Properties

Label 81.5.f.a.17.7
Level $81$
Weight $5$
Character 81.17
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 17.7
Character \(\chi\) \(=\) 81.17
Dual form 81.5.f.a.62.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.410788 - 1.12863i) q^{2} +(11.1517 + 9.35735i) q^{4} +(-35.6423 - 6.28469i) q^{5} +(50.7952 - 42.6222i) q^{7} +(31.7844 - 18.3507i) q^{8} +(-21.7345 + 37.6453i) q^{10} +(144.976 - 25.5631i) q^{11} +(154.041 - 56.0663i) q^{13} +(-27.2387 - 74.8377i) q^{14} +(32.7914 + 185.970i) q^{16} +(117.897 + 68.0677i) q^{17} +(-137.905 - 238.858i) q^{19} +(-338.662 - 403.602i) q^{20} +(30.7029 - 174.125i) q^{22} +(321.030 - 382.589i) q^{23} +(643.566 + 234.239i) q^{25} -196.887i q^{26} +965.281 q^{28} +(22.1851 - 60.9530i) q^{29} +(-892.294 - 748.724i) q^{31} +(801.663 + 141.355i) q^{32} +(125.254 - 105.100i) q^{34} +(-2078.32 + 1199.92i) q^{35} +(-1249.62 + 2164.41i) q^{37} +(-326.232 + 57.5236i) q^{38} +(-1248.20 + 454.306i) q^{40} +(431.354 + 1185.14i) q^{41} +(-129.173 - 732.574i) q^{43} +(1855.92 + 1071.52i) q^{44} +(-299.926 - 519.487i) q^{46} +(-1032.91 - 1230.97i) q^{47} +(346.568 - 1965.48i) q^{49} +(528.738 - 630.126i) q^{50} +(2242.44 + 816.182i) q^{52} +3827.30i q^{53} -5327.92 q^{55} +(832.345 - 2286.85i) q^{56} +(-59.6801 - 50.0775i) q^{58} +(26.5512 + 4.68169i) q^{59} +(-33.7723 + 28.3383i) q^{61} +(-1211.58 + 699.504i) q^{62} +(-1021.86 + 1769.91i) q^{64} +(-5842.73 + 1030.23i) q^{65} +(3124.90 - 1137.37i) q^{67} +(677.810 + 1862.27i) q^{68} +(500.517 + 2838.57i) q^{70} +(-2541.62 - 1467.40i) q^{71} +(2224.61 + 3853.13i) q^{73} +(1929.49 + 2299.47i) q^{74} +(697.212 - 3954.09i) q^{76} +(6274.51 - 7477.67i) q^{77} +(1896.27 + 690.187i) q^{79} -6834.46i q^{80} +1514.78 q^{82} +(409.909 - 1126.22i) q^{83} +(-3774.32 - 3167.03i) q^{85} +(-879.868 - 155.144i) q^{86} +(4138.86 - 3472.92i) q^{88} +(4841.49 - 2795.24i) q^{89} +(5434.87 - 9413.46i) q^{91} +(7160.03 - 1262.51i) q^{92} +(-1813.62 + 660.103i) q^{94} +(3414.09 + 9380.14i) q^{95} +(-980.336 - 5559.76i) q^{97} +(-2075.94 - 1198.54i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.410788 1.12863i 0.102697 0.282158i −0.877693 0.479222i \(-0.840919\pi\)
0.980390 + 0.197065i \(0.0631409\pi\)
\(3\) 0 0
\(4\) 11.1517 + 9.35735i 0.696978 + 0.584834i
\(5\) −35.6423 6.28469i −1.42569 0.251388i −0.593034 0.805177i \(-0.702070\pi\)
−0.832657 + 0.553790i \(0.813181\pi\)
\(6\) 0 0
\(7\) 50.7952 42.6222i 1.03664 0.869841i 0.0450107 0.998987i \(-0.485668\pi\)
0.991626 + 0.129145i \(0.0412234\pi\)
\(8\) 31.7844 18.3507i 0.496631 0.286730i
\(9\) 0 0
\(10\) −21.7345 + 37.6453i −0.217345 + 0.376453i
\(11\) 144.976 25.5631i 1.19815 0.211266i 0.461249 0.887271i \(-0.347401\pi\)
0.736897 + 0.676005i \(0.236290\pi\)
\(12\) 0 0
\(13\) 154.041 56.0663i 0.911485 0.331753i 0.156639 0.987656i \(-0.449934\pi\)
0.754845 + 0.655903i \(0.227712\pi\)
\(14\) −27.2387 74.8377i −0.138973 0.381825i
\(15\) 0 0
\(16\) 32.7914 + 185.970i 0.128092 + 0.726443i
\(17\) 117.897 + 68.0677i 0.407947 + 0.235528i 0.689907 0.723898i \(-0.257651\pi\)
−0.281960 + 0.959426i \(0.590985\pi\)
\(18\) 0 0
\(19\) −137.905 238.858i −0.382008 0.661657i 0.609341 0.792908i \(-0.291434\pi\)
−0.991349 + 0.131251i \(0.958101\pi\)
\(20\) −338.662 403.602i −0.846655 1.00900i
\(21\) 0 0
\(22\) 30.7029 174.125i 0.0634358 0.359762i
\(23\) 321.030 382.589i 0.606862 0.723230i −0.371890 0.928277i \(-0.621290\pi\)
0.978752 + 0.205047i \(0.0657347\pi\)
\(24\) 0 0
\(25\) 643.566 + 234.239i 1.02971 + 0.374782i
\(26\) 196.887i 0.291252i
\(27\) 0 0
\(28\) 965.281 1.23123
\(29\) 22.1851 60.9530i 0.0263794 0.0724768i −0.925804 0.378004i \(-0.876611\pi\)
0.952183 + 0.305527i \(0.0988327\pi\)
\(30\) 0 0
\(31\) −892.294 748.724i −0.928506 0.779109i 0.0470428 0.998893i \(-0.485020\pi\)
−0.975549 + 0.219784i \(0.929465\pi\)
\(32\) 801.663 + 141.355i 0.782874 + 0.138042i
\(33\) 0 0
\(34\) 125.254 105.100i 0.108351 0.0909174i
\(35\) −2078.32 + 1199.92i −1.69659 + 0.979527i
\(36\) 0 0
\(37\) −1249.62 + 2164.41i −0.912798 + 1.58101i −0.102704 + 0.994712i \(0.532750\pi\)
−0.810094 + 0.586301i \(0.800584\pi\)
\(38\) −326.232 + 57.5236i −0.225923 + 0.0398363i
\(39\) 0 0
\(40\) −1248.20 + 454.306i −0.780122 + 0.283941i
\(41\) 431.354 + 1185.14i 0.256606 + 0.705018i 0.999371 + 0.0354662i \(0.0112916\pi\)
−0.742765 + 0.669552i \(0.766486\pi\)
\(42\) 0 0
\(43\) −129.173 732.574i −0.0698608 0.396200i −0.999608 0.0280014i \(-0.991086\pi\)
0.929747 0.368199i \(-0.120025\pi\)
\(44\) 1855.92 + 1071.52i 0.958637 + 0.553469i
\(45\) 0 0
\(46\) −299.926 519.487i −0.141742 0.245504i
\(47\) −1032.91 1230.97i −0.467590 0.557252i 0.479781 0.877388i \(-0.340716\pi\)
−0.947372 + 0.320136i \(0.896272\pi\)
\(48\) 0 0
\(49\) 346.568 1965.48i 0.144343 0.818610i
\(50\) 528.738 630.126i 0.211495 0.252050i
\(51\) 0 0
\(52\) 2242.44 + 816.182i 0.829305 + 0.301843i
\(53\) 3827.30i 1.36251i 0.732044 + 0.681257i \(0.238566\pi\)
−0.732044 + 0.681257i \(0.761434\pi\)
\(54\) 0 0
\(55\) −5327.92 −1.76130
\(56\) 832.345 2286.85i 0.265416 0.729225i
\(57\) 0 0
\(58\) −59.6801 50.0775i −0.0177408 0.0148863i
\(59\) 26.5512 + 4.68169i 0.00762745 + 0.00134493i 0.177461 0.984128i \(-0.443212\pi\)
−0.169833 + 0.985473i \(0.554323\pi\)
\(60\) 0 0
\(61\) −33.7723 + 28.3383i −0.00907613 + 0.00761578i −0.647314 0.762223i \(-0.724108\pi\)
0.638238 + 0.769839i \(0.279663\pi\)
\(62\) −1211.58 + 699.504i −0.315186 + 0.181973i
\(63\) 0 0
\(64\) −1021.86 + 1769.91i −0.249477 + 0.432106i
\(65\) −5842.73 + 1030.23i −1.38289 + 0.243841i
\(66\) 0 0
\(67\) 3124.90 1137.37i 0.696123 0.253368i 0.0303685 0.999539i \(-0.490332\pi\)
0.665755 + 0.746171i \(0.268110\pi\)
\(68\) 677.810 + 1862.27i 0.146585 + 0.402740i
\(69\) 0 0
\(70\) 500.517 + 2838.57i 0.102146 + 0.579300i
\(71\) −2541.62 1467.40i −0.504189 0.291094i 0.226253 0.974069i \(-0.427352\pi\)
−0.730442 + 0.682975i \(0.760686\pi\)
\(72\) 0 0
\(73\) 2224.61 + 3853.13i 0.417453 + 0.723050i 0.995683 0.0928241i \(-0.0295894\pi\)
−0.578229 + 0.815874i \(0.696256\pi\)
\(74\) 1929.49 + 2299.47i 0.352353 + 0.419918i
\(75\) 0 0
\(76\) 697.212 3954.09i 0.120709 0.684572i
