Properties

Label 81.5.f.a.17.8
Level $81$
Weight $5$
Character 81.17
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,5,Mod(8,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.8"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 17.8
Character \(\chi\) \(=\) 81.17
Dual form 81.5.f.a.62.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40615 - 3.86336i) q^{2} +(-0.691617 - 0.580335i) q^{4} +(11.8424 + 2.08814i) q^{5} +(13.5416 - 11.3628i) q^{7} +(53.7534 - 31.0345i) q^{8} +(24.7194 - 42.8153i) q^{10} +(-10.9334 + 1.92785i) q^{11} +(272.944 - 99.3436i) q^{13} +(-24.8570 - 68.2939i) q^{14} +(-46.8208 - 265.534i) q^{16} +(-329.418 - 190.190i) q^{17} +(72.9105 + 126.285i) q^{19} +(-6.97859 - 8.31676i) q^{20} +(-7.92598 + 44.9505i) q^{22} +(57.0807 - 68.0262i) q^{23} +(-451.426 - 164.305i) q^{25} -1194.17i q^{26} -15.9598 q^{28} +(-310.157 + 852.151i) q^{29} +(663.014 + 556.335i) q^{31} +(-113.675 - 20.0439i) q^{32} +(-1197.98 + 1005.23i) q^{34} +(184.092 - 106.286i) q^{35} +(398.049 - 689.441i) q^{37} +(590.407 - 104.105i) q^{38} +(701.374 - 255.279i) q^{40} +(612.946 + 1684.06i) q^{41} +(-253.959 - 1440.27i) q^{43} +(8.68051 + 5.01170i) q^{44} +(-182.546 - 316.179i) q^{46} +(2547.10 + 3035.52i) q^{47} +(-362.666 + 2056.78i) q^{49} +(-1269.54 + 1512.98i) q^{50} +(-246.425 - 89.6915i) q^{52} +526.213i q^{53} -133.503 q^{55} +(375.270 - 1031.04i) q^{56} +(2856.04 + 2396.50i) q^{58} +(-6213.52 - 1095.61i) q^{59} +(-5105.31 + 4283.86i) q^{61} +(3081.62 - 1779.17i) q^{62} +(1919.76 - 3325.13i) q^{64} +(3439.76 - 606.522i) q^{65} +(-5993.11 + 2181.31i) q^{67} +(117.457 + 322.711i) q^{68} +(-151.759 - 860.669i) q^{70} +(-1965.51 - 1134.79i) q^{71} +(-3190.17 - 5525.54i) q^{73} +(-2103.84 - 2507.26i) q^{74} +(22.8613 - 129.653i) q^{76} +(-126.150 + 150.340i) q^{77} +(8933.61 + 3251.57i) q^{79} -3242.33i q^{80} +7368.01 q^{82} +(905.297 - 2487.28i) q^{83} +(-3503.96 - 2940.17i) q^{85} +(-5921.41 - 1044.10i) q^{86} +(-527.876 + 442.941i) q^{88} +(-4547.60 + 2625.56i) q^{89} +(2567.29 - 4446.67i) q^{91} +(-78.9560 + 13.9221i) q^{92} +(15308.9 - 5571.99i) q^{94} +(599.736 + 1647.76i) q^{95} +(-1949.57 - 11056.5i) q^{97} +(7436.14 + 4293.26i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40615 3.86336i 0.351537 0.965841i −0.630339 0.776320i \(-0.717084\pi\)
0.981877 0.189521i \(-0.0606936\pi\)
\(3\) 0 0
\(4\) −0.691617 0.580335i −0.0432260 0.0362710i
\(5\) 11.8424 + 2.08814i 0.473696 + 0.0835254i 0.405399 0.914140i \(-0.367132\pi\)
0.0682967 + 0.997665i \(0.478244\pi\)
\(6\) 0 0
\(7\) 13.5416 11.3628i 0.276360 0.231893i −0.494064 0.869425i \(-0.664489\pi\)
0.770424 + 0.637532i \(0.220045\pi\)
\(8\) 53.7534 31.0345i 0.839896 0.484914i
\(9\) 0 0
\(10\) 24.7194 42.8153i 0.247194 0.428153i
\(11\) −10.9334 + 1.92785i −0.0903585 + 0.0159326i −0.218645 0.975805i \(-0.570164\pi\)
0.128286 + 0.991737i \(0.459052\pi\)
\(12\) 0 0
\(13\) 272.944 99.3436i 1.61505 0.587832i 0.632624 0.774459i \(-0.281978\pi\)
0.982431 + 0.186628i \(0.0597558\pi\)
\(14\) −24.8570 68.2939i −0.126821 0.348438i
\(15\) 0 0
\(16\) −46.8208 265.534i −0.182894 1.03724i
\(17\) −329.418 190.190i −1.13986 0.658096i −0.193460 0.981108i \(-0.561971\pi\)
−0.946395 + 0.323012i \(0.895304\pi\)
\(18\) 0 0
\(19\) 72.9105 + 126.285i 0.201968 + 0.349819i 0.949163 0.314787i \(-0.101933\pi\)
−0.747194 + 0.664606i \(0.768600\pi\)
\(20\) −6.97859 8.31676i −0.0174465 0.0207919i
\(21\) 0 0
\(22\) −7.92598 + 44.9505i −0.0163760 + 0.0928729i
\(23\) 57.0807 68.0262i 0.107903 0.128594i −0.709390 0.704816i \(-0.751029\pi\)
0.817293 + 0.576222i \(0.195474\pi\)
\(24\) 0 0
\(25\) −451.426 164.305i −0.722281 0.262889i
\(26\) 1194.17i 1.76653i
\(27\) 0 0
\(28\) −15.9598 −0.0203569
\(29\) −310.157 + 852.151i −0.368796 + 1.01326i 0.607024 + 0.794683i \(0.292363\pi\)
−0.975820 + 0.218575i \(0.929859\pi\)
\(30\) 0 0
\(31\) 663.014 + 556.335i 0.689921 + 0.578912i 0.918886 0.394522i \(-0.129090\pi\)
−0.228966 + 0.973434i \(0.573534\pi\)
\(32\) −113.675 20.0439i −0.111010 0.0195741i
\(33\) 0 0
\(34\) −1197.98 + 1005.23i −1.03632 + 0.869574i
\(35\) 184.092 106.286i 0.150279 0.0867639i
\(36\) 0 0
\(37\) 398.049 689.441i 0.290759 0.503609i −0.683231 0.730203i \(-0.739426\pi\)
0.973989 + 0.226594i \(0.0727589\pi\)
\(38\) 590.407 104.105i 0.408869 0.0720946i
\(39\) 0 0
\(40\) 701.374 255.279i 0.438358 0.159549i
\(41\) 612.946 + 1684.06i 0.364632 + 1.00182i 0.977371 + 0.211532i \(0.0678454\pi\)
−0.612739 + 0.790285i \(0.709932\pi\)
\(42\) 0 0
\(43\) −253.959 1440.27i −0.137350 0.778948i −0.973195 0.229983i \(-0.926133\pi\)
0.835845 0.548965i \(-0.184978\pi\)
\(44\) 8.68051 + 5.01170i 0.00448373 + 0.00258869i
\(45\) 0 0
\(46\) −182.546 316.179i −0.0862693 0.149423i
\(47\) 2547.10 + 3035.52i 1.15306 + 1.37416i 0.915270 + 0.402842i \(0.131978\pi\)
0.237787 + 0.971317i \(0.423578\pi\)
\(48\) 0 0
\(49\) −362.666 + 2056.78i −0.151048 + 0.856636i
\(50\) −1269.54 + 1512.98i −0.507818 + 0.605193i
\(51\) 0 0
\(52\) −246.425 89.6915i −0.0911336 0.0331699i
\(53\) 526.213i 0.187331i 0.995604 + 0.0936655i \(0.0298584\pi\)
−0.995604 + 0.0936655i \(0.970142\pi\)
\(54\) 0 0
\(55\) −133.503 −0.0441333
\(56\) 375.270 1031.04i 0.119665 0.328777i
\(57\) 0 0
\(58\) 2856.04 + 2396.50i 0.849001 + 0.712397i
\(59\) −6213.52 1095.61i −1.78498 0.314740i −0.819085 0.573672i \(-0.805518\pi\)
−0.965895 + 0.258932i \(0.916629\pi\)
\(60\) 0 0
\(61\) −5105.31 + 4283.86i −1.37203 + 1.15127i −0.399966 + 0.916530i \(0.630978\pi\)
−0.972059 + 0.234736i \(0.924577\pi\)
\(62\) 3081.62 1779.17i 0.801670 0.462844i
\(63\) 0 0
\(64\) 1919.76 3325.13i 0.468692 0.811798i
\(65\) 3439.76 606.522i 0.814144 0.143556i
\(66\) 0 0
\(67\) −5993.11 + 2181.31i −1.33507 + 0.485924i −0.908255 0.418417i \(-0.862585\pi\)
−0.426811 + 0.904341i \(0.640363\pi\)
\(68\) 117.457 + 322.711i 0.0254017 + 0.0697905i
\(69\) 0 0
\(70\) −151.759 860.669i −0.0309713 0.175647i
\(71\) −1965.51 1134.79i −0.389904 0.225111i 0.292214 0.956353i \(-0.405608\pi\)
−0.682119 + 0.731242i \(0.738941\pi\)
\(72\) 0 0
\(73\) −3190.17 5525.54i −0.598643 1.03688i −0.993022 0.117933i \(-0.962373\pi\)
0.394378 0.918948i \(-0.370960\pi\)
\(74\) −2103.84 2507.26i −0.384194 0.457864i
