Properties

Label 81.5.f.a.44.5
Level $81$
Weight $5$
Character 81.44
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 44.5
Character \(\chi\) \(=\) 81.44
Dual form 81.5.f.a.35.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.868224 - 1.03471i) q^{2} +(2.46156 - 13.9602i) q^{4} +(3.20330 + 8.80100i) q^{5} +(-7.41386 - 42.0461i) q^{7} +(-35.2980 + 20.3793i) q^{8} +(6.32529 - 10.9557i) q^{10} +(6.44259 - 17.7009i) q^{11} +(-37.7989 - 31.7171i) q^{13} +(-37.0686 + 44.1766i) q^{14} +(-161.398 - 58.7439i) q^{16} +(-390.443 - 225.422i) q^{17} +(-57.0245 - 98.7692i) q^{19} +(130.749 - 23.0546i) q^{20} +(-23.9089 + 8.70211i) q^{22} +(-608.929 - 107.371i) q^{23} +(411.581 - 345.358i) q^{25} +66.6484i q^{26} -605.222 q^{28} +(179.539 + 213.967i) q^{29} +(211.710 - 1200.67i) q^{31} +(302.391 + 830.812i) q^{32} +(105.745 + 599.712i) q^{34} +(346.299 - 199.936i) q^{35} +(-1105.90 + 1915.47i) q^{37} +(-52.6874 + 144.758i) q^{38} +(-292.429 - 245.377i) q^{40} +(348.778 - 415.658i) q^{41} +(3152.26 + 1147.33i) q^{43} +(-231.249 - 133.512i) q^{44} +(417.590 + 723.286i) q^{46} +(3962.16 - 698.636i) q^{47} +(543.294 - 197.743i) q^{49} +(-714.690 - 126.019i) q^{50} +(-535.821 + 449.607i) q^{52} -3918.45i q^{53} +176.423 q^{55} +(1118.57 + 1333.05i) q^{56} +(65.5128 - 371.542i) q^{58} +(1539.61 + 4230.04i) q^{59} +(208.280 + 1181.21i) q^{61} +(-1426.15 + 823.390i) q^{62} +(-776.940 + 1345.70i) q^{64} +(158.060 - 434.267i) q^{65} +(-2416.30 - 2027.52i) q^{67} +(-4108.04 + 4895.77i) q^{68} +(-507.540 - 184.729i) q^{70} +(-2478.15 - 1430.76i) q^{71} +(-1176.80 - 2038.28i) q^{73} +(2942.13 - 518.776i) q^{74} +(-1519.21 + 552.947i) q^{76} +(-792.017 - 139.654i) q^{77} +(3852.86 - 3232.93i) q^{79} -1608.63i q^{80} -732.903 q^{82} +(-7265.33 - 8658.48i) q^{83} +(733.235 - 4158.38i) q^{85} +(-1549.72 - 4257.81i) q^{86} +(133.321 + 756.101i) q^{88} +(982.504 - 567.249i) q^{89} +(-1053.34 + 1824.44i) q^{91} +(-2997.83 + 8236.48i) q^{92} +(-4162.93 - 3493.11i) q^{94} +(686.601 - 818.260i) q^{95} +(1751.37 + 637.447i) q^{97} +(-676.307 - 390.466i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.868224 1.03471i −0.217056 0.258677i 0.646519 0.762898i \(-0.276224\pi\)
−0.863575 + 0.504221i \(0.831780\pi\)
\(3\) 0 0
\(4\) 2.46156 13.9602i 0.153848 0.872513i
\(5\) 3.20330 + 8.80100i 0.128132 + 0.352040i 0.987126 0.159946i \(-0.0511321\pi\)
−0.858994 + 0.511986i \(0.828910\pi\)
\(6\) 0 0
\(7\) −7.41386 42.0461i −0.151303 0.858083i −0.962088 0.272739i \(-0.912070\pi\)
0.810785 0.585344i \(-0.199041\pi\)
\(8\) −35.2980 + 20.3793i −0.551531 + 0.318427i
\(9\) 0 0
\(10\) 6.32529 10.9557i 0.0632529 0.109557i
\(11\) 6.44259 17.7009i 0.0532445 0.146288i −0.910219 0.414127i \(-0.864087\pi\)
0.963464 + 0.267838i \(0.0863093\pi\)
\(12\) 0 0
\(13\) −37.7989 31.7171i −0.223662 0.187675i 0.524070 0.851675i \(-0.324413\pi\)
−0.747732 + 0.664000i \(0.768857\pi\)
\(14\) −37.0686 + 44.1766i −0.189125 + 0.225391i
\(15\) 0 0
\(16\) −161.398 58.7439i −0.630459 0.229468i
\(17\) −390.443 225.422i −1.35101 0.780008i −0.362622 0.931936i \(-0.618118\pi\)
−0.988391 + 0.151929i \(0.951452\pi\)
\(18\) 0 0
\(19\) −57.0245 98.7692i −0.157962 0.273599i 0.776171 0.630522i \(-0.217159\pi\)
−0.934134 + 0.356923i \(0.883826\pi\)
\(20\) 130.749 23.0546i 0.326872 0.0576364i
\(21\) 0 0
\(22\) −23.9089 + 8.70211i −0.0493985 + 0.0179796i
\(23\) −608.929 107.371i −1.15109 0.202969i −0.434641 0.900604i \(-0.643125\pi\)
−0.716454 + 0.697635i \(0.754236\pi\)
\(24\) 0 0
\(25\) 411.581 345.358i 0.658530 0.552572i
\(26\) 66.6484i 0.0985923i
\(27\) 0 0
\(28\) −605.222 −0.771967
\(29\) 179.539 + 213.967i 0.213483 + 0.254419i 0.862150 0.506653i \(-0.169118\pi\)
−0.648667 + 0.761072i \(0.724673\pi\)
\(30\) 0 0
\(31\) 211.710 1200.67i 0.220302 1.24939i −0.651164 0.758937i \(-0.725719\pi\)
0.871465 0.490457i \(-0.163170\pi\)
\(32\) 302.391 + 830.812i 0.295303 + 0.811340i
\(33\) 0 0
\(34\) 105.745 + 599.712i 0.0914752 + 0.518782i
\(35\) 346.299 199.936i 0.282693 0.163213i
\(36\) 0 0
\(37\) −1105.90 + 1915.47i −0.807816 + 1.39918i 0.106558 + 0.994306i \(0.466017\pi\)
−0.914374 + 0.404871i \(0.867316\pi\)
\(38\) −52.6874 + 144.758i −0.0364871 + 0.100248i
\(39\) 0 0
\(40\) −292.429 245.377i −0.182768 0.153360i
\(41\) 348.778 415.658i 0.207483 0.247268i −0.652260 0.757995i \(-0.726179\pi\)
0.859743 + 0.510727i \(0.170624\pi\)
\(42\) 0 0
\(43\) 3152.26 + 1147.33i 1.70485 + 0.620513i 0.996363 0.0852133i \(-0.0271572\pi\)
0.708484 + 0.705727i \(0.249379\pi\)
\(44\) −231.249 133.512i −0.119447 0.0689626i
\(45\) 0 0
\(46\) 417.590 + 723.286i 0.197349 + 0.341818i
\(47\) 3962.16 698.636i 1.79364 0.316268i 0.825077 0.565020i \(-0.191132\pi\)
0.968567 + 0.248752i \(0.0800204\pi\)
\(48\) 0 0
\(49\) 543.294 197.743i 0.226278 0.0823585i
\(50\) −714.690 126.019i −0.285876 0.0504076i
\(51\) 0 0
\(52\) −535.821 + 449.607i −0.198159 + 0.166275i
\(53\) 3918.45i 1.39496i −0.716603 0.697482i \(-0.754304\pi\)
0.716603 0.697482i \(-0.245696\pi\)
\(54\) 0 0
\(55\) 176.423 0.0583216
\(56\) 1118.57 + 1333.05i 0.356685 + 0.425081i
\(57\) 0 0
\(58\) 65.5128 371.542i 0.0194747 0.110446i
\(59\) 1539.61 + 4230.04i 0.442290 + 1.21518i 0.937982 + 0.346683i \(0.112692\pi\)
−0.495693 + 0.868498i \(0.665086\pi\)
\(60\) 0 0
\(61\) 208.280 + 1181.21i 0.0559742 + 0.317446i 0.999920 0.0126552i \(-0.00402839\pi\)
−0.943946 + 0.330101i \(0.892917\pi\)
\(62\) −1426.15 + 823.390i −0.371008 + 0.214201i
\(63\) 0 0
\(64\) −776.940 + 1345.70i −0.189683 + 0.328540i
\(65\) 158.060 434.267i 0.0374108 0.102785i
\(66\) 0 0
\(67\) −2416.30 2027.52i −0.538271 0.451663i 0.332675 0.943042i \(-0.392049\pi\)
−0.870946 + 0.491378i \(0.836493\pi\)
\(68\) −4108.04 + 4895.77i −0.888417 + 1.05877i
\(69\) 0 0
\(70\) −507.540 184.729i −0.103580 0.0376999i
\(71\) −2478.15 1430.76i −0.491599 0.283825i 0.233639 0.972323i \(-0.424937\pi\)
−0.725237 + 0.688499i \(0.758270\pi\)
\(72\) 0 0
\(73\) −1176.80 2038.28i −0.220830 0.382488i 0.734231 0.678900i \(-0.237543\pi\)
−0.955060 + 0.296412i \(0.904210\pi\)
\(74\) 2942.13 518.776i 0.537277 0.0947364i
\(75\) 0 0
\(76\) −1519.21 + 552.947i −0.263021 + 0.0957317i
\(77\) −792.017 139.654i −0.133584 0.0235544i