\(77\) 6274.51 7477.67i 1.05827 1.26120i
\(78\) 0 0
\(79\) 1896.27 + 690.187i 0.303841 + 0.110589i 0.489441 0.872036i \(-0.337201\pi\)
−0.185600 + 0.982625i \(0.559423\pi\)
\(80\) 6834.46i 1.06788i
\(81\) 0 0
\(82\) 1514.78 0.225279
\(83\) 409.909 1126.22i 0.0595020 0.163480i −0.906380 0.422464i \(-0.861165\pi\)
0.965882 + 0.258983i \(0.0833875\pi\)
\(84\) 0 0
\(85\) −3774.32 3167.03i −0.522398 0.438344i
\(86\) −879.868 155.144i −0.118965 0.0209768i
\(87\) 0 0
\(88\) 4138.86 3472.92i 0.534460 0.448465i
\(89\) 4841.49 2795.24i 0.611222 0.352889i −0.162221 0.986754i \(-0.551866\pi\)
0.773444 + 0.633865i \(0.218533\pi\)
\(90\) 0 0
\(91\) 5434.87 9413.46i 0.656305 1.13675i
\(92\) 7160.03 1262.51i 0.845939 0.149162i
\(93\) 0 0
\(94\) −1813.62 + 660.103i −0.205253 + 0.0747060i
\(95\) 3414.09 + 9380.14i 0.378293 + 1.03935i
\(96\) 0 0
\(97\) −980.336 5559.76i −0.104191 0.590898i −0.991540 0.129800i \(-0.958567\pi\)
0.887349 0.461099i \(-0.152545\pi\)
\(98\) −2075.94 1198.54i −0.216154 0.124796i
\(99\) 0 0
\(100\) 4984.97 + 8634.22i 0.498497 + 0.863422i
\(101\) −8777.57 10460.7i −0.860462 1.02546i −0.999382 0.0351551i \(-0.988807\pi\)
0.138920 0.990304i \(-0.455637\pi\)
\(102\) 0 0
\(103\) −1631.18 + 9250.89i −0.153754 + 0.871985i 0.806161 + 0.591696i \(0.201541\pi\)
−0.959916 + 0.280289i \(0.909570\pi\)
\(104\) 3867.24 4608.79i 0.357548 0.426109i
\(105\) 0 0
\(106\) 4319.61 + 1572.21i 0.384444 + 0.139926i
\(107\) 14316.5i 1.25046i 0.780442 + 0.625228i \(0.214994\pi\)
−0.780442 + 0.625228i \(0.785006\pi\)
\(108\) 0 0
\(109\) −2023.48 −0.170312 −0.0851562 0.996368i \(-0.527139\pi\)
−0.0851562 + 0.996368i \(0.527139\pi\)
\(110\) −2188.64 + 6013.25i −0.180880 + 0.496963i
\(111\) 0 0
\(112\) 9592.08 + 8048.71i 0.764675 + 0.641638i
\(113\) −18947.1 3340.89i −1.48384 0.261641i −0.627728 0.778432i \(-0.716015\pi\)
−0.856111 + 0.516791i \(0.827126\pi\)
\(114\) 0 0
\(115\) −13846.7 + 11618.7i −1.04701 + 0.878544i
\(116\) 817.759 472.133i 0.0607728 0.0350872i
\(117\) 0 0
\(118\) 16.1908 28.0433i 0.00116280 0.00201402i
\(119\) 8889.79 1567.51i 0.627765 0.110692i
\(120\) 0 0
\(121\) 6606.44 2404.55i 0.451229 0.164234i
\(122\) 18.1102 + 49.7575i 0.00121676 + 0.00334302i
\(123\) 0 0
\(124\) −2944.49 16699.0i −0.191499 1.08604i
\(125\) −1876.47 1083.38i −0.120094 0.0693365i
\(126\) 0 0
\(127\) −12084.8 20931.6i −0.749262 1.29776i −0.948177 0.317742i \(-0.897075\pi\)
0.198915 0.980017i \(-0.436258\pi\)
\(128\) 9949.78 + 11857.7i 0.607286 + 0.723736i
\(129\) 0 0
\(130\) −1237.37 + 7017.48i −0.0732173 + 0.415236i
\(131\) −4739.53 + 5648.35i −0.276180 + 0.329139i −0.886249 0.463210i \(-0.846698\pi\)
0.610068 + 0.792349i \(0.291142\pi\)
\(132\) 0 0
\(133\) −17185.6 6255.04i −0.971540 0.353612i
\(134\) 3994.07i 0.222437i
\(135\) 0 0
\(136\) 4996.37 0.270132
\(137\) −3334.13 + 9160.43i −0.177640 + 0.488062i −0.996273 0.0862549i \(-0.972510\pi\)
0.818633 + 0.574317i \(0.194732\pi\)
\(138\) 0 0
\(139\) −243.736 204.519i −0.0126151 0.0105853i 0.636458 0.771311i \(-0.280399\pi\)
−0.649073 + 0.760726i \(0.724843\pi\)
\(140\) −34404.8 6066.49i −1.75535 0.309515i
\(141\) 0 0
\(142\) −2700.22 + 2265.75i −0.133913 + 0.112366i
\(143\) 20899.0 12066.0i 1.02200 0.590054i
\(144\) 0 0
\(145\) −1173.80 + 2033.08i −0.0558287 + 0.0966981i
\(146\) 5262.61 927.940i 0.246885 0.0435325i
\(147\) 0 0
\(148\) −34188.4 + 12443.6i −1.56083 + 0.568096i
\(149\) 9232.26 + 25365.4i 0.415849 + 1.14254i 0.954031 + 0.299707i \(0.0968889\pi\)
−0.538183 + 0.842828i \(0.680889\pi\)
\(150\) 0 0
\(151\) 6274.17 + 35582.6i 0.275171 + 1.56057i 0.738419 + 0.674342i \(0.235573\pi\)
−0.463248 + 0.886229i \(0.653316\pi\)
\(152\) −8766.44 5061.31i −0.379434 0.219066i
\(153\) 0 0
\(154\) −5862.03 10153.3i −0.247176 0.428122i
\(155\) 27097.9 + 32294.0i 1.12790 + 1.34418i
\(156\) 0 0
\(157\) −1346.51 + 7636.45i −0.0546275 + 0.309808i −0.999862 0.0165827i \(-0.994721\pi\)
0.945235 + 0.326390i \(0.105832\pi\)
\(158\) 1557.93 1856.67i 0.0624072 0.0743739i
\(159\) 0 0
\(160\) −27684.7 10076.4i −1.08143 0.393610i
\(161\) 33116.7i 1.27760i
\(162\) 0 0
\(163\) 42526.9 1.60062 0.800311 0.599585i \(-0.204668\pi\)
0.800311 + 0.599585i \(0.204668\pi\)
\(164\) −6279.41 + 17252.5i −0.233470 + 0.641454i
\(165\) 0 0
\(166\) −1102.70 925.273i −0.0400166 0.0335779i
\(167\) −27972.6 4932.32i −1.00300 0.176855i −0.352052 0.935981i \(-0.614516\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(168\) 0 0
\(169\) −1293.83 + 1085.65i −0.0453006 + 0.0380117i
\(170\) −5124.86 + 2958.84i −0.177331 + 0.102382i
\(171\) 0 0
\(172\) 5414.46 9378.12i 0.183020 0.317000i
\(173\) −34016.6 + 5998.04i −1.13658 + 0.200409i −0.710107 0.704093i \(-0.751354\pi\)
−0.426469 + 0.904502i \(0.640243\pi\)
\(174\) 0 0
\(175\) 42673.8 15532.0i 1.39343 0.507167i
\(176\) 9507.92 + 26122.8i 0.306945 + 0.843324i
\(177\) 0 0
\(178\) −1165.96 6612.50i −0.0367997 0.208702i
\(179\) 23626.9 + 13641.0i 0.737396 + 0.425736i 0.821122 0.570753i \(-0.193349\pi\)
−0.0837257 + 0.996489i \(0.526682\pi\)
\(180\) 0 0
\(181\) −5479.39 9490.59i −0.167253 0.289692i 0.770200 0.637803i \(-0.220156\pi\)
−0.937453 + 0.348111i \(0.886823\pi\)
\(182\) −8391.74 10000.9i −0.253343 0.301923i
\(183\) 0 0
\(184\) 3182.96 18051.5i 0.0940147 0.533184i
\(185\) 58141.9 69290.9i 1.69881 2.02457i
\(186\) 0 0
\(187\) 18832.2 + 6854.36i 0.538540 + 0.196012i
\(188\) 23392.6i 0.661856i
\(189\) 0 0
\(190\) 11989.2 0.332110
\(191\) 23195.6 63729.3i 0.635826 1.74692i −0.0286315 0.999590i \(-0.509115\pi\)
0.664457 0.747326i \(-0.268663\pi\)
\(192\) 0 0
\(193\) 46751.1 + 39228.8i 1.25510 + 1.05315i 0.996186 + 0.0872505i \(0.0278081\pi\)
0.258911 + 0.965901i \(0.416636\pi\)
\(194\) −6677.63 1177.45i −0.177427 0.0312851i
\(195\) 0 0
\(196\) 22256.5 18675.4i 0.579355 0.486137i
\(197\) −48769.1 + 28156.8i −1.25664 + 0.725523i −0.972420 0.233235i \(-0.925069\pi\)
−0.284223 + 0.958758i \(0.591736\pi\)
\(198\) 0 0
\(199\) −7056.96 + 12223.0i −0.178202 + 0.308654i −0.941265 0.337670i \(-0.890361\pi\)
0.763063 + 0.646324i \(0.223695\pi\)
\(200\) 24753.8 4364.76i 0.618845 0.109119i
\(201\) 0 0
\(202\) −15412.0 + 5609.51i −0.377708 + 0.137474i
