\) −258.704 + 710.783i −0.0239186 + 0.0657159i
\(105\) 0 0
\(106\) −773.487 + 4386.66i −0.0688401 + 0.390411i
\(107\) 10732.5i 0.937422i −0.883352 0.468711i \(-0.844719\pi\)
0.883352 0.468711i \(-0.155281\pi\)
\(108\) 0 0
\(109\) −1507.97 −0.126923 −0.0634615 0.997984i \(-0.520214\pi\)
−0.0634615 + 0.997984i \(0.520214\pi\)
\(110\) 14396.7 + 2538.53i 1.18981 + 0.209796i
\(111\) 0 0
\(112\) 9529.92 + 3468.61i 0.759719 + 0.276515i
\(113\) 22.4010 + 26.6964i 0.00175432 + 0.00209072i 0.766921 0.641742i \(-0.221788\pi\)
−0.765167 + 0.643832i \(0.777343\pi\)
\(114\) 0 0
\(115\) −12798.1 + 4658.12i −0.967718 + 0.352220i
\(116\) −1255.91 725.098i −0.0933343 0.0538866i
\(117\) 0 0
\(118\) −12704.1 22004.2i −0.912389 1.58030i
\(119\) 3434.85 4093.49i 0.242557 0.289068i
\(120\) 0 0
\(121\) 2018.45 + 11447.2i 0.137863 + 0.781858i
\(122\) −4148.83 + 731.550i −0.278744 + 0.0491501i
\(123\) 0 0
\(124\) 25926.0 + 21754.5i 1.68613 + 1.41483i
\(125\) −738.531 + 426.391i −0.0472660 + 0.0272890i
\(126\) 0 0
\(127\) 9282.82 16078.3i 0.575536 0.996857i −0.420447 0.907317i \(-0.638127\pi\)
0.995983 0.0895403i \(-0.0285398\pi\)
\(128\) −2709.79 7445.08i −0.165392 0.454412i
\(129\) 0 0
\(130\) −876.267 + 735.275i −0.0518501 + 0.0435074i
\(131\) −9476.12 + 26035.4i −0.552189 + 1.51713i 0.278525 + 0.960429i \(0.410155\pi\)
−0.830714 + 0.556699i \(0.812068\pi\)
\(132\) 0 0
\(133\) −1416.89 + 8035.58i −0.0801001 + 0.454270i
\(134\) 22920.2i 1.27647i
\(135\) 0 0
\(136\) −62929.5 −3.40233
\(137\) 22228.3 + 3919.46i 1.18431 + 0.208826i 0.730906 0.682478i \(-0.239098\pi\)
0.453406 + 0.891304i \(0.350209\pi\)
\(138\) 0 0
\(139\) 18170.5 + 6613.53i 0.940454 + 0.342297i 0.766345 0.642429i \(-0.222073\pi\)
0.174109 + 0.984726i \(0.444295\pi\)
\(140\) 13577.1 + 16180.5i 0.692709 + 0.825538i
\(141\) 0 0
\(142\) 12781.3 4652.01i 0.633867 0.230709i
\(143\) 204.460 + 118.045i 0.00999853 + 0.00577265i
\(144\) 0 0
\(145\) −653.513 1131.92i −0.0310826 0.0538367i
\(146\) −26517.1 + 31601.9i −1.24400 + 1.48254i
\(147\) 0 0
\(148\) 3379.25 + 19164.7i 0.154275 + 0.874940i
\(149\) 25568.2 4508.36i 1.15167 0.203070i 0.434965 0.900448i \(-0.356761\pi\)
0.716704 + 0.697377i \(0.245650\pi\)
\(150\) 0 0
\(151\) −6349.86 5328.17i −0.278491 0.233681i 0.492834 0.870123i \(-0.335961\pi\)
−0.771325 + 0.636442i \(0.780405\pi\)
\(152\) 83216.7 48045.2i 3.60183 2.07952i
\(153\) 0 0
\(154\) 3060.41 5300.79i 0.129044 0.223511i
\(155\) 10432.5 + 28663.1i 0.434237 + 1.19306i
\(156\) 0 0
\(157\) −13957.3 + 11711.5i −0.566241 + 0.475133i −0.880396 0.474239i \(-0.842723\pi\)
0.314155 + 0.949372i \(0.398279\pi\)
\(158\) 6216.54 17079.8i 0.249020 0.684177i
\(159\) 0 0
\(160\) 13911.5 78896.1i 0.543419 3.08188i
\(161\) 5702.38i 0.219991i
\(162\) 0 0
\(163\) −45051.0 −1.69562 −0.847811 0.530298i \(-0.822080\pi\)
−0.847811 + 0.530298i \(0.822080\pi\)
\(164\) −92079.0 16236.0i −3.42352 0.603659i
\(165\) 0 0
\(166\) −36578.5 13313.5i −1.32743 0.483143i
\(167\) −29417.7 35058.6i −1.05481 1.25708i −0.965315 0.261089i \(-0.915918\pi\)
−0.0894977 0.995987i \(-0.528526\pi\)
\(168\) 0 0
\(169\) 26821.2 9762.12i 0.939085 0.341799i
\(170\) −82416.8 47583.4i −2.85179 1.64648i
\(171\) 0 0
\(172\) 11487.9 + 19897.6i 0.388315 + 0.672581i
\(173\) 22596.5 26929.5i 0.755004 0.899779i −0.242517 0.970147i \(-0.577973\pi\)
0.997521 + 0.0703680i \(0.0224173\pi\)
\(174\) 0 0
\(175\) 1683.86 + 9549.67i 0.0549833 + 0.311826i
\(176\) −36710.9 + 6473.12i −1.18514 + 0.208972i
\(177\) 0 0
\(178\) 23631.7 + 19829.4i 0.745857 + 0.625848i
\(179\) 6494.87 3749.81i 0.202705 0.117032i −0.395212 0.918590i \(-0.629329\pi\)
0.597917 + 0.801558i \(0.295995\pi\)
\(180\) 0 0
\(181\) −1045.63 + 1811.08i −0.0319168 + 0.0552816i −0.881543 0.472104i \(-0.843494\pi\)
0.849626 + 0.527386i \(0.176828\pi\)
\(182\) 163.807 + 450.055i 0.00494525 + 0.0135870i
\(183\) 0 0
\(184\) 51442.7 43165.6i 1.51946 1.27498i
\(185\) −5998.73 + 16481.4i −0.175273 + 0.481559i
\(186\) 0 0
\(187\) −3410.75 + 19343.3i −0.0975365 + 0.553157i
\(188\) 146794.i 4.15329i
\(189\) 0 0
\(190\) 145315. 4.02535
\(191\) −11234.8 1980.99i −0.307962 0.0543021i 0.0175312 0.999846i \(-0.494419\pi\)
−0.325494 + 0.945544i \(0.605530\pi\)
\(192\) 0 0
\(193\) −26467.5 9633.39i −0.710557 0.258622i −0.0386453 0.999253i \(-0.512304\pi\)
−0.671911 + 0.740631i \(0.734526\pi\)
\(194\) 63069.2 + 75162.9i 1.67577 + 1.99710i
\(195\) 0 0
\(196\) −81038.1 + 29495.4i −2.10949 + 0.767791i
\(197\) 58133.9 + 33563.6i 1.49795 + 0.864841i 0.999997 0.00236466i \(-0.000752696\pi\)
0.497951 + 0.867205i \(0.334086\pi\)
\(198\) 0 0
\(199\) 10421.6 + 18050.8i 0.263165 + 0.455816i 0.967081 0.254468i \(-0.0819002\pi\)
−0.703916 + 0.710283i \(0.748567\pi\)
\(200\) 73403.8 87479.2i 1.83509 2.18698i
\(201\) 0 0
\(202\) 22387.3 + 126965.i 0.548654 + 3.11157i
\(203\) −538.930 + 95.0279i −0.0130780 + 0.00230600i
\(204\) 0 0
\(205\) −64553.6 54166.9i −1.53608 1.28892i
\(206\) −83668.1 + 48305.8i −1.97163 + 1.13832i
\(207\) 0 0
\(208\) 1458.42 2526.06i 0.0337098 0.0583871i
\(209\) −10257.9 28183.3i −0.234836 0.645208i
\(210\) 0 0
\(211\) 30301.2 25425.8i 0.680606 0.571096i −0.235578 0.971856i \(-0.575698\pi\)
0.916183 + 0.400760i \(0.131254\pi\)