\(75\) 0 0
\(76\) 22.8613 129.653i 0.00395799 0.0224469i
\(77\) −126.150 + 150.340i −0.0212768 + 0.0253567i
\(78\) 0 0
\(79\) 8933.61 + 3251.57i 1.43144 + 0.521001i 0.937344 0.348406i \(-0.113277\pi\)
0.494096 + 0.869408i \(0.335499\pi\)
\(80\) 3242.33i 0.506614i
\(81\) 0 0
\(82\) 7368.01 1.09578
\(83\) 905.297 2487.28i 0.131412 0.361051i −0.856483 0.516175i \(-0.827355\pi\)
0.987895 + 0.155124i \(0.0495776\pi\)
\(84\) 0 0
\(85\) −3503.96 2940.17i −0.484977 0.406944i
\(86\) −5921.41 1044.10i −0.800623 0.141171i
\(87\) 0 0
\(88\) −527.876 + 442.941i −0.0681658 + 0.0571979i
\(89\) −4547.60 + 2625.56i −0.574119 + 0.331468i −0.758793 0.651332i \(-0.774210\pi\)
0.184674 + 0.982800i \(0.440877\pi\)
\(90\) 0 0
\(91\) 2567.29 4446.67i 0.310021 0.536973i
\(92\) −78.9560 + 13.9221i −0.00932845 + 0.00164486i
\(93\) 0 0
\(94\) 15308.9 5571.99i 1.73256 0.630601i
\(95\) 599.736 + 1647.76i 0.0664528 + 0.182577i
\(96\) 0 0
\(97\) −1949.57 11056.5i −0.207202 1.17510i −0.893936 0.448194i \(-0.852067\pi\)
0.686734 0.726909i \(-0.259044\pi\)
\(98\) 7436.14 + 4293.26i 0.774275 + 0.447028i
\(99\) 0 0
\(100\) 216.861 + 375.615i 0.0216861 + 0.0375615i
\(101\) 1860.39 + 2217.12i 0.182373 + 0.217344i 0.849484 0.527615i \(-0.176914\pi\)
−0.667111 + 0.744959i \(0.732469\pi\)
\(102\) 0 0
\(103\) −588.301 + 3336.42i −0.0554530 + 0.314489i −0.999900 0.0141756i \(-0.995488\pi\)
0.944447 + 0.328665i \(0.106599\pi\)
\(104\) 11588.6 13810.7i 1.07143 1.27688i
\(105\) 0 0
\(106\) 2032.95 + 739.934i 0.180932 + 0.0658539i
\(107\) 2849.06i 0.248848i −0.992229 0.124424i \(-0.960292\pi\)
0.992229 0.124424i \(-0.0397082\pi\)
\(108\) 0 0
\(109\) −4098.48 −0.344961 −0.172480 0.985013i \(-0.555178\pi\)
−0.172480 + 0.985013i \(0.555178\pi\)
\(110\) −187.725 + 515.771i −0.0155145 + 0.0426257i
\(111\) 0 0
\(112\) −3651.23 3063.75i −0.291074 0.244240i
\(113\) −1765.41 311.289i −0.138257 0.0243785i 0.104091 0.994568i \(-0.466807\pi\)
−0.242348 + 0.970189i \(0.577918\pi\)
\(114\) 0 0
\(115\) 818.021 686.401i 0.0618541 0.0519018i
\(116\) 709.043 409.366i 0.0526935 0.0304226i
\(117\) 0 0
\(118\) −12969.9 + 22464.5i −0.931476 + 1.61336i
\(119\) −6621.93 + 1167.63i −0.467618 + 0.0824536i
\(120\) 0 0
\(121\) −13642.2 + 4965.36i −0.931782 + 0.339141i
\(122\) 9371.29 + 25747.4i 0.629622 + 1.72987i
\(123\) 0 0
\(124\) −135.691 769.541i −0.00882484 0.0500482i
\(125\) −11511.6 6646.25i −0.736745 0.425360i
\(126\) 0 0
\(127\) 11399.5 + 19744.5i 0.706771 + 1.22416i 0.966048 + 0.258361i \(0.0831824\pi\)
−0.259277 + 0.965803i \(0.583484\pi\)
\(128\) −11333.8 13507.1i −0.691762 0.824410i
\(129\) 0 0
\(130\) 2493.60 14141.9i 0.147550 0.836799i
\(131\) 13483.3 16068.8i 0.785694 0.936354i −0.213482 0.976947i \(-0.568480\pi\)
0.999176 + 0.0405934i \(0.0129248\pi\)
\(132\) 0 0
\(133\) 2422.27 + 881.634i 0.136936 + 0.0498408i
\(134\) 26220.8i 1.46028i
\(135\) 0 0
\(136\) −23609.8 −1.27648
\(137\) −6162.67 + 16931.8i −0.328343 + 0.902116i 0.660188 + 0.751100i \(0.270477\pi\)
−0.988531 + 0.151015i \(0.951746\pi\)
\(138\) 0 0
\(139\) 1597.12 + 1340.15i 0.0826626 + 0.0693622i 0.683183 0.730248i \(-0.260595\pi\)
−0.600520 + 0.799610i \(0.705040\pi\)
\(140\) −189.003 33.3263i −0.00964299 0.00170032i
\(141\) 0 0
\(142\) −7147.89 + 5997.79i −0.354488 + 0.297450i
\(143\) −2792.68 + 1612.36i −0.136568 + 0.0788477i
\(144\) 0 0
\(145\) −5452.42 + 9443.86i −0.259330 + 0.449173i
\(146\) −25833.0 + 4555.06i −1.21191 + 0.213692i
\(147\) 0 0
\(148\) −675.404 + 245.827i −0.0308347 + 0.0112229i
\(149\) 5741.36 + 15774.3i 0.258608 + 0.710521i 0.999254 + 0.0386245i \(0.0122976\pi\)
−0.740645 + 0.671896i \(0.765480\pi\)
\(150\) 0 0
\(151\) 736.148 + 4174.90i 0.0322858 + 0.183102i 0.996686 0.0813454i \(-0.0259217\pi\)
−0.964400 + 0.264447i \(0.914811\pi\)
\(152\) 7838.37 + 4525.49i 0.339265 + 0.195875i
\(153\) 0 0
\(154\) 403.431 + 698.763i 0.0170109 + 0.0294638i
\(155\) 6689.98 + 7972.80i 0.278459 + 0.331854i
\(156\) 0 0
\(157\) 2487.47 14107.1i 0.100916 0.572321i −0.891858 0.452316i \(-0.850598\pi\)
0.992773 0.120005i \(-0.0382910\pi\)
\(158\) 25124.0 29941.6i 1.00641 1.19939i
\(159\) 0 0
\(160\) −1304.33 474.736i −0.0509503 0.0185444i
\(161\) 1569.78i 0.0605601i
\(162\) 0 0
\(163\) 7997.10 0.300994 0.150497 0.988611i \(-0.451913\pi\)
0.150497 + 0.988611i \(0.451913\pi\)
\(164\) 553.393 1520.43i 0.0205753 0.0565301i
\(165\) 0 0
\(166\) −8336.29 6994.98i −0.302522 0.253846i
\(167\) −1555.28 274.238i −0.0557668 0.00983318i 0.145695 0.989330i \(-0.453458\pi\)
−0.201462 + 0.979496i \(0.564569\pi\)
\(168\) 0 0
\(169\) 42750.4 35871.8i 1.49681 1.25597i
\(170\) −16286.1 + 9402.76i −0.563531 + 0.325355i
\(171\) 0 0
\(172\) −660.200 + 1143.50i −0.0223161 + 0.0386526i
\(173\) 27390.5 4829.68i 0.915183 0.161371i 0.303827 0.952727i \(-0.401736\pi\)
0.611356 + 0.791356i \(0.290624\pi\)
\(174\) 0 0
\(175\) −7980.00 + 2904.48i −0.260571 + 0.0948402i
\(176\) 1023.82 + 2812.92i 0.0330520 + 0.0908097i
\(177\) 0 0
\(178\) 3748.88 + 21260.9i 0.118321 + 0.671031i
\(179\) 14349.2 + 8284.51i 0.447839 + 0.258560i 0.706917 0.707297i \(-0.250085\pi\)
−0.259078 + 0.965856i \(0.583419\pi\)
\(180\) 0 0
\(181\) 9509.33 + 16470.6i 0.290264 + 0.502752i 0.973872 0.227097i \(-0.0729236\pi\)
−0.683608 + 0.729849i \(0.739590\pi\)
\(182\) −13569.1 16171.1i −0.409646 0.488198i
\(183\) 0 0
\(184\) 957.122 5428.11i 0.0282704 0.160329i
\(185\) 6153.50 7333.46i 0.179796 0.214272i
\(186\) 0 0
\(187\) 3968.31 + 1444.35i 0.113481 + 0.0413037i
\(188\) 3577.59i 0.101222i
\(189\) 0 0
\(190\) 7209.22 0.199701
\(191\) 22067.8 60630.8i 0.604912 1.66198i −0.136265 0.990672i \(-0.543510\pi\)
0.741177 0.671310i \(-0.234268\pi\)
\(192\) 0 0
\(193\) −12350.6 10363.4i −0.331568 0.278219i 0.461770 0.886999i \(-0.347214\pi\)
−0.793338 + 0.608781i \(0.791659\pi\)
\(194\) −45456.8 8015.26i −1.20780 0.212968i
\(195\) 0 0
\(196\) 1444.45 1212.04i 0.0376002 0.0315503i
\(197\) 12811.1 7396.48i 0.330106 0.190587i −0.325782 0.945445i \(-0.605628\pi\)
0.655888 + 0.754858i \(0.272294\pi\)
\(198\) 0 0
\(199\) 29055.3 50325.3i 0.733702 1.27081i −0.221588 0.975140i \(-0.571124\pi\)
0.955290 0.295669i \(-0.0955425\pi\)
\(200\) −29364.8 + 5177.81i −0.734120 + 0.129445i