\(203\) −1471.06 4041.70i −0.0356975 0.0980780i
\(204\) 0 0
\(205\) −7926.22 44951.8i −0.188607 1.06965i
\(206\) 9770.76 + 5641.15i 0.230247 + 0.132933i
\(207\) 0 0
\(208\) 15477.8 + 26808.4i 0.357753 + 0.619647i
\(209\) −26098.8 31103.4i −0.597487 0.712057i
\(210\) 0 0
\(211\) −5587.31 + 31687.2i −0.125498 + 0.711736i 0.855513 + 0.517782i \(0.173242\pi\)
−0.981011 + 0.193954i \(0.937869\pi\)
\(212\) −35813.4 + 42680.7i −0.796845 + 0.949642i
\(213\) 0 0
\(214\) 16158.0 + 5881.03i 0.352826 + 0.128418i
\(215\) 26922.4i 0.582421i
\(216\) 0 0
\(217\) −77236.5 −1.64022
\(218\) −831.222 + 2283.76i −0.0174906 + 0.0480549i
\(219\) 0 0
\(220\) −59415.1 49855.2i −1.22758 1.03007i
\(221\) 21977.2 + 3875.18i 0.449975 + 0.0793427i
\(222\) 0 0
\(223\) 15458.5 12971.3i 0.310856 0.260839i −0.473990 0.880530i \(-0.657187\pi\)
0.784846 + 0.619691i \(0.212742\pi\)
\(224\) 46745.5 26988.5i 0.931630 0.537877i
\(225\) 0 0
\(226\) −11553.9 + 20011.9i −0.226210 + 0.391807i
\(227\) 10532.6 1857.18i 0.204401 0.0360415i −0.0705099 0.997511i \(-0.522463\pi\)
0.274911 + 0.961470i \(0.411352\pi\)
\(228\) 0 0
\(229\) 27864.4 10141.8i 0.531348 0.193395i −0.0623921 0.998052i \(-0.519873\pi\)
0.593740 + 0.804657i \(0.297651\pi\)
\(230\) 7425.22 + 20400.6i 0.140363 + 0.385645i
\(231\) 0 0
\(232\) −413.393 2344.47i −0.00768045 0.0435580i
\(233\) 12853.1 + 7420.75i 0.236754 + 0.136690i 0.613684 0.789552i \(-0.289687\pi\)
−0.376930 + 0.926242i \(0.623020\pi\)
\(234\) 0 0
\(235\) 29078.9 + 50366.1i 0.526553 + 0.912016i
\(236\) 252.281 + 300.657i 0.00452961 + 0.00539818i
\(237\) 0 0
\(238\) 1882.68 10677.2i 0.0332370 0.188497i
\(239\) 63446.2 75612.3i 1.11073 1.32372i 0.169667 0.985501i \(-0.445731\pi\)
0.941067 0.338220i \(-0.109825\pi\)
\(240\) 0 0
\(241\) −8491.34 3090.60i −0.146198 0.0532118i 0.267885 0.963451i \(-0.413675\pi\)
−0.414083 + 0.910239i \(0.635898\pi\)
\(242\) 8443.99i 0.144184i
\(243\) 0 0
\(244\) −641.788 −0.0107798
\(245\) −24704.9 + 67876.2i −0.411577 + 1.13080i
\(246\) 0 0
\(247\) −34634.9 29062.1i −0.567701 0.476358i
\(248\) −42100.6 7423.48i −0.684518 0.120699i
\(249\) 0 0
\(250\) −1993.57 + 1672.80i −0.0318971 + 0.0267649i
\(251\) −63946.3 + 36919.4i −1.01501 + 0.586013i −0.912653 0.408735i \(-0.865970\pi\)
−0.102352 + 0.994748i \(0.532637\pi\)
\(252\) 0 0
\(253\) 36761.4 63672.6i 0.574316 0.994744i
\(254\) −28588.3 + 5040.89i −0.443120 + 0.0781339i
\(255\) 0 0
\(256\) −13257.2 + 4825.23i −0.202289 + 0.0736271i
\(257\) 22515.5 + 61860.9i 0.340891 + 0.936590i 0.985137 + 0.171772i \(0.0549492\pi\)
−0.644246 + 0.764819i \(0.722829\pi\)
\(258\) 0 0
\(259\) 28777.1 + 163203.i 0.428990 + 2.43292i
\(260\) −74796.3 43183.6i −1.10645 0.638811i
\(261\) 0 0
\(262\) 4427.96 + 7669.46i 0.0645062 + 0.111728i
\(263\) −43622.8 51987.7i −0.630670 0.751604i 0.352195 0.935927i \(-0.385435\pi\)
−0.982866 + 0.184323i \(0.940991\pi\)
\(264\) 0 0
\(265\) 24053.4 136414.i 0.342519 1.94252i
\(266\) −14119.3 + 16826.7i −0.199548 + 0.237813i
\(267\) 0 0
\(268\) 45490.5 + 16557.2i 0.633361 + 0.230525i
\(269\) 99903.1i 1.38062i 0.723513 + 0.690310i \(0.242526\pi\)
−0.723513 + 0.690310i \(0.757474\pi\)
\(270\) 0 0
\(271\) −126957. −1.72869 −0.864346 0.502897i \(-0.832267\pi\)
−0.864346 + 0.502897i \(0.832267\pi\)
\(272\) −8792.52 + 24157.2i −0.118843 + 0.326520i
\(273\) 0 0
\(274\) 8969.13 + 7525.99i 0.119467 + 0.100245i
\(275\) 99289.3 + 17507.4i 1.31292 + 0.231503i
\(276\) 0 0
\(277\) −16027.4 + 13448.6i −0.208883 + 0.175274i −0.741227 0.671254i \(-0.765756\pi\)
0.532344 + 0.846528i \(0.321311\pi\)
\(278\) −330.950 + 191.074i −0.00428226 + 0.00247236i
\(279\) 0 0
\(280\) −44038.8 + 76277.4i −0.561719 + 0.972926i
\(281\) −56865.4 + 10026.9i −0.720171 + 0.126986i −0.521710 0.853123i \(-0.674706\pi\)
−0.198462 + 0.980109i \(0.563594\pi\)
\(282\) 0 0
\(283\) −64785.9 + 23580.1i −0.808924 + 0.294424i −0.713179 0.700982i \(-0.752745\pi\)
−0.0957447 + 0.995406i \(0.530523\pi\)
\(284\) −14612.2 40146.8i −0.181167 0.497753i
\(285\) 0 0
\(286\) −5033.04 28543.8i −0.0615316 0.348963i
\(287\) 72423.8 + 41813.9i 0.879261 + 0.507641i
\(288\) 0 0
\(289\) −32494.1 56281.4i −0.389053 0.673859i
\(290\) 1812.41 + 2159.95i 0.0215507 + 0.0256831i
\(291\) 0 0
\(292\) −11247.1 + 63785.2i −0.131909 + 0.748091i
\(293\) −23649.5 + 28184.4i −0.275478 + 0.328302i −0.885989 0.463706i \(-0.846519\pi\)
0.610511 + 0.792007i \(0.290964\pi\)
\(294\) 0 0
\(295\) −916.920 333.732i −0.0105363 0.00383490i
\(296\) 91725.7i 1.04691i
\(297\) 0 0
\(298\) 32420.7 0.365081
\(299\) 28001.4 76933.2i 0.313211 0.860541i
\(300\) 0 0
\(301\) −37785.3 31705.6i −0.417051 0.349948i
\(302\) 42736.9 + 7535.67i 0.468586 + 0.0826244i
\(303\) 0 0
\(304\) 39898.3 33478.6i 0.431725 0.362260i
\(305\) 1381.82 797.793i 0.0148543 0.00857611i
\(306\) 0 0
\(307\) −16983.2 + 29415.7i −0.180195 + 0.312107i −0.941947 0.335762i \(-0.891006\pi\)
0.761752 + 0.647869i \(0.224339\pi\)
\(308\) 139942. 24675.6i 1.47519 0.260116i
\(309\) 0 0
\(310\) 47579.5 17317.5i 0.495104 0.180203i
\(311\) −19832.8 54490.3i −0.205052 0.563376i 0.793953 0.607980i \(-0.208020\pi\)
−0.999005 + 0.0446036i \(0.985798\pi\)
\(312\) 0 0
\(313\) −12985.0 73641.4i −0.132542 0.751681i −0.976540 0.215335i \(-0.930916\pi\)
0.843999 0.536345i \(-0.180196\pi\)
\(314\) 8065.60 + 4656.68i 0.0818046 + 0.0472299i
\(315\) 0 0
\(316\) 14688.3 + 25440.8i 0.147094 + 0.254775i
\(317\) −7859.12 9366.13i −0.0782088 0.0932056i 0.725521 0.688200i \(-0.241599\pi\)
−0.803730 + 0.594994i \(0.797154\pi\)
\(318\) 0 0
\(319\) 1658.15 9403.83i 0.0162945 0.0924109i
\(320\) 47544.6 56661.4i 0.464303 0.553334i
\(321\) 0 0
\(322\) −37376.5 13603.9i −0.360485 0.131206i
\(323\) 37547.5i 0.359895i
\(324\) 0 0
\(325\) 112268. 1.06290
\(326\) 17469.5 47997.2i 0.164379 0.451628i
\(327\) 0 0
\(328\) 35458.4 + 29753.1i 0.329588 + 0.276557i
\(329\) −104933. 18502.6i −0.969442 0.170939i
\(330\) 0 0
\(331\) 41511.0 34831.9i 0.378885 0.317922i −0.433380 0.901212i \(-0.642679\pi\)
0.812265 + 0.583289i \(0.198235\pi\)
\(332\) 15109.6 8723.51i 0.137081 0.0791435i
\(333\) 0 0
\(334\) −17057.6 + 29544.6i −0.152906 + 0.264841i
\(335\) −118526. + 20899.4i −1.05615 + 0.186228i
\(336\) 0 0
