Properties

Label 81.5.f.a.17.5
Level $81$
Weight $5$
Character 81.17
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 17.5
Character \(\chi\) \(=\) 81.17
Dual form 81.5.f.a.62.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.498289 + 1.36904i) q^{2} +(10.6307 + 8.92025i) q^{4} +(15.7451 + 2.77629i) q^{5} +(22.4150 - 18.8084i) q^{7} +(-37.6967 + 21.7642i) q^{8} +(-11.6465 + 20.1723i) q^{10} +(135.197 - 23.8388i) q^{11} +(-169.717 + 61.7718i) q^{13} +(14.5803 + 40.0591i) q^{14} +(27.5445 + 156.213i) q^{16} +(265.471 + 153.270i) q^{17} +(223.274 + 386.722i) q^{19} +(142.617 + 169.964i) q^{20} +(-34.7308 + 196.968i) q^{22} +(125.552 - 149.627i) q^{23} +(-347.107 - 126.337i) q^{25} -263.129i q^{26} +406.064 q^{28} +(-320.474 + 880.496i) q^{29} +(115.628 + 97.0232i) q^{31} +(-913.460 - 161.068i) q^{32} +(-342.114 + 287.068i) q^{34} +(405.145 - 233.911i) q^{35} +(944.419 - 1635.78i) q^{37} +(-640.692 + 112.971i) q^{38} +(-653.963 + 238.023i) q^{40} +(-796.872 - 2189.39i) q^{41} +(-432.194 - 2451.10i) q^{43} +(1649.89 + 952.564i) q^{44} +(142.284 + 246.443i) q^{46} +(441.904 + 526.641i) q^{47} +(-268.253 + 1521.34i) q^{49} +(345.919 - 412.250i) q^{50} +(-2355.23 - 857.235i) q^{52} -3259.62i q^{53} +2194.87 q^{55} +(-435.622 + 1196.86i) q^{56} +(-1045.74 - 877.483i) q^{58} +(-5572.36 - 982.557i) q^{59} +(4765.70 - 3998.90i) q^{61} +(-190.444 + 109.953i) q^{62} +(-593.306 + 1027.64i) q^{64} +(-2843.71 + 501.422i) q^{65} +(-1895.82 + 690.021i) q^{67} +(1454.95 + 3997.44i) q^{68} +(118.353 + 671.214i) q^{70} +(1215.38 + 701.697i) q^{71} +(1186.68 + 2055.39i) q^{73} +(1768.85 + 2108.04i) q^{74} +(-1076.09 + 6102.80i) q^{76} +(2582.07 - 3077.19i) q^{77} +(-4163.44 - 1515.37i) q^{79} +2536.06i q^{80} +3394.43 q^{82} +(-353.761 + 971.950i) q^{83} +(3754.36 + 3150.28i) q^{85} +(3571.00 + 629.663i) q^{86} +(-4577.64 + 3841.09i) q^{88} +(11599.9 - 6697.21i) q^{89} +(-2642.37 + 4576.73i) q^{91} +(2669.42 - 470.691i) q^{92} +(-941.187 + 342.564i) q^{94} +(2441.82 + 6708.86i) q^{95} +(1042.57 + 5912.70i) q^{97} +(-1949.10 - 1125.32i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.498289 + 1.36904i −0.124572 + 0.342259i −0.986265 0.165171i \(-0.947182\pi\)
0.861693 + 0.507430i \(0.169405\pi\)
\(3\) 0 0
\(4\) 10.6307 + 8.92025i 0.664421 + 0.557516i
\(5\) 15.7451 + 2.77629i 0.629805 + 0.111052i 0.479434 0.877578i \(-0.340842\pi\)
0.150371 + 0.988630i \(0.451953\pi\)
\(6\) 0 0
\(7\) 22.4150 18.8084i 0.457450 0.383846i −0.384742 0.923024i \(-0.625710\pi\)
0.842192 + 0.539178i \(0.181265\pi\)
\(8\) −37.6967 + 21.7642i −0.589011 + 0.340066i
\(9\) 0 0
\(10\) −11.6465 + 20.1723i −0.116465 + 0.201723i
\(11\) 135.197 23.8388i 1.11733 0.197015i 0.415661 0.909520i \(-0.363550\pi\)
0.701667 + 0.712505i \(0.252439\pi\)
\(12\) 0 0
\(13\) −169.717 + 61.7718i −1.00424 + 0.365514i −0.791219 0.611534i \(-0.790553\pi\)
−0.213022 + 0.977047i \(0.568331\pi\)
\(14\) 14.5803 + 40.0591i 0.0743893 + 0.204383i
\(15\) 0 0
\(16\) 27.5445 + 156.213i 0.107596 + 0.610206i
\(17\) 265.471 + 153.270i 0.918586 + 0.530346i 0.883184 0.469027i \(-0.155395\pi\)
0.0354023 + 0.999373i \(0.488729\pi\)
\(18\) 0 0
\(19\) 223.274 + 386.722i 0.618488 + 1.07125i 0.989762 + 0.142729i \(0.0455877\pi\)
−0.371274 + 0.928523i \(0.621079\pi\)
\(20\) 142.617 + 169.964i 0.356543 + 0.424911i
\(21\) 0 0
\(22\) −34.7308 + 196.968i −0.0717578 + 0.406959i
\(23\) 125.552 149.627i 0.237338 0.282849i −0.634207 0.773163i \(-0.718673\pi\)
0.871546 + 0.490314i \(0.163118\pi\)
\(24\) 0 0
\(25\) −347.107 126.337i −0.555371 0.202138i
\(26\) 263.129i 0.389244i
\(27\) 0 0
\(28\) 406.064 0.517939
\(29\) −320.474 + 880.496i −0.381064 + 1.04696i 0.589846 + 0.807516i \(0.299189\pi\)
−0.970909 + 0.239448i \(0.923034\pi\)
\(30\) 0 0
\(31\) 115.628 + 97.0232i 0.120320 + 0.100961i 0.700962 0.713198i \(-0.252754\pi\)
−0.580642 + 0.814159i \(0.697198\pi\)
\(32\) −913.460 161.068i −0.892051 0.157293i
\(33\) 0 0
\(34\) −342.114 + 287.068i −0.295946 + 0.248328i
\(35\) 405.145 233.911i 0.330731 0.190947i
\(36\) 0 0
\(37\) 944.419 1635.78i 0.689860 1.19487i −0.282022 0.959408i \(-0.591005\pi\)
0.971883 0.235465i \(-0.0756614\pi\)
\(38\) −640.692 + 112.971i −0.443692 + 0.0782349i
\(39\) 0 0
\(40\) −653.963 + 238.023i −0.408727 + 0.148764i
\(41\) −796.872 2189.39i −0.474046 1.30243i −0.914474 0.404644i \(-0.867396\pi\)
0.440428 0.897788i \(-0.354827\pi\)
\(42\) 0 0
\(43\) −432.194 2451.10i −0.233745 1.32563i −0.845241 0.534385i \(-0.820543\pi\)
0.611496 0.791247i \(-0.290568\pi\)
\(44\) 1649.89 + 952.564i 0.852215 + 0.492027i
\(45\) 0 0
\(46\) 142.284 + 246.443i 0.0672419 + 0.116466i
\(47\) 441.904 + 526.641i 0.200047 + 0.238407i 0.856737 0.515754i \(-0.172488\pi\)
−0.656689 + 0.754161i \(0.728044\pi\)
\(48\) 0 0
\(49\) −268.253 + 1521.34i −0.111726 + 0.633627i
\(50\) 345.919 412.250i 0.138368 0.164900i
\(51\) 0 0
\(52\) −2355.23 857.235i −0.871019 0.317025i
\(53\) 3259.62i 1.16042i −0.814467 0.580210i \(-0.802971\pi\)
0.814467 0.580210i \(-0.197029\pi\)
\(54\) 0 0
\(55\) 2194.87 0.725577
\(56\) −435.622 + 1196.86i −0.138910 + 0.381653i
\(57\) 0 0
\(58\) −1045.74 877.483i −0.310863 0.260845i
\(59\) −5572.36 982.557i −1.60079 0.282263i −0.699225 0.714901i \(-0.746472\pi\)
−0.901568 + 0.432638i \(0.857583\pi\)
\(60\) 0 0
\(61\) 4765.70 3998.90i 1.28076 1.07468i 0.287619 0.957745i \(-0.407136\pi\)
0.993139 0.116939i \(-0.0373081\pi\)
\(62\) −190.444 + 109.953i −0.0495433 + 0.0286038i
\(63\) 0 0
\(64\) −593.306 + 1027.64i −0.144850 + 0.250888i
\(65\) −2843.71 + 501.422i −0.673067 + 0.118680i
\(66\) 0 0
\(67\) −1895.82 + 690.021i −0.422325 + 0.153714i −0.544435 0.838803i \(-0.683256\pi\)
0.122110 + 0.992517i \(0.461034\pi\)
\(68\) 1454.95 + 3997.44i 0.314652 + 0.864499i
\(69\) 0 0
\(70\) 118.353 + 671.214i 0.0241537 + 0.136982i
\(71\) 1215.38 + 701.697i 0.241098 + 0.139198i 0.615681 0.787995i \(-0.288881\pi\)
−0.374583 + 0.927193i \(0.622214\pi\)
\(72\) 0 0
\(73\) 1186.68 + 2055.39i 0.222684 + 0.385699i 0.955622 0.294596i \(-0.0951850\pi\)
−0.732938 + 0.680295i \(0.761852\pi\)
\(74\) 1768.85 + 2108.04i 0.323019 + 0.384959i
\(75\) 0 0
\(76\) −1076.09 + 6102.80i −0.186303 + 1.05658i