\(201\) 0 0
\(202\) 11181.5 4069.74i 0.274030 0.0997388i
\(203\) 5482.75 + 15063.7i 0.133047 + 0.365545i
\(204\) 0 0
\(205\) 3742.22 + 21223.2i 0.0890474 + 0.505013i
\(206\) 12062.6 + 6964.32i 0.284253 + 0.164114i
\(207\) 0 0
\(208\) −39158.6 67824.6i −0.905107 1.56769i
\(209\) −1040.62 1240.16i −0.0238231 0.0283913i
\(210\) 0 0
\(211\) −6871.82 + 38972.0i −0.154350 + 0.875363i 0.805028 + 0.593237i \(0.202150\pi\)
−0.959378 + 0.282125i \(0.908961\pi\)
\(212\) 305.380 363.938i 0.00679468 0.00809758i
\(213\) 0 0
\(214\) −11006.9 4006.20i −0.240347 0.0874793i
\(215\) 17586.6i 0.380457i
\(216\) 0 0
\(217\) 15299.8 0.324912
\(218\) −5763.07 + 15833.9i −0.121267 + 0.333177i
\(219\) 0 0
\(220\) 92.3330 + 77.4766i 0.00190771 + 0.00160076i
\(221\) −108807. 19185.6i −2.22778 0.392817i
\(222\) 0 0
\(223\) 31137.8 26127.7i 0.626149 0.525401i −0.273581 0.961849i \(-0.588208\pi\)
0.899730 + 0.436448i \(0.143764\pi\)
\(224\) −1767.09 + 1020.23i −0.0352179 + 0.0203331i
\(225\) 0 0
\(226\) −3685.04 + 6382.68i −0.0721483 + 0.124964i
\(227\) 38926.8 6863.84i 0.755434 0.133203i 0.217349 0.976094i \(-0.430259\pi\)
0.538085 + 0.842891i \(0.319148\pi\)
\(228\) 0 0
\(229\) −188.164 + 68.4859i −0.00358810 + 0.00130596i −0.343814 0.939038i \(-0.611719\pi\)
0.340225 + 0.940344i \(0.389497\pi\)
\(230\) −1501.56 4125.50i −0.0283848 0.0779867i
\(231\) 0 0
\(232\) 9774.08 + 55431.6i 0.181593 + 1.02987i
\(233\) −49625.0 28651.0i −0.914090 0.527750i −0.0323454 0.999477i \(-0.510298\pi\)
−0.881745 + 0.471726i \(0.843631\pi\)
\(234\) 0 0
\(235\) 23825.2 + 41266.5i 0.431421 + 0.747244i
\(236\) 3661.55 + 4363.67i 0.0657417 + 0.0783479i
\(237\) 0 0
\(238\) −4800.47 + 27224.8i −0.0847480 + 0.480630i
\(239\) −10020.5 + 11941.9i −0.175426 + 0.209064i −0.846592 0.532243i \(-0.821349\pi\)
0.671166 + 0.741307i \(0.265794\pi\)
\(240\) 0 0
\(241\) −105374. 38353.0i −1.81426 0.660336i −0.996387 0.0849336i \(-0.972932\pi\)
−0.817871 0.575402i \(-0.804846\pi\)
\(242\) 59686.9i 1.01917i
\(243\) 0 0
\(244\) 6016.99 0.101065
\(245\) −8589.68 + 23600.0i −0.143102 + 0.393169i
\(246\) 0 0
\(247\) 32446.1 + 27225.5i 0.531824 + 0.446254i
\(248\) 52904.8 + 9328.54i 0.860185 + 0.151674i
\(249\) 0 0
\(250\) −41864.0 + 35128.1i −0.669824 + 0.562049i
\(251\) 53491.8 30883.5i 0.849063 0.490207i −0.0112713 0.999936i \(-0.503588\pi\)
0.860335 + 0.509730i \(0.170255\pi\)
\(252\) 0 0
\(253\) −492.941 + 853.799i −0.00770112 + 0.0133387i
\(254\) 92309.8 16276.7i 1.43080 0.252289i
\(255\) 0 0
\(256\) −10392.5 + 3782.56i −0.158577 + 0.0577172i
\(257\) 26987.4 + 74147.4i 0.408597 + 1.12261i 0.957929 + 0.287007i \(0.0926603\pi\)
−0.549331 + 0.835605i \(0.685118\pi\)
\(258\) 0 0
\(259\) −2443.73 13859.1i −0.0364295 0.206602i
\(260\) −2730.98 1576.73i −0.0403991 0.0233244i
\(261\) 0 0
\(262\) −43120.0 74686.0i −0.628168 1.08802i
\(263\) 63507.9 + 75685.7i 0.918155 + 1.09421i 0.995266 + 0.0971921i \(0.0309861\pi\)
−0.0771106 + 0.997023i \(0.524569\pi\)
\(264\) 0 0
\(265\) −1098.80 + 6231.63i −0.0156469 + 0.0887380i
\(266\) 6812.15 8118.40i 0.0962766 0.114738i
\(267\) 0 0
\(268\) 5410.83 + 1969.38i 0.0753346 + 0.0274195i
\(269\) 119957.i 1.65775i −0.559431 0.828877i \(-0.688980\pi\)
0.559431 0.828877i \(-0.311020\pi\)
\(270\) 0 0
\(271\) 5304.88 0.0722333 0.0361166 0.999348i \(-0.488501\pi\)
0.0361166 + 0.999348i \(0.488501\pi\)
\(272\) −35078.2 + 96376.6i −0.474132 + 1.30267i
\(273\) 0 0
\(274\) 56748.1 + 47617.3i 0.755875 + 0.634255i
\(275\) 5252.37 + 926.134i 0.0694528 + 0.0122464i
\(276\) 0 0
\(277\) −44362.4 + 37224.5i −0.578170 + 0.485142i −0.884346 0.466833i \(-0.845395\pi\)
0.306176 + 0.951975i \(0.400951\pi\)
\(278\) 7423.27 4285.83i 0.0960518 0.0554555i
\(279\) 0 0
\(280\) 6597.05 11426.4i 0.0841461 0.145745i
\(281\) −77732.3 + 13706.3i −0.984439 + 0.173583i −0.642622 0.766183i \(-0.722153\pi\)
−0.341817 + 0.939767i \(0.611042\pi\)
\(282\) 0 0
\(283\) 30816.1 11216.2i 0.384774 0.140046i −0.142389 0.989811i \(-0.545478\pi\)
0.527162 + 0.849765i \(0.323256\pi\)
\(284\) 700.821 + 1925.49i 0.00868901 + 0.0238729i
\(285\) 0 0
\(286\) 2302.19 + 13056.4i 0.0281455 + 0.159621i
\(287\) 27435.8 + 15840.1i 0.333084 + 0.192306i
\(288\) 0 0
\(289\) 30583.7 + 52972.5i 0.366180 + 0.634242i
\(290\) 28818.2 + 34344.2i 0.342665 + 0.408373i
\(291\) 0 0
\(292\) −1000.29 + 5672.92i −0.0117317 + 0.0665336i
\(293\) −73359.6 + 87426.6i −0.854519 + 1.01838i 0.145061 + 0.989423i \(0.453662\pi\)
−0.999581 + 0.0289539i \(0.990782\pi\)
\(294\) 0 0
\(295\) −71295.2 25949.3i −0.819250 0.298182i
\(296\) 49413.0i 0.563973i
\(297\) 0 0
\(298\) 69015.0 0.777161
\(299\) 8821.89 24237.9i 0.0986778 0.271115i
\(300\) 0 0
\(301\) −19804.5 16618.0i −0.218590 0.183419i
\(302\) 17164.3 + 3026.53i 0.188197 + 0.0331842i
\(303\) 0 0
\(304\) 30119.2 25273.0i 0.325908 0.273470i
\(305\) −69404.4 + 40070.6i −0.746083 + 0.430751i
\(306\) 0 0
\(307\) −17813.7 + 30854.2i −0.189006 + 0.327369i −0.944919 0.327304i \(-0.893860\pi\)
0.755913 + 0.654672i \(0.227193\pi\)
\(308\) 174.495 30.7681i 0.00183942 0.000324340i
\(309\) 0 0
\(310\) 40208.9 14634.9i 0.418407 0.152288i
\(311\) −695.964 1912.14i −0.00719558 0.0197697i 0.936043 0.351886i \(-0.114460\pi\)
−0.943238 + 0.332116i \(0.892237\pi\)
\(312\) 0 0
\(313\) −22695.2 128711.i −0.231657 1.31379i −0.849541 0.527523i \(-0.823121\pi\)
0.617884 0.786269i \(-0.287990\pi\)
\(314\) −51003.3 29446.7i −0.517295 0.298661i
\(315\) 0 0
\(316\) −4291.64 7433.33i −0.0429782 0.0744405i
\(317\) −19846.0 23651.5i −0.197494 0.235364i 0.658204 0.752840i \(-0.271316\pi\)
−0.855698 + 0.517475i \(0.826872\pi\)
\(318\) 0 0
\(319\) 1748.25 9914.83i 0.0171800 0.0974325i
\(320\) 29677.9 35368.8i 0.289823 0.345398i
\(321\) 0 0
\(322\) −6064.63 2207.34i −0.0584915 0.0212891i
\(323\) 55467.3i 0.531657i
\(324\) 0 0
\(325\) −139537. −1.32106
\(326\) 11245.1 30895.7i 0.105810 0.290712i
\(327\) 0 0
\(328\) 85211.8 + 71501.2i 0.792049 + 0.664608i
\(329\) 68983.8 + 12163.7i 0.637316 + 0.112376i
\(330\) 0 0
\(331\) −66829.8 + 56076.9i −0.609978 + 0.511832i −0.894635 0.446797i \(-0.852565\pi\)
0.284657 + 0.958629i \(0.408120\pi\)
\(332\) −2069.58 + 1194.87i −0.0187761 + 0.0108404i
\(333\) 0 0