\(212\) 8090.98 22229.8i 0.180024 0.494611i
\(213\) 0 0
\(214\) −13896.8 + 78812.7i −0.303450 + 1.72095i
\(215\) 20707.5i 0.447972i
\(216\) 0 0
\(217\) 12771.3 0.271216
\(218\) 11073.6 + 1952.57i 0.233010 + 0.0410859i
\(219\) 0 0
\(220\) −72956.7 26554.1i −1.50737 0.548638i
\(221\) −987.910 1177.34i −0.0202271 0.0241057i
\(222\) 0 0
\(223\) 52481.4 19101.7i 1.05535 0.384115i 0.244669 0.969607i \(-0.421321\pi\)
0.810678 + 0.585492i \(0.199098\pi\)
\(224\) −29049.1 16771.5i −0.578943 0.334253i
\(225\) 0 0
\(226\) −129.931 225.047i −0.00254387 0.00440611i
\(227\) 7696.64 9172.50i 0.149365 0.178006i −0.686174 0.727438i \(-0.740711\pi\)
0.835539 + 0.549431i \(0.185156\pi\)
\(228\) 0 0
\(229\) −9076.93 51477.8i −0.173088 0.981633i −0.940327 0.340272i \(-0.889481\pi\)
0.767239 0.641362i \(-0.221630\pi\)
\(230\) 100012. 17634.8i 1.89059 0.333362i
\(231\) 0 0
\(232\) 4936.84 + 4142.50i 0.0917219 + 0.0769638i
\(233\) 23116.2 13346.2i 0.425800 0.245836i −0.271756 0.962366i \(-0.587604\pi\)
0.697556 + 0.716531i \(0.254271\pi\)
\(234\) 0 0
\(235\) −66150.8 + 114577.i −1.19784 + 2.07472i
\(236\) 46152.2 + 126802.i 0.828645 + 2.27668i
\(237\) 0 0
\(238\) −30523.6 + 25612.4i −0.538868 + 0.452164i
\(239\) 1205.00 3310.71i 0.0210956 0.0579596i −0.928698 0.370837i \(-0.879071\pi\)
0.949793 + 0.312878i \(0.101293\pi\)
\(240\) 0 0
\(241\) 14955.3 84815.6i 0.257490 1.46030i −0.532110 0.846675i \(-0.678601\pi\)
0.789600 0.613622i \(-0.210288\pi\)
\(242\) 86674.1i 1.47999i
\(243\) 0 0
\(244\) 22373.8 0.375803
\(245\) −76544.2 13496.8i −1.27520 0.224853i
\(246\) 0 0
\(247\) 2205.27 + 802.652i 0.0361466 + 0.0131563i
\(248\) −96675.6 115213.i −1.57186 1.87327i
\(249\) 0 0
\(250\) 5975.39 2174.86i 0.0956063 0.0347978i
\(251\) 11184.3 + 6457.26i 0.177526 + 0.102495i 0.586130 0.810217i \(-0.300651\pi\)
−0.408604 + 0.912712i \(0.633984\pi\)
\(252\) 0 0
\(253\) −10480.1 18152.1i −0.163729 0.283587i
\(254\) −88985.6 + 106049.i −1.37928 + 1.64376i
\(255\) 0 0
\(256\) −6074.84 34452.1i −0.0926946 0.525697i
\(257\) −9408.96 + 1659.05i −0.142454 + 0.0251185i −0.244421 0.969669i \(-0.578598\pi\)
0.101966 + 0.994788i \(0.467487\pi\)
\(258\) 0 0
\(259\) 5625.47 + 4720.33i 0.0838608 + 0.0703676i
\(260\) 5261.14 3037.52i 0.0778275 0.0449337i
\(261\) 0 0
\(262\) 103298. 178917.i 1.50483 2.60645i
\(263\) −29073.3 79878.1i −0.420322 1.15483i −0.951523 0.307579i \(-0.900481\pi\)
0.531201 0.847246i \(-0.321741\pi\)
\(264\) 0 0
\(265\) 16332.8 13704.9i 0.232578 0.195156i
\(266\) 20809.4 57173.4i 0.294101 0.808036i
\(267\) 0 0
\(268\) −21137.6 + 119877.i −0.294297 + 1.66904i
\(269\) 14077.8i 0.194549i −0.995258 0.0972745i \(-0.968988\pi\)
0.995258 0.0972745i \(-0.0310125\pi\)
\(270\) 0 0
\(271\) −18138.8 −0.246984 −0.123492 0.992346i \(-0.539409\pi\)
−0.123492 + 0.992346i \(0.539409\pi\)
\(272\) 238983. + 42139.2i 3.23020 + 0.569572i
\(273\) 0 0
\(274\) −158155. 57563.8i −2.10660 0.766741i
\(275\) −22911.0 27304.3i −0.302956 0.361049i
\(276\) 0 0
\(277\) 136985. 49858.4i 1.78531 0.649799i 0.785798 0.618483i \(-0.212252\pi\)
0.999510 0.0313162i \(-0.00996987\pi\)
\(278\) −124869. 72093.1i −1.61572 0.932834i
\(279\) 0 0
\(280\) −46933.0 81290.3i −0.598635 1.03687i
\(281\) −786.212 + 936.971i −0.00995696 + 0.0118662i −0.771000 0.636835i \(-0.780243\pi\)
0.761043 + 0.648701i \(0.224688\pi\)
\(282\) 0 0
\(283\) 18788.2 + 106553.i 0.234592 + 1.33044i 0.843472 + 0.537173i \(0.180508\pi\)
−0.608880 + 0.793262i \(0.708381\pi\)
\(284\) −71138.9 + 12543.7i −0.882004 + 0.155521i
\(285\) 0 0
\(286\) −1348.57 1131.59i −0.0164870 0.0138342i
\(287\) −30555.8 + 17641.4i −0.370963 + 0.214175i
\(288\) 0 0
\(289\) 22172.1 38403.2i 0.265467 0.459803i
\(290\) 3333.33 + 9158.24i 0.0396353 + 0.108897i
\(291\) 0 0
\(292\) 167834. 140829.i 1.96840 1.65169i
\(293\) 36375.6 99941.2i 0.423716 1.16415i −0.525848 0.850579i \(-0.676252\pi\)
0.949564 0.313573i \(-0.101526\pi\)
\(294\) 0 0
\(295\) −21118.8 + 119770.i −0.242675 + 1.37628i
\(296\) 86480.6i 0.987041i
\(297\) 0 0
\(298\) −193594. −2.18001
\(299\) 1615.17 + 284.797i 0.0180665 + 0.00318562i
\(300\) 0 0
\(301\) 8147.25 + 2965.36i 0.0899246 + 0.0327299i
\(302\) 39730.2 + 47348.6i 0.435619 + 0.519150i
\(303\) 0 0
\(304\) −348199. + 126734.i −3.76774 + 1.37134i
\(305\) 17463.4 + 10082.5i 0.187728 + 0.108385i
\(306\) 0 0
\(307\) 37577.3 + 65085.9i 0.398703 + 0.690573i 0.993566 0.113253i \(-0.0361272\pi\)
−0.594863 + 0.803827i \(0.702794\pi\)
\(308\) −20895.1 + 24901.8i −0.220264 + 0.262500i
\(309\) 0 0
\(310\) −39495.8 223992.i −0.410986 2.33082i
\(311\) −64675.3 + 11404.0i −0.668679 + 0.117906i −0.497674 0.867364i \(-0.665813\pi\)
−0.171005 + 0.985270i \(0.554701\pi\)
\(312\) 0 0
\(313\) −61767.7 51829.3i −0.630483 0.529038i 0.270596 0.962693i \(-0.412779\pi\)
−0.901079 + 0.433655i \(0.857224\pi\)
\(314\) 117658. 67929.6i 1.19333 0.688969i
\(315\) 0 0
\(316\) −48265.2 + 83597.7i −0.483348 + 0.837183i
\(317\) −11934.7 32790.3i −0.118766 0.326307i 0.866037 0.499979i \(-0.166659\pi\)
−0.984804 + 0.173672i \(0.944437\pi\)
\(318\) 0 0
\(319\) 1540.90 1292.97i 0.0151424 0.0127060i
\(320\) −71764.7 + 197172.i −0.700827 + 1.92551i
\(321\) 0 0
\(322\) 7383.60 41874.5i 0.0712126 0.403867i