\(337\) −83937.6 + 30550.8i −0.739089 + 0.269006i −0.684007 0.729475i \(-0.739764\pi\)
−0.0550821 + 0.998482i \(0.517542\pi\)
\(338\) 693.810 + 1906.23i 0.00607306 + 0.0166856i
\(339\) 0 0
\(340\) −12454.9 70635.3i −0.107741 0.611032i
\(341\) −148501. 85736.9i −1.27708 0.737325i
\(342\) 0 0
\(343\) 13433.9 + 23268.3i 0.114187 + 0.197777i
\(344\) −17548.9 20914.0i −0.148297 0.176734i
\(345\) 0 0
\(346\) −7204.03 + 40856.1i −0.0601760 + 0.341275i
\(347\) −117336. + 139835.i −0.974476 + 1.16134i 0.0124111 + 0.999923i \(0.496049\pi\)
−0.986887 + 0.161412i \(0.948395\pi\)
\(348\) 0 0
\(349\) 149797. + 54521.6i 1.22985 + 0.447628i 0.873546 0.486742i \(-0.161815\pi\)
0.356303 + 0.934370i \(0.384037\pi\)
\(350\) 54543.3i 0.445252i
\(351\) 0 0
\(352\) 119835. 0.967161
\(353\) 66345.1 182282.i 0.532426 1.46283i −0.323748 0.946143i \(-0.604943\pi\)
0.856175 0.516686i \(-0.172835\pi\)
\(354\) 0 0
\(355\) 81366.8 + 68274.9i 0.645640 + 0.541756i
\(356\) 80146.6 + 14132.0i 0.632390 + 0.111507i
\(357\) 0 0
\(358\) 25101.3 21062.5i 0.195853 0.164340i
\(359\) 111366. 64297.3i 0.864101 0.498889i −0.00128245 0.999999i \(-0.500408\pi\)
0.865383 + 0.501110i \(0.167075\pi\)
\(360\) 0 0
\(361\) 27125.0 46981.8i 0.208140 0.360509i
\(362\) −12962.2 + 2285.59i −0.0989151 + 0.0174414i
\(363\) 0 0
\(364\) 148693. 54119.7i 1.12224 0.408463i
\(365\) −55074.3 151315.i −0.413393 1.13579i
\(366\) 0 0
\(367\) −863.036 4894.52i −0.00640762 0.0363394i 0.981436 0.191788i \(-0.0614287\pi\)
−0.987844 + 0.155449i \(0.950318\pi\)
\(368\) 81676.8 + 47156.2i 0.603119 + 0.348211i
\(369\) 0 0
\(370\) −54319.8 94084.6i −0.396784 0.687251i
\(371\) 163128. + 194408.i 1.18517 + 1.41243i
\(372\) 0 0
\(373\) 137.489 779.736i 0.000988209 0.00560441i −0.984310 0.176450i \(-0.943539\pi\)
0.985298 + 0.170845i \(0.0546498\pi\)
\(374\) 15472.1 18438.9i 0.110613 0.131823i
\(375\) 0 0
\(376\) −55419.5 20171.0i −0.392001 0.142677i
\(377\) 10633.1i 0.0748130i
\(378\) 0 0
\(379\) 53057.5 0.369376 0.184688 0.982797i \(-0.440873\pi\)
0.184688 + 0.982797i \(0.440873\pi\)
\(380\) −49700.5 + 136551.i −0.344186 + 0.945643i
\(381\) 0 0
\(382\) −62398.3 52358.4i −0.427608 0.358806i
\(383\) 233753. + 41216.9i 1.59352 + 0.280981i 0.898822 0.438315i \(-0.144424\pi\)
0.694703 + 0.719296i \(0.255536\pi\)
\(384\) 0 0
\(385\) −270633. + 227088.i −1.82582 + 1.53205i
\(386\) 63479.7 36650.0i 0.426049 0.245980i
\(387\) 0 0
\(388\) 41092.2 71173.9i 0.272958 0.472778i
\(389\) −51131.7 + 9015.90i −0.337902 + 0.0595813i −0.340025 0.940416i \(-0.610435\pi\)
0.00212264 + 0.999998i \(0.499324\pi\)
\(390\) 0 0
\(391\) 63890.3 23254.2i 0.417909 0.152106i
\(392\) −25052.6 68831.4i −0.163035 0.447935i
\(393\) 0 0
\(394\) 11744.9 + 66608.8i 0.0756585 + 0.429081i
\(395\) −63249.9 36517.3i −0.405383 0.234048i
\(396\) 0 0
\(397\) −111904. 193824.i −0.710011 1.22977i −0.964852 0.262792i \(-0.915357\pi\)
0.254842 0.966983i \(-0.417977\pi\)
\(398\) 10896.4 + 12985.8i 0.0687884 + 0.0819788i
\(399\) 0 0
\(400\) −22457.8 + 127365.i −0.140361 + 0.796029i
\(401\) −133605. + 159224.i −0.830871 + 0.990194i 0.169118 + 0.985596i \(0.445908\pi\)
−0.999989 + 0.00459801i \(0.998536\pi\)
\(402\) 0 0
\(403\) −179428. 65306.4i −1.10479 0.402111i
\(404\) 198789.i 1.21795i
\(405\) 0 0
\(406\) −5165.88 −0.0313395
\(407\) −125836. + 345731.i −0.759652 + 2.08713i
\(408\) 0 0
\(409\) 108001. + 90623.7i 0.645627 + 0.541746i 0.905741 0.423832i \(-0.139315\pi\)
−0.260113 + 0.965578i \(0.583760\pi\)
\(410\) −53990.0 9519.90i −0.321178 0.0566323i
\(411\) 0 0
\(412\) −104754. + 87899.1i −0.617130 + 0.517834i
\(413\) 1548.21 893.862i 0.00907677 0.00524047i
\(414\) 0 0
\(415\) −21688.0 + 37564.8i −0.125928 + 0.218114i
\(416\) 131414. 23171.9i 0.759373 0.133898i
\(417\) 0 0
\(418\) −45825.3 + 16679.0i −0.262272 + 0.0954594i
\(419\) −40012.8 109934.i −0.227914 0.626189i 0.772042 0.635572i \(-0.219236\pi\)
−0.999956 + 0.00938263i \(0.997013\pi\)
\(420\) 0 0
\(421\) −32654.4 185192.i −0.184237 1.04486i −0.926932 0.375230i \(-0.877564\pi\)
0.742695 0.669630i \(-0.233547\pi\)
\(422\) 33467.9 + 19322.7i 0.187933 + 0.108503i
\(423\) 0 0
\(424\) 70233.7 + 121648.i 0.390673 + 0.676666i
\(425\) 59930.2 + 71422.1i 0.331794 + 0.395416i
\(426\) 0 0
\(427\) −507.628 + 2878.90i −0.00278413 + 0.0157896i
\(428\) −133964. + 159652.i −0.731309 + 0.871541i
\(429\) 0 0
\(430\) 30385.4 + 11059.4i 0.164334 + 0.0598129i
\(431\) 195978.i 1.05500i −0.849555 0.527500i \(-0.823129\pi\)
0.849555 0.527500i \(-0.176871\pi\)
\(432\) 0 0
\(433\) 14688.2 0.0783414 0.0391707 0.999233i \(-0.487528\pi\)
0.0391707 + 0.999233i \(0.487528\pi\)
\(434\) −31727.8 + 87171.5i −0.168446 + 0.462802i
\(435\) 0 0
\(436\) −22565.2 18934.4i −0.118704 0.0996045i
\(437\) −135656. 23919.8i −0.710356 0.125255i
\(438\) 0 0
\(439\) 205802. 172688.i 1.06788 0.896054i 0.0730172 0.997331i \(-0.476737\pi\)
0.994858 + 0.101277i \(0.0322927\pi\)
\(440\) −169345. + 97771.1i −0.874714 + 0.505016i
\(441\) 0 0
\(442\) 13401.6 23212.3i 0.0685982 0.118816i
\(443\) 197082. 34750.8i 1.00424 0.177075i 0.352740 0.935721i \(-0.385250\pi\)
0.651503 + 0.758646i \(0.274139\pi\)
\(444\) 0 0
\(445\) −190129. + 69201.3i −0.960126 + 0.349457i
\(446\) −8289.58 22775.4i −0.0416738 0.114498i
\(447\) 0 0
\(448\) 23532.0 + 133457.i 0.117247 + 0.664942i
\(449\) 203083. + 117250.i 1.00735 + 0.581595i 0.910415 0.413695i \(-0.135762\pi\)
0.0969372 + 0.995290i \(0.469095\pi\)
\(450\) 0 0
\(451\) 92831.6 + 160789.i 0.456397 + 0.790503i
\(452\) −180030. 214552.i −0.881187 1.05016i
\(453\) 0 0
\(454\) 2230.59 12650.3i 0.0108220 0.0613748i
\(455\) −252872. + 301361.i −1.22145 + 1.45567i
\(456\) 0 0
\(457\) −323870. 117879.i −1.55074 0.564423i −0.582148 0.813083i \(-0.697788\pi\)
−0.968591 + 0.248660i \(0.920010\pi\)
\(458\) 35614.8i 0.169785i
\(459\) 0 0
\(460\) −263134. −1.24354
\(461\) 49596.9 136266.i 0.233374 0.641190i −0.766626 0.642094i \(-0.778066\pi\)
1.00000 0.000904688i \(0.000287971\pi\)
\(462\) 0 0
\(463\) 61984.1 + 52010.8i 0.289147 + 0.242623i 0.775810 0.630967i \(-0.217342\pi\)
−0.486663 + 0.873590i \(0.661786\pi\)
\(464\) 12062.9 + 2127.01i 0.0560293 + 0.00987948i