\(78\) 0 0
\(79\) 3852.86 3232.93i 0.617347 0.518015i −0.279622 0.960110i \(-0.590209\pi\)
0.896968 + 0.442095i \(0.145765\pi\)
\(80\) 1608.63i 0.251349i
\(81\) 0 0
\(82\) −732.903 −0.108998
\(83\) −7265.33 8658.48i −1.05463 1.25686i −0.965380 0.260846i \(-0.915998\pi\)
−0.0892470 0.996010i \(-0.528446\pi\)
\(84\) 0 0
\(85\) 733.235 4158.38i 0.101486 0.575555i
\(86\) −1549.72 4257.81i −0.209534 0.575691i
\(87\) 0 0
\(88\) 133.321 + 756.101i 0.0172160 + 0.0976370i
\(89\) 982.504 567.249i 0.124038 0.0716133i −0.436697 0.899609i \(-0.643852\pi\)
0.560735 + 0.827995i \(0.310519\pi\)
\(90\) 0 0
\(91\) −1053.34 + 1824.44i −0.127200 + 0.220317i
\(92\) −2997.83 + 8236.48i −0.354186 + 0.973119i
\(93\) 0 0
\(94\) −4162.93 3493.11i −0.471133 0.395327i
\(95\) 686.601 818.260i 0.0760777 0.0906659i
\(96\) 0 0
\(97\) 1751.37 + 637.447i 0.186138 + 0.0677486i 0.433407 0.901198i \(-0.357311\pi\)
−0.247270 + 0.968947i \(0.579533\pi\)
\(98\) −676.307 390.466i −0.0704193 0.0406566i
\(99\) 0 0
\(100\) −3808.13 6595.88i −0.380813 0.659588i
\(101\) 845.823 149.141i 0.0829157 0.0146203i −0.132036 0.991245i \(-0.542152\pi\)
0.214952 + 0.976625i \(0.431040\pi\)
\(102\) 0 0
\(103\) 4752.33 1729.71i 0.447952 0.163041i −0.108187 0.994131i \(-0.534504\pi\)
0.556139 + 0.831089i \(0.312282\pi\)
\(104\) 1980.60 + 349.233i 0.183117 + 0.0322886i
\(105\) 0 0
\(106\) −4054.46 + 3402.09i −0.360845 + 0.302785i
\(107\) 10768.0i 0.940518i 0.882529 + 0.470259i \(0.155839\pi\)
−0.882529 + 0.470259i \(0.844161\pi\)
\(108\) 0 0
\(109\) 2700.53 0.227298 0.113649 0.993521i \(-0.463746\pi\)
0.113649 + 0.993521i \(0.463746\pi\)
\(110\) −153.175 182.546i −0.0126591 0.0150865i
\(111\) 0 0
\(112\) −1273.37 + 7221.65i −0.101512 + 0.575706i
\(113\) −4381.95 12039.3i −0.343171 0.942855i −0.984468 0.175562i \(-0.943826\pi\)
0.641297 0.767293i \(-0.278397\pi\)
\(114\) 0 0
\(115\) −1005.61 5703.13i −0.0760389 0.431238i
\(116\) 3428.96 1979.71i 0.254828 0.147125i
\(117\) 0 0
\(118\) 3040.14 5265.67i 0.218338 0.378173i
\(119\) −6583.44 + 18087.8i −0.464899 + 1.27730i
\(120\) 0 0
\(121\) 10943.8 + 9182.97i 0.747479 + 0.627210i
\(122\) 1041.38 1241.07i 0.0699664 0.0833827i
\(123\) 0 0
\(124\) −16240.4 5911.03i −1.05622 0.384433i
\(125\) 9427.31 + 5442.86i 0.603348 + 0.348343i
\(126\) 0 0
\(127\) 5755.85 + 9969.42i 0.356863 + 0.618105i 0.987435 0.158026i \(-0.0505129\pi\)
−0.630572 + 0.776131i \(0.717180\pi\)
\(128\) 15998.2 2820.91i 0.976450 0.172174i
\(129\) 0 0
\(130\) −586.572 + 213.495i −0.0347084 + 0.0126328i
\(131\) 20719.2 + 3653.35i 1.20734 + 0.212887i 0.740869 0.671650i \(-0.234414\pi\)
0.466471 + 0.884536i \(0.345525\pi\)
\(132\) 0 0
\(133\) −3730.09 + 3129.92i −0.210871 + 0.176941i
\(134\) 4260.51i 0.237275i
\(135\) 0 0
\(136\) 18375.8 0.993502
\(137\) −21898.4 26097.6i −1.16673 1.39046i −0.905049 0.425307i \(-0.860166\pi\)
−0.261686 0.965153i \(-0.584278\pi\)
\(138\) 0 0
\(139\) −2943.24 + 16692.0i −0.152334 + 0.863928i 0.808849 + 0.588016i \(0.200091\pi\)
−0.961183 + 0.275912i \(0.911020\pi\)
\(140\) −1938.71 5326.56i −0.0989136 0.271763i
\(141\) 0 0
\(142\) 671.168 + 3806.38i 0.0332855 + 0.188771i
\(143\) −804.942 + 464.734i −0.0393634 + 0.0227265i
\(144\) 0 0
\(145\) −1308.00 + 2265.52i −0.0622117 + 0.107754i
\(146\) −1087.30 + 2987.33i −0.0510086 + 0.140145i
\(147\) 0 0
\(148\) 24018.2 + 20153.6i 1.09652 + 0.920090i
\(149\) 17955.5 21398.5i 0.808768 0.963852i −0.191075 0.981575i \(-0.561197\pi\)
0.999843 + 0.0177231i \(0.00564172\pi\)
\(150\) 0 0
\(151\) −3119.16 1135.28i −0.136799 0.0497908i 0.272713 0.962095i \(-0.412079\pi\)
−0.409512 + 0.912305i \(0.634301\pi\)
\(152\) 4025.70 + 2324.24i 0.174243 + 0.100599i
\(153\) 0 0
\(154\) 543.147 + 940.758i 0.0229021 + 0.0396676i
\(155\) 11245.2 1982.84i 0.468064 0.0825324i
\(156\) 0 0
\(157\) −20046.5 + 7296.35i −0.813280 + 0.296010i −0.714978 0.699147i \(-0.753563\pi\)
−0.0983021 + 0.995157i \(0.531341\pi\)
\(158\) −6690.29 1179.68i −0.267998 0.0472552i
\(159\) 0 0
\(160\) −6343.32 + 5322.68i −0.247786 + 0.207917i
\(161\) 26399.1i 1.01845i
\(162\) 0 0
\(163\) −3741.11 −0.140807 −0.0704036 0.997519i \(-0.522429\pi\)
−0.0704036 + 0.997519i \(0.522429\pi\)
\(164\) −4944.13 5892.18i −0.183824 0.219073i
\(165\) 0 0
\(166\) −2651.08 + 15035.0i −0.0962069 + 0.545616i
\(167\) 4391.73 + 12066.2i 0.157472 + 0.432650i 0.993190 0.116509i \(-0.0371703\pi\)
−0.835718 + 0.549159i \(0.814948\pi\)
\(168\) 0 0
\(169\) −4536.78 25729.4i −0.158845 0.900856i
\(170\) −4939.33 + 2851.72i −0.170911 + 0.0986755i
\(171\) 0 0
\(172\) 23776.4 41182.0i 0.803693 1.39204i
\(173\) −14623.8 + 40178.7i −0.488618 + 1.34247i 0.413314 + 0.910588i \(0.364371\pi\)
−0.901932 + 0.431878i \(0.857851\pi\)
\(174\) 0 0
\(175\) −17572.4 14745.0i −0.573791 0.481468i
\(176\) −2079.64 + 2478.41i −0.0671370 + 0.0800108i
\(177\) 0 0
\(178\) −1439.97 524.107i −0.0454479 0.0165417i
\(179\) 23006.7 + 13282.9i 0.718040 + 0.414561i 0.814031 0.580822i \(-0.197269\pi\)
−0.0959908 + 0.995382i \(0.530602\pi\)
\(180\) 0 0
\(181\) −8497.75 14718.5i −0.259386 0.449270i 0.706692 0.707522i \(-0.250187\pi\)
−0.966078 + 0.258252i \(0.916854\pi\)
\(182\) 2802.30 494.122i 0.0846004 0.0149173i
\(183\) 0 0
\(184\) 23682.1 8619.59i 0.699496 0.254596i
\(185\) −20400.6 3597.18i −0.596074 0.105104i
\(186\) 0 0
\(187\) −6505.63 + 5458.87i −0.186040 + 0.156106i
\(188\) 57032.3i 1.61363i
\(189\) 0 0
\(190\) −1442.78 −0.0399663
\(191\) −33917.8 40421.7i −0.929739 1.10802i −0.993923 0.110082i \(-0.964889\pi\)
0.0641834 0.997938i \(-0.479556\pi\)
\(192\) 0 0
\(193\) 8157.94 46266.0i 0.219011 1.24207i −0.654798 0.755804i \(-0.727246\pi\)
0.873809 0.486269i \(-0.161643\pi\)
\(194\) −861.010 2365.61i −0.0228773 0.0628549i
\(195\) 0 0
\(196\) −1423.18 8071.25i −0.0370465 0.210101i
\(197\) −20705.7 + 11954.4i −0.533528 + 0.308032i −0.742452 0.669899i \(-0.766337\pi\)
0.208924 + 0.977932i \(0.433004\pi\)
\(198\) 0 0
\(199\) −9654.27 + 16721.7i −0.243789 + 0.422254i −0.961790 0.273787i \(-0.911724\pi\)
0.718002 + 0.696041i \(0.245057\pi\)
\(200\) −7489.85 + 20578.2i −0.187246 + 0.514455i
\(201\) 0 0
\(202\) −888.682 745.693i −0.0217793 0.0182750i