\(77\) 2582.07 3077.19i 0.435498 0.519006i
\(78\) 0 0
\(79\) −4163.44 1515.37i −0.667112 0.242809i −0.0138079 0.999905i \(-0.504395\pi\)
−0.653304 + 0.757096i \(0.726618\pi\)
\(80\) 2536.06i 0.396259i
\(81\) 0 0
\(82\) 3394.43 0.504822
\(83\) −353.761 + 971.950i −0.0513515 + 0.141087i −0.962717 0.270511i \(-0.912807\pi\)
0.911365 + 0.411599i \(0.135029\pi\)
\(84\) 0 0
\(85\) 3754.36 + 3150.28i 0.519634 + 0.436025i
\(86\) 3571.00 + 629.663i 0.482828 + 0.0851357i
\(87\) 0 0
\(88\) −4577.64 + 3841.09i −0.591121 + 0.496009i
\(89\) 11599.9 6697.21i 1.46445 0.845500i 0.465237 0.885186i \(-0.345969\pi\)
0.999212 + 0.0396855i \(0.0126356\pi\)
\(90\) 0 0
\(91\) −2642.37 + 4576.73i −0.319089 + 0.552678i
\(92\) 2669.42 470.691i 0.315385 0.0556109i
\(93\) 0 0
\(94\) −941.187 + 342.564i −0.106517 + 0.0387691i
\(95\) 2441.82 + 6708.86i 0.270562 + 0.743364i
\(96\) 0 0
\(97\) 1042.57 + 5912.70i 0.110806 + 0.628409i 0.988742 + 0.149632i \(0.0478088\pi\)
−0.877936 + 0.478777i \(0.841080\pi\)
\(98\) −1949.10 1125.32i −0.202947 0.117172i
\(99\) 0 0
\(100\) −2563.05 4439.33i −0.256305 0.443933i
\(101\) −388.856 463.421i −0.0381194 0.0454289i 0.746648 0.665219i \(-0.231662\pi\)
−0.784767 + 0.619791i \(0.787218\pi\)
\(102\) 0 0
\(103\) 2001.75 11352.5i 0.188684 1.07008i −0.732446 0.680825i \(-0.761621\pi\)
0.921130 0.389255i \(-0.127268\pi\)
\(104\) 5053.35 6022.35i 0.467210 0.556800i
\(105\) 0 0
\(106\) 4462.54 + 1624.23i 0.397164 + 0.144556i
\(107\) 11288.2i 0.985958i 0.870041 + 0.492979i \(0.164092\pi\)
−0.870041 + 0.492979i \(0.835908\pi\)
\(108\) 0 0
\(109\) −4850.97 −0.408297 −0.204148 0.978940i \(-0.565443\pi\)
−0.204148 + 0.978940i \(0.565443\pi\)
\(110\) −1093.68 + 3004.86i −0.0903868 + 0.248336i
\(111\) 0 0
\(112\) 3555.53 + 2983.44i 0.283445 + 0.237838i
\(113\) −21485.0 3788.39i −1.68259 0.296687i −0.751031 0.660266i \(-0.770443\pi\)
−0.931563 + 0.363580i \(0.881554\pi\)
\(114\) 0 0
\(115\) 2392.24 2007.33i 0.180888 0.151783i
\(116\) −11261.1 + 6501.61i −0.836885 + 0.483176i
\(117\) 0 0
\(118\) 4121.80 7139.17i 0.296021 0.512724i
\(119\) 8833.32 1557.55i 0.623778 0.109989i
\(120\) 0 0
\(121\) 3951.81 1438.34i 0.269914 0.0982406i
\(122\) 3099.95 + 8517.03i 0.208274 + 0.572227i
\(123\) 0 0
\(124\) 363.737 + 2062.86i 0.0236562 + 0.134161i
\(125\) −13768.3 7949.11i −0.881169 0.508743i
\(126\) 0 0
\(127\) −3768.41 6527.07i −0.233642 0.404679i 0.725235 0.688501i \(-0.241731\pi\)
−0.958877 + 0.283822i \(0.908398\pi\)
\(128\) −10650.7 12693.1i −0.650069 0.774723i
\(129\) 0 0
\(130\) 730.522 4142.99i 0.0432261 0.245148i
\(131\) 12206.3 14546.9i 0.711283 0.847674i −0.282470 0.959276i \(-0.591154\pi\)
0.993753 + 0.111602i \(0.0355983\pi\)
\(132\) 0 0
\(133\) 12278.3 + 4468.95i 0.694123 + 0.252640i
\(134\) 2939.27i 0.163693i
\(135\) 0 0
\(136\) −13343.2 −0.721410
\(137\) 7245.41 19906.6i 0.386031 1.06061i −0.582741 0.812658i \(-0.698020\pi\)
0.968772 0.247953i \(-0.0797580\pi\)
\(138\) 0 0
\(139\) −21874.2 18354.6i −1.13215 0.949983i −0.132992 0.991117i \(-0.542458\pi\)
−0.999154 + 0.0411346i \(0.986903\pi\)
\(140\) 6393.53 + 1127.35i 0.326201 + 0.0575180i
\(141\) 0 0
\(142\) −1566.26 + 1314.25i −0.0776760 + 0.0651779i
\(143\) −21472.6 + 12397.2i −1.05005 + 0.606249i
\(144\) 0 0
\(145\) −7490.42 + 12973.8i −0.356263 + 0.617065i
\(146\) −3405.22 + 600.432i −0.159749 + 0.0281681i
\(147\) 0 0
\(148\) 24631.4 8965.11i 1.12452 0.409291i
\(149\) 14137.3 + 38842.0i 0.636788 + 1.74956i 0.661588 + 0.749867i \(0.269883\pi\)
−0.0248007 + 0.999692i \(0.507895\pi\)
\(150\) 0 0
\(151\) 2069.43 + 11736.3i 0.0907605 + 0.514729i 0.995964 + 0.0897507i \(0.0286070\pi\)
−0.905204 + 0.424978i \(0.860282\pi\)
\(152\) −16833.4 9718.77i −0.728592 0.420653i
\(153\) 0 0
\(154\) 2926.17 + 5068.27i 0.123384 + 0.213707i
\(155\) 1551.21 + 1848.66i 0.0645664 + 0.0769473i
\(156\) 0 0
\(157\) 3842.31 21790.8i 0.155881 0.884044i −0.802095 0.597196i \(-0.796281\pi\)
0.957976 0.286848i \(-0.0926075\pi\)
\(158\) 4149.20 4944.82i 0.166207 0.198078i
\(159\) 0 0
\(160\) −13935.4 5072.06i −0.544351 0.198127i
\(161\) 5715.33i 0.220490i
\(162\) 0 0
\(163\) −13266.6 −0.499326 −0.249663 0.968333i \(-0.580320\pi\)
−0.249663 + 0.968333i \(0.580320\pi\)
\(164\) 11058.5 30383.1i 0.411160 1.12965i
\(165\) 0 0
\(166\) −1154.36 968.623i −0.0418914 0.0351511i
\(167\) −18940.3 3339.69i −0.679133 0.119750i −0.176568 0.984289i \(-0.556499\pi\)
−0.502566 + 0.864539i \(0.667611\pi\)
\(168\) 0 0
\(169\) 3109.01 2608.77i 0.108855 0.0913402i
\(170\) −6183.61 + 3570.11i −0.213966 + 0.123533i
\(171\) 0 0
\(172\) 17269.8 29912.2i 0.583756 1.01109i
\(173\) −4749.58 + 837.478i −0.158695 + 0.0279822i −0.252431 0.967615i \(-0.581230\pi\)
0.0937362 + 0.995597i \(0.470119\pi\)
\(174\) 0 0
\(175\) −10156.6 + 3696.70i −0.331644 + 0.120709i
\(176\) 7447.86 + 20462.8i 0.240440 + 0.660602i
\(177\) 0 0
\(178\) 3388.63 + 19217.9i 0.106951 + 0.606547i
\(179\) 31168.7 + 17995.3i 0.972777 + 0.561633i 0.900082 0.435721i \(-0.143507\pi\)
0.0726950 + 0.997354i \(0.476840\pi\)
\(180\) 0 0
\(181\) 6920.06 + 11985.9i 0.211229 + 0.365859i 0.952099 0.305789i \(-0.0989202\pi\)
−0.740871 + 0.671648i \(0.765587\pi\)
\(182\) −4949.04 5898.04i −0.149410 0.178059i
\(183\) 0 0
\(184\) −1476.38 + 8372.99i −0.0436077 + 0.247312i
\(185\) 19411.4 23133.6i 0.567170 0.675927i
\(186\) 0 0
\(187\) 39544.6 + 14393.1i 1.13085 + 0.411595i
\(188\) 9540.48i 0.269932i
\(189\) 0 0
\(190\) −10401.4 −0.288128
\(191\) −16685.8 + 45843.7i −0.457382 + 1.25665i 0.470045 + 0.882643i \(0.344238\pi\)
−0.927427 + 0.374005i \(0.877984\pi\)
\(192\) 0 0
\(193\) 33312.1 + 27952.2i 0.894308 + 0.750414i 0.969070 0.246788i \(-0.0793751\pi\)
−0.0747615 + 0.997201i \(0.523820\pi\)
\(194\) −8614.21 1518.92i −0.228882 0.0403581i
\(195\) 0 0
\(196\) −16422.5 + 13780.1i −0.427490 + 0.358707i
\(197\) 27651.5 15964.6i 0.712503 0.411364i −0.0994844 0.995039i \(-0.531719\pi\)
0.811987 + 0.583676i \(0.198386\pi\)
\(198\) 0 0
\(199\) −31413.4 + 54409.7i −0.793248 + 1.37395i 0.130697 + 0.991422i \(0.458278\pi\)
−0.923946 + 0.382524i \(0.875055\pi\)
\(200\) 15834.4 2792.03i 0.395860 0.0698008i
\(201\) 0 0