\(465\) 0 0
\(466\) 13655.2 11458.1i 0.0628819 0.0527642i
\(467\) −47739.7 + 27562.5i −0.218900 + 0.126382i −0.605441 0.795890i \(-0.707003\pi\)
0.386541 + 0.922272i \(0.373670\pi\)
\(468\) 0 0
\(469\) 110253. 190963.i 0.501237 0.868167i
\(470\) 68790.0 12129.5i 0.311408 0.0549096i
\(471\) 0 0
\(472\) 929.824 338.428i 0.00417366 0.00151909i
\(473\) −37453.8 102903.i −0.167407 0.459946i
\(474\) 0 0
\(475\) −32801.0 186024.i −0.145378 0.824482i
\(476\) 113804. + 65704.5i 0.502275 + 0.289989i
\(477\) 0 0
\(478\) −59275.4 102668.i −0.259429 0.449344i
\(479\) 78857.1 + 93978.2i 0.343692 + 0.409597i 0.910007 0.414592i \(-0.136076\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(480\) 0 0
\(481\) −71142.4 + 403469.i −0.307495 + 1.74389i
\(482\) −6976.28 + 8314.01i −0.0300282 + 0.0357863i
\(483\) 0 0
\(484\) 96172.9 + 35004.1i 0.410546 + 0.149427i
\(485\) 204324.i 0.868630i
\(486\) 0 0
\(487\) −159807. −0.673810 −0.336905 0.941539i \(-0.609380\pi\)
−0.336905 + 0.941539i \(0.609380\pi\)
\(488\) −553.402 + 1520.46i −0.00232381 + 0.00638463i
\(489\) 0 0
\(490\) 66458.7 + 55765.5i 0.276796 + 0.232259i
\(491\) 270288. + 47659.0i 1.12115 + 0.197689i 0.703345 0.710848i \(-0.251689\pi\)
0.417804 + 0.908537i \(0.362800\pi\)
\(492\) 0 0
\(493\) 6764.48 5676.07i 0.0278318 0.0233536i
\(494\) −47028.0 + 27151.6i −0.192709 + 0.111261i
\(495\) 0 0
\(496\) 109980. 190491.i 0.447045 0.774304i
\(497\) −191646. + 33792.3i −0.775866 + 0.136806i
\(498\) 0 0
\(499\) 91652.9 33358.9i 0.368082 0.133971i −0.151355 0.988479i \(-0.548364\pi\)
0.519438 + 0.854508i \(0.326141\pi\)
\(500\) −10788.2 29640.3i −0.0431528 0.118561i
\(501\) 0 0
\(502\) 15400.0 + 87337.8i 0.0611102 + 0.346573i
\(503\) −165783. 95715.0i −0.655247 0.378307i 0.135217 0.990816i \(-0.456827\pi\)
−0.790463 + 0.612509i \(0.790160\pi\)
\(504\) 0 0
\(505\) 247110. + 428008.i 0.968965 + 1.67830i
\(506\) −56761.7 67645.9i −0.221694 0.264205i
\(507\) 0 0
\(508\) 61097.9 346503.i 0.236755 1.34270i
\(509\) 321632. 383306.i 1.24143 1.47948i 0.421705 0.906733i \(-0.361432\pi\)
0.819729 0.572751i \(-0.194124\pi\)
\(510\) 0 0
\(511\) 277229. + 100903.i 1.06169 + 0.386422i
\(512\) 264610.i 1.00941i
\(513\) 0 0
\(514\) 79067.1 0.299275
\(515\) 116278. 319471.i 0.438413 1.20453i
\(516\) 0 0
\(517\) −181214. 152057.i −0.677970 0.568884i
\(518\) 196017. + 34563.1i 0.730524 + 0.128811i
\(519\) 0 0
\(520\) −166802. + 139963.i −0.616871 + 0.517616i
\(521\) 154680. 89304.6i 0.569848 0.329002i −0.187241 0.982314i \(-0.559954\pi\)
0.757089 + 0.653312i \(0.226621\pi\)
\(522\) 0 0
\(523\) −99520.1 + 172374.i −0.363837 + 0.630185i −0.988589 0.150639i \(-0.951867\pi\)
0.624752 + 0.780824i \(0.285200\pi\)
\(524\) −105707. + 18639.0i −0.384983 + 0.0678830i
\(525\) 0 0
\(526\) −76594.6 + 27878.2i −0.276839 + 0.100761i
\(527\) −54234.7 149009.i −0.195279 0.536525i
\(528\) 0 0
\(529\) 5280.08 + 29944.8i 0.0188681 + 0.107006i
\(530\) −144080. 83184.5i −0.512922 0.296136i
\(531\) 0 0
\(532\) −133117. 230565.i −0.470338 0.814650i
\(533\) 132892. + 158375.i 0.467784 + 0.557483i
\(534\) 0 0
\(535\) 89974.6 510271.i 0.314349 1.78276i
\(536\) 78451.4 93494.7i 0.273068 0.325430i
\(537\) 0 0
\(538\) 112754. + 41039.0i 0.389553 + 0.141786i
\(539\) 293807.i 1.01131i
\(540\) 0 0
\(541\) 405776. 1.38641 0.693204 0.720741i \(-0.256198\pi\)
0.693204 + 0.720741i \(0.256198\pi\)
\(542\) −52152.4 + 143287.i −0.177531 + 0.487764i
\(543\) 0 0
\(544\) 84891.8 + 71232.6i 0.286859 + 0.240703i
\(545\) 72121.5 + 12717.0i 0.242813 + 0.0428144i
\(546\) 0 0
\(547\) 105202. 88274.6i 0.351599 0.295026i −0.449833 0.893113i \(-0.648516\pi\)
0.801432 + 0.598086i \(0.204072\pi\)
\(548\) −122898. + 70955.4i −0.409246 + 0.236279i
\(549\) 0 0
\(550\) 60546.2 104869.i 0.200153 0.346675i
\(551\) −17618.6 + 3106.63i −0.0580320 + 0.0102326i
\(552\) 0 0
\(553\) 125739. 45765.2i 0.411168 0.149653i
\(554\) 8594.63 + 23613.5i 0.0280032 + 0.0769381i
\(555\) 0 0
\(556\) −804.305 4561.44i −0.00260178 0.0147555i
\(557\) −61387.4 35442.0i −0.197865 0.114237i 0.397794 0.917475i \(-0.369776\pi\)
−0.595659 + 0.803237i \(0.703109\pi\)
\(558\) 0 0
\(559\) −60970.6 105604.i −0.195118 0.337954i
\(560\) −291300. 347158.i −0.928890 1.10701i
\(561\) 0 0
\(562\) −12043.0 + 68299.0i −0.0381295 + 0.216243i
\(563\) −269692. + 321407.i −0.850847 + 1.01400i 0.148837 + 0.988862i \(0.452447\pi\)
−0.999684 + 0.0251387i \(0.991997\pi\)
\(564\) 0 0
\(565\) 654323. + 238154.i 2.04972 + 0.746038i
\(566\) 82805.8i 0.258481i
\(567\) 0 0
\(568\) −107712. −0.333861
\(569\) 164403. 451694.i 0.507791 1.39515i −0.375719 0.926734i \(-0.622604\pi\)
0.883510 0.468412i \(-0.155174\pi\)
\(570\) 0 0
\(571\) −236655. 198577.i −0.725844 0.609055i 0.203151 0.979147i \(-0.434882\pi\)
−0.928995 + 0.370092i \(0.879326\pi\)
\(572\) 345964. + 61002.7i 1.05740 + 0.186448i
\(573\) 0 0
\(574\) 76943.3 64563.1i 0.233532 0.195957i
\(575\) 296221. 171023.i 0.895942 0.517273i
\(576\) 0 0
\(577\) −122389. + 211984.i −0.367612 + 0.636723i −0.989192 0.146628i \(-0.953158\pi\)
0.621579 + 0.783351i \(0.286491\pi\)
\(578\) −76869.1 + 13554.1i −0.230089 + 0.0405709i
\(579\) 0 0
\(580\) −32114.0 + 11688.5i −0.0954637 + 0.0347459i
\(581\) −27180.4 74677.6i −0.0805201 0.221227i
\(582\) 0 0
\(583\) 97837.8 + 554866.i 0.287852 + 1.63249i
\(584\) 141416. + 81646.3i 0.414640 + 0.239393i
\(585\) 0 0
\(586\) 22094.8 + 38269.3i 0.0643421 + 0.111444i
\(587\) 169517. + 202023.i 0.491969 + 0.586306i 0.953717 0.300705i \(-0.0972221\pi\)
−0.461748 + 0.887011i \(0.652778\pi\)
\(588\) 0 0
\(589\) −55787.1 + 316384.i −0.160806 + 0.911978i
\(590\) −753.320 + 897.771i −0.00216409 + 0.00257906i
\(591\) 0 0
\(592\) −443490. 161417.i −1.26544 0.460582i
\(593\) 241174.i 0.685837i 0.939365 + 0.342919i \(0.111416\pi\)
−0.939365 + 0.342919i \(0.888584\pi\)
\(594\) 0 0
\(595\) −326703. −0.922826
\(596\) −134398. + 369256.i −0.378356 + 1.03952i
\(597\) 0 0
\(598\) −75326.6 63206.5i −0.210642 0.176750i
\(599\) −448712. 79120.0i −1.25059 0.220512i −0.491139 0.871081i \(-0.663419\pi\)
−0.759447 + 0.650569i \(0.774531\pi\)
\(600\) 0 0
\(601\) 426431. 357818.i 1.18059 0.990634i 0.180617 0.983554i \(-0.442191\pi\)