\(334\) −3246.43 + 5622.99i −0.0291014 + 0.0504051i
\(335\) −75527.7 + 13317.6i −0.673003 + 0.118669i
\(336\) 0 0
\(337\) −29849.5 + 10864.3i −0.262832 + 0.0956629i −0.470075 0.882627i \(-0.655773\pi\)
0.207243 + 0.978289i \(0.433551\pi\)
\(338\) −78472.5 215602.i −0.686885 1.88720i
\(339\) 0 0
\(340\) 717.112 + 4066.95i 0.00620339 + 0.0351812i
\(341\) −8321.51 4804.43i −0.0715638 0.0413174i
\(342\) 0 0
\(343\) 39681.3 + 68730.0i 0.337285 + 0.584195i
\(344\) −58349.4 69538.1i −0.493082 0.587633i
\(345\) 0 0
\(346\) 19856.3 112611.i 0.165862 0.940649i
\(347\) −22788.4 + 27158.1i −0.189258 + 0.225549i −0.852327 0.523010i \(-0.824809\pi\)
0.663069 + 0.748558i \(0.269254\pi\)
\(348\) 0 0
\(349\) 116640. + 42453.6i 0.957630 + 0.348549i 0.773104 0.634279i \(-0.218703\pi\)
0.184526 + 0.982828i \(0.440925\pi\)
\(350\) 34913.8i 0.285010i
\(351\) 0 0
\(352\) 1281.49 0.0103426
\(353\) 28678.2 78792.8i 0.230146 0.632320i −0.769837 0.638241i \(-0.779662\pi\)
0.999982 + 0.00592061i \(0.00188460\pi\)
\(354\) 0 0
\(355\) −20906.7 17542.8i −0.165894 0.139201i
\(356\) 4668.90 + 823.252i 0.0368395 + 0.00649580i
\(357\) 0 0
\(358\) 52183.2 43786.9i 0.407160 0.341648i
\(359\) 105317. 60804.8i 0.817165 0.471790i −0.0322729 0.999479i \(-0.510275\pi\)
0.849438 + 0.527689i \(0.176941\pi\)
\(360\) 0 0
\(361\) 54528.6 94446.3i 0.418418 0.724721i
\(362\) 77003.7 13577.8i 0.587617 0.103613i
\(363\) 0 0
\(364\) −4356.14 + 1585.51i −0.0328775 + 0.0119664i
\(365\) −26241.2 72097.2i −0.196969 0.541169i
\(366\) 0 0
\(367\) −9551.45 54169.0i −0.0709149 0.402178i −0.999516 0.0310995i \(-0.990099\pi\)
0.928601 0.371079i \(-0.121012\pi\)
\(368\) −20735.8 11971.8i −0.153118 0.0884026i
\(369\) 0 0
\(370\) −19679.1 34085.2i −0.143748 0.248978i
\(371\) 5979.23 + 7125.77i 0.0434408 + 0.0517707i
\(372\) 0 0
\(373\) 4192.29 23775.7i 0.0301324 0.170889i −0.966028 0.258438i \(-0.916792\pi\)
0.996160 + 0.0875486i \(0.0279033\pi\)
\(374\) 11160.1 13300.1i 0.0797855 0.0950847i
\(375\) 0 0
\(376\) 231121. + 84121.2i 1.63480 + 0.595018i
\(377\) 263402.i 1.85326i
\(378\) 0 0
\(379\) 75720.5 0.527151 0.263575 0.964639i \(-0.415098\pi\)
0.263575 + 0.964639i \(0.415098\pi\)
\(380\) 541.467 1487.67i 0.00374977 0.0103024i
\(381\) 0 0
\(382\) −203208. 170512.i −1.39256 1.16850i
\(383\) 180897. + 31897.0i 1.23320 + 0.217446i 0.751999 0.659165i \(-0.229090\pi\)
0.481200 + 0.876611i \(0.340201\pi\)
\(384\) 0 0
\(385\) −1807.85 + 1516.97i −0.0121967 + 0.0102342i
\(386\) −57404.2 + 33142.3i −0.385273 + 0.222438i
\(387\) 0 0
\(388\) −5068.15 + 8778.29i −0.0336656 + 0.0583104i
\(389\) −4172.15 + 735.663i −0.0275715 + 0.00486161i −0.187417 0.982280i \(-0.560012\pi\)
0.159845 + 0.987142i \(0.448900\pi\)
\(390\) 0 0
\(391\) −31741.3 + 11552.9i −0.207621 + 0.0755678i
\(392\) 44336.7 + 121814.i 0.288530 + 0.792731i
\(393\) 0 0
\(394\) −10561.0 59894.4i −0.0680319 0.385828i
\(395\) 99005.7 + 57161.0i 0.634551 + 0.366358i
\(396\) 0 0
\(397\) 3127.34 + 5416.72i 0.0198424 + 0.0343681i 0.875776 0.482718i \(-0.160350\pi\)
−0.855934 + 0.517086i \(0.827017\pi\)
\(398\) −153569. 183016.i −0.969476 1.15538i
\(399\) 0 0
\(400\) −22492.6 + 127562.i −0.140579 + 0.797261i
\(401\) −114476. + 136427.i −0.711910 + 0.848422i −0.993818 0.111020i \(-0.964588\pi\)
0.281908 + 0.959441i \(0.409033\pi\)
\(402\) 0 0
\(403\) 236234. + 85982.1i 1.45456 + 0.529417i
\(404\) 2613.05i 0.0160097i
\(405\) 0 0
\(406\) 65906.3 0.399830
\(407\) −3022.88 + 8305.30i −0.0182487 + 0.0501379i
\(408\) 0 0
\(409\) −180496. 151454.i −1.07900 0.905389i −0.0831628 0.996536i \(-0.526502\pi\)
−0.995837 + 0.0911473i \(0.970947\pi\)
\(410\) 87255.0 + 15385.4i 0.519066 + 0.0915253i
\(411\) 0 0
\(412\) 2343.12 1966.11i 0.0138038 0.0115828i
\(413\) −96590.2 + 55766.4i −0.566282 + 0.326943i
\(414\) 0 0
\(415\) 15914.7 27565.0i 0.0924063 0.160052i
\(416\) −33018.1 + 5821.98i −0.190794 + 0.0336421i
\(417\) 0 0
\(418\) −6254.45 + 2276.43i −0.0357961 + 0.0130287i
\(419\) −81688.7 224438.i −0.465301 1.27840i −0.921449 0.388500i \(-0.872993\pi\)
0.456148 0.889904i \(-0.349229\pi\)
\(420\) 0 0
\(421\) 22489.4 + 127544.i 0.126886 + 0.719606i 0.980170 + 0.198159i \(0.0634964\pi\)
−0.853284 + 0.521447i \(0.825393\pi\)
\(422\) 140900. + 81348.8i 0.791201 + 0.456800i
\(423\) 0 0
\(424\) 16330.8 + 28285.7i 0.0908395 + 0.157339i
\(425\) 117459. + 139982.i 0.650290 + 0.774985i
\(426\) 0 0
\(427\) −20457.6 + 116021.i −0.112202 + 0.636327i
\(428\) −1653.41 + 1970.46i −0.00902594 + 0.0107567i
\(429\) 0 0
\(430\) −67943.5 24729.4i −0.367461 0.133745i
\(431\) 200264.i 1.07807i 0.842283 + 0.539036i \(0.181211\pi\)
−0.842283 + 0.539036i \(0.818789\pi\)
\(432\) 0 0
\(433\) −280494. −1.49606 −0.748028 0.663667i \(-0.768999\pi\)
−0.748028 + 0.663667i \(0.768999\pi\)
\(434\) 21513.8 59108.6i 0.114219 0.313813i
\(435\) 0 0
\(436\) 2834.57 + 2378.49i 0.0149113 + 0.0125120i
\(437\) 12752.4 + 2248.60i 0.0667776 + 0.0117747i
\(438\) 0 0
\(439\) −98639.1 + 82768.1i −0.511823 + 0.429471i −0.861770 0.507299i \(-0.830644\pi\)
0.349947 + 0.936770i \(0.386200\pi\)
\(440\) −7176.25 + 4143.21i −0.0370674 + 0.0214009i
\(441\) 0 0
\(442\) −227120. + 393383.i −1.16255 + 2.01359i
\(443\) −197872. + 34890.1i −1.00827 + 0.177785i −0.653305 0.757095i \(-0.726618\pi\)
−0.354964 + 0.934880i \(0.615507\pi\)
\(444\) 0 0
\(445\) −59337.0 + 21596.9i −0.299644 + 0.109061i
\(446\) −57156.4 157036.i −0.287339 0.789459i
\(447\) 0 0
\(448\) −11785.9 66841.4i −0.0587230 0.333035i
\(449\) 73795.8 + 42606.0i 0.366049 + 0.211338i 0.671731 0.740795i \(-0.265551\pi\)
−0.305682 + 0.952134i \(0.598884\pi\)
\(450\) 0 0
\(451\) −9948.18 17230.8i −0.0489092 0.0847132i
\(452\) 1040.33 + 1239.82i 0.00509208 + 0.00606850i
\(453\) 0 0
\(454\) 28219.3 160040.i 0.136910 0.776455i
\(455\) 39688.1 47298.5i 0.191707 0.228467i
\(456\) 0 0
\(457\) 48536.5 + 17665.8i 0.232400 + 0.0845866i 0.455595 0.890187i \(-0.349427\pi\)
−0.223195 + 0.974774i \(0.571649\pi\)
\(458\) 823.246i 0.00392463i
\(459\) 0 0
\(460\) −964.100 −0.00455624
\(461\) 50708.6 139321.i 0.238605 0.655563i −0.761369 0.648319i \(-0.775472\pi\)
0.999974 0.00724317i \(-0.00230559\pi\)
\(462\) 0 0
\(463\) 211282. + 177287.i 0.985602 + 0.827018i 0.984925 0.172982i \(-0.0553402\pi\)