\(323\) 195244.i 1.87143i
\(324\) 0 0
\(325\) 2788.99 0.0264046
\(326\) 330825. + 58333.4i 3.11289 + 0.548886i
\(327\) 0 0
\(328\) 390448. + 142112.i 3.62924 + 1.32094i
\(329\) 35606.6 + 42434.2i 0.328956 + 0.392035i
\(330\) 0 0
\(331\) 121557. 44243.1i 1.10949 0.403821i 0.278684 0.960383i \(-0.410102\pi\)
0.830806 + 0.556562i \(0.187880\pi\)
\(332\) 179035. + 103366.i 1.62428 + 0.937780i
\(333\) 0 0
\(334\) 170629. + 295538.i 1.52954 + 2.64924i
\(335\) −70519.7 + 84042.1i −0.628378 + 0.748871i
\(336\) 0 0
\(337\) −23137.5 131219.i −0.203731 1.15541i −0.899425 0.437076i \(-0.856014\pi\)
0.695694 0.718338i \(-0.255097\pi\)
\(338\) −209598. + 36957.7i −1.83465 + 0.323498i
\(339\) 0 0
\(340\) 387174. + 324877.i 3.34925 + 2.81036i
\(341\) −40654.3 + 23471.8i −0.349621 + 0.201854i
\(342\) 0 0
\(343\) −34211.6 + 59256.3i −0.290794 + 0.503670i
\(344\) −34921.4 95945.7i −0.295103 0.810790i
\(345\) 0 0
\(346\) −200803. + 168494.i −1.67733 + 1.40745i
\(347\) −19826.7 + 54473.4i −0.164661 + 0.452403i −0.994392 0.105761i \(-0.966272\pi\)
0.829730 + 0.558165i \(0.188494\pi\)
\(348\) 0 0
\(349\) −22672.5 + 128582.i −0.186144 + 1.05568i 0.738332 + 0.674437i \(0.235614\pi\)
−0.924476 + 0.381239i \(0.875497\pi\)
\(350\) 72306.8i 0.590260i
\(351\) 0 0
\(352\) 123294. 0.995076
\(353\) 27299.6 + 4813.66i 0.219082 + 0.0386301i 0.282112 0.959382i \(-0.408965\pi\)
−0.0630294 + 0.998012i \(0.520076\pi\)
\(354\) 0 0
\(355\) −61178.5 22267.2i −0.485448 0.176688i
\(356\) −105311. 125505.i −0.830951 0.990289i
\(357\) 0 0
\(358\) −52549.4 + 19126.4i −0.410017 + 0.149234i
\(359\) −19338.9 11165.3i −0.150053 0.0866329i 0.423094 0.906086i \(-0.360944\pi\)
−0.573146 + 0.819453i \(0.694277\pi\)
\(360\) 0 0
\(361\) −83904.2 145326.i −0.643827 1.11514i
\(362\) 10023.4 11945.5i 0.0764891 0.0911562i
\(363\) 0 0
\(364\) −441.689 2504.94i −0.00333360 0.0189058i
\(365\) 194462. 34288.9i 1.45965 0.257376i
\(366\) 0 0
\(367\) −149004. 125029.i −1.10628 0.928278i −0.108447 0.994102i \(-0.534588\pi\)
−0.997831 + 0.0658243i \(0.979032\pi\)
\(368\) −224265. + 129480.i −1.65602 + 0.956106i
\(369\) 0 0
\(370\) 65391.3 113261.i 0.477657 0.827327i
\(371\) −3053.20 8388.61i −0.0221824 0.0609456i
\(372\) 0 0
\(373\) −130382. + 109403.i −0.937127 + 0.786343i −0.977083 0.212858i \(-0.931723\pi\)
0.0399560 + 0.999201i \(0.487278\pi\)
\(374\) 50092.7 137628.i 0.358122 0.983932i
\(375\) 0 0
\(376\) 113278. 642433.i 0.801256 4.54415i
\(377\) 157.395i 0.00110741i
\(378\) 0 0
\(379\) 177096. 1.23290 0.616452 0.787392i \(-0.288569\pi\)
0.616452 + 0.787392i \(0.288569\pi\)
\(380\) −760028. 134013.i −5.26335 0.928071i
\(381\) 0 0
\(382\) 79935.8 + 29094.2i 0.547790 + 0.199379i
\(383\) 29074.2 + 34649.2i 0.198203 + 0.236209i 0.855987 0.516998i \(-0.172950\pi\)
−0.657784 + 0.753207i \(0.728506\pi\)
\(384\) 0 0
\(385\) −27530.9 + 10020.4i −0.185737 + 0.0676027i
\(386\) 181887. + 105012.i 1.22075 + 0.704799i
\(387\) 0 0
\(388\) −260547. 451281.i −1.73071 2.99767i
\(389\) 42121.3 50198.2i 0.278357 0.331733i −0.608693 0.793406i \(-0.708306\pi\)
0.887050 + 0.461672i \(0.152750\pi\)
\(390\) 0 0
\(391\) 23694.0 + 134375.i 0.154983 + 0.878954i
\(392\) 377419. 66549.1i 2.45613 0.433082i
\(393\) 0 0
\(394\) −383438. 321742.i −2.47003 2.07260i
\(395\) −75344.6 + 43500.2i −0.482901 + 0.278803i
\(396\) 0 0
\(397\) −111760. + 193575.i −0.709099 + 1.22820i 0.256093 + 0.966652i \(0.417565\pi\)
−0.965192 + 0.261543i \(0.915769\pi\)
\(398\) −53156.8 146047.i −0.335577 0.921991i
\(399\) 0 0
\(400\) −337339. + 283061.i −2.10837 + 1.76913i
\(401\) −92421.2 + 253925.i −0.574755 + 1.57913i 0.222144 + 0.975014i \(0.428695\pi\)
−0.796899 + 0.604113i \(0.793528\pi\)
\(402\) 0 0
\(403\) 637.845 3617.40i 0.00392740 0.0222734i
\(404\) 684696.i 4.19503i
\(405\) 0 0
\(406\) 4080.59 0.0247555
\(407\) −26582.5 4687.22i −0.160475 0.0282961i
\(408\) 0 0
\(409\) 194660. + 70850.6i 1.16367 + 0.423542i 0.850408 0.526124i \(-0.176355\pi\)
0.313265 + 0.949666i \(0.398577\pi\)
\(410\) 403902. + 481352.i 2.40275 + 2.86349i
\(411\) 0 0
\(412\) 482149. 175488.i 2.84045 1.03384i
\(413\) 44098.7 + 25460.4i 0.258539 + 0.149268i
\(414\) 0 0
\(415\) 93161.1 + 161360.i 0.540927 + 0.936913i
\(416\) −6201.24 + 7390.35i −0.0358337 + 0.0427050i
\(417\) 0 0
\(418\) 38834.6 + 220242.i 0.222263 + 1.26051i
\(419\) 86433.7 15240.6i 0.492329 0.0868108i 0.0780285 0.996951i \(-0.475137\pi\)
0.414300 + 0.910140i \(0.364026\pi\)
\(420\) 0 0
\(421\) 212742. + 178512.i 1.20030 + 1.00717i 0.999621 + 0.0275143i \(0.00875917\pi\)
0.200679 + 0.979657i \(0.435685\pi\)
\(422\) −255434. + 147475.i −1.43435 + 0.828121i
\(423\) 0 0
\(424\) −52564.0 + 91043.5i −0.292386 + 0.506427i
\(425\) 79359.9 + 218039.i 0.439363 + 1.20714i
\(426\) 0 0
\(427\) 6467.69 5427.03i 0.0354726 0.0297651i
\(428\) 145366. 399390.i 0.793553 2.18027i
\(429\) 0 0
\(430\) 26812.7 152062.i 0.145012 0.822404i
\(431\) 41851.0i 0.225295i 0.993635 + 0.112647i \(0.0359331\pi\)
−0.993635 + 0.112647i \(0.964067\pi\)
\(432\) 0 0
\(433\) 1012.86 0.00540225 0.00270113 0.999996i \(-0.499140\pi\)
0.00270113 + 0.999996i \(0.499140\pi\)
\(434\) −93784.1 16536.7i −0.497909 0.0877947i
\(435\) 0 0
\(436\) −56116.2 20424.6i −0.295199 0.107444i