\(202\) 828.203 301.441i 0.0202971 0.00738754i
\(203\) 9377.32 + 25764.0i 0.227555 + 0.625203i
\(204\) 0 0
\(205\) −6468.47 36684.5i −0.153920 0.872922i
\(206\) 14544.5 + 8397.29i 0.342740 + 0.197881i
\(207\) 0 0
\(208\) −14324.3 24810.4i −0.331091 0.573466i
\(209\) 39404.9 + 46960.9i 0.902106 + 1.07509i
\(210\) 0 0
\(211\) −7584.30 + 43012.7i −0.170353 + 0.966122i 0.773018 + 0.634384i \(0.218746\pi\)
−0.943372 + 0.331738i \(0.892365\pi\)
\(212\) 29076.6 34652.2i 0.646952 0.771007i
\(213\) 0 0
\(214\) −15454.0 5624.80i −0.337453 0.122823i
\(215\) 39792.7i 0.860848i
\(216\) 0 0
\(217\) 4416.65 0.0937938
\(218\) 2417.19 6641.17i 0.0508624 0.139743i
\(219\) 0 0
\(220\) 23333.1 + 19578.8i 0.482089 + 0.404521i
\(221\) −54522.7 9613.82i −1.11633 0.196839i
\(222\) 0 0
\(223\) −23877.6 + 20035.7i −0.480154 + 0.402897i −0.850482 0.526004i \(-0.823690\pi\)
0.370328 + 0.928901i \(0.379245\pi\)
\(224\) −23504.7 + 13570.4i −0.468445 + 0.270457i
\(225\) 0 0
\(226\) 15892.2 27526.1i 0.311148 0.538925i
\(227\) −32744.2 + 5773.68i −0.635452 + 0.112047i −0.482088 0.876123i \(-0.660122\pi\)
−0.153363 + 0.988170i \(0.549010\pi\)
\(228\) 0 0
\(229\) −38771.9 + 14111.8i −0.739343 + 0.269099i −0.684114 0.729375i \(-0.739811\pi\)
−0.0552288 + 0.998474i \(0.517589\pi\)
\(230\) 1556.08 + 4275.29i 0.0294155 + 0.0808184i
\(231\) 0 0
\(232\) −7082.47 40166.7i −0.131586 0.746260i
\(233\) 43183.6 + 24932.1i 0.795439 + 0.459247i 0.841874 0.539674i \(-0.181453\pi\)
−0.0464346 + 0.998921i \(0.514786\pi\)
\(234\) 0 0
\(235\) 5495.73 + 9518.88i 0.0995152 + 0.172365i
\(236\) −50473.6 60152.2i −0.906235 1.08001i
\(237\) 0 0
\(238\) −2269.20 + 12869.3i −0.0400607 + 0.227195i
\(239\) −21620.3 + 25766.1i −0.378500 + 0.451079i −0.921340 0.388757i \(-0.872904\pi\)
0.542840 + 0.839836i \(0.317349\pi\)
\(240\) 0 0
\(241\) −106.015 38.5864i −0.00182530 0.000664355i 0.341107 0.940024i \(-0.389198\pi\)
−0.342933 + 0.939360i \(0.611420\pi\)
\(242\) 6126.88i 0.104619i
\(243\) 0 0
\(244\) 86334.1 1.45012
\(245\) −8447.36 + 23208.9i −0.140731 + 0.386654i
\(246\) 0 0
\(247\) −61781.9 51841.1i −1.01267 0.849729i
\(248\) −6470.42 1140.91i −0.105203 0.0185502i
\(249\) 0 0
\(250\) 17743.2 14888.3i 0.283891 0.238213i
\(251\) 24335.7 14050.2i 0.386274 0.223016i −0.294270 0.955722i \(-0.595077\pi\)
0.680545 + 0.732707i \(0.261743\pi\)
\(252\) 0 0
\(253\) 13407.3 23222.1i 0.209459 0.362794i
\(254\) 10813.6 1906.72i 0.167610 0.0295543i
\(255\) 0 0
\(256\) 4843.61 1762.93i 0.0739075 0.0269001i
\(257\) −28525.6 78373.3i −0.431885 1.18659i −0.944654 0.328067i \(-0.893603\pi\)
0.512770 0.858526i \(-0.328620\pi\)
\(258\) 0 0
\(259\) −9597.33 54429.1i −0.143071 0.811394i
\(260\) −34703.5 20036.1i −0.513366 0.296392i
\(261\) 0 0
\(262\) 13833.0 + 23959.5i 0.201518 + 0.349040i
\(263\) 36920.4 + 44000.0i 0.533771 + 0.636123i 0.963779 0.266702i \(-0.0859339\pi\)
−0.430008 + 0.902825i \(0.641489\pi\)
\(264\) 0 0
\(265\) 9049.65 51323.1i 0.128866 0.730838i
\(266\) −12236.3 + 14582.7i −0.172937 + 0.206098i
\(267\) 0 0
\(268\) −26309.1 9575.73i −0.366300 0.133322i
\(269\) 59862.8i 0.827280i −0.910441 0.413640i \(-0.864257\pi\)
0.910441 0.413640i \(-0.135743\pi\)
\(270\) 0 0
\(271\) 64524.3 0.878587 0.439293 0.898344i \(-0.355229\pi\)
0.439293 + 0.898344i \(0.355229\pi\)
\(272\) −16630.4 + 45691.8i −0.224784 + 0.617590i
\(273\) 0 0
\(274\) 23642.6 + 19838.5i 0.314915 + 0.264245i
\(275\) −49939.4 8805.66i −0.660356 0.116439i
\(276\) 0 0
\(277\) 76081.9 63840.3i 0.991566 0.832023i 0.00577230 0.999983i \(-0.498163\pi\)
0.985794 + 0.167961i \(0.0537182\pi\)
\(278\) 36027.8 20800.7i 0.466174 0.269146i
\(279\) 0 0
\(280\) −10181.8 + 17635.3i −0.129869 + 0.224940i
\(281\) −33494.2 + 5905.93i −0.424187 + 0.0747956i −0.381667 0.924300i \(-0.624650\pi\)
−0.0425202 + 0.999096i \(0.513539\pi\)
\(282\) 0 0
\(283\) −51574.7 + 18771.6i −0.643967 + 0.234385i −0.643299 0.765615i \(-0.722435\pi\)
−0.000667793 1.00000i \(0.500213\pi\)
\(284\) 6661.02 + 18301.0i 0.0825856 + 0.226902i
\(285\) 0 0
\(286\) −6272.68 35574.1i −0.0766869 0.434913i
\(287\) −59040.9 34087.3i −0.716785 0.413836i
\(288\) 0 0
\(289\) 5222.86 + 9046.27i 0.0625335 + 0.108311i
\(290\) −14029.2 16719.4i −0.166816 0.198803i
\(291\) 0 0
\(292\) −5719.31 + 32435.8i −0.0670776 + 0.380416i
\(293\) 40639.7 48432.6i 0.473386 0.564160i −0.475525 0.879702i \(-0.657742\pi\)
0.948912 + 0.315542i \(0.102186\pi\)
\(294\) 0 0
\(295\) −85009.6 30941.0i −0.976841 0.355541i
\(296\) 82218.1i 0.938392i
\(297\) 0 0
\(298\) −60220.6 −0.678129
\(299\) −12065.5 + 33149.8i −0.134960 + 0.370799i
\(300\) 0 0
\(301\) −55788.9 46812.5i −0.615765 0.516688i
\(302\) −17098.6 3014.95i −0.187477 0.0330572i
\(303\) 0 0
\(304\) −54260.9 + 45530.3i −0.587138 + 0.492667i
\(305\) 86138.6 49732.2i 0.925973 0.534611i
\(306\) 0 0
\(307\) 29615.8 51296.1i 0.314229 0.544261i −0.665044 0.746804i \(-0.731587\pi\)
0.979273 + 0.202543i \(0.0649206\pi\)
\(308\) 54898.6 9680.10i 0.578708 0.102042i
\(309\) 0 0
\(310\) −3303.83 + 1202.50i −0.0343791 + 0.0125130i
\(311\) −39880.8 109571.i −0.412328 1.13286i −0.955950 0.293531i \(-0.905170\pi\)
0.543622 0.839330i \(-0.317053\pi\)
\(312\) 0 0
\(313\) 16845.6 + 95536.1i 0.171948 + 0.975167i 0.941608 + 0.336712i \(0.109315\pi\)
−0.769660 + 0.638455i \(0.779574\pi\)
\(314\) 27917.8 + 16118.4i 0.283154 + 0.163479i
\(315\) 0 0
\(316\) −30743.0 53248.5i −0.307873 0.533252i
\(317\) 29494.1 + 35149.7i 0.293506 + 0.349787i 0.892566 0.450918i \(-0.148903\pi\)
−0.599060 + 0.800704i \(0.704459\pi\)
\(318\) 0 0
\(319\) −22337.1 + 126680.i −0.219505 + 1.24488i
\(320\) −12194.7 + 14533.1i −0.119089 + 0.141924i
\(321\) 0 0
\(322\) 7824.50 + 2847.89i 0.0754649 + 0.0274670i
\(323\) 136885.i 1.31205i
\(324\) 0 0
\(325\) 66713.9 0.631610
\(326\) 6610.59 18162.5i 0.0622021 0.170899i
\(327\) 0 0
\(328\) 77689.8 + 65189.4i 0.722131 + 0.605940i
\(329\) 19810.6 + 3493.14i 0.183023 + 0.0322719i
\(330\) 0 0
\(331\) −33632.3 + 28220.8i −0.306973 + 0.257581i −0.783240 0.621720i \(-0.786434\pi\)
0.476266 + 0.879301i \(0.341990\pi\)
\(332\) −12430.8 + 7176.91i −0.112777 + 0.0651120i
\(333\) 0 0
\(334\) 14009.9 24265.9i 0.125587 0.217522i