0.999975 0.00708070i \(-0.00225387\pi\)
\(602\) −51305.6 + 29621.3i −0.141570 + 0.0817357i
\(603\) 0 0
\(604\) −262991. + 455514.i −0.720887 + 1.24861i
\(605\) −250580. + 44184.1i −0.684599 + 0.120713i
\(606\) 0 0
\(607\) 196829. 71639.9i 0.534210 0.194437i −0.0608072 0.998150i \(-0.519367\pi\)
0.595017 + 0.803713i \(0.297145\pi\)
\(608\) −76789.5 210977.i −0.207728 0.570727i
\(609\) 0 0
\(610\) −332.779 1887.29i −0.000894328 0.00507198i
\(611\) −228126. 131709.i −0.611072 0.352802i
\(612\) 0 0
\(613\) 13308.1 + 23050.4i 0.0354157 + 0.0613419i 0.883190 0.469015i \(-0.155391\pi\)
−0.847774 + 0.530357i \(0.822058\pi\)
\(614\) 26223.0 + 31251.4i 0.0695578 + 0.0828957i
\(615\) 0 0
\(616\) 62210.8 352815.i 0.163947 0.929791i
\(617\) 172424. 205487.i 0.452927 0.539777i −0.490463 0.871462i \(-0.663172\pi\)
0.943390 + 0.331684i \(0.107617\pi\)
\(618\) 0 0
\(619\) −417414. 151926.i −1.08940 0.396508i −0.265999 0.963973i \(-0.585702\pi\)
−0.823397 + 0.567466i \(0.807924\pi\)
\(620\) 613696.i 1.59650i
\(621\) 0 0
\(622\) −69646.5 −0.180019
\(623\) 126785. 348340.i 0.326658 0.897484i
\(624\) 0 0
\(625\) −267827. 224733.i −0.685637 0.575317i
\(626\) −88448.0 15595.8i −0.225704 0.0397977i
\(627\) 0 0
\(628\) −86472.8 + 72559.3i −0.219260 + 0.183981i
\(629\) −294652. + 170118.i −0.744747 + 0.429980i
\(630\) 0 0
\(631\) −330922. + 573174.i −0.831127 + 1.43955i 0.0660179 + 0.997818i \(0.478971\pi\)
−0.897145 + 0.441736i \(0.854363\pi\)
\(632\) 72937.3 12860.8i 0.182606 0.0321984i
\(633\) 0 0
\(634\) −13799.3 + 5022.55i −0.0343305 + 0.0124953i
\(635\) 299183. + 821998.i 0.741974 + 2.03856i
\(636\) 0 0
\(637\) −56811.8 322196.i −0.140010 0.794037i
\(638\) −9932.30 5734.41i −0.0244010 0.0140879i
\(639\) 0 0
\(640\) −280111. 485166.i −0.683864 1.18449i
\(641\) −217131. 258767.i −0.528452 0.629785i 0.434105 0.900862i \(-0.357065\pi\)
−0.962558 + 0.271077i \(0.912620\pi\)
\(642\) 0 0
\(643\) −2876.13 + 16311.3i −0.00695642 + 0.0394518i −0.988088 0.153887i \(-0.950821\pi\)
0.981132 + 0.193339i \(0.0619318\pi\)
\(644\) 309884. 369306.i 0.747184 0.890459i
\(645\) 0 0
\(646\) −42377.2 15424.1i −0.101547 0.0369601i
\(647\) 71969.5i 0.171925i 0.996298 + 0.0859627i \(0.0273966\pi\)
−0.996298 + 0.0859627i \(0.972603\pi\)
\(648\) 0 0
\(649\) 3968.95 0.00942294
\(650\) 46118.5 126709.i 0.109156 0.299904i
\(651\) 0 0
\(652\) 474246. + 397939.i 1.11560 + 0.936099i
\(653\) 552513. + 97422.9i 1.29573 + 0.228473i 0.778648 0.627461i \(-0.215906\pi\)
0.517086 + 0.855934i \(0.327017\pi\)
\(654\) 0 0
\(655\) 204426. 171534.i 0.476489 0.399822i
\(656\) −206254. + 119081.i −0.479287 + 0.276716i
\(657\) 0 0
\(658\) −63988.0 + 110830.i −0.147790 + 0.255981i
\(659\) 131239. 23140.9i 0.302197 0.0532855i −0.0204935 0.999790i \(-0.506524\pi\)
0.322691 + 0.946504i \(0.395413\pi\)
\(660\) 0 0
\(661\) −150281. + 54697.6i −0.343954 + 0.125189i −0.508220 0.861227i \(-0.669696\pi\)
0.164267 + 0.986416i \(0.447474\pi\)
\(662\) −22260.1 61159.1i −0.0507938 0.139555i
\(663\) 0 0
\(664\) −7638.17 43318.2i −0.0173242 0.0982505i
\(665\) 573222. + 330950.i 1.29622 + 0.748374i
\(666\) 0 0
\(667\) −16197.9 28055.5i −0.0364087 0.0630618i
\(668\) −265787. 316753.i −0.595636 0.709851i
\(669\) 0 0
\(670\) −25101.5 + 142358.i −0.0559178 + 0.317126i
\(671\) −4171.74 + 4971.69i −0.00926558 + 0.0110423i
\(672\) 0 0
\(673\) −126102. 45897.4i −0.278415 0.101335i 0.199039 0.979992i \(-0.436218\pi\)
−0.477454 + 0.878657i \(0.658440\pi\)
\(674\) 107284.i 0.236166i
\(675\) 0 0
\(676\) −24587.1 −0.0538040
\(677\) −271246. + 745241.i −0.591814 + 1.62600i 0.175322 + 0.984511i \(0.443903\pi\)
−0.767136 + 0.641485i \(0.778319\pi\)
\(678\) 0 0
\(679\) −286766. 240625.i −0.621996 0.521917i
\(680\) −178082. 31400.6i −0.385125 0.0679079i
\(681\) 0 0
\(682\) −157768. + 132383.i −0.339195 + 0.284618i
\(683\) −91618.7 + 52896.1i −0.196401 + 0.113392i −0.594975 0.803744i \(-0.702838\pi\)
0.398575 + 0.917136i \(0.369505\pi\)
\(684\) 0 0
\(685\) 176406. 305545.i 0.375952 0.651169i
\(686\) 31779.8 5603.63i 0.0675309 0.0119075i
\(687\) 0 0
\(688\) 132001. 48044.3i 0.278868 0.101500i
\(689\) 214583. + 589561.i 0.452018 + 1.24191i
\(690\) 0 0
\(691\) 72008.8 + 408382.i 0.150810 + 0.855285i 0.962517 + 0.271221i \(0.0874273\pi\)
−0.811707 + 0.584064i \(0.801462\pi\)
\(692\) −435467. 251417.i −0.909375 0.525028i
\(693\) 0 0
\(694\) 109622. + 189871.i 0.227604 + 0.394221i
\(695\) 7401.96 + 8821.31i 0.0153242 + 0.0182626i
\(696\) 0 0
\(697\) −29814.2 + 169085.i −0.0613703 + 0.348048i
\(698\) 123069. 146668.i 0.252604 0.301041i
\(699\) 0 0
\(700\) 621222. + 226106.i 1.26780 + 0.461441i
\(701\) 209011.i 0.425336i −0.977124 0.212668i \(-0.931785\pi\)
0.977124 0.212668i \(-0.0682153\pi\)
\(702\) 0 0
\(703\) 689315. 1.39478
\(704\) −102900. + 282715.i −0.207620 + 0.570432i
\(705\) 0 0
\(706\) −178475. 149758.i −0.358070 0.300456i
\(707\) −891717. 157234.i −1.78397 0.314562i
\(708\) 0 0
\(709\) −537635. + 451129.i −1.06954 + 0.897447i −0.995010 0.0997723i \(-0.968189\pi\)
−0.0745252 + 0.997219i \(0.523744\pi\)
\(710\) 110482. 63786.6i 0.219166 0.126536i
\(711\) 0 0
\(712\) 102589. 177690.i 0.202368 0.350511i
\(713\) −572906. + 101019.i −1.12695 + 0.198712i
\(714\) 0 0
\(715\) −820717. + 298717.i −1.60539 + 0.584316i
\(716\) 135835. + 373205.i 0.264964 + 0.727983i
\(717\) 0 0
\(718\) −26820.0 152104.i −0.0520248 0.295047i
\(719\) −454446. 262374.i −0.879072 0.507532i −0.00871937 0.999962i \(-0.502775\pi\)
−0.870352 + 0.492430i \(0.836109\pi\)
\(720\) 0 0
\(721\) 311437. + 539425.i 0.599101 + 1.03767i
\(722\) −41882.5 49913.7i −0.0803449 0.0957514i
\(723\) 0 0
\(724\) 27702.4 157108.i 0.0528495 0.299724i
\(725\) 28555.1 34030.7i 0.0543260 0.0647432i
\(726\) 0 0
\(727\) −231474. 84249.7i −0.437959 0.159404i 0.113624 0.993524i \(-0.463754\pi\)
−0.551583 + 0.834120i \(0.685976\pi\)
\(728\) 398935.i 0.752730i
\(729\) 0 0
\(730\) −193403. −0.362926
\(731\) 34635.6 95160.6i 0.0648169 0.178083i
\(732\) 0 0
\(733\) 365504. + 306694.i 0.680274 + 0.570817i 0.916086 0.400981i \(-0.131331\pi\)
−0.235813 + 0.971799i \(0.575775\pi\)
\(734\) −5878.63 1036.56i −0.0109115 0.00192399i
\(735\) 0 0