\(203\) 7665.38 9135.24i 0.186012 0.221681i
\(204\) 0 0
\(205\) 4775.45 + 1738.12i 0.113633 + 0.0413592i
\(206\) −5915.83 3415.50i −0.139406 0.0804860i
\(207\) 0 0
\(208\) 4237.47 + 7339.51i 0.0979444 + 0.169645i
\(209\) −2115.69 + 373.053i −0.0484349 + 0.00854038i
\(210\) 0 0
\(211\) −27331.4 + 9947.83i −0.613900 + 0.223441i −0.630209 0.776426i \(-0.717031\pi\)
0.0163089 + 0.999867i \(0.494808\pi\)
\(212\) −54702.4 9645.51i −1.21712 0.214612i
\(213\) 0 0
\(214\) 11141.7 9349.02i 0.243291 0.204145i
\(215\) 31418.3i 0.679682i
\(216\) 0 0
\(217\) −52053.0 −1.10542
\(218\) −2344.67 2794.26i −0.0493365 0.0587969i
\(219\) 0 0
\(220\) 434.276 2462.90i 0.00897263 0.0508863i
\(221\) 7608.58 + 20904.4i 0.155783 + 0.428010i
\(222\) 0 0
\(223\) 14655.3 + 83114.6i 0.294704 + 1.67135i 0.668403 + 0.743800i \(0.266978\pi\)
−0.373699 + 0.927550i \(0.621911\pi\)
\(224\) 32690.5 18873.9i 0.651517 0.376153i
\(225\) 0 0
\(226\) −8652.67 + 14986.9i −0.169408 + 0.293423i
\(227\) −1755.16 + 4822.25i −0.0340615 + 0.0935832i −0.955558 0.294804i \(-0.904746\pi\)
0.921496 + 0.388387i \(0.126968\pi\)
\(228\) 0 0
\(229\) −46872.0 39330.2i −0.893804 0.749990i 0.0751658 0.997171i \(-0.476051\pi\)
−0.968969 + 0.247181i \(0.920496\pi\)
\(230\) −5027.98 + 5992.11i −0.0950468 + 0.113272i
\(231\) 0 0
\(232\) −10697.9 3893.71i −0.198757 0.0723415i
\(233\) −65323.4 37714.5i −1.20325 0.694699i −0.241976 0.970282i \(-0.577796\pi\)
−0.961277 + 0.275584i \(0.911129\pi\)
\(234\) 0 0
\(235\) 18840.7 + 32633.0i 0.341162 + 0.590910i
\(236\) 62842.1 11080.8i 1.12831 0.198951i
\(237\) 0 0
\(238\) 24431.5 8892.36i 0.431318 0.156987i
\(239\) 57194.9 + 10085.0i 1.00129 + 0.176555i 0.650182 0.759778i \(-0.274693\pi\)
0.351112 + 0.936334i \(0.385804\pi\)
\(240\) 0 0
\(241\) 54221.6 45497.3i 0.933552 0.783343i −0.0428999 0.999079i \(-0.513660\pi\)
0.976452 + 0.215736i \(0.0692152\pi\)
\(242\) 19296.6i 0.329495i
\(243\) 0 0
\(244\) 17002.7 0.285587
\(245\) 3480.67 + 4148.10i 0.0579869 + 0.0691061i
\(246\) 0 0
\(247\) −977.207 + 5542.02i −0.0160174 + 0.0908394i
\(248\) 16995.8 + 46695.7i 0.276337 + 0.759230i
\(249\) 0 0
\(250\) −2553.24 14480.1i −0.0408519 0.231682i
\(251\) 8013.71 4626.72i 0.127200 0.0734388i −0.435050 0.900406i \(-0.643269\pi\)
0.562250 + 0.826967i \(0.309936\pi\)
\(252\) 0 0
\(253\) −5823.63 + 10086.8i −0.0909815 + 0.157585i
\(254\) 5318.09 14611.3i 0.0824305 0.226476i
\(255\) 0 0
\(256\) 2236.65 + 1876.78i 0.0341286 + 0.0286373i
\(257\) −51197.8 + 61015.2i −0.775149 + 0.923787i −0.998704 0.0509044i \(-0.983790\pi\)
0.223554 + 0.974692i \(0.428234\pi\)
\(258\) 0 0
\(259\) 88737.2 + 32297.7i 1.32284 + 0.481473i
\(260\) −5673.39 3275.53i −0.0839259 0.0484546i
\(261\) 0 0
\(262\) −14208.7 24610.2i −0.206992 0.358520i
\(263\) 112009. 19750.3i 1.61936 0.285537i 0.710831 0.703363i \(-0.248319\pi\)
0.908527 + 0.417826i \(0.137208\pi\)
\(264\) 0 0
\(265\) 34486.3 12552.0i 0.491083 0.178739i
\(266\) 6477.11 + 1142.09i 0.0915414 + 0.0161412i
\(267\) 0 0
\(268\) −34252.4 + 28741.2i −0.476894 + 0.400161i
\(269\) 225.820i 0.00312074i −0.999999 0.00156037i \(-0.999503\pi\)
0.999999 0.00156037i \(-0.000496682\pi\)
\(270\) 0 0
\(271\) −23425.8 −0.318974 −0.159487 0.987200i \(-0.550984\pi\)
−0.159487 + 0.987200i \(0.550984\pi\)
\(272\) 49774.3 + 59318.7i 0.672771 + 0.801778i
\(273\) 0 0
\(274\) −7990.62 + 45317.0i −0.106434 + 0.603616i
\(275\) −3461.48 9510.34i −0.0457717 0.125757i
\(276\) 0 0
\(277\) −5680.28 32214.5i −0.0740304 0.419847i −0.999189 0.0402664i \(-0.987179\pi\)
0.925159 0.379581i \(-0.123932\pi\)
\(278\) 19826.7 11447.0i 0.256544 0.148115i
\(279\) 0 0
\(280\) −8149.10 + 14114.7i −0.103943 + 0.180034i
\(281\) 18690.8 51352.6i 0.236710 0.650355i −0.763281 0.646067i \(-0.776413\pi\)
0.999991 0.00428802i \(-0.00136492\pi\)
\(282\) 0 0
\(283\) 39160.2 + 32859.3i 0.488959 + 0.410285i 0.853653 0.520842i \(-0.174382\pi\)
−0.364694 + 0.931127i \(0.618827\pi\)
\(284\) −26073.8 + 31073.6i −0.323272 + 0.385260i
\(285\) 0 0
\(286\) 1179.73 + 429.388i 0.0144229 + 0.00524950i
\(287\) −20062.6 11583.1i −0.243570 0.140625i
\(288\) 0 0
\(289\) 59869.9 + 103698.i 0.716824 + 1.24158i
\(290\) 3479.80 613.582i 0.0413769 0.00729586i
\(291\) 0 0
\(292\) −31351.6 + 11411.0i −0.367700 + 0.133832i
\(293\) 16271.7 + 2869.13i 0.189538 + 0.0334207i 0.267611 0.963527i \(-0.413766\pi\)
−0.0780733 + 0.996948i \(0.524877\pi\)
\(294\) 0 0
\(295\) −32296.8 + 27100.2i −0.371121 + 0.311407i
\(296\) 90149.9i 1.02892i
\(297\) 0 0
\(298\) −37730.6 −0.424875
\(299\) 19611.4 + 23371.9i 0.219364 + 0.261428i
\(300\) 0 0
\(301\) 24870.3 141046.i 0.274503 1.55679i
\(302\) 1533.44 + 4213.09i 0.0168133 + 0.0461942i
\(303\) 0 0
\(304\) 3401.52 + 19291.0i 0.0368066 + 0.208740i
\(305\) −9728.68 + 5616.86i −0.104581 + 0.0603801i
\(306\) 0 0
\(307\) −51266.0 + 88795.3i −0.543942 + 0.942135i 0.454731 + 0.890629i \(0.349735\pi\)
−0.998673 + 0.0515059i \(0.983598\pi\)
\(308\) −3899.19 + 10712.9i −0.0411030 + 0.112930i
\(309\) 0 0
\(310\) −11815.1 9914.01i −0.122945 0.103163i
\(311\) 19903.6 23720.2i 0.205784 0.245243i −0.653275 0.757121i \(-0.726605\pi\)
0.859058 + 0.511877i \(0.171050\pi\)
\(312\) 0 0
\(313\) 60314.9 + 21952.8i 0.615652 + 0.224079i 0.630975 0.775803i \(-0.282655\pi\)
−0.0153222 + 0.999883i \(0.504877\pi\)
\(314\) 24954.5 + 14407.5i 0.253098 + 0.146126i
\(315\) 0 0
\(316\) −35648.4 61744.8i −0.356998 0.618338i
\(317\) −99398.3 + 17526.6i −0.989146 + 0.174413i −0.644735 0.764406i \(-0.723032\pi\)
−0.344411 + 0.938819i \(0.611921\pi\)
\(318\) 0 0
\(319\) 4944.09 1799.50i 0.0485853 0.0176836i
\(320\) −14332.3 2527.17i −0.139964 0.0246794i
\(321\) 0 0
\(322\) 27315.4 22920.4i 0.263449 0.221060i
\(323\) 51418.3i 0.492848i
\(324\) 0 0
\(325\) −26511.1 −0.250992
\(326\) 3248.12 + 3870.96i 0.0305630 + 0.0364236i
\(327\) 0 0
\(328\) −3840.36 + 21779.8i −0.0356964 + 0.202444i
\(329\) −58749.8 161414.i −0.542769 1.49124i
\(330\) 0 0
\(331\) −194.082 1100.69i −0.00177145 0.0100464i 0.983909 0.178669i \(-0.0571792\pi\)
−0.985681 + 0.168623i \(0.946068\pi\)
\(332\) −138758. + 80112.1i −1.25887 + 0.726812i
\(333\) 0 0
\(334\) 8671.99 15020.3i 0.0777366 0.134644i
\(335\) 10104.0 27760.6i 0.0900337 0.247366i