\(335\) −31765.6 + 5601.13i −0.283053 + 0.0499098i
\(336\) 0 0
\(337\) 115383. 41995.9i 1.01597 0.369783i 0.220247 0.975444i \(-0.429314\pi\)
0.795723 + 0.605661i \(0.207091\pi\)
\(338\) 2022.32 + 5556.27i 0.0177017 + 0.0486351i
\(339\) 0 0
\(340\) 11810.3 + 66979.6i 0.102165 + 0.579408i
\(341\) 17945.4 + 10360.8i 0.154328 + 0.0891013i
\(342\) 0 0
\(343\) 57728.7 + 99989.0i 0.490685 + 0.849892i
\(344\) 69638.5 + 82991.9i 0.588481 + 0.701324i
\(345\) 0 0
\(346\) 1220.12 6919.65i 0.0101918 0.0578006i
\(347\) −89906.6 + 107146.i −0.746676 + 0.889854i −0.996928 0.0783266i \(-0.975042\pi\)
0.250251 + 0.968181i \(0.419487\pi\)
\(348\) 0 0
\(349\) 139266. + 50688.6i 1.14339 + 0.416159i 0.843136 0.537701i \(-0.180707\pi\)
0.300252 + 0.953860i \(0.402929\pi\)
\(350\) 15746.8i 0.128545i
\(351\) 0 0
\(352\) −127336. −1.02770
\(353\) 45329.9 124543.i 0.363777 0.999470i −0.613905 0.789380i \(-0.710402\pi\)
0.977682 0.210090i \(-0.0673756\pi\)
\(354\) 0 0
\(355\) 17188.1 + 14422.5i 0.136387 + 0.114442i
\(356\) 183056. + 32277.8i 1.44439 + 0.254685i
\(357\) 0 0
\(358\) −40167.2 + 33704.3i −0.313405 + 0.262978i
\(359\) −46823.5 + 27033.6i −0.363308 + 0.209756i −0.670531 0.741882i \(-0.733934\pi\)
0.307223 + 0.951638i \(0.400600\pi\)
\(360\) 0 0
\(361\) −34542.1 + 59828.7i −0.265054 + 0.459087i
\(362\) −19857.3 + 3501.38i −0.151532 + 0.0267191i
\(363\) 0 0
\(364\) −68915.9 + 25083.3i −0.520136 + 0.189314i
\(365\) 12978.1 + 35656.9i 0.0974147 + 0.267645i
\(366\) 0 0
\(367\) −7934.90 45001.0i −0.0589127 0.334111i 0.941079 0.338187i \(-0.109814\pi\)
−0.999992 + 0.00407616i \(0.998703\pi\)
\(368\) 26831.9 + 15491.4i 0.198133 + 0.114392i
\(369\) 0 0
\(370\) 21998.3 + 38102.1i 0.160689 + 0.278321i
\(371\) −61308.4 73064.5i −0.445422 0.530834i
\(372\) 0 0
\(373\) 30077.1 170576.i 0.216182 1.22603i −0.662663 0.748918i \(-0.730574\pi\)
0.878844 0.477109i \(-0.158315\pi\)
\(374\) −39409.3 + 46966.2i −0.281744 + 0.335770i
\(375\) 0 0
\(376\) −28120.3 10234.9i −0.198904 0.0723952i
\(377\) 169231.i 1.19069i
\(378\) 0 0
\(379\) −113547. −0.790489 −0.395245 0.918576i \(-0.629340\pi\)
−0.395245 + 0.918576i \(0.629340\pi\)
\(380\) −33886.3 + 93101.8i −0.234670 + 0.644749i
\(381\) 0 0
\(382\) −54447.5 45686.9i −0.373122 0.313087i
\(383\) 279819. + 49339.6i 1.90756 + 0.336355i 0.997026 0.0770705i \(-0.0245567\pi\)
0.910538 + 0.413425i \(0.135668\pi\)
\(384\) 0 0
\(385\) 49198.1 41282.1i 0.331915 0.278510i
\(386\) −54866.6 + 31677.2i −0.368242 + 0.212605i
\(387\) 0 0
\(388\) −41659.5 + 72156.4i −0.276726 + 0.479304i
\(389\) 2674.74 471.628i 0.0176759 0.00311674i −0.164803 0.986326i \(-0.552699\pi\)
0.182479 + 0.983210i \(0.441588\pi\)
\(390\) 0 0
\(391\) 56263.8 20478.3i 0.368023 0.133950i
\(392\) −22998.5 63187.8i −0.149667 0.411208i
\(393\) 0 0
\(394\) 8077.70 + 45810.9i 0.0520350 + 0.295105i
\(395\) −61346.8 35418.6i −0.393186 0.227006i
\(396\) 0 0
\(397\) −96669.3 167436.i −0.613349 1.06235i −0.990672 0.136270i \(-0.956489\pi\)
0.377323 0.926082i \(-0.376845\pi\)
\(398\) −58835.9 70117.9i −0.371429 0.442652i
\(399\) 0 0
\(400\) 10174.5 57702.4i 0.0635905 0.360640i
\(401\) −59374.0 + 70759.2i −0.369239 + 0.440042i −0.918387 0.395683i \(-0.870508\pi\)
0.549148 + 0.835725i \(0.314952\pi\)
\(402\) 0 0
\(403\) −25617.3 9323.92i −0.157733 0.0574101i
\(404\) 8395.20i 0.0514361i
\(405\) 0 0
\(406\) −39944.5 −0.242329
\(407\) 88687.2 243666.i 0.535392 1.47098i
\(408\) 0 0
\(409\) 58067.9 + 48724.7i 0.347128 + 0.291275i 0.799636 0.600486i \(-0.205026\pi\)
−0.452508 + 0.891760i \(0.649471\pi\)
\(410\) 53445.7 + 9423.91i 0.317940 + 0.0560613i
\(411\) 0 0
\(412\) 122547. 102829.i 0.721952 0.605790i
\(413\) −143385. + 82783.4i −0.840628 + 0.485337i
\(414\) 0 0
\(415\) −8268.42 + 14321.3i −0.0480094 + 0.0831547i
\(416\) 164979. 29090.2i 0.953327 0.168097i
\(417\) 0 0
\(418\) −83926.3 + 30546.7i −0.480336 + 0.174828i
\(419\) 24747.6 + 67993.5i 0.140963 + 0.387293i 0.990005 0.141033i \(-0.0450423\pi\)
−0.849042 + 0.528325i \(0.822820\pi\)
\(420\) 0 0
\(421\) 38184.0 + 216552.i 0.215436 + 1.22180i 0.880149 + 0.474697i \(0.157442\pi\)
−0.664714 + 0.747098i \(0.731446\pi\)
\(422\) −55106.9 31816.0i −0.309443 0.178657i
\(423\) 0 0
\(424\) 70943.0 + 122877.i 0.394619 + 0.683500i
\(425\) −72783.3 86739.8i −0.402953 0.480220i
\(426\) 0 0
\(427\) 31610.3 179271.i 0.173370 0.983227i
\(428\) −100694. + 120002.i −0.549687 + 0.655092i
\(429\) 0 0
\(430\) 54477.7 + 19828.3i 0.294633 + 0.107238i
\(431\) 61615.0i 0.331690i 0.986152 + 0.165845i \(0.0530351\pi\)
−0.986152 + 0.165845i \(0.946965\pi\)
\(432\) 0 0
\(433\) −81033.3 −0.432203 −0.216102 0.976371i \(-0.569334\pi\)
−0.216102 + 0.976371i \(0.569334\pi\)
\(434\) −2200.77 + 6046.57i −0.0116841 + 0.0321018i
\(435\) 0 0
\(436\) −51569.4 43271.9i −0.271281 0.227632i
\(437\) 85896.6 + 15145.9i 0.449793 + 0.0793107i
\(438\) 0 0
\(439\) 89923.6 75454.9i 0.466600 0.391524i −0.378953 0.925416i \(-0.623716\pi\)
0.845553 + 0.533892i \(0.179271\pi\)
\(440\) −82739.5 + 47769.7i −0.427373 + 0.246744i
\(441\) 0 0
\(442\) 40329.7 69853.1i 0.206434 0.357554i
\(443\) −111680. + 19692.1i −0.569072 + 0.100343i −0.450778 0.892636i \(-0.648853\pi\)
−0.118293 + 0.992979i \(0.537742\pi\)
\(444\) 0 0
\(445\) 201235. 73243.7i 1.01621 0.369871i
\(446\) −15531.6 42672.8i −0.0780814 0.214527i
\(447\) 0 0
\(448\) 6029.26 + 34193.7i 0.0300406 + 0.170369i
\(449\) −143134. 82638.4i −0.709986 0.409911i 0.101070 0.994879i \(-0.467774\pi\)
−0.811056 + 0.584968i \(0.801107\pi\)
\(450\) 0 0
\(451\) −159927. 277001.i −0.786264 1.36185i
\(452\) −194609. 231925.i −0.952544 1.13520i
\(453\) 0 0
\(454\) 8411.68 47705.0i 0.0408104 0.231447i
\(455\) −54310.8 + 64725.1i −0.262339 + 0.312644i
\(456\) 0 0
\(457\) −113660. 41368.8i −0.544220 0.198080i 0.0552568 0.998472i \(-0.482402\pi\)
−0.599476 + 0.800392i \(0.704624\pi\)
\(458\) 60111.9i 0.286569i
\(459\) 0 0
\(460\) 43337.1 0.204807
\(461\) 2026.76 5568.48i 0.00953676 0.0262020i −0.934833 0.355088i \(-0.884451\pi\)
0.944370 + 0.328886i \(0.106673\pi\)
\(462\) 0 0
\(463\) −28407.1 23836.4i −0.132515 0.111193i 0.574121 0.818770i \(-0.305344\pi\)
−0.706636 + 0.707577i \(0.749788\pi\)