\(736\) 311439. 261328.i 0.574932 0.482425i
\(737\) 423959. 244773.i 0.780530 0.450639i
\(738\) 0 0
\(739\) 470387. 814735.i 0.861324 1.49186i −0.00932662 0.999957i \(-0.502969\pi\)
0.870651 0.491901i \(-0.163698\pi\)
\(740\) 1.29676e6 228653.i 2.36807 0.417555i
\(741\) 0 0
\(742\) 286426. 104251.i 0.520242 0.189352i
\(743\) −229947. 631774.i −0.416533 1.14442i −0.953653 0.300910i \(-0.902710\pi\)
0.537119 0.843506i \(-0.319513\pi\)
\(744\) 0 0
\(745\) −169645. 962103.i −0.305652 1.73344i
\(746\) −823.556 475.480i −0.00147984 0.000854387i
\(747\) 0 0
\(748\) 145871. + 252657.i 0.260716 + 0.451573i
\(749\) 610200. + 727208.i 1.08770 + 1.29627i
\(750\) 0 0
\(751\) 68724.3 389755.i 0.121851 0.691053i −0.861277 0.508136i \(-0.830335\pi\)
0.983128 0.182917i \(-0.0585541\pi\)
\(752\) 195053. 232455.i 0.344918 0.411057i
\(753\) 0 0
\(754\) −12000.8 4367.95i −0.0211090 0.00768307i
\(755\) 1.30767e6i 2.29407i
\(756\) 0 0
\(757\) −110211. −0.192325 −0.0961623 0.995366i \(-0.530657\pi\)
−0.0961623 + 0.995366i \(0.530657\pi\)
\(758\) 21795.4 59882.3i 0.0379337 0.104222i
\(759\) 0 0
\(760\) 280647. + 235491.i 0.485885 + 0.407706i
\(761\) −246547. 43472.8i −0.425726 0.0750669i −0.0433195 0.999061i \(-0.513793\pi\)
−0.382406 + 0.923994i \(0.624904\pi\)
\(762\) 0 0
\(763\) −102783. + 86245.3i −0.176552 + 0.148145i
\(764\) 855005. 493638.i 1.46481 0.845710i
\(765\) 0 0
\(766\) 142541. 246889.i 0.242931 0.420769i
\(767\) 4352.45 767.454i 0.00739849 0.00130455i
\(768\) 0 0
\(769\) 576169. 209708.i 0.974310 0.354620i 0.194685 0.980866i \(-0.437632\pi\)
0.779625 + 0.626246i \(0.215409\pi\)
\(770\) 145126. + 398729.i 0.244772 + 0.672507i
\(771\) 0 0
\(772\) 154274. + 874933.i 0.258856 + 1.46805i
\(773\) 553450. + 319535.i 0.926231 + 0.534760i 0.885618 0.464415i \(-0.153735\pi\)
0.0406138 + 0.999175i \(0.487069\pi\)
\(774\) 0 0
\(775\) −398870. 690863.i −0.664091 1.15024i
\(776\) −133185. 158724.i −0.221173 0.263584i
\(777\) 0 0
\(778\) −10828.7 + 61412.4i −0.0178902 + 0.101460i
\(779\) 223594. 266468.i 0.368455 0.439108i
\(780\) 0 0
\(781\) −405984. 147766.i −0.665590 0.242255i
\(782\) 81661.1i 0.133537i
\(783\) 0 0
\(784\) 376884. 0.613163
\(785\) 95985.5 263718.i 0.155764 0.427957i
\(786\) 0 0
\(787\) 191502. + 160689.i 0.309188 + 0.259440i 0.784156 0.620563i \(-0.213096\pi\)
−0.474968 + 0.880003i \(0.657540\pi\)
\(788\) −807329. 142354.i −1.30016 0.229254i
\(789\) 0 0
\(790\) −67196.8 + 56384.8i −0.107670 + 0.0903458i
\(791\) −1.10482e6 + 637868.i −1.76579 + 1.01948i
\(792\) 0 0
\(793\) −3613.49 + 6258.74i −0.00574619 + 0.00995270i
\(794\) −264724. + 46678.0i −0.419906 + 0.0740408i
\(795\) 0 0
\(796\) −193072. + 70272.4i −0.304714 + 0.110907i
\(797\) −177034. 486397.i −0.278702 0.765728i −0.997510 0.0705195i \(-0.977534\pi\)
0.718808 0.695208i \(-0.244688\pi\)
\(798\) 0 0
\(799\) −37987.0 215435.i −0.0595034 0.337460i
\(800\) 482812. + 278752.i 0.754394 + 0.435549i
\(801\) 0 0
\(802\) 124822. + 216198.i 0.194063 + 0.336127i
\(803\) 421012. + 501743.i 0.652926 + 0.778126i
\(804\) 0 0
\(805\) −208128. + 1.18035e6i −0.321173 + 1.82146i
\(806\) −147414. + 175681.i −0.226917 + 0.270429i
\(807\) 0 0
\(808\) −470951. 171412.i −0.721362 0.262554i
\(809\) 521331.i 0.796556i 0.917265 + 0.398278i \(0.130392\pi\)
−0.917265 + 0.398278i \(0.869608\pi\)
\(810\) 0 0
\(811\) −1.18228e6 −1.79755 −0.898773 0.438414i \(-0.855540\pi\)
−0.898773 + 0.438414i \(0.855540\pi\)
\(812\) 21414.8 58836.8i 0.0324790 0.0892353i
\(813\) 0 0
\(814\) 338510. + 284044.i 0.510885 + 0.428683i
\(815\) −1.51576e6 267269.i −2.28199 0.402377i
\(816\) 0 0
\(817\) −157168. + 131879.i −0.235461 + 0.197575i
\(818\) 146646. 84666.3i 0.219162 0.126533i
\(819\) 0 0
\(820\) 332239. 575456.i 0.494110 0.855823i
\(821\) 332691. 58662.5i 0.493578 0.0870310i 0.0786814 0.996900i \(-0.474929\pi\)
0.414896 + 0.909869i \(0.363818\pi\)
\(822\) 0 0
\(823\) 750058. 272999.i 1.10738 0.403052i 0.277346 0.960770i \(-0.410545\pi\)
0.830030 + 0.557718i \(0.188323\pi\)
\(824\) 117914. + 323967.i 0.173665 + 0.477141i
\(825\) 0 0
\(826\) −372.852 2114.55i −0.000546483 0.00309926i
\(827\) 574656. + 331778.i 0.840227 + 0.485105i 0.857341 0.514748i \(-0.172115\pi\)
−0.0171143 + 0.999854i \(0.505448\pi\)
\(828\) 0 0
\(829\) −208452. 361050.i −0.303317 0.525361i 0.673568 0.739125i \(-0.264761\pi\)
−0.976885 + 0.213764i \(0.931428\pi\)
\(830\) 33487.6 + 39908.9i 0.0486102 + 0.0579314i
\(831\) 0 0
\(832\) −58175.5 + 329930.i −0.0840415 + 0.476623i
\(833\) 174645. 208134.i 0.251690 0.299953i
\(834\) 0 0
\(835\) 966008. + 351598.i 1.38550 + 0.504282i
\(836\) 591070.i 0.845719i
\(837\) 0 0
\(838\) −140512. −0.200090
\(839\) 198240. 544660.i 0.281623 0.773752i −0.715547 0.698565i \(-0.753822\pi\)
0.997169 0.0751870i \(-0.0239554\pi\)
\(840\) 0 0
\(841\) 538586. + 451927.i 0.761487 + 0.638964i
\(842\) −222427. 39220.0i −0.313736 0.0553201i
\(843\) 0 0
\(844\) −358816. + 301082.i −0.503717 + 0.422669i
\(845\) 52938.0 30563.8i 0.0741402 0.0428049i
\(846\) 0 0
\(847\) 233088. 403721.i 0.324903 0.562748i
\(848\) −711761. + 125503.i −0.989789 + 0.174527i
\(849\) 0 0
\(850\) 105228. 38299.8i 0.145644 0.0530100i
\(851\) 426912. + 1.17293e6i 0.589493 + 1.61962i
\(852\) 0 0
\(853\) 20343.6 + 115374.i 0.0279596 + 0.158567i 0.995591 0.0938012i \(-0.0299018\pi\)
−0.967631 + 0.252368i \(0.918791\pi\)
\(854\) 3040.69 + 1755.54i 0.00416923 + 0.00240711i
\(855\) 0 0
\(856\) 262718. + 455040.i 0.358543 + 0.621015i
\(857\) 114785. + 136795.i 0.156287 + 0.186255i 0.838506 0.544892i \(-0.183429\pi\)
−0.682219 + 0.731148i \(0.738985\pi\)
\(858\) 0 0
\(859\) 18082.8 102553.i 0.0245064 0.138983i −0.970100 0.242707i \(-0.921965\pi\)
0.994606 + 0.103724i \(0.0330758\pi\)
\(860\) −251922. + 300229.i −0.340620 + 0.405935i
\(861\) 0 0
\(862\) −221187. 80505.4i −0.297677 0.108345i
\(863\) 39746.7i 0.0533678i −0.999644 0.0266839i \(-0.991505\pi\)
0.999644 0.0266839i \(-0.00849476\pi\)
\(864\) 0 0
\(865\) 1.25012e6 1.67079
\(866\) 6033.72 16577.5i 0.00804543 0.0221046i
\(867\) 0 0
\(868\) −861314. 722729.i −1.14320 0.959259i
\(869\) 292557. + 51585.7i 0.387410 + 0.0683108i
\(870\) 0 0