\(336\) 0 0
\(337\) −93620.4 78556.9i −0.824349 0.691711i 0.129637 0.991561i \(-0.458619\pi\)
−0.953986 + 0.299851i \(0.903063\pi\)
\(338\) −22683.5 + 27033.1i −0.198553 + 0.236626i
\(339\) 0 0
\(340\) −56247.0 20472.2i −0.486565 0.177095i
\(341\) −19888.9 11482.9i −0.171042 0.0987510i
\(342\) 0 0
\(343\) −63597.2 110154.i −0.540567 0.936290i
\(344\) −134650. + 23742.5i −1.13786 + 0.200636i
\(345\) 0 0
\(346\) 54270.0 19752.7i 0.453323 0.164996i
\(347\) 18668.4 + 3291.75i 0.155042 + 0.0273381i 0.250630 0.968083i \(-0.419362\pi\)
−0.0955884 + 0.995421i \(0.530473\pi\)
\(348\) 0 0
\(349\) 95678.3 80283.6i 0.785530 0.659138i −0.159105 0.987262i \(-0.550861\pi\)
0.944635 + 0.328124i \(0.106416\pi\)
\(350\) 30984.2i 0.252932i
\(351\) 0 0
\(352\) 16654.3 0.134413
\(353\) 25396.8 + 30266.7i 0.203812 + 0.242893i 0.858262 0.513212i \(-0.171544\pi\)
−0.654450 + 0.756105i \(0.727100\pi\)
\(354\) 0 0
\(355\) 4653.86 26393.3i 0.0369281 0.209429i
\(356\) −5500.42 15112.3i −0.0434006 0.119242i
\(357\) 0 0
\(358\) −6231.01 35337.8i −0.0486175 0.275723i
\(359\) 89204.5 51502.2i 0.692146 0.399611i −0.112269 0.993678i \(-0.535812\pi\)
0.804415 + 0.594067i \(0.202479\pi\)
\(360\) 0 0
\(361\) 58656.9 101597.i 0.450096 0.779589i
\(362\) −7851.45 + 21571.7i −0.0599146 + 0.164614i
\(363\) 0 0
\(364\) 22876.7 + 19195.9i 0.172660 + 0.144879i
\(365\) 14169.2 16886.2i 0.106356 0.126750i
\(366\) 0 0
\(367\) −189399. 68935.5i −1.40619 0.511812i −0.476183 0.879346i \(-0.657980\pi\)
−0.930010 + 0.367534i \(0.880202\pi\)
\(368\) 91972.3 + 53100.2i 0.679143 + 0.392104i
\(369\) 0 0
\(370\) 13990.3 + 24231.9i 0.102193 + 0.177004i
\(371\) −164756. + 29050.8i −1.19699 + 0.211062i
\(372\) 0 0
\(373\) −100938. + 36738.3i −0.725497 + 0.264059i −0.678257 0.734824i \(-0.737265\pi\)
−0.0472394 + 0.998884i \(0.515042\pi\)
\(374\) 11296.7 + 1991.91i 0.0807622 + 0.0142405i
\(375\) 0 0
\(376\) −125619. + 105407.i −0.888543 + 0.745576i
\(377\) 13782.2i 0.0969694i
\(378\) 0 0
\(379\) 221758. 1.54384 0.771918 0.635722i \(-0.219297\pi\)
0.771918 + 0.635722i \(0.219297\pi\)
\(380\) −9732.96 11599.3i −0.0674028 0.0803275i
\(381\) 0 0
\(382\) −12376.4 + 70190.1i −0.0848141 + 0.481005i
\(383\) 42635.0 + 117139.i 0.290649 + 0.798552i 0.995972 + 0.0896658i \(0.0285799\pi\)
−0.705323 + 0.708886i \(0.749198\pi\)
\(384\) 0 0
\(385\) −1307.97 7417.89i −0.00882425 0.0500448i
\(386\) −54954.8 + 31728.1i −0.368834 + 0.212946i
\(387\) 0 0
\(388\) 13210.0 22880.4i 0.0877484 0.151985i
\(389\) 74280.1 204083.i 0.490877 1.34867i −0.409001 0.912534i \(-0.634123\pi\)
0.899878 0.436141i \(-0.143655\pi\)
\(390\) 0 0
\(391\) 213548. + 179188.i 1.39683 + 1.17208i
\(392\) −15147.3 + 18051.9i −0.0985743 + 0.117476i
\(393\) 0 0
\(394\) 30346.5 + 11045.2i 0.195486 + 0.0711512i
\(395\) 40794.9 + 23553.0i 0.261464 + 0.150956i
\(396\) 0 0
\(397\) −59824.4 103619.i −0.379575 0.657443i 0.611426 0.791302i \(-0.290596\pi\)
−0.991000 + 0.133859i \(0.957263\pi\)
\(398\) 25684.2 4528.81i 0.162143 0.0285903i
\(399\) 0 0
\(400\) −86715.9 + 31562.0i −0.541974 + 0.197262i
\(401\) −78697.1 13876.4i −0.489407 0.0862956i −0.0765013 0.997069i \(-0.524375\pi\)
−0.412906 + 0.910774i \(0.635486\pi\)
\(402\) 0 0
\(403\) −46084.1 + 38669.1i −0.283753 + 0.238097i
\(404\) 12175.0i 0.0745943i
\(405\) 0 0
\(406\) −16107.6 −0.0977188
\(407\) 26780.7 + 31916.0i 0.161671 + 0.192672i
\(408\) 0 0
\(409\) −44493.9 + 252337.i −0.265983 + 1.50846i 0.500239 + 0.865887i \(0.333245\pi\)
−0.766222 + 0.642576i \(0.777866\pi\)
\(410\) −2347.71 6450.27i −0.0139661 0.0383716i
\(411\) 0 0
\(412\) −12448.9 70601.2i −0.0733393 0.415928i
\(413\) 166442. 96095.6i 0.975807 0.563382i
\(414\) 0 0
\(415\) 52930.2 91677.9i 0.307332 0.532314i
\(416\) 14920.9 40994.7i 0.0862198 0.236887i
\(417\) 0 0
\(418\) 2222.89 + 1865.23i 0.0127223 + 0.0106753i
\(419\) 194699. 232033.i 1.10901 1.32167i 0.167048 0.985949i \(-0.446577\pi\)
0.941962 0.335718i \(-0.108979\pi\)
\(420\) 0 0
\(421\) −61184.4 22269.3i −0.345205 0.125644i 0.163599 0.986527i \(-0.447690\pi\)
−0.508803 + 0.860883i \(0.669912\pi\)
\(422\) 34022.9 + 19643.1i 0.191050 + 0.110303i
\(423\) 0 0
\(424\) 79855.4 + 138314.i 0.444194 + 0.769366i
\(425\) −238550. + 42062.9i −1.32069 + 0.232874i
\(426\) 0 0
\(427\) 48121.3 17514.7i 0.263926 0.0960611i
\(428\) 150323. + 26506.1i 0.820614 + 0.144696i
\(429\) 0 0
\(430\) 32508.8 27278.1i 0.175818 0.147529i
\(431\) 247253.i 1.33103i 0.746385 + 0.665514i \(0.231788\pi\)
−0.746385 + 0.665514i \(0.768212\pi\)
\(432\) 0 0
\(433\) 229960. 1.22652 0.613262 0.789880i \(-0.289857\pi\)
0.613262 + 0.789880i \(0.289857\pi\)
\(434\) 45193.6 + 53859.7i 0.239937 + 0.285946i
\(435\) 0 0
\(436\) 6647.52 37700.0i 0.0349693 0.198321i
\(437\) 24118.9 + 66266.2i 0.126298 + 0.347000i
\(438\) 0 0
\(439\) 13862.8 + 78620.1i 0.0719322 + 0.407948i 0.999419 + 0.0340912i \(0.0108537\pi\)
−0.927487 + 0.373857i \(0.878035\pi\)
\(440\) −6227.38 + 3595.38i −0.0321662 + 0.0185712i
\(441\) 0 0
\(442\) 15024.0 26022.4i 0.0769028 0.133199i
\(443\) 37093.8 101914.i 0.189014 0.519312i −0.808599 0.588360i \(-0.799774\pi\)
0.997613 + 0.0690480i \(0.0219962\pi\)
\(444\) 0 0
\(445\) 8139.62 + 6829.95i 0.0411040 + 0.0344903i
\(446\) 73275.3 87326.1i 0.368373 0.439010i
\(447\) 0 0
\(448\) 62341.5 + 22690.5i 0.310614 + 0.113054i
\(449\) −26892.6 15526.5i −0.133395 0.0770158i 0.431817 0.901961i \(-0.357873\pi\)
−0.565213 + 0.824945i \(0.691206\pi\)
\(450\) 0 0
\(451\) −5110.47 8851.59i −0.0251251 0.0435179i
\(452\) −178858. + 31537.4i −0.875449 + 0.154365i
\(453\) 0 0
\(454\) 6513.49 2370.72i 0.0316011 0.0115019i
\(455\) −19431.1 3426.22i −0.0938586 0.0165498i
\(456\) 0 0
\(457\) −126339. + 106011.i −0.604930 + 0.507597i −0.893026 0.450005i \(-0.851422\pi\)
0.288096 + 0.957602i \(0.406978\pi\)
\(458\) 82646.3i 0.393996i
\(459\) 0 0
\(460\) −82092.2 −0.387959
\(461\) 188614. + 224781.i 0.887507 + 1.05769i 0.997962 + 0.0638087i \(0.0203248\pi\)
−0.110455 + 0.993881i \(0.535231\pi\)
\(462\) 0 0
\(463\) −12545.1 + 71146.6i −0.0585209 + 0.331889i −0.999986 0.00522092i \(-0.998338\pi\)
0.941465 + 0.337109i \(0.109449\pi\)
\(464\) −16408.0 45080.5i −0.0762112 0.209389i