\(464\) −146372. 25809.3i −0.679864 0.119878i
\(465\) 0 0
\(466\) −55650.8 + 46696.6i −0.256271 + 0.215037i
\(467\) −125686. + 72564.8i −0.576306 + 0.332730i −0.759664 0.650316i \(-0.774637\pi\)
0.183358 + 0.983046i \(0.441303\pi\)
\(468\) 0 0
\(469\) −29516.6 + 51124.2i −0.134190 + 0.232424i
\(470\) −15770.2 + 2780.71i −0.0713905 + 0.0125881i
\(471\) 0 0
\(472\) 231444. 84238.8i 1.03887 0.378119i
\(473\) −116862. 321077.i −0.522339 1.43512i
\(474\) 0 0
\(475\) −28642.8 162441.i −0.126949 0.719962i
\(476\) 107798. + 62237.5i 0.475772 + 0.274687i
\(477\) 0 0
\(478\) −24501.6 42437.9i −0.107235 0.185737i
\(479\) 186476. + 222233.i 0.812740 + 0.968586i 0.999906 0.0137428i \(-0.00437459\pi\)
−0.187166 + 0.982328i \(0.559930\pi\)
\(480\) 0 0
\(481\) −59238.4 + 335958.i −0.256043 + 1.45209i
\(482\) 105.653 125.912i 0.000454764 0.000541966i
\(483\) 0 0
\(484\) 54841.0 + 19960.5i 0.234107 + 0.0852081i
\(485\) 95990.7i 0.408080i
\(486\) 0 0
\(487\) 36077.7 0.152118 0.0760591 0.997103i \(-0.475766\pi\)
0.0760591 + 0.997103i \(0.475766\pi\)
\(488\) −92618.4 + 254467.i −0.388918 + 1.06854i
\(489\) 0 0
\(490\) −27564.7 23129.5i −0.114805 0.0963328i
\(491\) 354380. + 62486.7i 1.46996 + 0.259194i 0.850559 0.525879i \(-0.176264\pi\)
0.619403 + 0.785073i \(0.287375\pi\)
\(492\) 0 0
\(493\) −220030. + 184627.i −0.905292 + 0.759631i
\(494\) 101758. 58749.8i 0.416978 0.240742i
\(495\) 0 0
\(496\) −11971.3 + 20735.0i −0.0486609 + 0.0842831i
\(497\) 40440.5 7130.75i 0.163721 0.0288684i
\(498\) 0 0
\(499\) −224040. + 81543.8i −0.899754 + 0.327484i −0.750154 0.661263i \(-0.770021\pi\)
−0.149600 + 0.988747i \(0.547799\pi\)
\(500\) −75458.8 207321.i −0.301835 0.829285i
\(501\) 0 0
\(502\) 7109.06 + 40317.5i 0.0282101 + 0.159988i
\(503\) 270952. + 156434.i 1.07092 + 0.618295i 0.928432 0.371502i \(-0.121157\pi\)
0.142486 + 0.989797i \(0.454490\pi\)
\(504\) 0 0
\(505\) −4836.00 8376.19i −0.0189628 0.0328446i
\(506\) 25111.2 + 29926.4i 0.0980769 + 0.116883i
\(507\) 0 0
\(508\) 18162.2 103003.i 0.0703785 0.399136i
\(509\) −92146.9 + 109816.i −0.355668 + 0.423869i −0.913978 0.405764i \(-0.867006\pi\)
0.558310 + 0.829633i \(0.311450\pi\)
\(510\) 0 0
\(511\) 65258.2 + 23752.0i 0.249916 + 0.0909618i
\(512\) 257604.i 0.982682i
\(513\) 0 0
\(514\) 121510. 0.459924
\(515\) 63035.6 173189.i 0.237668 0.652988i
\(516\) 0 0
\(517\) 72298.5 + 60665.6i 0.270488 + 0.226966i
\(518\) 79297.8 + 13982.3i 0.295530 + 0.0521099i
\(519\) 0 0
\(520\) 96285.4 80793.0i 0.356085 0.298791i
\(521\) 96772.6 55871.7i 0.356514 0.205834i −0.311036 0.950398i \(-0.600676\pi\)
0.667551 + 0.744564i \(0.267343\pi\)
\(522\) 0 0
\(523\) −60888.2 + 105461.i −0.222602 + 0.385559i −0.955597 0.294675i \(-0.904789\pi\)
0.732995 + 0.680234i \(0.238122\pi\)
\(524\) 259525. 45761.2i 0.945183 0.166661i
\(525\) 0 0
\(526\) −78634.7 + 28620.7i −0.284212 + 0.103445i
\(527\) 15825.1 + 43479.1i 0.0569804 + 0.156552i
\(528\) 0 0
\(529\) 41968.9 + 238018.i 0.149974 + 0.850546i
\(530\) 65753.9 + 37963.0i 0.234083 + 0.135148i
\(531\) 0 0
\(532\) 90663.6 + 157034.i 0.320339 + 0.554844i
\(533\) 270485. + 322351.i 0.952113 + 1.13468i
\(534\) 0 0
\(535\) −31339.4 + 177735.i −0.109492 + 0.620961i
\(536\) 56448.3 67272.5i 0.196481 0.234157i
\(537\) 0 0
\(538\) 81954.4 + 29829.0i 0.283144 + 0.103056i
\(539\) 212075.i 0.729981i
\(540\) 0 0
\(541\) 301102. 1.02877 0.514386 0.857559i \(-0.328020\pi\)
0.514386 + 0.857559i \(0.328020\pi\)
\(542\) −32151.7 + 88336.1i −0.109447 + 0.300704i
\(543\) 0 0
\(544\) −217811. 182765.i −0.736006 0.617583i
\(545\) −76379.2 13467.7i −0.257147 0.0453420i
\(546\) 0 0
\(547\) −208316. + 174798.i −0.696223 + 0.584201i −0.920696 0.390280i \(-0.872378\pi\)
0.224473 + 0.974480i \(0.427934\pi\)
\(548\) 254596. 146991.i 0.847794 0.489474i
\(549\) 0 0
\(550\) 36939.5 63981.1i 0.122114 0.211508i
\(551\) −412061. + 72657.4i −1.35724 + 0.239319i
\(552\) 0 0
\(553\) −121825. + 44340.8i −0.398371 + 0.144995i
\(554\) 49489.0 + 135970.i 0.161246 + 0.443020i
\(555\) 0 0
\(556\) −68810.9 390246.i −0.222591 1.26238i
\(557\) −79557.6 45932.6i −0.256432 0.148051i 0.366274 0.930507i \(-0.380633\pi\)
−0.622706 + 0.782456i \(0.713967\pi\)
\(558\) 0 0
\(559\) 224759. + 389294.i 0.719273 + 1.24582i
\(560\) 47699.4 + 56845.9i 0.152103 + 0.181269i
\(561\) 0 0
\(562\) 8604.35 48797.7i 0.0272424 0.154499i
\(563\) −20835.2 + 24830.5i −0.0657328 + 0.0783373i −0.797909 0.602778i \(-0.794060\pi\)
0.732176 + 0.681115i \(0.238505\pi\)
\(564\) 0 0
\(565\) −327767. 119297.i −1.02676 0.373710i
\(566\) 79961.3i 0.249602i
\(567\) 0 0
\(568\) −61087.6 −0.189346
\(569\) 22923.8 62982.7i 0.0708048 0.194535i −0.899243 0.437450i \(-0.855882\pi\)
0.970047 + 0.242916i \(0.0781038\pi\)
\(570\) 0 0
\(571\) 345064. + 289543.i 1.05834 + 0.888057i 0.993946 0.109868i \(-0.0350427\pi\)
0.0643983 + 0.997924i \(0.479487\pi\)
\(572\) −338855. 59749.3i −1.03567 0.182617i
\(573\) 0 0
\(574\) 76086.2 63843.9i 0.230931 0.193774i
\(575\) −62483.3 + 36074.8i −0.188985 + 0.109111i
\(576\) 0 0
\(577\) 124686. 215962.i 0.374511 0.648672i −0.615743 0.787947i \(-0.711144\pi\)
0.990254 + 0.139275i \(0.0444773\pi\)
\(578\) −14987.2 + 2642.64i −0.0448605 + 0.00791012i
\(579\) 0 0
\(580\) −195358. + 71104.6i −0.580732 + 0.211369i
\(581\) 10351.3 + 28440.0i 0.0306650 + 0.0842514i
\(582\) 0 0
\(583\) −77705.5 440690.i −0.228620 1.29657i
\(584\) −89467.9 51654.3i −0.262326 0.151454i
\(585\) 0 0
\(586\) 46055.6 + 79770.7i 0.134118 + 0.232300i
\(587\) −221146. 263552.i −0.641806 0.764875i 0.342848 0.939391i \(-0.388608\pi\)
−0.984654 + 0.174516i \(0.944164\pi\)
\(588\) 0 0
\(589\) −11704.3 + 66378.5i −0.0337377 + 0.191336i
\(590\) 84718.7 100964.i 0.243375 0.290043i
\(591\) 0 0
\(592\) 281543. + 102473.i 0.803345 + 0.292394i
\(593\) 358704.i 1.02006i 0.860156 + 0.510032i \(0.170366\pi\)
−0.860156 + 0.510032i \(0.829634\pi\)
\(594\) 0 0
\(595\) 143406. 0.405073
\(596\) −196190. + 539027.i −0.552312 + 1.51746i
\(597\) 0 0
\(598\) −39371.2 33036.3i −0.110097 0.0923825i
\(599\) 125950. + 22208.3i 0.351029 + 0.0618960i 0.346383 0.938093i \(-0.387410\pi\)
0.00464659 + 0.999989i \(0.498521\pi\)
\(600\) 0 0