0.000676500 1.00000i \(0.499785\pi\)
\(464\) 240797. + 42459.0i 1.11845 + 0.197212i
\(465\) 0 0
\(466\) −180470. + 151432.i −0.831060 + 0.697342i
\(467\) −240247. + 138707.i −1.10160 + 0.636010i −0.936641 0.350290i \(-0.886083\pi\)
−0.164961 + 0.986300i \(0.552750\pi\)
\(468\) 0 0
\(469\) −56370.6 + 97636.8i −0.256276 + 0.443882i
\(470\) 192929. 34018.7i 0.873379 0.154000i
\(471\) 0 0
\(472\) −367999. + 133941.i −1.65182 + 0.601214i
\(473\) 5553.27 + 15257.5i 0.0248214 + 0.0681962i
\(474\) 0 0
\(475\) −12164.4 68987.7i −0.0539142 0.305763i
\(476\) 5257.45 + 3035.39i 0.0232039 + 0.0133968i
\(477\) 0 0
\(478\) 32045.8 + 55504.9i 0.140254 + 0.242927i
\(479\) −191385. 228084.i −0.834136 0.994085i −0.999969 0.00793071i \(-0.997476\pi\)
0.165832 0.986154i \(-0.446969\pi\)
\(480\) 0 0
\(481\) 40153.6 227722.i 0.173554 0.984273i
\(482\) −296343. + 353168.i −1.27556 + 1.52015i
\(483\) 0 0
\(484\) 12316.8 + 4482.93i 0.0525782 + 0.0191369i
\(485\) 135007.i 0.573948i
\(486\) 0 0
\(487\) 37822.8 0.159476 0.0797381 0.996816i \(-0.474592\pi\)
0.0797381 + 0.996816i \(0.474592\pi\)
\(488\) −141480. + 388713.i −0.594094 + 1.63226i
\(489\) 0 0
\(490\) 79096.9 + 66370.2i 0.329433 + 0.276427i
\(491\) 309745. + 54616.3i 1.28482 + 0.226548i 0.774024 0.633157i \(-0.218241\pi\)
0.510792 + 0.859704i \(0.329352\pi\)
\(492\) 0 0
\(493\) 264242. 221725.i 1.08720 0.912265i
\(494\) 150806. 87067.9i 0.617966 0.356783i
\(495\) 0 0
\(496\) 116683. 202101.i 0.474290 0.821494i
\(497\) −39510.4 + 6966.76i −0.159955 + 0.0282045i
\(498\) 0 0
\(499\) 280957. 102260.i 1.12834 0.410681i 0.290648 0.956830i \(-0.406129\pi\)
0.837688 + 0.546150i \(0.183907\pi\)
\(500\) 4104.59 + 11277.3i 0.0164184 + 0.0451091i
\(501\) 0 0
\(502\) −44096.8 250085.i −0.174984 0.992386i
\(503\) −300466. 173474.i −1.18757 0.685644i −0.229817 0.973234i \(-0.573813\pi\)
−0.957754 + 0.287590i \(0.907146\pi\)
\(504\) 0 0
\(505\) 17401.8 + 30140.8i 0.0682356 + 0.118188i
\(506\) 2605.39 + 3104.98i 0.0101759 + 0.0121271i
\(507\) 0 0
\(508\) 3574.36 20271.2i 0.0138507 0.0785510i
\(509\) 189996. 226428.i 0.733344 0.873965i −0.262510 0.964929i \(-0.584550\pi\)
0.995854 + 0.0909638i \(0.0289948\pi\)
\(510\) 0 0
\(511\) −105985. 38575.6i −0.405886 0.147731i
\(512\) 236648.i 0.902741i
\(513\) 0 0
\(514\) 324407. 1.22790
\(515\) −13933.8 + 38282.8i −0.0525357 + 0.144341i
\(516\) 0 0
\(517\) −33700.5 28278.0i −0.126083 0.105796i
\(518\) −56978.9 10046.9i −0.212351 0.0374432i
\(519\) 0 0
\(520\) 166075. 139354.i 0.614185 0.515362i
\(521\) 351292. 202819.i 1.29417 0.747192i 0.314783 0.949164i \(-0.398068\pi\)
0.979391 + 0.201971i \(0.0647348\pi\)
\(522\) 0 0
\(523\) 90472.8 156703.i 0.330761 0.572895i −0.651900 0.758305i \(-0.726028\pi\)
0.982661 + 0.185410i \(0.0593612\pi\)
\(524\) −18650.5 + 3288.59i −0.0679249 + 0.0119770i
\(525\) 0 0
\(526\) 381703. 138929.i 1.37960 0.502135i
\(527\) −112600. 309365.i −0.405430 1.11391i
\(528\) 0 0
\(529\) 47224.5 + 267824.i 0.168755 + 0.957056i
\(530\) 22530.0 + 13007.7i 0.0802063 + 0.0463072i
\(531\) 0 0
\(532\) −1163.64 2015.48i −0.00411145 0.00712124i
\(533\) 334600. + 398761.i 1.17780 + 1.40365i
\(534\) 0 0
\(535\) 5949.22 33739.7i 0.0207851 0.117878i
\(536\) −254454. + 303246.i −0.885685 + 1.05552i
\(537\) 0 0
\(538\) −463437. 168677.i −1.60113 0.582763i
\(539\) 23186.8i 0.0798110i
\(540\) 0 0
\(541\) 49286.0 0.168395 0.0841975 0.996449i \(-0.473167\pi\)
0.0841975 + 0.996449i \(0.473167\pi\)
\(542\) 7459.46 20494.7i 0.0253927 0.0697658i
\(543\) 0 0
\(544\) 33634.3 + 28222.6i 0.113654 + 0.0953671i
\(545\) −48535.8 8558.17i −0.163407 0.0288130i
\(546\) 0 0
\(547\) −201260. + 168877.i −0.672641 + 0.564413i −0.913846 0.406061i \(-0.866902\pi\)
0.241205 + 0.970474i \(0.422457\pi\)
\(548\) 14088.3 8133.90i 0.0469136 0.0270856i
\(549\) 0 0
\(550\) 10963.6 18989.5i 0.0362433 0.0627753i
\(551\) −130227. + 22962.6i −0.428942 + 0.0756341i
\(552\) 0 0
\(553\) 157922. 57479.0i 0.516408 0.187957i
\(554\) 81431.5 + 223731.i 0.265322 + 0.728966i
\(555\) 0 0
\(556\) −326.863 1853.73i −0.00105735 0.00599650i
\(557\) −361469. 208694.i −1.16509 0.672667i −0.212575 0.977145i \(-0.568185\pi\)
−0.952520 + 0.304477i \(0.901518\pi\)
\(558\) 0 0
\(559\) −212399. 367885.i −0.679717 1.17730i
\(560\) −36841.8 43906.4i −0.117480 0.140008i
\(561\) 0 0
\(562\) −56350.8 + 319581.i −0.178413 + 1.01183i
\(563\) 354009. 421892.i 1.11686 1.33102i 0.179059 0.983838i \(-0.442695\pi\)
0.937798 0.347181i \(-0.112861\pi\)
\(564\) 0 0
\(565\) −20256.6 7372.81i −0.0634557 0.0230960i
\(566\) 134826.i 0.420862i
\(567\) 0 0
\(568\) −140870. −0.436639
\(569\) 97084.8 266738.i 0.299866 0.823874i −0.694656 0.719342i \(-0.744443\pi\)
0.994522 0.104532i \(-0.0333344\pi\)
\(570\) 0 0
\(571\) 214704. + 180158.i 0.658517 + 0.552561i 0.909642 0.415393i \(-0.136356\pi\)
−0.251125 + 0.967955i \(0.580800\pi\)
\(572\) 2867.17 + 505.560i 0.00876319 + 0.00154519i
\(573\) 0 0
\(574\) 99774.8 83721.0i 0.302829 0.254103i
\(575\) −36944.8 + 21330.1i −0.111742 + 0.0645144i
\(576\) 0 0
\(577\) 14979.1 25944.6i 0.0449919 0.0779283i −0.842652 0.538458i \(-0.819007\pi\)
0.887644 + 0.460530i \(0.152340\pi\)
\(578\) 247658. 43668.7i 0.741303 0.130712i
\(579\) 0 0
\(580\) 9251.59 3367.30i 0.0275018 0.0100098i
\(581\) −16003.2 43968.5i −0.0474084 0.130253i
\(582\) 0 0
\(583\) −1014.46 5753.29i −0.00298468 0.0169270i
\(584\) −342965. 198011.i −1.00560 0.580582i
\(585\) 0 0
\(586\) 234606. + 406350.i 0.683194 + 1.18333i
\(587\) 51892.9 + 61843.6i 0.150602 + 0.179481i 0.836071 0.548621i \(-0.184847\pi\)
−0.685469 + 0.728102i \(0.740403\pi\)
\(588\) 0 0
\(589\) −21915.9 + 124291.i −0.0631725 + 0.358269i
\(590\) −200503. + 238951.i −0.575994 + 0.686443i
\(591\) 0 0
\(592\) −201707. 73415.3i −0.575543 0.209480i
\(593\) 381690.i 1.08543i −0.839917 0.542715i \(-0.817396\pi\)
0.839917 0.542715i \(-0.182604\pi\)
\(594\) 0 0
\(595\) −80857.8 −0.228396
\(596\) 5183.54 14241.7i 0.0145926 0.0400930i
\(597\) 0 0
\(598\) −81235.1 68164.4i −0.227165 0.190614i
\(599\) −526210. 92785.0i −1.46658 0.258598i −0.617378 0.786667i \(-0.711805\pi\)
−0.849201 + 0.528069i \(0.822916\pi\)
\(600\) 0 0