\(465\) 0 0
\(466\) 17691.8 + 100335.i 0.0814706 + 0.462043i
\(467\) −35163.8 + 20301.9i −0.161236 + 0.0930898i −0.578447 0.815720i \(-0.696341\pi\)
0.417211 + 0.908810i \(0.363008\pi\)
\(468\) 0 0
\(469\) −67335.0 + 116628.i −0.306123 + 0.530220i
\(470\) 17407.7 47827.4i 0.0788038 0.216512i
\(471\) 0 0
\(472\) −140551. 117936.i −0.630883 0.529374i
\(473\) 40617.4 48406.0i 0.181548 0.216360i
\(474\) 0 0
\(475\) −57580.9 20957.7i −0.255206 0.0928875i
\(476\) 236304. + 136430.i 1.04294 + 0.602140i
\(477\) 0 0
\(478\) −39222.9 67936.1i −0.171666 0.297334i
\(479\) −54719.7 + 9648.55i −0.238491 + 0.0420524i −0.291616 0.956535i \(-0.594193\pi\)
0.0531249 + 0.998588i \(0.483082\pi\)
\(480\) 0 0
\(481\) 102555. 37327.0i 0.443268 0.161337i
\(482\) −94153.0 16601.7i −0.405266 0.0714593i
\(483\) 0 0
\(484\) 155135. 130174.i 0.662246 0.555691i
\(485\) 17455.7i 0.0742087i
\(486\) 0 0
\(487\) −138957. −0.585898 −0.292949 0.956128i \(-0.594637\pi\)
−0.292949 + 0.956128i \(0.594637\pi\)
\(488\) −31424.2 37449.9i −0.131955 0.157258i
\(489\) 0 0
\(490\) 1270.07 7202.95i 0.00528977 0.0299998i
\(491\) 4504.33 + 12375.5i 0.0186839 + 0.0513335i 0.948684 0.316226i \(-0.102416\pi\)
−0.930000 + 0.367559i \(0.880193\pi\)
\(492\) 0 0
\(493\) −21867.0 124014.i −0.0899695 0.510242i
\(494\) 6582.81 3800.59i 0.0269748 0.0155739i
\(495\) 0 0
\(496\) −104701. + 181348.i −0.425588 + 0.737140i
\(497\) −41785.2 + 114804.i −0.169165 + 0.464776i
\(498\) 0 0
\(499\) 134809. + 113118.i 0.541398 + 0.454287i 0.872016 0.489478i \(-0.162813\pi\)
−0.330618 + 0.943765i \(0.607257\pi\)
\(500\) 99189.4 118209.i 0.396758 0.472837i
\(501\) 0 0
\(502\) −11745.0 4274.83i −0.0466064 0.0169633i
\(503\) −293462. 169430.i −1.15989 0.669661i −0.208610 0.977999i \(-0.566894\pi\)
−0.951277 + 0.308338i \(0.900227\pi\)
\(504\) 0 0
\(505\) 4022.02 + 6966.34i 0.0157711 + 0.0273163i
\(506\) 15493.1 2731.86i 0.0605116 0.0106698i
\(507\) 0 0
\(508\) 153344. 55812.5i 0.594207 0.216274i
\(509\) −267722. 47206.7i −1.03335 0.182208i −0.368847 0.929490i \(-0.620247\pi\)
−0.664507 + 0.747282i \(0.731358\pi\)
\(510\) 0 0
\(511\) −76977.0 + 64591.4i −0.294794 + 0.247362i
\(512\) 263863.i 1.00656i
\(513\) 0 0
\(514\) 107584. 0.407214
\(515\) 30446.3 + 36284.4i 0.114794 + 0.136806i
\(516\) 0 0
\(517\) 13160.1 74634.7i 0.0492355 0.279228i
\(518\) −43625.0 119859.i −0.162583 0.446694i
\(519\) 0 0
\(520\) 3270.86 + 18549.9i 0.0120964 + 0.0686019i
\(521\) 212819. 122871.i 0.784035 0.452663i −0.0538237 0.998550i \(-0.517141\pi\)
0.837858 + 0.545888i \(0.183808\pi\)
\(522\) 0 0
\(523\) 145495. 252005.i 0.531920 0.921312i −0.467386 0.884053i \(-0.654804\pi\)
0.999306 0.0372584i \(-0.0118625\pi\)
\(524\) 102003. 280251.i 0.371493 1.02067i
\(525\) 0 0
\(526\) −117685. 98749.4i −0.425353 0.356914i
\(527\) −353318. + 421068.i −1.27217 + 1.51611i
\(528\) 0 0
\(529\) 96301.8 + 35051.0i 0.344130 + 0.125253i
\(530\) −42929.5 24785.3i −0.152828 0.0882354i
\(531\) 0 0
\(532\) 34512.4 + 59777.3i 0.121942 + 0.211209i
\(533\) −26366.9 + 4649.19i −0.0928121 + 0.0163653i
\(534\) 0 0
\(535\) −94769.0 + 34493.1i −0.331100 + 0.120510i
\(536\) 126610. + 22324.8i 0.440695 + 0.0777065i
\(537\) 0 0
\(538\) −233.658 + 196.062i −0.000807266 + 0.000677376i
\(539\) 10890.7i 0.0374869i
\(540\) 0 0
\(541\) −462829. −1.58134 −0.790671 0.612241i \(-0.790268\pi\)
−0.790671 + 0.612241i \(0.790268\pi\)
\(542\) 20338.8 + 24238.9i 0.0692353 + 0.0825114i
\(543\) 0 0
\(544\) 69217.2 392550.i 0.233892 1.32647i
\(545\) 8650.61 + 23767.4i 0.0291242 + 0.0800181i
\(546\) 0 0
\(547\) −65549.2 371748.i −0.219075 1.24244i −0.873693 0.486477i \(-0.838282\pi\)
0.654618 0.755960i \(-0.272829\pi\)
\(548\) −418232. + 241466.i −1.39269 + 0.804072i
\(549\) 0 0
\(550\) −6835.10 + 11838.7i −0.0225954 + 0.0391363i
\(551\) 10895.2 29934.3i 0.0358865 0.0985974i
\(552\) 0 0
\(553\) −164497. 138029.i −0.537907 0.451358i
\(554\) −28400.8 + 33846.8i −0.0925362 + 0.110280i
\(555\) 0 0
\(556\) 225778. + 82176.5i 0.730352 + 0.265826i
\(557\) −153585. 88672.5i −0.495039 0.285811i 0.231624 0.972805i \(-0.425596\pi\)
−0.726662 + 0.686995i \(0.758930\pi\)
\(558\) 0 0
\(559\) −82762.2 143348.i −0.264855 0.458742i
\(560\) −67636.8 + 11926.2i −0.215678 + 0.0380299i
\(561\) 0 0
\(562\) −69362.9 + 25246.0i −0.219611 + 0.0799319i
\(563\) 134655. + 23743.4i 0.424822 + 0.0749076i 0.381972 0.924174i \(-0.375245\pi\)
0.0428501 + 0.999082i \(0.486356\pi\)
\(564\) 0 0
\(565\) 91921.3 77131.1i 0.287951 0.241620i
\(566\) 69048.7i 0.215537i
\(567\) 0 0
\(568\) 116632. 0.361510
\(569\) 301401. + 359196.i 0.930938 + 1.10945i 0.993773 + 0.111425i \(0.0355414\pi\)
−0.0628350 + 0.998024i \(0.520014\pi\)
\(570\) 0 0
\(571\) −16388.9 + 92946.2i −0.0502664 + 0.285075i −0.999571 0.0292821i \(-0.990678\pi\)
0.949305 + 0.314357i \(0.101789\pi\)
\(572\) 4506.36 + 12381.1i 0.0137732 + 0.0378415i
\(573\) 0 0
\(574\) 5433.64 + 30815.7i 0.0164918 + 0.0935294i
\(575\) −287705. + 166107.i −0.870186 + 0.502402i
\(576\) 0 0
\(577\) −151696. + 262746.i −0.455641 + 0.789194i −0.998725 0.0504846i \(-0.983923\pi\)
0.543083 + 0.839679i \(0.317257\pi\)
\(578\) 55316.5 151981.i 0.165577 0.454918i
\(579\) 0 0
\(580\) 28407.5 + 23836.7i 0.0844455 + 0.0708582i
\(581\) −310191. + 369671.i −0.918919 + 1.09512i
\(582\) 0 0
\(583\) −69360.0 25245.0i −0.204067 0.0742741i
\(584\) 83077.5 + 47964.8i 0.243589 + 0.140636i
\(585\) 0 0
\(586\) −11158.7 19327.5i −0.0324952 0.0562833i
\(587\) 498455. 87891.1i 1.44661 0.255076i 0.605456 0.795879i \(-0.292991\pi\)
0.841149 + 0.540803i \(0.181880\pi\)
\(588\) 0 0
\(589\) −130662. + 47557.0i −0.376632 + 0.137083i
\(590\) 56081.7 + 9888.71i 0.161108 + 0.0284077i
\(591\) 0 0
\(592\) 291012. 244188.i 0.830362 0.696756i
\(593\) 382244.i 1.08701i −0.839407 0.543503i \(-0.817098\pi\)
0.839407 0.543503i \(-0.182902\pi\)
\(594\) 0 0
\(595\) −180280. −0.509229
\(596\) −254529. 303336.i −0.716547 0.853947i
\(597\) 0 0
\(598\) 7156.08 40584.1i 0.0200112 0.113489i
\(599\) 99670.1 + 273841.i 0.277787 + 0.763213i 0.997613 + 0.0690580i \(0.0219994\pi\)
−0.719826 + 0.694155i \(0.755778\pi\)
\(600\) 0 0
\(601\) 95074.7 + 539196.i 0.263218 + 1.49279i 0.774061 + 0.633111i \(0.218222\pi\)