\(601\) −6649.24 + 5579.38i −0.0184087 + 0.0154467i −0.651946 0.758266i \(-0.726047\pi\)
0.633537 + 0.773713i \(0.281603\pi\)
\(602\) 91887.0 53051.0i 0.253549 0.146386i
\(603\) 0 0
\(604\) −82691.4 + 143226.i −0.226666 + 0.392597i
\(605\) 66215.0 11675.5i 0.180903 0.0318981i
\(606\) 0 0
\(607\) −249490. + 90806.9i −0.677135 + 0.246457i −0.657617 0.753352i \(-0.728435\pi\)
−0.0195183 + 0.999810i \(0.506213\pi\)
\(608\) −141664. 389217.i −0.383222 1.05290i
\(609\) 0 0
\(610\) 25163.3 + 142708.i 0.0676250 + 0.383521i
\(611\) −107530. 62082.5i −0.288037 0.166298i
\(612\) 0 0
\(613\) −46414.5 80392.3i −0.123519 0.213941i 0.797634 0.603142i \(-0.206085\pi\)
−0.921153 + 0.389201i \(0.872751\pi\)
\(614\) 55469.0 + 66105.4i 0.147134 + 0.175348i
\(615\) 0 0
\(616\) −30362.9 + 172197.i −0.0800169 + 0.453798i
\(617\) −200519. + 238970.i −0.526727 + 0.627729i −0.962158 0.272493i \(-0.912152\pi\)
0.435430 + 0.900222i \(0.356596\pi\)
\(618\) 0 0
\(619\) −184160. 67028.8i −0.480634 0.174936i 0.0903294 0.995912i \(-0.471208\pi\)
−0.570963 + 0.820975i \(0.693430\pi\)
\(620\) 33489.8i 0.0871222i
\(621\) 0 0
\(622\) 169880. 0.439097
\(623\) 134048. 368294.i 0.345370 0.948897i
\(624\) 0 0
\(625\) −17861.4 14987.5i −0.0457252 0.0383680i
\(626\) −139186. 24542.3i −0.355180 0.0626278i
\(627\) 0 0
\(628\) 235226. 197378.i 0.596439 0.500472i
\(629\) 501432. 289502.i 1.26739 0.731729i
\(630\) 0 0
\(631\) 234657. 406439.i 0.589353 1.02079i −0.404964 0.914333i \(-0.632716\pi\)
0.994317 0.106457i \(-0.0339507\pi\)
\(632\) 189929. 33489.6i 0.475507 0.0838448i
\(633\) 0 0
\(634\) −62817.9 + 22863.8i −0.156280 + 0.0568814i
\(635\) −41213.0 113232.i −0.102208 0.280815i
\(636\) 0 0
\(637\) −48448.9 274767.i −0.119400 0.677152i
\(638\) −162299. 93703.5i −0.398726 0.230205i
\(639\) 0 0
\(640\) −132458. 229423.i −0.323383 0.560115i
\(641\) 235723. + 280924.i 0.573703 + 0.683712i 0.972386 0.233376i \(-0.0749774\pi\)
−0.398684 + 0.917088i \(0.630533\pi\)
\(642\) 0 0
\(643\) −44811.0 + 254136.i −0.108383 + 0.614672i 0.881432 + 0.472312i \(0.156580\pi\)
−0.989815 + 0.142360i \(0.954531\pi\)
\(644\) 50982.2 60758.2i 0.122927 0.146499i
\(645\) 0 0
\(646\) −187400. 68208.2i −0.449061 0.163445i
\(647\) 376550.i 0.899527i −0.893148 0.449763i \(-0.851508\pi\)
0.893148 0.449763i \(-0.148492\pi\)
\(648\) 0 0
\(649\) −776787. −1.84422
\(650\) −33242.8 + 91333.8i −0.0786811 + 0.216175i
\(651\) 0 0
\(652\) −141034. 118341.i −0.331763 0.278382i
\(653\) −655412. 115567.i −1.53705 0.271023i −0.659941 0.751317i \(-0.729419\pi\)
−0.877108 + 0.480294i \(0.840530\pi\)
\(654\) 0 0
\(655\) 232577. 195155.i 0.542105 0.454880i
\(656\) 320061. 184787.i 0.743746 0.429402i
\(657\) 0 0
\(658\) −14653.6 + 25380.9i −0.0338450 + 0.0586212i
\(659\) −540148. + 95242.6i −1.24377 + 0.219311i −0.756533 0.653956i \(-0.773108\pi\)
−0.487242 + 0.873267i \(0.661997\pi\)
\(660\) 0 0
\(661\) 380003. 138310.i 0.869729 0.316555i 0.131672 0.991293i \(-0.457966\pi\)
0.738057 + 0.674738i \(0.235743\pi\)
\(662\) −21876.8 60106.0i −0.0499192 0.137152i
\(663\) 0 0
\(664\) −7818.10 44338.6i −0.0177323 0.100565i
\(665\) 180917. + 104452.i 0.409106 + 0.236197i
\(666\) 0 0
\(667\) 91509.8 + 158500.i 0.205691 + 0.356268i
\(668\) −171559. 204456.i −0.384468 0.458192i
\(669\) 0 0
\(670\) 8160.28 46279.2i 0.0181784 0.103095i
\(671\) 548978. 654246.i 1.21930 1.45310i
\(672\) 0 0
\(673\) −46201.6 16816.0i −0.102006 0.0371273i 0.290513 0.956871i \(-0.406174\pi\)
−0.392519 + 0.919744i \(0.628396\pi\)
\(674\) 178889.i 0.393790i
\(675\) 0 0
\(676\) 56321.9 0.123249
\(677\) −168209. + 462149.i −0.367004 + 1.00833i 0.609491 + 0.792793i \(0.291374\pi\)
−0.976495 + 0.215542i \(0.930848\pi\)
\(678\) 0 0
\(679\) 134578. + 112924.i 0.291900 + 0.244933i
\(680\) −210090. 37044.6i −0.454348 0.0801137i
\(681\) 0 0
\(682\) −23126.3 + 19405.3i −0.0497207 + 0.0417206i
\(683\) −499325. + 288285.i −1.07039 + 0.617990i −0.928288 0.371862i \(-0.878719\pi\)
−0.142102 + 0.989852i \(0.545386\pi\)
\(684\) 0 0
\(685\) 169346. 293317.i 0.360907 0.625109i
\(686\) −165654. + 29209.3i −0.352009 + 0.0620687i
\(687\) 0 0
\(688\) 370988. 135028.i 0.783759 0.285265i
\(689\) 201353. + 553212.i 0.424149 + 1.16534i
\(690\) 0 0
\(691\) −30249.8 171555.i −0.0633530 0.359293i −0.999960 0.00891178i \(-0.997163\pi\)
0.936607 0.350381i \(-0.113948\pi\)
\(692\) −57962.0 33464.4i −0.121041 0.0698829i
\(693\) 0 0
\(694\) −101888. 176475.i −0.211546 0.366408i
\(695\) −293454. 349725.i −0.607534 0.724030i
\(696\) 0 0
\(697\) 124021. 703356.i 0.255287 1.44780i
\(698\) −138789. + 165402.i −0.284869 + 0.339493i
\(699\) 0 0
\(700\) −140948. 51300.8i −0.287648 0.104695i
\(701\) 238377.i 0.485096i −0.970139 0.242548i \(-0.922017\pi\)
0.970139 0.242548i \(-0.0779832\pi\)
\(702\) 0 0
\(703\) 843457. 1.70668
\(704\) −55715.3 + 153077.i −0.112416 + 0.308861i
\(705\) 0 0
\(706\) 147917. + 124117.i 0.296761 + 0.249012i
\(707\) −17432.4 3073.81i −0.0348754 0.00614948i
\(708\) 0 0
\(709\) −613316. + 514633.i −1.22009 + 1.02378i −0.221269 + 0.975213i \(0.571020\pi\)
−0.998820 + 0.0485633i \(0.984536\pi\)
\(710\) −28309.7 + 16344.6i −0.0561588 + 0.0324233i
\(711\) 0 0
\(712\) −291519. + 504926.i −0.575052 + 0.996019i
\(713\) 29034.6 5119.58i 0.0571132 0.0100706i
\(714\) 0 0
\(715\) −372506. + 135581.i −0.728655 + 0.265209i
\(716\) 170824. + 469336.i 0.333214 + 0.915499i
\(717\) 0 0
\(718\) −13678.3 77573.6i −0.0265329 0.150475i
\(719\) 280426. + 161904.i 0.542451 + 0.313184i 0.746072 0.665866i \(-0.231938\pi\)
−0.203621 + 0.979050i \(0.565271\pi\)
\(720\) 0 0
\(721\) −168653. 292116.i −0.324432 0.561934i
\(722\) −64695.7 77101.4i −0.124108 0.147907i
\(723\) 0 0
\(724\) −33351.8 + 189148.i −0.0636271 + 0.360847i
\(725\) 222478. 265139.i 0.423263 0.504425i
\(726\) 0 0
\(727\) 724109. + 263554.i 1.37005 + 0.498656i 0.919146 0.393918i \(-0.128881\pi\)
0.450901 + 0.892574i \(0.351103\pi\)
\(728\) 230037.i 0.434045i
\(729\) 0 0
\(730\) −55282.5 −0.103739
\(731\) 260944. 716938.i 0.488329 1.34167i
\(732\) 0 0
\(733\) −44106.6 37009.9i −0.0820911 0.0688826i 0.600819 0.799385i \(-0.294841\pi\)
−0.682910 + 0.730503i \(0.739286\pi\)
\(734\) 65562.0 + 11560.3i 0.121691 + 0.0214575i