\(871\) 417594. 350403.i 0.550450 0.461882i
\(872\) −64315.1 + 37132.3i −0.0845824 + 0.0488337i
\(873\) 0 0
\(874\) −82722.5 + 143280.i −0.108293 + 0.187569i
\(875\) −141492. + 24948.8i −0.184806 + 0.0325862i
\(876\) 0 0
\(877\) −1.05563e6 + 384217.i −1.37250 + 0.499548i −0.919895 0.392165i \(-0.871726\pi\)
−0.452602 + 0.891713i \(0.649504\pi\)
\(878\) −110360. 303213.i −0.143161 0.393331i
\(879\) 0 0
\(880\) −174710. 990830.i −0.225607 1.27948i
\(881\) −1.28549e6 742178.i −1.65621 0.956216i −0.974438 0.224655i \(-0.927874\pi\)
−0.681776 0.731561i \(-0.738792\pi\)
\(882\) 0 0
\(883\) 167184. + 289570.i 0.214423 + 0.371392i 0.953094 0.302674i \(-0.0978794\pi\)
−0.738671 + 0.674067i \(0.764546\pi\)
\(884\) 208821. + 248863.i 0.267220 + 0.318461i
\(885\) 0 0
\(886\) 41737.9 236708.i 0.0531696 0.301540i
\(887\) 208976. 249048.i 0.265613 0.316545i −0.616709 0.787191i \(-0.711535\pi\)
0.882322 + 0.470646i \(0.155979\pi\)
\(888\) 0 0
\(889\) −1.50600e6 548140.i −1.90556 0.693566i
\(890\) 243012.i 0.306795i
\(891\) 0 0
\(892\) 293765. 0.369207
\(893\) −151585. + 416475.i −0.190087 + 0.522259i
\(894\) 0 0
\(895\) −756387. 634684.i −0.944274 0.792340i
\(896\) 1.01080e6 + 178232.i 1.25907 + 0.222008i
\(897\) 0 0
\(898\) 215756. 181041.i 0.267554 0.224504i
\(899\) −65432.6 + 37777.5i −0.0809608 + 0.0467427i
\(900\) 0 0
\(901\) −260516. + 451226.i −0.320911 + 0.555834i
\(902\) 219606. 38722.4i 0.269917 0.0475937i
\(903\) 0 0
\(904\) −663531. + 241506.i −0.811941 + 0.295522i
\(905\) 135653. + 372702.i 0.165627 + 0.455056i
\(906\) 0 0
\(907\) 50689.7 + 287476.i 0.0616177 + 0.349451i 0.999993 + 0.00383228i \(0.00121986\pi\)
−0.938375 + 0.345619i \(0.887669\pi\)
\(908\) 134834. + 77846.5i 0.163542 + 0.0944208i
\(909\) 0 0
\(910\) 236248. + 409194.i 0.285290 + 0.494136i
\(911\) 484509. + 577416.i 0.583802 + 0.695748i 0.974402 0.224813i \(-0.0721770\pi\)
−0.390600 + 0.920560i \(0.627733\pi\)
\(912\) 0 0
\(913\) 30637.3 173753.i 0.0367543 0.208444i
\(914\) −266084. + 317107.i −0.318512 + 0.379588i
\(915\) 0 0
\(916\) 405635. + 147639.i 0.483442 + 0.175958i
\(917\) 488919.i 0.581431i
\(918\) 0 0
\(919\) −167370. −0.198174 −0.0990872 0.995079i \(-0.531592\pi\)
−0.0990872 + 0.995079i \(0.531592\pi\)
\(920\) −226896. + 623391.i −0.268072 + 0.736521i
\(921\) 0 0
\(922\) −133420. 111953.i −0.156950 0.131696i
\(923\) −473785. 83541.0i −0.556132 0.0980610i
\(924\) 0 0
\(925\) −1.31120e6 + 1.10023e6i −1.53245 + 1.28588i
\(926\) 84163.3 48591.7i 0.0981524 0.0566683i
\(927\) 0 0
\(928\) 26401.0 45727.8i 0.0306566 0.0530988i
\(929\) −1.06509e6 + 187804.i −1.23411 + 0.217608i −0.752392 0.658716i \(-0.771100\pi\)
−0.481723 + 0.876324i \(0.659989\pi\)
\(930\) 0 0
\(931\) −517265. + 188269.i −0.596780 + 0.217210i
\(932\) 73894.9 + 203025.i 0.0850713 + 0.233731i
\(933\) 0 0
\(934\) 11497.0 + 65202.9i 0.0131793 + 0.0747434i
\(935\) −628144. 362659.i −0.718516 0.414835i
\(936\) 0 0
\(937\) −739056. 1.28008e6i −0.841779 1.45800i −0.888389 0.459091i \(-0.848175\pi\)
0.0466097 0.998913i \(-0.485158\pi\)
\(938\) −170236. 202880.i −0.193485 0.230586i
\(939\) 0 0
\(940\) −147015. + 833766.i −0.166382 + 0.943601i
\(941\) 698940. 832964.i 0.789334 0.940691i −0.209981 0.977705i \(-0.567340\pi\)
0.999315 + 0.0370142i \(0.0117847\pi\)
\(942\) 0 0
\(943\) 591897. + 215433.i 0.665614 + 0.242264i
\(944\) 5091.23i 0.00571319i
\(945\) 0 0
\(946\) −131525. −0.146970
\(947\) −241625. + 663858.i −0.269427 + 0.740245i 0.729018 + 0.684495i \(0.239977\pi\)
−0.998445 + 0.0557500i \(0.982245\pi\)
\(948\) 0 0
\(949\) 558712. + 468815.i 0.620376 + 0.520558i
\(950\) −223426. 39396.1i −0.247564 0.0436522i
\(951\) 0 0
\(952\) 253791. 212956.i 0.280029 0.234972i
\(953\) 765950. 442221.i 0.843363 0.486916i −0.0150432 0.999887i \(-0.504789\pi\)
0.858406 + 0.512971i \(0.171455\pi\)
\(954\) 0 0
\(955\) −1.22726e6 + 2.12568e6i −1.34564 + 2.33072i
\(956\) 1.41506e6 249513.i 1.54832 0.273010i
\(957\) 0 0
\(958\) 138460. 50395.4i 0.150867 0.0549111i
\(959\) 221081. + 607414.i 0.240388 + 0.660461i
\(960\) 0 0
\(961\) 75233.9 + 426672.i 0.0814642 + 0.462006i
\(962\) 426143. + 246034.i 0.460474 + 0.265855i
\(963\) 0 0
\(964\) −65772.7 113922.i −0.0707769 0.122589i
\(965\) −1.41977e6 1.69202e6i −1.52463 1.81698i
\(966\) 0 0
\(967\) 224682. 1.27423e6i 0.240279 1.36269i −0.590928 0.806724i \(-0.701238\pi\)
0.831207 0.555964i \(-0.187651\pi\)
\(968\) 165856. 197660.i 0.177003 0.210944i
\(969\) 0 0
\(970\) 230606. + 83933.7i 0.245091 + 0.0892057i
\(971\) 1.42519e6i 1.51159i 0.654806 + 0.755797i \(0.272751\pi\)
−0.654806 + 0.755797i \(0.727249\pi\)
\(972\) 0 0
\(973\) −21097.7 −0.0222848
\(974\) −65646.7 + 180363.i −0.0691982 + 0.190121i
\(975\) 0 0
\(976\) −6377.50 5351.36i −0.00669501 0.00561778i
\(977\) 1.06606e6 + 187975.i 1.11684 + 0.196930i 0.701455 0.712714i \(-0.252534\pi\)
0.415389 + 0.909644i \(0.363645\pi\)
\(978\) 0 0
\(979\) 630444. 529005.i 0.657780 0.551943i
\(980\) −910642. + 525759.i −0.948190 + 0.547438i
\(981\) 0 0
\(982\) 164820. 285477.i 0.170918 0.296039i
\(983\) −286129. + 50452.2i −0.296111 + 0.0522123i −0.319730 0.947509i \(-0.603592\pi\)
0.0236192 + 0.999721i \(0.492481\pi\)
\(984\) 0 0
\(985\) 1.91520e6 697075.i 1.97397 0.718467i
\(986\) −3627.42 9966.26i −0.00373116 0.0102513i
\(987\) 0 0
\(988\) −114292. 648181.i −0.117085 0.664022i
\(989\) −321743. 185758.i −0.328940 0.189913i
\(990\) 0 0
\(991\) −402322. 696842.i −0.409662 0.709556i 0.585189 0.810897i \(-0.301020\pi\)
−0.994852 + 0.101340i \(0.967687\pi\)
\(992\) −609483. 726354.i −0.619353 0.738117i
\(993\) 0 0
\(994\) −40586.7 + 230179.i −0.0410782 + 0.232966i
\(995\) 328344. 391305.i 0.331652 0.395248i
\(996\) 0 0
\(997\) 1.40822e6 + 512550.i 1.41671 + 0.515640i 0.933091 0.359640i \(-0.117100\pi\)
0.483617 + 0.875280i \(0.339323\pi\)
\(998\) 117146.i 0.117616i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.17.7 66
3.2 odd 2 27.5.f.a.23.5 yes 66
27.7 even 9 27.5.f.a.20.5 66
27.20 odd 18 inner 81.5.f.a.62.7 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.20.5 66 27.7 even 9
27.5.f.a.23.5 yes 66 3.2 odd 2
81.5.f.a.17.7 66 1.1 even 1 trivial
81.5.f.a.62.7 66 27.20 odd 18 inner