\(601\) −90810.2 + 76198.8i −0.251412 + 0.210960i −0.759780 0.650180i \(-0.774693\pi\)
0.508368 + 0.861140i \(0.330249\pi\)
\(602\) −92049.4 + 53144.7i −0.253997 + 0.146645i
\(603\) 0 0
\(604\) 1913.71 3314.64i 0.00524569 0.00908580i
\(605\) −171925. + 30315.0i −0.469708 + 0.0828223i
\(606\) 0 0
\(607\) −312790. + 113846.i −0.848936 + 0.308988i −0.729607 0.683867i \(-0.760297\pi\)
−0.119330 + 0.992855i \(0.538075\pi\)
\(608\) −5756.84 15816.8i −0.0155732 0.0427869i
\(609\) 0 0
\(610\) 57214.5 + 324480.i 0.153761 + 0.872023i
\(611\) 996776. + 575489.i 2.67002 + 1.54154i
\(612\) 0 0
\(613\) −157547. 272880.i −0.419266 0.726189i 0.576600 0.817027i \(-0.304379\pi\)
−0.995866 + 0.0908370i \(0.971046\pi\)
\(614\) 94152.2 + 112206.i 0.249743 + 0.297632i
\(615\) 0 0
\(616\) −2115.27 + 11996.3i −0.00557447 + 0.0316144i
\(617\) −362195. + 431647.i −0.951419 + 1.13386i 0.0394766 + 0.999220i \(0.487431\pi\)
−0.990895 + 0.134636i \(0.957013\pi\)
\(618\) 0 0
\(619\) −391662. 142553.i −1.02219 0.372045i −0.224085 0.974570i \(-0.571939\pi\)
−0.798100 + 0.602524i \(0.794162\pi\)
\(620\) 9396.55i 0.0244447i
\(621\) 0 0
\(622\) −8365.94 −0.0216239
\(623\) −31748.2 + 87227.5i −0.0817981 + 0.224738i
\(624\) 0 0
\(625\) 107556. + 90250.3i 0.275344 + 0.231041i
\(626\) −529170. 93307.0i −1.35035 0.238103i
\(627\) 0 0
\(628\) −9907.25 + 8313.17i −0.0251208 + 0.0210789i
\(629\) −262249. + 151410.i −0.662846 + 0.382694i
\(630\) 0 0
\(631\) 284792. 493273.i 0.715267 1.23888i −0.247589 0.968865i \(-0.579638\pi\)
0.962856 0.270014i \(-0.0870284\pi\)
\(632\) 581123. 102468.i 1.45490 0.256538i
\(633\) 0 0
\(634\) −119281. + 43414.7i −0.296751 + 0.108009i
\(635\) 93768.4 + 257627.i 0.232546 + 0.638915i
\(636\) 0 0
\(637\) 105340. + 597416.i 0.259607 + 1.47230i
\(638\) −35846.3 20695.9i −0.0880649 0.0508443i
\(639\) 0 0
\(640\) −106015. 183624.i −0.258826 0.448300i
\(641\) 62890.6 + 74950.1i 0.153063 + 0.182413i 0.837127 0.547009i \(-0.184234\pi\)
−0.684064 + 0.729422i \(0.739789\pi\)
\(642\) 0 0
\(643\) −81087.7 + 459871.i −0.196125 + 1.11228i 0.714683 + 0.699449i \(0.246571\pi\)
−0.910808 + 0.412831i \(0.864540\pi\)
\(644\) −910.998 + 1085.69i −0.00219657 + 0.00261777i
\(645\) 0 0
\(646\) −214290. 77995.3i −0.513497 0.186897i
\(647\) 308321.i 0.736537i 0.929719 + 0.368269i \(0.120049\pi\)
−0.929719 + 0.368269i \(0.879951\pi\)
\(648\) 0 0
\(649\) 70046.9 0.166303
\(650\) −196209. + 539081.i −0.464401 + 1.27593i
\(651\) 0 0
\(652\) −5530.93 4641.00i −0.0130108 0.0109173i
\(653\) 286044. + 50437.3i 0.670821 + 0.118284i 0.498677 0.866788i \(-0.333819\pi\)
0.172144 + 0.985072i \(0.444930\pi\)
\(654\) 0 0
\(655\) 193228. 162138.i 0.450390 0.377922i
\(656\) 418475. 241607.i 0.972439 0.561438i
\(657\) 0 0
\(658\) 143994. 249405.i 0.332578 0.576042i
\(659\) −85168.9 + 15017.6i −0.196115 + 0.0345803i −0.270843 0.962624i \(-0.587302\pi\)
0.0747279 + 0.997204i \(0.476191\pi\)
\(660\) 0 0
\(661\) 94722.6 34476.2i 0.216796 0.0789072i −0.231339 0.972873i \(-0.574311\pi\)
0.448135 + 0.893966i \(0.352088\pi\)
\(662\) 122673. + 337040.i 0.279919 + 0.769070i
\(663\) 0 0
\(664\) −28528.9 161795.i −0.0647066 0.366969i
\(665\) 26844.5 + 15498.7i 0.0607033 + 0.0350471i
\(666\) 0 0
\(667\) 40264.5 + 69740.2i 0.0905046 + 0.156759i
\(668\) 916.507 + 1092.25i 0.00205392 + 0.00244776i
\(669\) 0 0
\(670\) −54752.6 + 310518.i −0.121971 + 0.691730i
\(671\) 47559.6 56679.4i 0.105631 0.125887i
\(672\) 0 0
\(673\) 574259. + 209013.i 1.26788 + 0.461470i 0.886405 0.462910i \(-0.153195\pi\)
0.381473 + 0.924380i \(0.375417\pi\)
\(674\) 130596.i 0.287483i
\(675\) 0 0
\(676\) −50384.6 −0.110257
\(677\) 288194. 791806.i 0.628792 1.72759i −0.0555745 0.998455i \(-0.517699\pi\)
0.684367 0.729138i \(-0.260079\pi\)
\(678\) 0 0
\(679\) −152033. 127571.i −0.329760 0.276702i
\(680\) −279597. 49300.4i −0.604664 0.106619i
\(681\) 0 0
\(682\) −30262.5 + 25393.3i −0.0650634 + 0.0545947i
\(683\) −26369.8 + 15224.6i −0.0565283 + 0.0326366i −0.527998 0.849246i \(-0.677057\pi\)
0.471469 + 0.881882i \(0.343724\pi\)
\(684\) 0 0
\(685\) −108337. + 187645.i −0.230885 + 0.399904i
\(686\) 321327. 56658.6i 0.682808 0.120398i
\(687\) 0 0
\(688\) −370551. + 134870.i −0.782837 + 0.284929i
\(689\) 52275.9 + 143627.i 0.110119 + 0.302550i
\(690\) 0 0
\(691\) 80071.0 + 454105.i 0.167695 + 0.951044i 0.946242 + 0.323459i \(0.104846\pi\)
−0.778548 + 0.627586i \(0.784043\pi\)
\(692\) −21746.6 12555.4i −0.0454128 0.0262191i
\(693\) 0 0
\(694\) 72877.8 + 126228.i 0.151313 + 0.262082i
\(695\) 16115.4 + 19205.6i 0.0333635 + 0.0397610i
\(696\) 0 0
\(697\) 118374. 671334.i 0.243664 1.38189i
\(698\) 328027. 390928.i 0.673285 0.802390i
\(699\) 0 0
\(700\) 7204.67 + 2622.29i 0.0147034 + 0.00535160i
\(701\) 614818.i 1.25115i 0.780163 + 0.625576i \(0.215136\pi\)
−0.780163 + 0.625576i \(0.784864\pi\)
\(702\) 0 0
\(703\) 116088. 0.234896
\(704\) −14579.2 + 40055.9i −0.0294162 + 0.0808204i
\(705\) 0 0
\(706\) −264079. 221589.i −0.529816 0.444568i
\(707\) 50385.3 + 8884.28i 0.100801 + 0.0177739i
\(708\) 0 0
\(709\) 241186. 202379.i 0.479800 0.402600i −0.370554 0.928811i \(-0.620832\pi\)
0.850354 + 0.526211i \(0.176388\pi\)
\(710\) −97172.4 + 56102.5i −0.192764 + 0.111292i
\(711\) 0 0
\(712\) −162966. + 282265.i −0.321467 + 0.556797i
\(713\) 75690.6 13346.3i 0.148889 0.0262532i
\(714\) 0 0
\(715\) −36438.9 + 13262.7i −0.0712776 + 0.0259429i
\(716\) −5116.35 14057.1i −0.00998008 0.0274201i
\(717\) 0 0
\(718\) −86819.7 492379.i −0.168411 0.955104i
\(719\) −235409. 135914.i −0.455371 0.262909i 0.254725 0.967014i \(-0.418015\pi\)
−0.710096 + 0.704105i \(0.751348\pi\)
\(720\) 0 0
\(721\) 29944.4 + 51865.2i 0.0576030 + 0.0997713i
\(722\) −288205. 343470.i −0.552876 0.658892i
\(723\) 0 0
\(724\) 2981.69 16910.0i 0.00568833 0.0322601i
\(725\) 280026. 333722.i 0.532749 0.634905i
\(726\) 0 0
\(727\) −635226. 231203.i −1.20187 0.437447i −0.337997 0.941147i \(-0.609749\pi\)
−0.863878 + 0.503701i \(0.831971\pi\)
\(728\) 318698.i 0.601336i
\(729\) 0 0
\(730\) −315437. −0.591925
\(731\) −190267. + 522753.i −0.356064 + 0.978277i
\(732\) 0 0
\(733\) 385837. + 323756.i 0.718118 + 0.602573i 0.926864 0.375397i \(-0.122494\pi\)
−0.208746 + 0.977970i \(0.566938\pi\)