\(735\) 0 0
\(736\) −138787. + 116456.i −0.256208 + 0.214984i
\(737\) −239859. + 138483.i −0.441592 + 0.254953i
\(738\) 0 0
\(739\) 56693.7 98196.4i 0.103812 0.179807i −0.809440 0.587202i \(-0.800229\pi\)
0.913252 + 0.407395i \(0.133563\pi\)
\(740\) 412715. 72772.8i 0.753680 0.132894i
\(741\) 0 0
\(742\) 130577. 47526.2i 0.237170 0.0863228i
\(743\) 322270. + 885430.i 0.583771 + 1.60390i 0.781682 + 0.623677i \(0.214362\pi\)
−0.197911 + 0.980220i \(0.563416\pi\)
\(744\) 0 0
\(745\) 114757. + 650821.i 0.206761 + 1.17260i
\(746\) 218538. + 126173.i 0.392689 + 0.226719i
\(747\) 0 0
\(748\) 291999. + 505757.i 0.521889 + 0.903938i
\(749\) 212314. + 253026.i 0.378456 + 0.451026i
\(750\) 0 0
\(751\) −42803.6 + 242751.i −0.0758928 + 0.430410i 0.923060 + 0.384656i \(0.125680\pi\)
−0.998953 + 0.0457535i \(0.985431\pi\)
\(752\) −70096.0 + 83537.2i −0.123953 + 0.147722i
\(753\) 0 0
\(754\) 231684. + 84326.0i 0.407524 + 0.148327i
\(755\) 190535.i 0.334258i
\(756\) 0 0
\(757\) −1.07013e6 −1.86742 −0.933712 0.358025i \(-0.883450\pi\)
−0.933712 + 0.358025i \(0.883450\pi\)
\(758\) 56579.0 155450.i 0.0984730 0.270552i
\(759\) 0 0
\(760\) −238062. 199758.i −0.412157 0.345841i
\(761\) −15959.4 2814.08i −0.0275580 0.00485923i 0.159852 0.987141i \(-0.448898\pi\)
−0.187410 + 0.982282i \(0.560009\pi\)
\(762\) 0 0
\(763\) −108735. + 91239.3i −0.186775 + 0.156723i
\(764\) −586320. + 338512.i −1.00449 + 0.579945i
\(765\) 0 0
\(766\) −206978. + 358497.i −0.352750 + 0.610981i
\(767\) 1.00642e6 177458.i 1.71075 0.301652i
\(768\) 0 0
\(769\) 522315. 190107.i 0.883242 0.321474i 0.139725 0.990190i \(-0.455378\pi\)
0.743517 + 0.668716i \(0.233156\pi\)
\(770\) 32001.9 + 87924.5i 0.0539752 + 0.148296i
\(771\) 0 0
\(772\) 104792. + 594304.i 0.175830 + 0.997181i
\(773\) −287445. 165957.i −0.481056 0.277738i 0.239800 0.970822i \(-0.422918\pi\)
−0.720857 + 0.693084i \(0.756251\pi\)
\(774\) 0 0
\(775\) −27877.6 48285.4i −0.0464143 0.0803919i
\(776\) −167987. 200199.i −0.278966 0.332459i
\(777\) 0 0
\(778\) −687.115 + 3896.82i −0.00113519 + 0.00643801i
\(779\) 668764. 797001.i 1.10204 1.31336i
\(780\) 0 0
\(781\) 181042. + 65894.0i 0.296810 + 0.108030i
\(782\) 87231.4i 0.142646i
\(783\) 0 0
\(784\) −245042. −0.398665
\(785\) 120995. 332432.i 0.196349 0.539465i
\(786\) 0 0
\(787\) −347977. 291987.i −0.561825 0.471427i 0.317097 0.948393i \(-0.397292\pi\)
−0.878922 + 0.476966i \(0.841736\pi\)
\(788\) 436364. + 76942.8i 0.702743 + 0.123913i
\(789\) 0 0
\(790\) 79057.8 66337.4i 0.126675 0.106293i
\(791\) −552842. + 319183.i −0.883584 + 0.510138i
\(792\) 0 0
\(793\) −561800. + 973066.i −0.893378 + 1.54738i
\(794\) 277396. 48912.3i 0.440006 0.0775849i
\(795\) 0 0
\(796\) −819296. + 298199.i −1.29305 + 0.470631i
\(797\) 166032. + 456169.i 0.261382 + 0.718140i 0.999075 + 0.0430040i \(0.0136928\pi\)
−0.737693 + 0.675136i \(0.764085\pi\)
\(798\) 0 0
\(799\) 36594.7 + 207539.i 0.0573224 + 0.325092i
\(800\) 296720. + 171311.i 0.463624 + 0.267674i
\(801\) 0 0
\(802\) −67286.6 116544.i −0.104612 0.181193i
\(803\) 209433. + 249593.i 0.324799 + 0.387080i
\(804\) 0 0
\(805\) 15867.4 89988.6i 0.0244858 0.138866i
\(806\) 25529.6 30425.0i 0.0392983 0.0468339i
\(807\) 0 0
\(808\) 24744.6 + 9006.29i 0.0379016 + 0.0137951i
\(809\) 157871.i 0.241216i −0.992700 0.120608i \(-0.961516\pi\)
0.992700 0.120608i \(-0.0384843\pi\)
\(810\) 0 0
\(811\) 711539. 1.08183 0.540913 0.841079i \(-0.318079\pi\)
0.540913 + 0.841079i \(0.318079\pi\)
\(812\) −130133. + 357538.i −0.197368 + 0.542263i
\(813\) 0 0
\(814\) 289396. + 242832.i 0.436761 + 0.366486i
\(815\) −208884. 36831.9i −0.314478 0.0554509i
\(816\) 0 0
\(817\) 851395. 714405.i 1.27552 1.07029i
\(818\) −95640.6 + 55218.1i −0.142934 + 0.0825230i
\(819\) 0 0
\(820\) 258470. 447684.i 0.384400 0.665800i
\(821\) −1.26250e6 + 222613.i −1.87303 + 0.330266i −0.990226 0.139473i \(-0.955459\pi\)
−0.882805 + 0.469739i \(0.844348\pi\)
\(822\) 0 0
\(823\) 956538. 348151.i 1.41222 0.514006i 0.480440 0.877028i \(-0.340477\pi\)
0.931781 + 0.363021i \(0.118255\pi\)
\(824\) 171618. + 471518.i 0.252761 + 0.694454i
\(825\) 0 0
\(826\) −41886.4 237549.i −0.0613921 0.348172i
\(827\) −897693. 518283.i −1.31255 0.757803i −0.330035 0.943969i \(-0.607060\pi\)
−0.982518 + 0.186166i \(0.940394\pi\)
\(828\) 0 0
\(829\) −298497. 517012.i −0.434341 0.752300i 0.562901 0.826524i \(-0.309685\pi\)
−0.997242 + 0.0742242i \(0.976352\pi\)
\(830\) −15486.4 18455.9i −0.0224798 0.0267904i
\(831\) 0 0
\(832\) 37215.0 211057.i 0.0537615 0.304896i
\(833\) −304389. + 362757.i −0.438671 + 0.522788i
\(834\) 0 0
\(835\) −288946. 105168.i −0.414423 0.150838i
\(836\) 850731.i 1.21725i
\(837\) 0 0
\(838\) −105417. −0.150115
\(839\) 429660. 1.18048e6i 0.610380 1.67701i −0.118997 0.992895i \(-0.537968\pi\)
0.729377 0.684112i \(-0.239810\pi\)
\(840\) 0 0
\(841\) −130761. 109722.i −0.184879 0.155132i
\(842\) −315495. 55630.3i −0.445008 0.0784670i
\(843\) 0 0
\(844\) −464311. + 389603.i −0.651815 + 0.546937i
\(845\) 56194.4 32443.9i 0.0787009 0.0454380i
\(846\) 0 0
\(847\) 61527.0 106568.i 0.0857628 0.148545i
\(848\) 509194. 89784.6i 0.708095 0.124856i
\(849\) 0 0
\(850\) 155017. 56421.6i 0.214557 0.0780922i
\(851\) −126183. 346686.i −0.174238 0.478715i
\(852\) 0 0
\(853\) 174171. + 987772.i 0.239374 + 1.35756i 0.833203 + 0.552967i \(0.186505\pi\)
−0.593829 + 0.804591i \(0.702384\pi\)
\(854\) 229677. + 132604.i 0.314922 + 0.181820i
\(855\) 0 0
\(856\) −245680. 425529.i −0.335291 0.580740i
\(857\) 307505. + 366471.i 0.418689 + 0.498974i 0.933624 0.358256i \(-0.116628\pi\)
−0.514935 + 0.857229i \(0.672184\pi\)
\(858\) 0 0
\(859\) 229557. 1.30188e6i 0.311102 1.76435i −0.282186 0.959360i \(-0.591060\pi\)
0.593288 0.804990i \(-0.297829\pi\)
\(860\) 354961. 423026.i 0.479936 0.571966i
\(861\) 0 0
\(862\) −84353.2 30702.1i −0.113524 0.0413193i
\(863\) 549709.i 0.738094i −0.929411 0.369047i \(-0.879684\pi\)
0.929411 0.369047i \(-0.120316\pi\)
\(864\) 0 0
\(865\) −77107.8 −0.103054
\(866\) 40378.0 110938.i 0.0538405 0.147926i
\(867\) 0 0
\(868\) 46952.3 + 39397.7i 0.0623186 + 0.0522915i
\(869\) −599008. 105621.i −0.793219 0.139866i
\(870\) 0 0