\(437\) −133925. 159606.i −0.701292 0.835768i
\(438\) 0 0
\(439\) −61671.4 + 22446.6i −0.320004 + 0.116472i −0.497028 0.867735i \(-0.665575\pi\)
0.177024 + 0.984207i \(0.443353\pi\)
\(440\) 298799. + 172512.i 1.54338 + 0.891072i
\(441\) 0 0
\(442\) 5730.10 + 9924.82i 0.0293304 + 0.0508017i
\(443\) 11275.3 13437.4i 0.0574540 0.0684710i −0.736552 0.676381i \(-0.763547\pi\)
0.794006 + 0.607910i \(0.207992\pi\)
\(444\) 0 0
\(445\) −25641.0 145418.i −0.129484 0.734339i
\(446\) −410122. + 72315.6i −2.06179 + 0.363548i
\(447\) 0 0
\(448\) 67299.2 + 56470.8i 0.335316 + 0.281363i
\(449\) 310961. 179534.i 1.54246 0.890540i 0.543777 0.839230i \(-0.316994\pi\)
0.998683 0.0513099i \(-0.0163396\pi\)
\(450\) 0 0
\(451\) 64844.6 112314.i 0.318802 0.552181i
\(452\) 472.020 + 1296.86i 0.00231038 + 0.00634772i
\(453\) 0 0
\(454\) −68395.9 + 57391.0i −0.331832 + 0.278440i
\(455\) 784.071 2154.22i 0.00378733 0.0104056i
\(456\) 0 0
\(457\) −60611.2 + 343743.i −0.290215 + 1.64589i 0.395823 + 0.918327i \(0.370459\pi\)
−0.686038 + 0.727566i \(0.740652\pi\)
\(458\) 389772.i 1.85815i
\(459\) 0 0
\(460\) −539346. −2.54890
\(461\) −92015.8 16224.9i −0.432973 0.0763447i −0.0470857 0.998891i \(-0.514993\pi\)
−0.385887 + 0.922546i \(0.626104\pi\)
\(462\) 0 0
\(463\) −12089.8 4400.31i −0.0563969 0.0205268i 0.313668 0.949533i \(-0.398442\pi\)
−0.370065 + 0.929006i \(0.620664\pi\)
\(464\) −15974.4 19037.6i −0.0741974 0.0884250i
\(465\) 0 0
\(466\) −187032. + 68073.9i −0.861277 + 0.313479i
\(467\) −104386. 60267.3i −0.478639 0.276342i 0.241210 0.970473i \(-0.422456\pi\)
−0.719849 + 0.694130i \(0.755789\pi\)
\(468\) 0 0
\(469\) 22967.3 + 39780.5i 0.104415 + 0.180853i
\(470\) 634126. 755721.i 2.87065 3.42110i
\(471\) 0 0
\(472\) −104131. 590556.i −0.467408 2.65080i
\(473\) −31384.6 + 5533.96i −0.140280 + 0.0247351i
\(474\) 0 0
\(475\) −271412. 227742.i −1.20294 1.00938i
\(476\) 183265. 105808.i 0.808846 0.466987i
\(477\) 0 0
\(478\) −13135.5 + 22751.4i −0.0574899 + 0.0995754i
\(479\) 51328.2 + 141023.i 0.223710 + 0.614638i 0.999874 0.0158933i \(-0.00505922\pi\)
−0.776164 + 0.630531i \(0.782837\pi\)
\(480\) 0 0
\(481\) 1617.96 1357.63i 0.00699324 0.00586802i
\(482\) −219643. + 603465.i −0.945418 + 2.59752i
\(483\) 0 0
\(484\) −79933.1 + 453323.i −0.341221 + 1.93516i
\(485\) 469650.i 1.99660i
\(486\) 0 0
\(487\) −88735.1 −0.374143 −0.187071 0.982346i \(-0.559900\pi\)
−0.187071 + 0.982346i \(0.559900\pi\)
\(488\) −97917.6 17265.5i −0.411170 0.0725003i
\(489\) 0 0
\(490\) 544614. + 198223.i 2.26828 + 0.825586i
\(491\) −273525. 325975.i −1.13458 1.35214i −0.927504 0.373812i \(-0.878050\pi\)
−0.207074 0.978325i \(-0.566394\pi\)
\(492\) 0 0
\(493\) −12304.9 + 4478.63i −0.0506274 + 0.0184269i
\(494\) −15154.8 8749.60i −0.0621005 0.0358537i
\(495\) 0 0
\(496\) 289989. + 502275.i 1.17874 + 2.04164i
\(497\) −17521.8 + 20881.6i −0.0709357 + 0.0845379i
\(498\) 0 0
\(499\) −20429.8 115863.i −0.0820472 0.465313i −0.997955 0.0639235i \(-0.979639\pi\)
0.915908 0.401389i \(-0.131472\pi\)
\(500\) −33258.2 + 5864.32i −0.133033 + 0.0234573i
\(501\) 0 0
\(502\) −73769.1 61899.6i −0.292730 0.245630i
\(503\) −225624. + 130264.i −0.891764 + 0.514860i −0.874519 0.484991i \(-0.838823\pi\)
−0.0172448 + 0.999851i \(0.505489\pi\)
\(504\) 0 0
\(505\) 308550. 534424.i 1.20988 2.09557i
\(506\) 53455.2 + 146867.i 0.208780 + 0.573619i
\(507\) 0 0
\(508\) 563213. 472592.i 2.18246 1.83130i
\(509\) −62362.0 + 171338.i −0.240705 + 0.661331i 0.759240 + 0.650811i \(0.225571\pi\)
−0.999945 + 0.0105200i \(0.996651\pi\)
\(510\) 0 0
\(511\) 14356.6 81420.2i 0.0549805 0.311810i
\(512\) 387626.i 1.47867i
\(513\) 0 0
\(514\) 71241.4 0.269654
\(515\) 455412. + 80301.5i 1.71708 + 0.302767i
\(516\) 0 0
\(517\) −191332. 69639.3i −0.715826 0.260539i
\(518\) −35197.7 41947.0i −0.131176 0.156330i
\(519\) 0 0
\(520\) −25369.0 + 9233.57i −0.0938203 + 0.0341478i
\(521\) −386241. 222996.i −1.42293 0.821528i −0.426380 0.904544i \(-0.640211\pi\)
−0.996548 + 0.0830166i \(0.973545\pi\)
\(522\) 0 0
\(523\) −236571. 409752.i −0.864883 1.49802i −0.867163 0.498024i \(-0.834059\pi\)
0.00227985 0.999997i \(-0.499274\pi\)
\(524\) −705270. + 840508.i −2.56858 + 3.06111i
\(525\) 0 0
\(526\) 110066. + 624217.i 0.397817 + 2.25613i
\(527\) 300953. 53066.2i 1.08362 0.191072i
\(528\) 0 0
\(529\) 102829. + 86283.5i 0.367454 + 0.308331i
\(530\) −137683. + 79491.2i −0.490149 + 0.282988i
\(531\) 0 0
\(532\) −161564. + 279837.i −0.570850 + 0.988741i
\(533\) 3470.76 + 9535.85i 0.0122172 + 0.0335664i
\(534\) 0 0
\(535\) 293443. 246227.i 1.02522 0.860259i
\(536\) 185015. 508323.i 0.643986 1.76934i
\(537\) 0 0
\(538\) −18228.3 + 103378.i −0.0629770 + 0.357160i
\(539\) 119618.i 0.411738i
\(540\) 0 0
\(541\) 22010.9 0.0752045 0.0376023 0.999293i \(-0.488028\pi\)
0.0376023 + 0.999293i \(0.488028\pi\)
\(542\) 133199. + 23486.6i 0.453422 + 0.0799506i
\(543\) 0 0
\(544\) −754223. 274515.i −2.54860 0.927615i
\(545\) −34596.1 41230.0i −0.116475 0.138810i
\(546\) 0 0
\(547\) 129770. 47232.4i 0.433710 0.157858i −0.115933 0.993257i \(-0.536986\pi\)
0.549643 + 0.835399i \(0.314764\pi\)
\(548\) 774097. + 446925.i 2.57771 + 1.48824i
\(549\) 0 0
\(550\) 132889. + 230171.i 0.439303 + 0.760895i