−0.510843 + 0.859674i \(0.670667\pi\)
\(602\) −167535. + 96726.4i −0.462288 + 0.266902i
\(603\) 0 0
\(604\) −23526.7 + 40749.5i −0.0644893 + 0.111699i
\(605\) −45762.9 + 125733.i −0.125027 + 0.343508i
\(606\) 0 0
\(607\) −172994. 145159.i −0.469519 0.393973i 0.377100 0.926173i \(-0.376921\pi\)
−0.846619 + 0.532199i \(0.821366\pi\)
\(608\) 64815.0 77243.5i 0.175335 0.208956i
\(609\) 0 0
\(610\) 14258.5 + 5189.67i 0.0383190 + 0.0139470i
\(611\) −171924. 99260.4i −0.460526 0.265885i
\(612\) 0 0
\(613\) 295834. + 512400.i 0.787277 + 1.36360i 0.927629 + 0.373502i \(0.121843\pi\)
−0.140352 + 0.990102i \(0.544823\pi\)
\(614\) 136388. 24048.8i 0.361775 0.0637906i
\(615\) 0 0
\(616\) 30802.7 11211.3i 0.0811759 0.0295456i
\(617\) −111685. 19693.0i −0.293375 0.0517300i 0.0250234 0.999687i \(-0.492034\pi\)
−0.318399 + 0.947957i \(0.603145\pi\)
\(618\) 0 0
\(619\) −171675. + 144052.i −0.448049 + 0.375958i −0.838711 0.544576i \(-0.816690\pi\)
0.390662 + 0.920534i \(0.372246\pi\)
\(620\) 161867.i 0.421090i
\(621\) 0 0
\(622\) −41824.3 −0.108105
\(623\) −31134.8 37105.0i −0.0802176 0.0955996i
\(624\) 0 0
\(625\) 40607.1 230294.i 0.103954 0.589554i
\(626\) −29652.0 81468.3i −0.0756669 0.207893i
\(627\) 0 0
\(628\) 52512.7 + 297814.i 0.133151 + 0.755138i
\(629\) 863581. 498589.i 2.18274 1.26021i
\(630\) 0 0
\(631\) 36775.4 63696.9i 0.0923633 0.159978i −0.816142 0.577852i \(-0.803891\pi\)
0.908505 + 0.417874i \(0.137225\pi\)
\(632\) −70113.4 + 192635.i −0.175536 + 0.482282i
\(633\) 0 0
\(634\) 104435. + 87631.3i 0.259817 + 0.218012i
\(635\) −69303.1 + 82592.3i −0.171872 + 0.204829i
\(636\) 0 0
\(637\) −26807.7 9757.21i −0.0660665 0.0240462i
\(638\) −6154.54 3553.32i −0.0151201 0.00872958i
\(639\) 0 0
\(640\) 76073.7 + 131764.i 0.185727 + 0.321688i
\(641\) 337744. 59553.3i 0.821999 0.144941i 0.253197 0.967415i \(-0.418518\pi\)
0.568802 + 0.822474i \(0.307407\pi\)
\(642\) 0 0
\(643\) 201474. 73330.5i 0.487300 0.177363i −0.0866731 0.996237i \(-0.527624\pi\)
0.573973 + 0.818874i \(0.305401\pi\)
\(644\) 368537. + 64983.1i 0.888607 + 0.156685i
\(645\) 0 0
\(646\) 53203.0 44642.6i 0.127489 0.106976i
\(647\) 20926.3i 0.0499902i 0.999688 + 0.0249951i \(0.00795701\pi\)
−0.999688 + 0.0249951i \(0.992043\pi\)
\(648\) 0 0
\(649\) 84794.5 0.201316
\(650\) 23017.5 + 27431.2i 0.0544794 + 0.0649260i
\(651\) 0 0
\(652\) −9208.96 + 52226.6i −0.0216628 + 0.122856i
\(653\) −64062.7 176011.i −0.150238 0.412774i 0.841629 0.540056i \(-0.181597\pi\)
−0.991867 + 0.127282i \(0.959375\pi\)
\(654\) 0 0
\(655\) 34216.6 + 194052.i 0.0797544 + 0.452310i
\(656\) −80709.3 + 46597.5i −0.187550 + 0.108282i
\(657\) 0 0
\(658\) −116008. + 200932.i −0.267940 + 0.464085i
\(659\) 34435.2 94610.0i 0.0792925 0.217854i −0.893712 0.448642i \(-0.851908\pi\)
0.973004 + 0.230787i \(0.0741302\pi\)
\(660\) 0 0
\(661\) 377130. + 316450.i 0.863154 + 0.724272i 0.962645 0.270766i \(-0.0872770\pi\)
−0.0994911 + 0.995038i \(0.531721\pi\)
\(662\) −970.390 + 1156.47i −0.00221427 + 0.00263886i
\(663\) 0 0
\(664\) 432906. + 157565.i 0.981877 + 0.357374i
\(665\) −39495.0 22802.4i −0.0893097 0.0515630i
\(666\) 0 0
\(667\) −86353.0 149568.i −0.194100 0.336191i
\(668\) 179257. 31607.8i 0.401720 0.0708340i
\(669\) 0 0
\(670\) −37496.7 + 13647.7i −0.0835302 + 0.0304025i
\(671\) 22250.4 + 3923.34i 0.0494188 + 0.00871387i
\(672\) 0 0
\(673\) 133890. 112347.i 0.295609 0.248045i −0.482905 0.875673i \(-0.660418\pi\)
0.778514 + 0.627628i \(0.215974\pi\)
\(674\) 165075.i 0.363380i
\(675\) 0 0
\(676\) −370355. −0.810447
\(677\) 66906.1 + 79735.6i 0.145978 + 0.173970i 0.834079 0.551645i \(-0.186000\pi\)
−0.688101 + 0.725615i \(0.741555\pi\)
\(678\) 0 0
\(679\) 13817.7 78364.3i 0.0299707 0.169972i
\(680\) 58863.2 + 161725.i 0.127299 + 0.349752i
\(681\) 0 0
\(682\) 5386.60 + 30548.9i 0.0115810 + 0.0656791i
\(683\) 316965. 183000.i 0.679469 0.392292i −0.120186 0.992751i \(-0.538349\pi\)
0.799655 + 0.600460i \(0.205016\pi\)
\(684\) 0 0
\(685\) 159537. 276327.i 0.340001 0.588900i
\(686\) −58760.3 + 161443.i −0.124864 + 0.343060i
\(687\) 0 0
\(688\) −441369. 370352.i −0.932448 0.782417i
\(689\) −124282. + 148113.i −0.261800 + 0.312001i
\(690\) 0 0
\(691\) 126437. + 46019.3i 0.264800 + 0.0963793i 0.471008 0.882129i \(-0.343890\pi\)
−0.206208 + 0.978508i \(0.566112\pi\)
\(692\) 524905. + 303054.i 1.09615 + 0.632860i
\(693\) 0 0
\(694\) −12802.4 22174.4i −0.0265810 0.0460397i
\(695\) −156334. + 27565.9i −0.323656 + 0.0570693i
\(696\) 0 0
\(697\) −229877. + 83668.2i −0.473183 + 0.172224i
\(698\) −166140. 29295.0i −0.341008 0.0601289i
\(699\) 0 0
\(700\) −249098. + 209018.i −0.508363 + 0.426567i
\(701\) 730976.i 1.48753i 0.668439 + 0.743767i \(0.266963\pi\)
−0.668439 + 0.743767i \(0.733037\pi\)
\(702\) 0 0
\(703\) 252253. 0.510418
\(704\) 18814.5 + 22422.3i 0.0379619 + 0.0452413i
\(705\) 0 0
\(706\) 9267.14 52556.5i 0.0185924 0.105443i
\(707\) −12541.6 34457.8i −0.0250908 0.0689365i
\(708\) 0 0
\(709\) −84369.5 478483.i −0.167839 0.951863i −0.946089 0.323908i \(-0.895003\pi\)
0.778250 0.627955i \(-0.216108\pi\)
\(710\) −31350.0 + 18099.9i −0.0621901 + 0.0359055i
\(711\) 0 0
\(712\) −23120.3 + 40045.5i −0.0456072 + 0.0789940i
\(713\) −257833. + 708390.i −0.507177 + 1.39346i
\(714\) 0 0
\(715\) −6668.59 5595.61i −0.0130443 0.0109455i
\(716\) 242065. 288482.i 0.472178 0.562720i
\(717\) 0 0
\(718\) −130739. 47585.2i −0.253605 0.0923045i
\(719\) −555622. 320788.i −1.07479 0.620527i −0.145300 0.989388i \(-0.546415\pi\)
−0.929485 + 0.368860i \(0.879748\pi\)
\(720\) 0 0
\(721\) −107960. 186993.i −0.207680 0.359712i
\(722\) −156050. + 27515.9i −0.299358 + 0.0527849i
\(723\) 0 0
\(724\) −226391. + 82399.7i −0.431900 + 0.157199i
\(725\) 147790. + 26059.4i 0.281170 + 0.0495779i
\(726\) 0 0
\(727\) −204709. + 171771.i −0.387318 + 0.324999i −0.815567 0.578662i \(-0.803575\pi\)
0.428249 + 0.903661i \(0.359131\pi\)
\(728\) 85865.6i 0.162015i
\(729\) 0 0
\(730\) −29774.4 −0.0558724
\(731\) −972144. 1.15856e6i −1.81927 2.16812i
\(732\) 0 0
\(733\) −68087.6 + 386144.i −0.126724 + 0.718690i 0.853544 + 0.521020i \(0.174448\pi\)
−0.980269 + 0.197670i \(0.936663\pi\)
\(734\) 93112.3 + 255824.i 0.172828 + 0.474842i