\(871\) 279128. 234216.i 0.367932 0.308731i
\(872\) 182866. 105578.i 0.240491 0.138848i
\(873\) 0 0
\(874\) −63536.6 + 110049.i −0.0831766 + 0.144066i
\(875\) −458126. + 80780.0i −0.598369 + 0.105509i
\(876\) 0 0
\(877\) −736533. + 268076.i −0.957620 + 0.348545i −0.773100 0.634284i \(-0.781295\pi\)
−0.184520 + 0.982829i \(0.559073\pi\)
\(878\) 58492.6 + 160707.i 0.0758773 + 0.208471i
\(879\) 0 0
\(880\) 60456.7 + 342867.i 0.0780691 + 0.442752i
\(881\) 112271. + 64819.8i 0.144649 + 0.0835133i 0.570578 0.821243i \(-0.306719\pi\)
−0.425929 + 0.904757i \(0.640053\pi\)
\(882\) 0 0
\(883\) 161874. + 280373.i 0.207613 + 0.359596i 0.950962 0.309307i \(-0.100097\pi\)
−0.743349 + 0.668904i \(0.766764\pi\)
\(884\) −493859. 588558.i −0.631973 0.753156i
\(885\) 0 0
\(886\) 28689.5 162706.i 0.0365473 0.207270i
\(887\) 358344. 427058.i 0.455463 0.542800i −0.488624 0.872494i \(-0.662501\pi\)
0.944088 + 0.329694i \(0.106946\pi\)
\(888\) 0 0
\(889\) −207233. 75426.6i −0.262214 0.0954380i
\(890\) 311995.i 0.393884i
\(891\) 0 0
\(892\) −432559. −0.543646
\(893\) −104998. + 288479.i −0.131667 + 0.361753i
\(894\) 0 0
\(895\) 440795. + 369871.i 0.550289 + 0.461748i
\(896\) −477473. 84191.4i −0.594748 0.104870i
\(897\) 0 0
\(898\) 184457. 154778.i 0.228740 0.191936i
\(899\) −122484. + 70716.3i −0.151552 + 0.0874984i
\(900\) 0 0
\(901\) 499602. 865335.i 0.615424 1.06595i
\(902\) 458915. 80919.1i 0.564052 0.0994576i
\(903\) 0 0
\(904\) 892367. 324795.i 1.09196 0.397441i
\(905\) 75680.8 + 207931.i 0.0924036 + 0.253877i
\(906\) 0 0
\(907\) −89372.8 506859.i −0.108640 0.616130i −0.989704 0.143132i \(-0.954283\pi\)
0.881063 0.472998i \(-0.156828\pi\)
\(908\) −399598. 230708.i −0.484676 0.279828i
\(909\) 0 0
\(910\) −61548.6 106605.i −0.0743251 0.128735i
\(911\) −449438. 535620.i −0.541543 0.645386i 0.423990 0.905667i \(-0.360629\pi\)
−0.965533 + 0.260281i \(0.916185\pi\)
\(912\) 0 0
\(913\) −24657.1 + 139838.i −0.0295802 + 0.167758i
\(914\) 113271. 134991.i 0.135589 0.161589i
\(915\) 0 0
\(916\) −538055. 195836.i −0.641262 0.233400i
\(917\) 555652.i 0.660791i
\(918\) 0 0
\(919\) −140843. −0.166764 −0.0833821 0.996518i \(-0.526572\pi\)
−0.0833821 + 0.996518i \(0.526572\pi\)
\(920\) −46491.7 + 127735.i −0.0549288 + 0.150916i
\(921\) 0 0
\(922\) 6613.55 + 5549.43i 0.00777988 + 0.00652809i
\(923\) −249615. 44013.8i −0.292999 0.0516637i
\(924\) 0 0
\(925\) −534473. + 448476.i −0.624658 + 0.524150i
\(926\) 46787.9 27013.0i 0.0545647 0.0315029i
\(927\) 0 0
\(928\) 434560. 752680.i 0.504608 0.874006i
\(929\) −789115. + 139142.i −0.914342 + 0.161223i −0.610974 0.791650i \(-0.709222\pi\)
−0.303368 + 0.952874i \(0.598111\pi\)
\(930\) 0 0
\(931\) −648229. + 235936.i −0.747876 + 0.272204i
\(932\) 236673. + 650255.i 0.272469 + 0.748603i
\(933\) 0 0
\(934\) −36716.0 208227.i −0.0420884 0.238695i
\(935\) 582676. + 336408.i 0.666505 + 0.384807i
\(936\) 0 0
\(937\) 21249.5 + 36805.3i 0.0242031 + 0.0419209i 0.877873 0.478893i \(-0.158962\pi\)
−0.853670 + 0.520814i \(0.825629\pi\)
\(938\) −55283.2 65883.9i −0.0628329 0.0748814i
\(939\) 0 0
\(940\) −26487.1 + 150216.i −0.0299764 + 0.170005i
\(941\) 129466. 154292.i 0.146210 0.174246i −0.687969 0.725740i \(-0.741497\pi\)
0.834179 + 0.551494i \(0.185942\pi\)
\(942\) 0 0
\(943\) −427640. 155648.i −0.480901 0.175034i
\(944\) 897538.i 1.00718i
\(945\) 0 0
\(946\) 497798. 0.556251
\(947\) −465505. + 1.27896e6i −0.519068 + 1.42613i 0.352481 + 0.935819i \(0.385338\pi\)
−0.871549 + 0.490308i \(0.836884\pi\)
\(948\) 0 0
\(949\) −328365. 275531.i −0.364606 0.305941i
\(950\) 236661. + 41729.7i 0.262228 + 0.0462379i
\(951\) 0 0
\(952\) −299088. + 250965.i −0.330009 + 0.276910i
\(953\) 936391. 540626.i 1.03103 0.595266i 0.113751 0.993509i \(-0.463713\pi\)
0.917280 + 0.398244i \(0.130380\pi\)
\(954\) 0 0
\(955\) −389995. + 675491.i −0.427614 + 0.740650i
\(956\) −459679. + 81053.9i −0.502967 + 0.0886866i
\(957\) 0 0
\(958\) −397164. + 144556.i −0.432752 + 0.157509i
\(959\) −212006. 582482.i −0.230521 0.633353i
\(960\) 0 0
\(961\) −156411. 887053.i −0.169364 0.960513i
\(962\) −430421. 248504.i −0.465097 0.268524i
\(963\) 0 0
\(964\) −782.821 1355.89i −0.000842380 0.00145905i
\(965\) 446900. + 532594.i 0.479905 + 0.571929i
\(966\) 0 0
\(967\) −239395. + 1.35768e6i −0.256013 + 1.45192i 0.537445 + 0.843299i \(0.319390\pi\)
−0.793458 + 0.608625i \(0.791722\pi\)
\(968\) −117666. + 140229.i −0.125574 + 0.149653i
\(969\) 0 0
\(970\) −131415. 47831.1i −0.139669 0.0508355i
\(971\) 1.18814e6i 1.26017i 0.776526 + 0.630086i \(0.216980\pi\)
−0.776526 + 0.630086i \(0.783020\pi\)
\(972\) 0 0
\(973\) −835532. −0.882546
\(974\) −17977.1 + 49391.7i −0.0189497 + 0.0520639i
\(975\) 0 0
\(976\) 755948. + 634315.i 0.793583 + 0.665895i
\(977\) −447986. 78992.0i −0.469327 0.0827549i −0.0660169 0.997819i \(-0.521029\pi\)
−0.403310 + 0.915064i \(0.632140\pi\)
\(978\) 0 0
\(979\) 1.40862e6 1.18197e6i 1.46969 1.23322i
\(980\) −296831. + 171376.i −0.309070 + 0.178442i
\(981\) 0 0
\(982\) −262130. + 454023.i −0.271828 + 0.470820i
\(983\) 490692. 86522.3i 0.507811 0.0895408i 0.0861280 0.996284i \(-0.472551\pi\)
0.421683 + 0.906743i \(0.361439\pi\)
\(984\) 0 0
\(985\) 479699. 174596.i 0.494420 0.179954i
\(986\) −143123. 393228.i −0.147216 0.404474i
\(987\) 0 0
\(988\) −194351. 1.10222e6i −0.199101 1.12916i
\(989\) −421013. 243072.i −0.430430 0.248509i
\(990\) 0 0
\(991\) 880650. + 1.52533e6i 0.896718 + 1.55316i 0.831664 + 0.555279i \(0.187389\pi\)
0.0650542 + 0.997882i \(0.479278\pi\)
\(992\) −89994.0 107251.i −0.0914514 0.108988i
\(993\) 0 0
\(994\) −10388.8 + 58917.8i −0.0105146 + 0.0596312i
\(995\) −645665. + 769474.i −0.652171 + 0.777227i
\(996\) 0 0
\(997\) 1.66792e6 + 607075.i 1.67798 + 0.610734i 0.993030 0.117860i \(-0.0376034\pi\)
0.684946 + 0.728594i \(0.259826\pi\)
\(998\) 347351.i 0.348745i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.17.5 66
3.2 odd 2 27.5.f.a.23.7 yes 66
27.7 even 9 27.5.f.a.20.7 66
27.20 odd 18 inner 81.5.f.a.62.5 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.20.7 66 27.7 even 9
27.5.f.a.23.7 yes 66 3.2 odd 2
81.5.f.a.17.5 66 1.1 even 1 trivial
81.5.f.a.62.5 66 27.20 odd 18 inner