\(551\) 12852.5 15317.0i 0.0423335 0.0504511i
\(552\) 0 0
\(553\) 6325.41 + 35873.2i 0.0206842 + 0.117306i
\(554\) −1.07049e6 + 188755.i −3.48788 + 0.615007i
\(555\) 0 0
\(556\) 586603. + 492219.i 1.89756 + 1.59224i
\(557\) 254021. 146659.i 0.818765 0.472714i −0.0312254 0.999512i \(-0.509941\pi\)
0.849990 + 0.526798i \(0.176608\pi\)
\(558\) 0 0
\(559\) 1246.82 2159.56i 0.00399008 0.00691102i
\(560\) 123800. + 340138.i 0.394771 + 1.08463i
\(561\) 0 0
\(562\) 6986.64 5862.49i 0.0221205 0.0185613i
\(563\) −18682.7 + 51330.3i −0.0589417 + 0.161941i −0.965668 0.259778i \(-0.916351\pi\)
0.906727 + 0.421719i \(0.138573\pi\)
\(564\) 0 0
\(565\) −215.991 + 1224.95i −0.000676611 + 0.00383725i
\(566\) 806785.i 2.51840i
\(567\) 0 0
\(568\) 321014. 0.995011
\(569\) 115769. + 20413.2i 0.357576 + 0.0630504i 0.349551 0.936917i \(-0.386334\pi\)
0.00802559 + 0.999968i \(0.497445\pi\)
\(570\) 0 0
\(571\) −244279. 88910.4i −0.749229 0.272697i −0.0609476 0.998141i \(-0.519412\pi\)
−0.688281 + 0.725444i \(0.741634\pi\)
\(572\) 6009.72 + 7162.10i 0.0183680 + 0.0218901i
\(573\) 0 0
\(574\) 247225. 89982.4i 0.750357 0.273108i
\(575\) −214435. 123804.i −0.648575 0.374455i
\(576\) 0 0
\(577\) −251986. 436453.i −0.756877 1.31095i −0.944436 0.328696i \(-0.893391\pi\)
0.187558 0.982253i \(-0.439943\pi\)
\(578\) −212543. + 253299.i −0.636196 + 0.758189i
\(579\) 0 0
\(580\) −8988.00 50973.5i −0.0267182 0.151526i
\(581\) 76826.9 13546.7i 0.227594 0.0401310i
\(582\) 0 0
\(583\) 25136.1 + 21091.7i 0.0739539 + 0.0620547i
\(584\) −843190. + 486816.i −2.47229 + 1.42738i
\(585\) 0 0
\(586\) −396526. + 686802.i −1.15472 + 2.00003i
\(587\) −70170.3 192791.i −0.203647 0.559514i 0.795260 0.606269i \(-0.207334\pi\)
−0.998906 + 0.0467544i \(0.985112\pi\)
\(588\) 0 0
\(589\) −357460. + 299945.i −1.03038 + 0.864591i
\(590\) 310165. 852170.i 0.891022 2.44806i
\(591\) 0 0
\(592\) −57909.6 + 328422.i −0.165237 + 0.937106i
\(593\) 319505.i 0.908590i −0.890851 0.454295i \(-0.849891\pi\)
0.890851 0.454295i \(-0.150109\pi\)
\(594\) 0 0
\(595\) 190724. 0.538732
\(596\) 1.01253e6 + 178537.i 2.85047 + 0.502615i
\(597\) 0 0
\(598\) −11492.0 4182.73i −0.0321360 0.0116965i
\(599\) 58679.5 + 69931.5i 0.163543 + 0.194903i 0.841592 0.540114i \(-0.181619\pi\)
−0.678049 + 0.735017i \(0.737174\pi\)
\(600\) 0 0
\(601\) −276168. + 100517.i −0.764581 + 0.278285i −0.694728 0.719272i \(-0.744475\pi\)
−0.0698533 + 0.997557i \(0.522253\pi\)
\(602\) −55988.5 32324.9i −0.154492 0.0891959i
\(603\) 0 0
\(604\) −164131. 284283.i −0.449900 0.779249i
\(605\) −266674. + 317810.i −0.728568 + 0.868274i
\(606\) 0 0
\(607\) 93005.7 + 527462.i 0.252425 + 1.43157i 0.802597 + 0.596522i \(0.203451\pi\)
−0.550172 + 0.835051i \(0.685438\pi\)
\(608\) 1.20696e6 212819.i 3.26501 0.575709i
\(609\) 0 0
\(610\) −115185. 96651.3i −0.309553 0.259745i
\(611\) 13797.6 7966.04i 0.0369590 0.0213383i
\(612\) 0 0
\(613\) 212960. 368858.i 0.566732 0.981608i −0.430154 0.902755i \(-0.641541\pi\)
0.996886 0.0788530i \(-0.0251258\pi\)
\(614\) −191668. 526604.i −0.508409 1.39684i
\(615\) 0 0
\(616\) 110662. 92856.6i 0.291634 0.244710i
\(617\) −134093. + 368417.i −0.352237 + 0.967763i 0.629413 + 0.777071i \(0.283295\pi\)
−0.981650 + 0.190692i \(0.938927\pi\)
\(618\) 0 0
\(619\) −969.457 + 5498.07i −0.00253016 + 0.0143492i −0.986047 0.166469i \(-0.946763\pi\)
0.983517 + 0.180818i \(0.0578746\pi\)
\(620\) 1.20795e6i 3.14242i
\(621\) 0 0
\(622\) 489699. 1.26575
\(623\) −60885.5 10735.8i −0.156869 0.0276603i
\(624\) 0 0
\(625\) 352498. + 128299.i 0.902396 + 0.328445i
\(626\) 386472. + 460579.i 0.986209 + 1.17532i
\(627\) 0 0
\(628\) −678019. + 246779.i −1.71918 + 0.625732i
\(629\) 152177. + 87859.2i 0.384633 + 0.222068i
\(630\) 0 0
\(631\) 327793. + 567755.i 0.823269 + 1.42594i 0.903235 + 0.429145i \(0.141185\pi\)
−0.0799669 + 0.996798i \(0.525481\pi\)
\(632\) 275740. 328614.i 0.690345 0.822721i
\(633\) 0 0
\(634\) 45182.7 + 256244.i 0.112407 + 0.637492i
\(635\) 652571. 115066.i 1.61838 0.285364i
\(636\) 0 0
\(637\) 7170.04 + 6016.38i 0.0176703 + 0.0148271i
\(638\) −12989.6 + 7499.53i −0.0319119 + 0.0184244i
\(639\) 0 0
\(640\) 141390. 244895.i 0.345192 0.597889i
\(641\) −58215.2 159945.i −0.141684 0.389273i 0.848472 0.529240i \(-0.177523\pi\)
−0.990156 + 0.139966i \(0.955301\pi\)
\(642\) 0 0
\(643\) 590812. 495750.i 1.42898 1.19906i 0.482675 0.875800i \(-0.339665\pi\)
0.946310 0.323261i \(-0.104779\pi\)
\(644\) −77235.4 + 212203.i −0.186228 + 0.511657i
\(645\) 0 0
\(646\) 252808. 1.43375e6i 0.605796 3.43564i
\(647\) 205603.i 0.491159i 0.969377 + 0.245579i \(0.0789782\pi\)
−0.969377 + 0.245579i \(0.921022\pi\)
\(648\) 0 0
\(649\) −187170. −0.444372
\(650\) −20480.5 3611.26i −0.0484745 0.00854737i
\(651\) 0 0
\(652\) −1.67648e6 610190.i −3.94370 1.43539i
\(653\) 240608. + 286746.i 0.564266 + 0.672467i 0.970444 0.241328i \(-0.0775829\pi\)
−0.406177 + 0.913794i \(0.633138\pi\)
\(654\) 0 0
\(655\) −929247. + 338218.i −2.16595 + 0.788342i
\(656\) −1.38762e6 801142.i −3.22450 1.86167i
\(657\) 0 0
\(658\) −206526. 357714.i −0.477005 0.826197i
\(659\) 341921. 407485.i 0.787326 0.938299i −0.211913 0.977288i \(-0.567969\pi\)
0.999240 + 0.0389896i \(0.0124139\pi\)
\(660\) 0 0