\(735\) 0 0
\(736\) −94929.8 538373.i −0.175245 0.993866i
\(737\) −51456.0 + 29708.1i −0.0947330 + 0.0546941i
\(738\) 0 0
\(739\) 169462. 293516.i 0.310301 0.537456i −0.668127 0.744047i \(-0.732904\pi\)
0.978427 + 0.206591i \(0.0662370\pi\)
\(740\) −100435. + 275942.i −0.183409 + 0.503912i
\(741\) 0 0
\(742\) 173104. + 145251.i 0.314412 + 0.263823i
\(743\) 445339. 530734.i 0.806701 0.961389i −0.193103 0.981178i \(-0.561855\pi\)
0.999804 + 0.0197896i \(0.00629962\pi\)
\(744\) 0 0
\(745\) 245845. + 89480.2i 0.442944 + 0.161218i
\(746\) 125650. + 72544.0i 0.225780 + 0.130354i
\(747\) 0 0
\(748\) 60193.0 + 104257.i 0.107583 + 0.186339i
\(749\) 452752. 79832.4i 0.807043 0.142303i
\(750\) 0 0
\(751\) 688146. 250465.i 1.22012 0.444086i 0.349914 0.936782i \(-0.386211\pi\)
0.870201 + 0.492696i \(0.163989\pi\)
\(752\) −680524. 119995.i −1.20339 0.212191i
\(753\) 0 0
\(754\) −14260.5 + 11966.0i −0.0250838 + 0.0210478i
\(755\) 31088.3i 0.0545385i
\(756\) 0 0
\(757\) 347674. 0.606709 0.303355 0.952878i \(-0.401893\pi\)
0.303355 + 0.952878i \(0.401893\pi\)
\(758\) −192536. 229455.i −0.335099 0.399355i
\(759\) 0 0
\(760\) −7560.09 + 42875.4i −0.0130888 + 0.0742303i
\(761\) −227751. 625741.i −0.393270 1.08050i −0.965499 0.260407i \(-0.916143\pi\)
0.572229 0.820094i \(-0.306079\pi\)
\(762\) 0 0
\(763\) −20021.4 113547.i −0.0343910 0.195041i
\(764\) −647786. + 373999.i −1.10980 + 0.640743i
\(765\) 0 0
\(766\) 84187.8 145818.i 0.143480 0.248515i
\(767\) 75969.0 208723.i 0.129135 0.354797i
\(768\) 0 0
\(769\) −69815.7 58582.4i −0.118059 0.0990636i 0.581847 0.813299i \(-0.302330\pi\)
−0.699906 + 0.714235i \(0.746775\pi\)
\(770\) −6539.74 + 7793.76i −0.0110301 + 0.0131452i
\(771\) 0 0
\(772\) −625802. 227773.i −1.05003 0.382180i
\(773\) 75723.2 + 43718.8i 0.126727 + 0.0731660i 0.562024 0.827121i \(-0.310023\pi\)
−0.435296 + 0.900287i \(0.643356\pi\)
\(774\) 0 0
\(775\) −327524. 567288.i −0.545305 0.944497i
\(776\) −74810.7 + 13191.1i −0.124234 + 0.0219058i
\(777\) 0 0
\(778\) −275658. + 100331.i −0.455419 + 0.165759i
\(779\) −60943.1 10745.9i −0.100427 0.0177080i
\(780\) 0 0
\(781\) −41291.4 + 34647.6i −0.0676951 + 0.0568029i
\(782\) 376536.i 0.615734i
\(783\) 0 0
\(784\) −99302.4 −0.161558
\(785\) −128430. 153057.i −0.208415 0.248379i
\(786\) 0 0
\(787\) −152733. + 866190.i −0.246594 + 1.39850i 0.570168 + 0.821528i \(0.306878\pi\)
−0.816762 + 0.576975i \(0.804233\pi\)
\(788\) 115918. + 318482.i 0.186680 + 0.512900i
\(789\) 0 0
\(790\) −11048.7 62660.1i −0.0177034 0.100401i
\(791\) −473719. + 273502.i −0.757125 + 0.437126i
\(792\) 0 0
\(793\) 29591.9 51254.7i 0.0470572 0.0815055i
\(794\) −55274.4 + 151865.i −0.0876765 + 0.240889i
\(795\) 0 0
\(796\) 209674. + 175937.i 0.330916 + 0.277672i
\(797\) 123272. 146910.i 0.194065 0.231278i −0.660233 0.751061i \(-0.729543\pi\)
0.854299 + 0.519783i \(0.173987\pi\)
\(798\) 0 0
\(799\) −1.70449e6 620382.i −2.66993 0.971775i
\(800\) 411386. + 237514.i 0.642790 + 0.371115i
\(801\) 0 0
\(802\) 53968.7 + 93476.4i 0.0839060 + 0.145329i
\(803\) −43660.9 + 7698.60i −0.0677114 + 0.0119393i
\(804\) 0 0
\(805\) −232339. + 84564.3i −0.358533 + 0.130495i
\(806\) 80022.6 + 14110.1i 0.123181 + 0.0217201i
\(807\) 0 0
\(808\) −26816.5 + 22501.7i −0.0410751 + 0.0344661i
\(809\) 342800.i 0.523774i 0.965099 + 0.261887i \(0.0843447\pi\)
−0.965099 + 0.261887i \(0.915655\pi\)
\(810\) 0 0
\(811\) 1.12925e6 1.71691 0.858453 0.512892i \(-0.171426\pi\)
0.858453 + 0.512892i \(0.171426\pi\)
\(812\) −108661. 129497.i −0.164802 0.196403i
\(813\) 0 0
\(814\) 9772.12 55420.5i 0.0147482 0.0836414i
\(815\) −11983.9 32925.5i −0.0180419 0.0495697i
\(816\) 0 0
\(817\) −66435.1 376772.i −0.0995299 0.564462i
\(818\) 299726. 173047.i 0.447938 0.258617i
\(819\) 0 0
\(820\) 36019.6 62387.7i 0.0535687 0.0927836i
\(821\) −391161. + 1.07471e6i −0.580323 + 1.59442i 0.207308 + 0.978276i \(0.433530\pi\)
−0.787631 + 0.616148i \(0.788692\pi\)
\(822\) 0 0
\(823\) 474071. + 397792.i 0.699912 + 0.587296i 0.921749 0.387788i \(-0.126761\pi\)
−0.221837 + 0.975084i \(0.571205\pi\)
\(824\) −132497. + 157904.i −0.195143 + 0.232562i
\(825\) 0 0
\(826\) −243940. 88787.0i −0.357539 0.130134i
\(827\) −106515. 61496.6i −0.155740 0.0899167i 0.420104 0.907476i \(-0.361993\pi\)
−0.575845 + 0.817559i \(0.695327\pi\)
\(828\) 0 0
\(829\) 235237. + 407442.i 0.342291 + 0.592866i 0.984858 0.173364i \(-0.0554637\pi\)
−0.642567 + 0.766230i \(0.722130\pi\)
\(830\) −140815. + 24829.5i −0.204406 + 0.0360423i
\(831\) 0 0
\(832\) 72049.1 26223.7i 0.104084 0.0378833i
\(833\) −256701. 45263.3i −0.369945 0.0652313i
\(834\) 0 0
\(835\) −92126.5 + 77303.3i −0.132133 + 0.110873i
\(836\) 30453.7i 0.0435740i
\(837\) 0 0
\(838\) −409129. −0.582602
\(839\) −42223.1 50319.5i −0.0599827 0.0714846i 0.735219 0.677830i \(-0.237079\pi\)
−0.795202 + 0.606345i \(0.792635\pi\)
\(840\) 0 0
\(841\) 109271. 619705.i 0.154494 0.876179i
\(842\) 30079.5 + 82642.8i 0.0424274 + 0.116568i
\(843\) 0 0
\(844\) 71595.7 + 406040.i 0.100508 + 0.570011i
\(845\) 211911. 122347.i 0.296784 0.171348i
\(846\) 0 0
\(847\) 304972. 528227.i 0.425102 0.736298i
\(848\) −230185. + 632428.i −0.320100 + 0.879467i
\(849\) 0 0
\(850\) 250638. + 210310.i 0.346904 + 0.291087i
\(851\) 879080. 1.04765e6i 1.21386 1.44662i
\(852\) 0 0
\(853\) 913792. + 332593.i 1.25588 + 0.457104i 0.882386 0.470527i \(-0.155936\pi\)
0.373498 + 0.927631i \(0.378158\pi\)
\(854\) −59902.7 34584.8i −0.0821355 0.0474209i
\(855\) 0 0
\(856\) −219444. 380089.i −0.299486 0.518725i
\(857\) 1.09569e6 193200.i 1.49185 0.263054i 0.632550 0.774519i \(-0.282008\pi\)
0.859304 + 0.511465i \(0.170897\pi\)
\(858\) 0 0
\(859\) 507014. 184538.i 0.687122 0.250092i 0.0252197 0.999682i \(-0.491971\pi\)
0.661903 + 0.749590i \(0.269749\pi\)
\(860\) 438606. + 77338.0i 0.593031 + 0.104567i
\(861\) 0 0
\(862\) 255835. 214671.i 0.344307 0.288908i
\(863\) 924852.i 1.24180i 0.783891 + 0.620899i \(0.213232\pi\)
−0.783891 + 0.620899i \(0.786768\pi\)
\(864\) 0 0
\(865\) −400457. −0.535209
\(866\) −199656. 237941.i −0.266224 0.317274i
\(867\) 0 0
\(868\) −128132. + 726670.i −0.170066 + 0.964491i
\(869\) −32403.3 89027.4i −0.0429092 0.117892i