\(734\) −222705. 39268.9i −0.413369 0.0728882i
\(735\) 0 0
\(736\) −7852.14 + 6588.73i −0.0144955 + 0.0121631i
\(737\) 61319.7 35403.0i 0.112893 0.0651785i
\(738\) 0 0
\(739\) −158873. + 275175.i −0.290911 + 0.503873i −0.974025 0.226439i \(-0.927292\pi\)
0.683114 + 0.730311i \(0.260625\pi\)
\(740\) −8511.73 + 1500.85i −0.0155437 + 0.00274077i
\(741\) 0 0
\(742\) 35937.2 13080.1i 0.0652733 0.0237576i
\(743\) −25391.3 69762.1i −0.0459947 0.126369i 0.914569 0.404431i \(-0.132530\pi\)
−0.960563 + 0.278061i \(0.910308\pi\)
\(744\) 0 0
\(745\) 35052.8 + 198794.i 0.0631553 + 0.358171i
\(746\) −85959.1 49628.5i −0.154459 0.0891772i
\(747\) 0 0
\(748\) −1906.35 3301.89i −0.00340721 0.00590145i
\(749\) −32373.2 38580.8i −0.0577061 0.0687714i
\(750\) 0 0
\(751\) 124048. 703510.i 0.219943 1.24736i −0.652178 0.758066i \(-0.726145\pi\)
0.872121 0.489291i \(-0.162744\pi\)
\(752\) 686776. 818468.i 1.21445 1.44732i
\(753\) 0 0
\(754\) 1.01762e6 + 370382.i 1.78995 + 0.651489i
\(755\) 50978.0i 0.0894312i
\(756\) 0 0
\(757\) 128518. 0.224271 0.112136 0.993693i \(-0.464231\pi\)
0.112136 + 0.993693i \(0.464231\pi\)
\(758\) 106474. 292536.i 0.185313 0.509144i
\(759\) 0 0
\(760\) 83375.3 + 69960.2i 0.144348 + 0.121122i
\(761\) −351980. 62063.5i −0.607783 0.107169i −0.138718 0.990332i \(-0.544298\pi\)
−0.469065 + 0.883163i \(0.655409\pi\)
\(762\) 0 0
\(763\) −55500.0 + 46570.0i −0.0953331 + 0.0799940i
\(764\) −50448.6 + 29126.5i −0.0864296 + 0.0499002i
\(765\) 0 0
\(766\) 377597. 654018.i 0.643534 1.11463i
\(767\) −1.80479e6 + 318232.i −3.06785 + 0.540946i
\(768\) 0 0
\(769\) 376537. 137048.i 0.636730 0.231751i −0.00342793 0.999994i \(-0.501091\pi\)
0.640158 + 0.768243i \(0.278869\pi\)
\(770\) 3318.48 + 9117.46i 0.00559704 + 0.0153777i
\(771\) 0 0
\(772\) 2527.64 + 14334.9i 0.00424112 + 0.0240526i
\(773\) −380708. 219802.i −0.637137 0.367851i 0.146374 0.989229i \(-0.453240\pi\)
−0.783511 + 0.621378i \(0.786573\pi\)
\(774\) 0 0
\(775\) −207893. 360080.i −0.346127 0.599510i
\(776\) −447930. 533822.i −0.743852 0.886489i
\(777\) 0 0
\(778\) −3024.54 + 17153.0i −0.00499689 + 0.0283388i
\(779\) −167980. + 200191.i −0.276811 + 0.329890i
\(780\) 0 0
\(781\) 23677.3 + 8617.85i 0.0388178 + 0.0141285i
\(782\) 138873.i 0.227094i
\(783\) 0 0
\(784\) 563126. 0.916165
\(785\) 58915.2 161868.i 0.0956067 0.262677i
\(786\) 0 0
\(787\) −611134. 512802.i −0.986704 0.827943i −0.00161698 0.999999i \(-0.500515\pi\)
−0.985087 + 0.172056i \(0.944959\pi\)
\(788\) −13152.8 2319.19i −0.0211819 0.00373495i
\(789\) 0 0
\(790\) 360051. 302118.i 0.576912 0.484086i
\(791\) −27443.5 + 15844.5i −0.0438619 + 0.0253237i
\(792\) 0 0
\(793\) −967890. + 1.67643e6i −1.53914 + 2.66588i
\(794\) 25324.3 4465.35i 0.0401694 0.00708296i
\(795\) 0 0
\(796\) −49300.7 + 17944.0i −0.0778085 + 0.0283200i
\(797\) 389198. + 1.06931e6i 0.612709 + 1.68341i 0.724157 + 0.689635i \(0.242229\pi\)
−0.111448 + 0.993770i \(0.535549\pi\)
\(798\) 0 0
\(799\) −261738. 1.48439e6i −0.409989 2.32516i
\(800\) 48022.3 + 27725.7i 0.0750349 + 0.0433214i
\(801\) 0 0
\(802\) 366097. + 634099.i 0.569177 + 0.985844i
\(803\) 45531.8 + 54262.7i 0.0706128 + 0.0841531i
\(804\) 0 0
\(805\) 3277.91 18590.0i 0.00505831 0.0286871i
\(806\) 664361. 791754.i 1.02267 1.21877i
\(807\) 0 0
\(808\) 168809. + 61441.6i 0.258567 + 0.0941108i
\(809\) 752497.i 1.14976i −0.818237 0.574881i \(-0.805048\pi\)
0.818237 0.574881i \(-0.194952\pi\)
\(810\) 0 0
\(811\) −145940. −0.221888 −0.110944 0.993827i \(-0.535387\pi\)
−0.110944 + 0.993827i \(0.535387\pi\)
\(812\) 4950.06 13600.2i 0.00750755 0.0206268i
\(813\) 0 0
\(814\) 27835.8 + 23357.0i 0.0420102 + 0.0352507i
\(815\) 94704.9 + 16699.0i 0.142579 + 0.0251406i
\(816\) 0 0
\(817\) 163368. 137082.i 0.244751 0.205370i
\(818\) −838928. + 484355.i −1.25377 + 0.723865i
\(819\) 0 0
\(820\) 9728.38 16850.0i 0.0144681 0.0250596i
\(821\) 437205. 77091.0i 0.648633 0.114371i 0.160355 0.987059i \(-0.448736\pi\)
0.488278 + 0.872688i \(0.337625\pi\)
\(822\) 0 0
\(823\) 10177.4 3704.25i 0.0150257 0.00546892i −0.334496 0.942397i \(-0.608566\pi\)
0.349522 + 0.936928i \(0.386344\pi\)
\(824\) 71921.0 + 197601.i 0.105926 + 0.291028i
\(825\) 0 0
\(826\) 79625.6 + 451579.i 0.116706 + 0.661872i
\(827\) 602735. + 347989.i 0.881283 + 0.508809i 0.871081 0.491139i \(-0.163419\pi\)
0.0102019 + 0.999948i \(0.496753\pi\)
\(828\) 0 0
\(829\) 294129. + 509447.i 0.427986 + 0.741293i 0.996694 0.0812460i \(-0.0258899\pi\)
−0.568708 + 0.822539i \(0.692557\pi\)
\(830\) −84115.3 100245.i −0.122101 0.145514i
\(831\) 0 0
\(832\) 193658. 1.09829e6i 0.279762 1.58661i
\(833\) 510648. 608566.i 0.735921 0.877037i
\(834\) 0 0
\(835\) −17845.6 6495.27i −0.0255952 0.00931588i
\(836\) 1461.62i 0.00209133i
\(837\) 0 0
\(838\) −981952. −1.39831
\(839\) 199851. 549086.i 0.283911 0.780039i −0.712975 0.701189i \(-0.752653\pi\)
0.996886 0.0788501i \(-0.0251249\pi\)
\(840\) 0 0
\(841\) −88154.3 73970.2i −0.124638 0.104584i
\(842\) 524371. + 92460.8i 0.739630 + 0.130417i
\(843\) 0 0
\(844\) 27369.5 22965.7i 0.0384222 0.0322400i
\(845\) 581173. 335540.i 0.813939 0.469928i
\(846\) 0 0
\(847\) −128317. + 222252.i −0.178862 + 0.309799i
\(848\) 139727. 24637.7i 0.194308 0.0342617i
\(849\) 0 0
\(850\) 705965. 256950.i 0.977114 0.355640i
\(851\) −24179.1 66431.5i −0.0333873 0.0917308i
\(852\) 0 0
\(853\) −131822. 747602.i −0.181172 1.02748i −0.930776 0.365591i \(-0.880867\pi\)
0.749604 0.661887i \(-0.230244\pi\)
\(854\) 419464. + 242178.i 0.575147 + 0.332061i
\(855\) 0 0
\(856\) −88419.1 153146.i −0.120670 0.209006i
\(857\) 257103. + 306404.i 0.350063 + 0.417188i 0.912129 0.409904i \(-0.134438\pi\)
−0.562066 + 0.827092i \(0.689993\pi\)
\(858\) 0 0
\(859\) −141991. + 805270.i −0.192430 + 1.09133i 0.723600 + 0.690219i \(0.242486\pi\)
−0.916031 + 0.401108i \(0.868625\pi\)
\(860\) −10206.1 + 12163.2i −0.0137995 + 0.0164456i
\(861\) 0 0
\(862\) 773692. + 281601.i 1.04125 + 0.378983i
\(863\) 959981.i 1.28896i 0.764619 + 0.644482i \(0.222927\pi\)
−0.764619 + 0.644482i \(0.777073\pi\)
\(864\) 0 0
\(865\) 334454. 0.446997
\(866\) −394416. + 1.08365e6i −0.525920 + 1.44495i
\(867\) 0 0
\(868\) −10581.6 8879.00i −0.0140447 0.0117849i
\(869\) −103943. 18328.0i −0.137644 0.0242703i