\(661\) −63363.3 359351.i −0.145022 0.822463i −0.967349 0.253447i \(-0.918436\pi\)
0.822327 0.569015i \(-0.192676\pi\)
\(662\) −949921. + 167497.i −2.16756 + 0.382200i
\(663\) 0 0
\(664\) −703769. 590532.i −1.59622 1.33939i
\(665\) −252210. + 145614.i −0.570322 + 0.329275i
\(666\) 0 0
\(667\) 6986.82 12101.5i 0.0157046 0.0272012i
\(668\) −619871. 1.70308e6i −1.38915 3.81665i
\(669\) 0 0
\(670\) 626670. 525839.i 1.39601 1.17139i
\(671\) −10614.2 + 29162.3i −0.0235745 + 0.0647703i
\(672\) 0 0
\(673\) −41086.6 + 233014.i −0.0907131 + 0.514459i 0.905264 + 0.424850i \(0.139673\pi\)
−0.995977 + 0.0896096i \(0.971438\pi\)
\(674\) 993546.i 2.18710i
\(675\) 0 0
\(676\) 1.13032e6 2.47348
\(677\) −469839. 82845.2i −1.02511 0.180755i −0.364281 0.931289i \(-0.618685\pi\)
−0.660832 + 0.750534i \(0.729796\pi\)
\(678\) 0 0
\(679\) −184781. 67254.7i −0.400791 0.145876i
\(680\) −1.44374e6 1.72058e6i −3.12227 3.72097i
\(681\) 0 0
\(682\) 328930. 119721.i 0.707188 0.257395i
\(683\) 303490. + 175220.i 0.650584 + 0.375615i 0.788680 0.614804i \(-0.210765\pi\)
−0.138096 + 0.990419i \(0.544098\pi\)
\(684\) 0 0
\(685\) 402803. + 697674.i 0.858442 + 1.48687i
\(686\) 327955. 390841.i 0.696892 0.830524i
\(687\) 0 0
\(688\) 68371.0 + 387751.i 0.144442 + 0.819174i
\(689\) −2528.51 + 445.845i −0.00532632 + 0.000939173i
\(690\) 0 0
\(691\) −93314.5 78300.2i −0.195431 0.163986i 0.539821 0.841780i \(-0.318492\pi\)
−0.735252 + 0.677794i \(0.762936\pi\)
\(692\) 1.20563e6 696071.i 2.51769 1.45359i
\(693\) 0 0
\(694\) 216128. 374345.i 0.448738 0.777236i
\(695\) 236048. + 648535.i 0.488686 + 1.34265i
\(696\) 0 0
\(697\) −646740. + 542680.i −1.33126 + 1.11706i
\(698\) 332985. 914868.i 0.683460 1.87779i
\(699\) 0 0
\(700\) −66683.2 + 378179.i −0.136088 + 0.771794i
\(701\) 430379.i 0.875820i 0.899019 + 0.437910i \(0.144281\pi\)
−0.899019 + 0.437910i \(0.855719\pi\)
\(702\) 0 0
\(703\) −268314. −0.542916
\(704\) −318015. 56074.7i −0.641656 0.113141i
\(705\) 0 0
\(706\) −194238. 70696.8i −0.389695 0.141837i
\(707\) −166081. 197928.i −0.332262 0.395975i
\(708\) 0 0
\(709\) 701376. 255280.i 1.39527 0.507837i 0.468500 0.883463i \(-0.344795\pi\)
0.926771 + 0.375626i \(0.122572\pi\)
\(710\) 420423. + 242731.i 0.834007 + 0.481514i
\(711\) 0 0
\(712\) 364038. + 630532.i 0.718103 + 1.24379i
\(713\) −209619. + 249815.i −0.412337 + 0.491404i
\(714\) 0 0
\(715\) 1463.24 + 8298.42i 0.00286221 + 0.0162324i
\(716\) 292483. 51572.6i 0.570524 0.100599i
\(717\) 0 0
\(718\) 127555. + 107031.i 0.247428 + 0.207617i
\(719\) 41439.1 23924.9i 0.0801590 0.0462798i −0.459385 0.888237i \(-0.651930\pi\)
0.539544 + 0.841958i \(0.318597\pi\)
\(720\) 0 0
\(721\) 96810.0 167680.i 0.186230 0.322560i
\(722\) 427964. + 1.17582e6i 0.820981 + 2.25563i
\(723\) 0 0
\(724\) −63441.0 + 53233.3i −0.121030 + 0.101556i
\(725\) 8127.22 22329.4i 0.0154620 0.0424816i
\(726\) 0 0
\(727\) 48735.6 276393.i 0.0922098 0.522948i −0.903357 0.428890i \(-0.858905\pi\)
0.995567 0.0940583i \(-0.0299840\pi\)
\(728\) 11303.6i 0.0213281i
\(729\) 0 0
\(730\) −1.47240e6 −2.76299
\(731\) 204310. + 36025.4i 0.382344 + 0.0674176i
\(732\) 0 0
\(733\) −440523. 160337.i −0.819900 0.298419i −0.102193 0.994765i \(-0.532586\pi\)
−0.717707 + 0.696345i \(0.754808\pi\)
\(734\) 932293. + 1.11106e6i 1.73046 + 2.06228i
\(735\) 0 0
\(736\) 804851. 292942.i 1.48580 0.540787i
\(737\) −146221. 84421.0i −0.269201 0.155423i
\(738\) 0 0
\(739\) −23646.7 40957.4i −0.0432995 0.0749969i 0.843563 0.537030i \(-0.180454\pi\)
−0.886863 + 0.462033i \(0.847120\pi\)
\(740\) −446462. + 532072.i −0.815306 + 0.971644i
\(741\) 0 0
\(742\) 11558.9 + 65553.8i 0.0209947 + 0.119067i
\(743\) −556406. + 98109.4i −1.00789 + 0.177719i −0.653136 0.757240i \(-0.726547\pi\)
−0.354756 + 0.934959i \(0.615436\pi\)
\(744\) 0 0
\(745\) 709854. + 595638.i 1.27896 + 1.07317i
\(746\) 1.09909e6 634563.i 1.97496 1.14024i
\(747\) 0 0
\(748\) −388919. + 673628.i −0.695114 + 1.20397i
\(749\) −54855.2 150713.i −0.0977810 0.268651i
\(750\) 0 0
\(751\) −243878. + 204638.i −0.432408 + 0.362833i −0.832859 0.553485i \(-0.813298\pi\)
0.400452 + 0.916318i \(0.368853\pi\)
\(752\) −860380. + 2.36387e6i −1.52144 + 4.18012i
\(753\) 0 0
\(754\) 203.800 1155.81i 0.000358477 0.00203302i
\(755\) 295854.i 0.519019i
\(756\) 0 0
\(757\) 55832.2 0.0974301 0.0487151 0.998813i \(-0.484487\pi\)
0.0487151 + 0.998813i \(0.484487\pi\)
\(758\) −1.30047e6 229309.i −2.26341 0.399100i
\(759\) 0 0
\(760\) 3.22279e6 + 1.17300e6i 5.57963 + 2.03082i
\(761\) 357987. + 426632.i 0.618156 + 0.736689i 0.980752 0.195257i \(-0.0625541\pi\)
−0.362597 + 0.931946i \(0.618110\pi\)
\(762\) 0 0
\(763\) −21175.9 + 7707.41i −0.0363742 + 0.0132391i
\(764\) −391249. 225887.i −0.670295 0.386995i
\(765\) 0 0
\(766\) −168637. 292087.i −0.287405 0.497800i
\(767\) 9413.97 11219.1i 0.0160023 0.0190708i
\(768\) 0 0
\(769\) 57418.1 + 325634.i 0.0970948 + 0.550652i 0.994085 + 0.108602i \(0.0346374\pi\)
−0.896991 + 0.442050i \(0.854251\pi\)
\(770\) 215143. 37935.6i 0.362866 0.0639831i
\(771\) 0 0
\(772\) −854458. 716975.i −1.43369 1.20301i
\(773\) −919517. + 530884.i −1.53887 + 0.888465i −0.539961 + 0.841690i \(0.681561\pi\)
−0.998905 + 0.0467747i \(0.985106\pi\)
\(774\) 0 0
\(775\) −277278. + 480259.i −0.461648 + 0.799598i