\(870\) 0 0
\(871\) 27026.7 + 153276.i 0.0356251 + 0.202040i
\(872\) −95323.4 + 55035.0i −0.125362 + 0.0723779i
\(873\) 0 0
\(874\) 47625.6 82490.0i 0.0623473 0.107989i
\(875\) 158958. 436734.i 0.207619 0.570428i
\(876\) 0 0
\(877\) −732255. 614435.i −0.952057 0.798871i 0.0275855 0.999619i \(-0.491218\pi\)
−0.979643 + 0.200748i \(0.935663\pi\)
\(878\) 69312.9 82603.9i 0.0899135 0.107155i
\(879\) 0 0
\(880\) −28474.2 10363.8i −0.0367694 0.0133830i
\(881\) 1.16480e6 + 672499.i 1.50072 + 0.866443i 1.00000 0.000835760i \(0.000266031\pi\)
0.500724 + 0.865607i \(0.333067\pi\)
\(882\) 0 0
\(883\) −195760. 339066.i −0.251074 0.434873i 0.712748 0.701421i \(-0.247450\pi\)
−0.963822 + 0.266547i \(0.914117\pi\)
\(884\) 310559. 54759.9i 0.397411 0.0700742i
\(885\) 0 0
\(886\) −137657. + 50103.2i −0.175361 + 0.0638261i
\(887\) 163507. + 28830.7i 0.207821 + 0.0366444i 0.276589 0.960988i \(-0.410796\pi\)
−0.0687684 + 0.997633i \(0.521907\pi\)
\(888\) 0 0
\(889\) 376502. 315923.i 0.476391 0.399740i
\(890\) 14352.1i 0.0181190i
\(891\) 0 0
\(892\) 1.19637e6 1.50361
\(893\) −294944. 351500.i −0.369859 0.440781i
\(894\) 0 0
\(895\) −43205.6 + 245031.i −0.0539379 + 0.305897i
\(896\) −237216. 651746.i −0.295480 0.811825i
\(897\) 0 0
\(898\) 7283.44 + 41306.5i 0.00903200 + 0.0512230i
\(899\) 294913. 170268.i 0.364901 0.210675i
\(900\) 0 0
\(901\) −883306. + 1.52993e6i −1.08808 + 1.88461i
\(902\) −4721.79 + 12973.0i −0.00580355 + 0.0159451i
\(903\) 0 0
\(904\) 400027. + 335663.i 0.489500 + 0.410739i
\(905\) 102317. 121937.i 0.124925 0.148880i
\(906\) 0 0
\(907\) 1.28533e6 + 467822.i 1.56243 + 0.568678i 0.971292 0.237892i \(-0.0764565\pi\)
0.591138 + 0.806570i \(0.298679\pi\)
\(908\) 62999.2 + 36372.6i 0.0764123 + 0.0441167i
\(909\) 0 0
\(910\) 13325.4 + 23080.2i 0.0160915 + 0.0278713i
\(911\) −950257. + 167556.i −1.14500 + 0.201894i −0.713791 0.700359i \(-0.753023\pi\)
−0.431207 + 0.902253i \(0.641912\pi\)
\(912\) 0 0
\(913\) −200070. + 72819.6i −0.240016 + 0.0873588i
\(914\) 219381. + 38682.8i 0.262607 + 0.0463048i
\(915\) 0 0
\(916\) −664436. + 557528.i −0.791886 + 0.664471i
\(917\) 898246.i 1.06821i
\(918\) 0 0
\(919\) −1.00521e6 −1.19021 −0.595107 0.803647i \(-0.702890\pi\)
−0.595107 + 0.803647i \(0.702890\pi\)
\(920\) 151722. + 180815.i 0.179256 + 0.213629i
\(921\) 0 0
\(922\) 68824.1 390321.i 0.0809616 0.459156i
\(923\) 48291.9 + 132681.i 0.0566853 + 0.155742i
\(924\) 0 0
\(925\) 206356. + 1.17030e6i 0.241176 + 1.36778i
\(926\) 84508.0 48790.7i 0.0985543 0.0569004i
\(927\) 0 0
\(928\) −123475. + 213865.i −0.143378 + 0.248338i
\(929\) −100931. + 277305.i −0.116948 + 0.321312i −0.984331 0.176328i \(-0.943578\pi\)
0.867383 + 0.497641i \(0.165800\pi\)
\(930\) 0 0
\(931\) −50511.9 42384.5i −0.0582766 0.0488999i
\(932\) −687300. + 819092.i −0.791251 + 0.942976i
\(933\) 0 0
\(934\) 51536.6 + 18757.8i 0.0590775 + 0.0215024i
\(935\) −68883.0 39769.6i −0.0787932 0.0454913i
\(936\) 0 0
\(937\) 848848. + 1.47025e6i 0.966831 + 1.67460i 0.704612 + 0.709592i \(0.251121\pi\)
0.262219 + 0.965008i \(0.415546\pi\)
\(938\) 179138. 31586.8i 0.203602 0.0359004i
\(939\) 0 0
\(940\) 501941. 182692.i 0.568064 0.206758i
\(941\) 921233. + 162438.i 1.04038 + 0.183446i 0.667635 0.744489i \(-0.267307\pi\)
0.372741 + 0.927935i \(0.378418\pi\)
\(942\) 0 0
\(943\) −257011. + 215658.i −0.289020 + 0.242517i
\(944\) 773162.i 0.867613i
\(945\) 0 0
\(946\) −85351.1 −0.0953734
\(947\) −3750.59 4469.77i −0.00418215 0.00498409i 0.763949 0.645276i \(-0.223258\pi\)
−0.768131 + 0.640292i \(0.778813\pi\)
\(948\) 0 0
\(949\) −20166.4 + 114369.i −0.0223922 + 0.126992i
\(950\) 28308.0 + 77775.5i 0.0313662 + 0.0861779i
\(951\) 0 0
\(952\) −136236. 772631.i −0.150320 0.852507i
\(953\) 532595. 307494.i 0.586423 0.338571i −0.177259 0.984164i \(-0.556723\pi\)
0.763682 + 0.645593i \(0.223390\pi\)
\(954\) 0 0
\(955\) 247102. 427993.i 0.270938 0.469278i
\(956\) 281578. 773628.i 0.308093 0.846479i
\(957\) 0 0
\(958\) 57492.4 + 48241.8i 0.0626440 + 0.0525645i
\(959\) −934948. + 1.11423e6i −1.01660 + 1.21154i
\(960\) 0 0
\(961\) −528956. 192524.i −0.572760 0.208468i
\(962\) −127663. 73706.4i −0.137948 0.0796444i
\(963\) 0 0
\(964\) −501682. 868939.i −0.539852 0.935051i
\(965\) 433319. 76405.9i 0.465322 0.0820488i
\(966\) 0 0
\(967\) −1.36323e6 + 496176.i −1.45786 + 0.530619i −0.944776 0.327718i \(-0.893720\pi\)
−0.513087 + 0.858337i \(0.671498\pi\)
\(968\) −573439. 101113.i −0.611979 0.107908i
\(969\) 0 0
\(970\) 18061.6 15155.5i 0.0191961 0.0161074i
\(971\) 1.14407e6i 1.21343i 0.794921 + 0.606713i \(0.207512\pi\)
−0.794921 + 0.606713i \(0.792488\pi\)
\(972\) 0 0
\(973\) 723652. 0.764371
\(974\) 120646. + 143780.i 0.127173 + 0.151559i
\(975\) 0 0
\(976\) 35773.3 202880.i 0.0375542 0.212981i
\(977\) 87019.9 + 239085.i 0.0911653 + 0.250474i 0.976892 0.213732i \(-0.0685619\pi\)
−0.885727 + 0.464206i \(0.846340\pi\)
\(978\) 0 0
\(979\) −3710.93 21045.7i −0.00387184 0.0219583i
\(980\) 66476.2 38380.0i 0.0692172 0.0399625i
\(981\) 0 0
\(982\) 8894.31 15405.4i 0.00922336 0.0159753i
\(983\) −80074.8 + 220004.i −0.0828684 + 0.227679i −0.974206 0.225662i \(-0.927546\pi\)
0.891337 + 0.453341i \(0.149768\pi\)
\(984\) 0 0
\(985\) −171537. 143937.i −0.176802 0.148354i
\(986\) −109333. + 130298.i −0.112460 + 0.134024i
\(987\) 0 0
\(988\) 74962.3 + 27284.0i 0.0767943 + 0.0279508i
\(989\) −1.79631e6 1.03710e6i −1.83650 1.06030i
\(990\) 0 0
\(991\) −638655. 1.10618e6i −0.650308 1.12637i −0.983048 0.183348i \(-0.941306\pi\)
0.332740 0.943019i \(-0.392027\pi\)
\(992\) 1.06155e6 187180.i 1.07874 0.190211i
\(993\) 0 0
\(994\) 155068. 56440.0i 0.156945 0.0571234i
\(995\) −178093. 31402.6i −0.179888 0.0317190i
\(996\) 0 0
\(997\) 1.09814e6 921445.i 1.10475 0.926999i 0.107018 0.994257i \(-0.465870\pi\)
0.997736 + 0.0672585i \(0.0214252\pi\)
\(998\) 237699.i 0.238653i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.44.5 66
3.2 odd 2 27.5.f.a.5.7 66
27.11 odd 18 inner 81.5.f.a.35.5 66
27.16 even 9 27.5.f.a.11.7 yes 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.5.7 66 3.2 odd 2
27.5.f.a.11.7 yes 66 27.16 even 9
81.5.f.a.35.5 66 27.11 odd 18 inner
81.5.f.a.44.5 66 1.1 even 1 trivial