\(870\) 0 0
\(871\) −1.41909e6 + 1.19075e6i −1.87056 + 1.56959i
\(872\) −220307. + 127194.i −0.289731 + 0.167276i
\(873\) 0 0
\(874\) 26619.0 46105.5i 0.0348473 0.0603573i
\(875\) −231406. + 40803.1i −0.302245 + 0.0532939i
\(876\) 0 0
\(877\) −256957. + 93524.7i −0.334088 + 0.121598i −0.503617 0.863927i \(-0.667998\pi\)
0.169529 + 0.985525i \(0.445776\pi\)
\(878\) 181062. + 497463.i 0.234876 + 0.645315i
\(879\) 0 0
\(880\) 6250.73 + 35449.6i 0.00807170 + 0.0457769i
\(881\) −231604. 133716.i −0.298396 0.172279i 0.343326 0.939216i \(-0.388446\pi\)
−0.641722 + 0.766937i \(0.721780\pi\)
\(882\) 0 0
\(883\) −3266.91 5658.46i −0.00419002 0.00725733i 0.863923 0.503624i \(-0.168000\pi\)
−0.868113 + 0.496367i \(0.834667\pi\)
\(884\) 64118.6 + 76413.6i 0.0820502 + 0.0977836i
\(885\) 0 0
\(886\) −143444. + 813512.i −0.182732 + 1.03633i
\(887\) 239740. 285711.i 0.304715 0.363145i −0.591857 0.806043i \(-0.701605\pi\)
0.896572 + 0.442898i \(0.146050\pi\)
\(888\) 0 0
\(889\) 378720. + 137843.i 0.479198 + 0.174414i
\(890\) 259609.i 0.327748i
\(891\) 0 0
\(892\) −36698.2 −0.0461228
\(893\) −197629. + 542981.i −0.247826 + 0.680898i
\(894\) 0 0
\(895\) 152630. + 128072.i 0.190543 + 0.159885i
\(896\) −306957. 54124.8i −0.382350 0.0674186i
\(897\) 0 0
\(898\) 268371. 225190.i 0.332799 0.279252i
\(899\) −679719. + 392436.i −0.841028 + 0.485568i
\(900\) 0 0
\(901\) 100080. 173344.i 0.123282 0.213530i
\(902\) −80557.3 + 14204.4i −0.0990129 + 0.0174586i
\(903\) 0 0
\(904\) −104557. + 38055.7i −0.127943 + 0.0465675i
\(905\) 78220.4 + 214909.i 0.0955043 + 0.262396i
\(906\) 0 0
\(907\) −72227.6 409623.i −0.0877988 0.497932i −0.996717 0.0809584i \(-0.974202\pi\)
0.908919 0.416973i \(-0.136909\pi\)
\(908\) −30905.7 17843.4i −0.0374858 0.0216425i
\(909\) 0 0
\(910\) −126924. 219838.i −0.153271 0.265473i
\(911\) −136751. 162974.i −0.164776 0.196373i 0.677338 0.735672i \(-0.263134\pi\)
−0.842114 + 0.539299i \(0.818689\pi\)
\(912\) 0 0
\(913\) −5102.85 + 28939.7i −0.00612168 + 0.0347178i
\(914\) 136499. 162673.i 0.163395 0.194726i
\(915\) 0 0
\(916\) 169.882 + 61.8319i 0.000202468 + 7.36923e-5i
\(917\) 370805.i 0.440967i
\(918\) 0 0
\(919\) −112790. −0.133548 −0.0667741 0.997768i \(-0.521271\pi\)
−0.0667741 + 0.997768i \(0.521271\pi\)
\(920\) 22669.3 62283.3i 0.0267831 0.0735861i
\(921\) 0 0
\(922\) −466943. 391812.i −0.549291 0.460910i
\(923\) −649207. 114473.i −0.762044 0.134369i
\(924\) 0 0
\(925\) −292968. + 245830.i −0.342403 + 0.287310i
\(926\) 982019. 566969.i 1.14524 0.661207i
\(927\) 0 0
\(928\) 52337.5 90651.1i 0.0607738 0.105263i
\(929\) 316551. 55816.5i 0.366786 0.0646742i 0.0127823 0.999918i \(-0.495931\pi\)
0.354004 + 0.935244i \(0.384820\pi\)
\(930\) 0 0
\(931\) −286182. + 104162.i −0.330175 + 0.120174i
\(932\) 17694.3 + 48614.7i 0.0203705 + 0.0559675i
\(933\) 0 0
\(934\) 198051. + 1.12321e6i 0.227030 + 1.28755i
\(935\) 43978.4 + 25390.9i 0.0503056 + 0.0290439i
\(936\) 0 0
\(937\) 68899.7 + 119338.i 0.0784763 + 0.135925i 0.902593 0.430496i \(-0.141661\pi\)
−0.824116 + 0.566420i \(0.808328\pi\)
\(938\) 297941. + 355072.i 0.338629 + 0.403563i
\(939\) 0 0
\(940\) 7470.49 42367.3i 0.00845461 0.0479485i
\(941\) −1.07706e6 + 1.28358e6i −1.21635 + 1.44959i −0.360191 + 0.932879i \(0.617288\pi\)
−0.856160 + 0.516711i \(0.827156\pi\)
\(942\) 0 0
\(943\) 149547. + 54430.7i 0.168172 + 0.0612098i
\(944\) 1.70120e6i 1.90902i
\(945\) 0 0
\(946\) 66753.9 0.0745924
\(947\) 492103. 1.35204e6i 0.548727 1.50761i −0.286704 0.958019i \(-0.592560\pi\)
0.835431 0.549595i \(-0.185218\pi\)
\(948\) 0 0
\(949\) −1.41967e6 1.19124e6i −1.57635 1.32272i
\(950\) −283630. 50011.6i −0.314271 0.0554145i
\(951\) 0 0
\(952\) −319715. + 268272.i −0.352767 + 0.296007i
\(953\) 338219. 195271.i 0.372403 0.215007i −0.302105 0.953275i \(-0.597689\pi\)
0.674508 + 0.738268i \(0.264356\pi\)
\(954\) 0 0
\(955\) 387941. 671934.i 0.425362 0.736749i
\(956\) 13860.7 2444.01i 0.0151659 0.00267416i
\(957\) 0 0
\(958\) −1.15029e6 + 418670.i −1.25336 + 0.456185i
\(959\) 108940. + 299309.i 0.118454 + 0.325449i
\(960\) 0 0
\(961\) −30288.7 171776.i −0.0327970 0.186001i
\(962\) −823313. 475340.i −0.889641 0.513634i
\(963\) 0 0
\(964\) 50620.8 + 87677.7i 0.0544722 + 0.0943486i
\(965\) −124620. 148517.i −0.133824 0.159485i
\(966\) 0 0
\(967\) −150326. + 852540.i −0.160761 + 0.911721i 0.792567 + 0.609785i \(0.208744\pi\)
−0.953328 + 0.301936i \(0.902367\pi\)
\(968\) −579218. + 690285.i −0.618146 + 0.736678i
\(969\) 0 0
\(970\) −521581. 189840.i −0.554343 0.201764i
\(971\) 805538.i 0.854373i −0.904164 0.427186i \(-0.859505\pi\)
0.904164 0.427186i \(-0.140495\pi\)
\(972\) 0 0
\(973\) 36855.4 0.0389292
\(974\) 53184.5 146123.i 0.0560618 0.154029i
\(975\) 0 0
\(976\) 1.37655e6 + 1.15506e6i 1.44508 + 1.21256i
\(977\) −342796. 60444.2i −0.359126 0.0633236i −0.00882579 0.999961i \(-0.502809\pi\)
−0.350300 + 0.936637i \(0.613920\pi\)
\(978\) 0 0
\(979\) 44658.9 37473.3i 0.0465954 0.0390982i
\(980\) 19636.7 11337.2i 0.0204463 0.0118047i
\(981\) 0 0
\(982\) 646550. 1.11986e6i 0.670470 1.16129i
\(983\) 262107. 46216.5i 0.271251 0.0478289i −0.0363680 0.999338i \(-0.511579\pi\)
0.307619 + 0.951510i \(0.400468\pi\)
\(984\) 0 0
\(985\) 167159. 60840.8i 0.172289 0.0627080i
\(986\) −485042. 1.33264e6i −0.498913 1.37075i
\(987\) 0 0
\(988\) −6640.33 37659.2i −0.00680262 0.0385796i
\(989\) −112473. 64936.0i −0.114988 0.0663885i
\(990\) 0 0
\(991\) −415065. 718913.i −0.422638 0.732031i 0.573559 0.819165i \(-0.305563\pi\)
−0.996197 + 0.0871339i \(0.972229\pi\)
\(992\) −64216.7 76530.5i −0.0652567 0.0777698i
\(993\) 0 0
\(994\) −28642.5 + 162440.i −0.0289893 + 0.164406i
\(995\) 449171. 535301.i 0.453697 0.540695i
\(996\) 0 0
\(997\) 1.49897e6 + 545579.i 1.50800 + 0.548867i 0.958118 0.286375i \(-0.0924502\pi\)
0.549883 + 0.835242i \(0.314672\pi\)
\(998\) 1.22923e6i 1.23416i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.17.8 66
3.2 odd 2 27.5.f.a.23.4 yes 66
27.7 even 9 27.5.f.a.20.4 66
27.20 odd 18 inner 81.5.f.a.62.8 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.20.4 66 27.7 even 9
27.5.f.a.23.4 yes 66 3.2 odd 2
81.5.f.a.17.8 66 1.1 even 1 trivial
81.5.f.a.62.8 66 27.20 odd 18 inner