\(776\) 792021. + 2.17606e6i 1.31527 + 3.61366i
\(777\) 0 0
\(778\) −374309. + 314083.i −0.618403 + 0.518901i
\(779\) 440914. 1.21140e6i 0.726573 1.99624i
\(780\) 0 0
\(781\) 17398.9 98673.9i 0.0285246 0.161771i
\(782\) 1.01744e6i 1.66378i
\(783\) 0 0
\(784\) −1.47786e6 −2.40437
\(785\) −640420. 112923.i −1.03926 0.183250i
\(786\) 0 0
\(787\) 375416. + 136640.i 0.606127 + 0.220612i 0.626808 0.779174i \(-0.284361\pi\)
−0.0206809 + 0.999786i \(0.506583\pi\)
\(788\) 1.70874e6 + 2.03639e6i 2.75184 + 3.27951i
\(789\) 0 0
\(790\) 609606. 221879.i 0.976777 0.355518i
\(791\) 451.018 + 260.395i 0.000720843 + 0.000416179i
\(792\) 0 0
\(793\) −1214.16 2102.98i −0.00193076 0.00334418i
\(794\) 1.07134e6 1.27677e6i 1.69937 2.02522i
\(795\) 0 0
\(796\) 143332. + 812878.i 0.226213 + 1.28292i
\(797\) 969956. 171029.i 1.52699 0.269249i 0.653813 0.756657i \(-0.273168\pi\)
0.873175 + 0.487407i \(0.162057\pi\)
\(798\) 0 0
\(799\) 1.01538e6 + 852006.i 1.59051 + 1.33459i
\(800\) 1.26137e6 728251.i 1.97089 1.13789i
\(801\) 0 0
\(802\) 1.00747e6 1.74499e6i 1.56633 2.71296i
\(803\) 103938. + 285566.i 0.161191 + 0.442869i
\(804\) 0 0
\(805\) −155911. + 130825.i −0.240594 + 0.201882i
\(806\) −9367.83 + 25737.9i −0.0144201 + 0.0396190i
\(807\) 0 0
\(808\) −528368. + 2.99653e6i −0.809309 + 4.58982i
\(809\) 321706.i 0.491544i 0.969328 + 0.245772i \(0.0790414\pi\)
−0.969328 + 0.245772i \(0.920959\pi\)
\(810\) 0 0
\(811\) −183034. −0.278285 −0.139143 0.990272i \(-0.544435\pi\)
−0.139143 + 0.990272i \(0.544435\pi\)
\(812\) −21342.3 3763.23i −0.0323690 0.00570753i
\(813\) 0 0
\(814\) 189135. + 68839.7i 0.285446 + 0.103894i
\(815\) −1.03357e6 1.23176e6i −1.55605 1.85443i
\(816\) 0 0
\(817\) −297680. + 108347.i −0.445970 + 0.162320i
\(818\) −1.33772e6 772332.i −1.99921 1.15424i
\(819\) 0 0
\(820\) −1.66857e6 2.89006e6i −2.48152 4.29812i
\(821\) −472182. + 562724.i −0.700523 + 0.834851i −0.992586 0.121548i \(-0.961214\pi\)
0.292062 + 0.956399i \(0.405659\pi\)
\(822\) 0 0
\(823\) −188428. 1.06863e6i −0.278192 1.57771i −0.728635 0.684902i \(-0.759845\pi\)
0.450443 0.892805i \(-0.351266\pi\)
\(824\) −2.24551e6 + 395945.i −3.30721 + 0.583150i
\(825\) 0 0
\(826\) −290865. 244065.i −0.426316 0.357722i
\(827\) 126278. 72906.7i 0.184636 0.106600i −0.404833 0.914391i \(-0.632670\pi\)
0.589469 + 0.807791i \(0.299337\pi\)
\(828\) 0 0
\(829\) −403873. + 699529.i −0.587673 + 1.01788i 0.406863 + 0.913489i \(0.366623\pi\)
−0.994536 + 0.104391i \(0.966711\pi\)
\(830\) −475181. 1.30555e6i −0.689767 1.89512i
\(831\) 0 0
\(832\) 19356.2 16241.8i 0.0279623 0.0234632i
\(833\) −266331. + 731739.i −0.383824 + 1.05455i
\(834\) 0 0
\(835\) 283646. 1.60864e6i 0.406822 2.30720i
\(836\) 1.18772e6i 1.69943i
\(837\) 0 0
\(838\) −654446. −0.931936
\(839\) 683160. + 120459.i 0.970506 + 0.171126i 0.636358 0.771394i \(-0.280440\pi\)
0.334148 + 0.942520i \(0.391551\pi\)
\(840\) 0 0
\(841\) −663367. 241446.i −0.937911 0.341372i
\(842\) −1.33110e6 1.58634e6i −1.87753 2.23755i
\(843\) 0 0
\(844\) 1.47198e6 535756.i 2.06641 0.752112i
\(845\) 882246. + 509365.i 1.23559 + 0.713371i
\(846\) 0 0
\(847\) 86852.2 + 150432.i 0.121064 + 0.209689i
\(848\) 260584. 310552.i 0.362373 0.431859i
\(849\) 0 0
\(850\) −300443. 1.70390e6i −0.415838 2.35833i
\(851\) −184665. + 32561.4i −0.254991 + 0.0449618i
\(852\) 0 0
\(853\) 573354. + 481101.i 0.787998 + 0.661208i 0.945249 0.326350i \(-0.105819\pi\)
−0.157251 + 0.987559i \(0.550263\pi\)
\(854\) −54521.5 + 31478.0i −0.0747571 + 0.0431610i
\(855\) 0 0
\(856\) −944388. + 1.63573e6i −1.28885 + 2.23236i
\(857\) 84810.3 + 233014.i 0.115475 + 0.317264i 0.983944 0.178479i \(-0.0571178\pi\)
−0.868469 + 0.495744i \(0.834896\pi\)
\(858\) 0 0
\(859\) 842217. 706704.i 1.14140 0.957748i 0.141916 0.989879i \(-0.454674\pi\)
0.999484 + 0.0321302i \(0.0102291\pi\)
\(860\) −280472. + 770590.i −0.379221 + 1.04190i
\(861\) 0 0
\(862\) 54189.9 307326.i 0.0729296 0.413604i
\(863\) 337849.i 0.453629i 0.973938 + 0.226814i \(0.0728311\pi\)
−0.973938 + 0.226814i \(0.927169\pi\)
\(864\) 0 0
\(865\) 1.25470e6 1.67691
\(866\) −7437.80 1311.48i −0.00991765 0.00174875i
\(867\) 0 0
\(868\) 475259. + 172980.i 0.630799 + 0.229592i
\(869\) −86064.9 102568.i −0.113969 0.135823i
\(870\) 0 0
\(871\) 12414.7 4518.58i 0.0163644 0.00595614i
\(872\) 229827. + 132691.i 0.302252 + 0.174505i
\(873\) 0 0
\(874\) 776796. + 1.34545e6i 1.01691 + 1.76135i
\(875\) −8191.61 + 9762.38i −0.0106992 + 0.0127509i
\(876\) 0 0
\(877\) −53418.6 302952.i −0.0694533 0.393889i −0.999641 0.0268043i \(-0.991467\pi\)
0.930187 0.367085i \(-0.119644\pi\)
\(878\) 481939. 84978.8i 0.625177 0.110236i
\(879\) 0 0
\(880\) −1.01921e6 855220.i −1.31613 1.10436i
\(881\) 1.14282e6 659808.i 1.47240 0.850092i 0.472884 0.881125i \(-0.343213\pi\)
0.999518 + 0.0310333i \(0.00987979\pi\)
\(882\) 0 0
\(883\) −347184. + 601340.i −0.445285 + 0.771256i −0.998072 0.0620666i \(-0.980231\pi\)
0.552787 + 0.833322i \(0.313564\pi\)
\(884\) −20816.6 57193.2i −0.0266383 0.0731880i
\(885\) 0 0
\(886\) −100197. + 84075.6i −0.127641 + 0.107103i
\(887\) −196811. + 540733.i −0.250150 + 0.687283i 0.749529 + 0.661971i \(0.230280\pi\)
−0.999680 + 0.0253113i \(0.991942\pi\)
\(888\) 0 0
\(889\) 48177.4 273228.i 0.0609593 0.345717i
\(890\) 1.10105e6i 1.39004i
\(891\) 0 0
\(892\) 2.21171e6 2.77971
\(893\) −1.99321e6 351456.i −2.49948 0.440726i
\(894\) 0 0
\(895\) 251531. + 91549.9i 0.314012 + 0.114291i
\(896\) −76105.3 90698.7i −0.0947979 0.112976i
\(897\) 0 0
\(898\) −2.51596e6 + 915735.i −3.11998 + 1.13558i
\(899\) −27103.1 15648.0i −0.0335352 0.0193615i
\(900\) 0 0
\(901\) −106804. 184990.i −0.131564 0.227876i
\(902\) −621604. + 740799.i −0.764013 + 0.910515i
\(903\) 0 0
\(904\) −1064.99 6039.88i −0.00130320 0.00739080i
\(905\) −73506.3 + 12961.1i −0.0897486 + 0.0158251i
\(906\) 0 0
\(907\) −820336. 688344.i −0.997189 0.836741i −0.0105963 0.999944i \(-0.503373\pi\)
−0.986592 + 0.163203i \(0.947817\pi\)
\(908\) 410651. 237090.i 0.498083 0.287568i
\(909\) 0 0
\(910\) −8547.05 + 14803.9i −0.0103213 + 0.0178770i
\(911\) −495638. 1.36175e6i −0.597211 1.64082i −0.756805 0.653641i \(-0.773241\pi\)
0.159594 0.987183i \(-0.448981\pi\)
\(912\) 0 0
\(913\) −219663. + 184319.i −0.263521 + 0.221120i
\(914\) 890177. 2.44574e6i 1.06558 2.92764i
\(915\) 0 0
\(916\) 359458. 2.03859e6i 0.428408 2.42962i
\(917\) 414040.i 0.492384i
\(918\) 0 0
\(919\) −795804. −0.942269 −0.471134 0.882061i \(-0.656155\pi\)
−0.471134 + 0.882061i \(0.656155\pi\)
\(920\) 2.36041e6 + 416204.i 2.78877 + 0.491735i
\(921\) 0 0
\(922\) 654695. + 238289.i 0.770153 + 0.280313i
\(923\) 5039.50 + 6005.85i 0.00591540 + 0.00704970i
\(924\) 0 0
\(925\) −299640. + 109060.i −0.350200 + 0.127462i
\(926\) 83081.5 + 47967.2i 0.0968908 + 0.0559399i
\(927\) 0 0
\(928\) 41098.4 + 71184.6i 0.0477232 + 0.0826590i
\(929\) 709612. 845683.i 0.822223 0.979887i −0.177768 0.984072i \(-0.556888\pi\)
0.999991 + 0.00418521i \(0.00133220\pi\)
\(930\) 0 0
\(931\) −206475. 1.17098e6i −0.238214 1.35098i
\(932\) 1.04099e6 183555.i 1.19844 0.211317i
\(933\) 0 0
\(934\) 688506. + 577725.i 0.789249 + 0.662258i
\(935\) −607124. + 350523.i −0.694471 + 0.400953i
\(936\) 0 0
\(937\) −88661.1 + 153565.i −0.100984 + 0.174910i −0.912090 0.409989i \(-0.865533\pi\)
0.811106 + 0.584899i \(0.198866\pi\)
\(938\) −117148. 321861.i −0.133146 0.365816i
\(939\) 0 0
\(940\) −4.01355e6 + 3.36777e6i −4.54227 + 3.81142i
\(941\) −156015. + 428647.i −0.176192 + 0.484084i −0.996082 0.0884379i \(-0.971813\pi\)
0.819890 + 0.572522i \(0.194035\pi\)
\(942\) 0 0
\(943\) 156445. 887245.i 0.175930 0.997746i
\(944\) 2.31245e6i 2.59494i
\(945\) 0 0
\(946\) 237634. 0.265537
\(947\) 924331. + 162985.i 1.03069 + 0.181738i 0.663319 0.748337i \(-0.269147\pi\)
0.367370 + 0.930075i \(0.380258\pi\)
\(948\) 0 0
\(949\) −22344.8 8132.84i −0.0248110 0.00903046i
\(950\) 1.69819e6 + 2.02382e6i 1.88165 + 2.24246i
\(951\) 0 0
\(952\) −883697. + 321639.i −0.975056 + 0.354891i
\(953\) 53349.3 + 30801.2i 0.0587412 + 0.0339143i 0.529083 0.848570i \(-0.322536\pi\)
−0.470342 + 0.882484i \(0.655869\pi\)
\(954\) 0 0
\(955\) −203587. 352623.i −0.223225 0.386637i
\(956\) 89683.3 106880.i 0.0981287 0.116945i
\(957\) 0 0
\(958\) −194320. 1.10204e6i −0.211732 1.20079i
\(959\) 332178. 58571.9i 0.361188 0.0636872i
\(960\) 0 0
\(961\) −147962. 124155.i −0.160215 0.134436i
\(962\) −13639.2 + 7874.57i −0.0147380 + 0.00850896i
\(963\) 0 0
\(964\) 1.70531e6 2.95368e6i 1.83506 3.17841i
\(965\) −343832. 944670.i −0.369225 1.01444i
\(966\) 0 0
\(967\) 163927. 137551.i 0.175306 0.147099i −0.550913 0.834563i \(-0.685720\pi\)
0.726219 + 0.687463i \(0.241276\pi\)
\(968\) 699643. 1.92225e6i 0.746665 2.05145i
\(969\) 0 0
\(970\) −608116. + 3.44880e6i −0.646313 + 3.66542i
\(971\) 597290.i 0.633500i 0.948509 + 0.316750i \(0.102592\pi\)
−0.948509 + 0.316750i \(0.897408\pi\)
\(972\) 0 0
\(973\) 288965. 0.305225
\(974\) 651612. + 114897.i 0.686865 + 0.121113i
\(975\) 0 0
\(976\) 360294. + 131136.i 0.378231 + 0.137665i
\(977\) −463336. 552182.i −0.485408 0.578487i 0.466635 0.884450i \(-0.345466\pi\)
−0.952043 + 0.305963i \(0.901022\pi\)
\(978\) 0 0
\(979\) 213545. 77723.9i 0.222804 0.0810941i
\(980\) −2.66563e6 1.53900e6i −2.77554 1.60246i
\(981\) 0 0
\(982\) 1.58651e6 + 2.74791e6i 1.64520 + 2.84957i
\(983\) −217960. + 259754.i −0.225564 + 0.268816i −0.866943 0.498408i \(-0.833918\pi\)
0.641379 + 0.767224i \(0.278363\pi\)
\(984\) 0 0
\(985\) 416040. + 2.35948e6i 0.428808 + 2.43189i
\(986\) 96158.5 16955.3i 0.0989085 0.0174402i
\(987\) 0 0
\(988\) 71193.3 + 59738.3i 0.0729332 + 0.0611982i
\(989\) −191728. + 110694.i −0.196016 + 0.113170i
\(990\) 0 0
\(991\) −246687. + 427275.i −0.251188 + 0.435071i −0.963853 0.266433i \(-0.914155\pi\)
0.712665 + 0.701505i \(0.247488\pi\)
\(992\) −656086. 1.80258e6i −0.666711 1.83177i
\(993\) 0 0
\(994\) 155707. 130653.i 0.157592 0.132235i
\(995\) −254439. + 699064.i −0.257002 + 0.706108i
\(996\) 0 0
\(997\) 135947. 770996.i 0.136767 0.775643i −0.836846 0.547438i \(-0.815603\pi\)
0.973613 0.228205i \(-0.0732857\pi\)
\(998\) 877277.i 0.880797i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.8.1 66
3.2 odd 2 27.5.f.a.2.11 66
27.13 even 9 27.5.f.a.14.11 yes 66
27.14 odd 18 inner 81.5.f.a.71.1 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.2.11 66 3.2 odd 2
27.5.f.a.14.11 yes 66 27.13 even 9
81.5.f.a.8.1 66 1.1 even 1 trivial
81.5.f.a.71.1 66 27.14 odd 18 inner