Properties

Label 81.5.f.a.17.3
Level $81$
Weight $5$
Character 81.17
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 81.17
Dual form 81.5.f.a.62.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62498 + 4.46460i) q^{2} +(-5.03539 - 4.22519i) q^{4} +(1.85566 + 0.327202i) q^{5} +(-15.2767 + 12.8186i) q^{7} +(-38.7874 + 22.3939i) q^{8} +(-4.47623 + 7.75306i) q^{10} +(-163.801 + 28.8826i) q^{11} +(19.7931 - 7.20410i) q^{13} +(-32.4058 - 89.0343i) q^{14} +(-55.2139 - 313.134i) q^{16} +(-273.361 - 157.825i) q^{17} +(138.878 + 240.543i) q^{19} +(-7.96145 - 9.48809i) q^{20} +(137.225 - 778.241i) q^{22} +(476.678 - 568.083i) q^{23} +(-583.971 - 212.548i) q^{25} +100.075i q^{26} +131.085 q^{28} +(-255.430 + 701.787i) q^{29} +(-395.273 - 331.673i) q^{31} +(782.021 + 137.891i) q^{32} +(1148.83 - 963.986i) q^{34} +(-32.5425 + 18.7884i) q^{35} +(-1056.20 + 1829.39i) q^{37} +(-1299.60 + 229.155i) q^{38} +(-79.3033 + 28.8640i) q^{40} +(-78.0433 - 214.422i) q^{41} +(447.021 + 2535.18i) q^{43} +(946.837 + 546.657i) q^{44} +(1761.67 + 3051.30i) q^{46} +(-153.262 - 182.650i) q^{47} +(-347.870 + 1972.87i) q^{49} +(1897.89 - 2261.81i) q^{50} +(-130.105 - 47.3542i) q^{52} +4752.36i q^{53} -313.409 q^{55} +(305.482 - 839.305i) q^{56} +(-2718.13 - 2280.78i) q^{58} +(-653.572 - 115.242i) q^{59} +(5458.87 - 4580.53i) q^{61} +(2123.10 - 1225.77i) q^{62} +(657.314 - 1138.50i) q^{64} +(39.0864 - 6.89198i) q^{65} +(-5444.09 + 1981.49i) q^{67} +(709.638 + 1949.72i) q^{68} +(-31.0018 - 175.820i) q^{70} +(6331.20 + 3655.32i) q^{71} +(-3172.37 - 5494.71i) q^{73} +(-6451.18 - 7688.22i) q^{74} +(317.039 - 1798.02i) q^{76} +(2132.10 - 2540.94i) q^{77} +(1366.51 + 497.371i) q^{79} -599.134i q^{80} +1084.13 q^{82} +(398.389 - 1094.57i) q^{83} +(-455.624 - 382.314i) q^{85} +(-12045.0 - 2123.85i) q^{86} +(5706.62 - 4788.43i) q^{88} +(-6289.55 + 3631.27i) q^{89} +(-210.026 + 363.775i) q^{91} +(-4800.52 + 846.461i) q^{92} +(1064.51 - 387.449i) q^{94} +(179.003 + 491.807i) q^{95} +(2242.60 + 12718.4i) q^{97} +(-8242.80 - 4758.98i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.62498 + 4.46460i −0.406246 + 1.11615i 0.552903 + 0.833246i \(0.313520\pi\)
−0.959148 + 0.282904i \(0.908702\pi\)
\(3\) 0 0
\(4\) −5.03539 4.22519i −0.314712 0.264075i
\(5\) 1.85566 + 0.327202i 0.0742262 + 0.0130881i 0.210638 0.977564i \(-0.432446\pi\)
−0.136412 + 0.990652i \(0.543557\pi\)
\(6\) 0 0
\(7\) −15.2767 + 12.8186i −0.311769 + 0.261605i −0.785223 0.619214i \(-0.787451\pi\)
0.473454 + 0.880819i \(0.343007\pi\)
\(8\) −38.7874 + 22.3939i −0.606053 + 0.349905i
\(9\) 0 0
\(10\) −4.47623 + 7.75306i −0.0447623 + 0.0775306i
\(11\) −163.801 + 28.8826i −1.35373 + 0.238699i −0.802997 0.595983i \(-0.796763\pi\)
−0.550732 + 0.834682i \(0.685651\pi\)
\(12\) 0 0
\(13\) 19.7931 7.20410i 0.117119 0.0426278i −0.282796 0.959180i \(-0.591262\pi\)
0.399915 + 0.916552i \(0.369040\pi\)
\(14\) −32.4058 89.0343i −0.165336 0.454256i
\(15\) 0 0
\(16\) −55.2139 313.134i −0.215679 1.22318i
\(17\) −273.361 157.825i −0.945887 0.546108i −0.0540859 0.998536i \(-0.517224\pi\)
−0.891801 + 0.452428i \(0.850558\pi\)
\(18\) 0 0
\(19\) 138.878 + 240.543i 0.384703 + 0.666325i 0.991728 0.128358i \(-0.0409705\pi\)
−0.607025 + 0.794683i \(0.707637\pi\)
\(20\) −7.96145 9.48809i −0.0199036 0.0237202i
\(21\) 0 0
\(22\) 137.225 778.241i 0.283522 1.60794i
\(23\) 476.678 568.083i 0.901093 1.07388i −0.0958224 0.995398i \(-0.530548\pi\)
0.996915 0.0784825i \(-0.0250075\pi\)
\(24\) 0 0
\(25\) −583.971 212.548i −0.934354 0.340077i
\(26\) 100.075i 0.148040i
\(27\) 0 0
\(28\) 131.085 0.167200
\(29\) −255.430 + 701.787i −0.303721 + 0.834467i 0.690124 + 0.723691i \(0.257556\pi\)
−0.993845 + 0.110776i \(0.964666\pi\)
\(30\) 0 0
\(31\) −395.273 331.673i −0.411314 0.345134i 0.413533 0.910489i \(-0.364295\pi\)
−0.824847 + 0.565355i \(0.808739\pi\)
\(32\) 782.021 + 137.891i 0.763693 + 0.134660i
\(33\) 0 0
\(34\) 1148.83 963.986i 0.993801 0.833898i
\(35\) −32.5425 + 18.7884i −0.0265653 + 0.0153375i
\(36\) 0 0
\(37\) −1056.20 + 1829.39i −0.771510 + 1.33629i 0.165226 + 0.986256i \(0.447165\pi\)
−0.936735 + 0.350038i \(0.886169\pi\)
\(38\) −1299.60 + 229.155i −0.900003 + 0.158695i
\(39\) 0 0
\(40\) −79.3033 + 28.8640i −0.0495646 + 0.0180400i
\(41\) −78.0433 214.422i −0.0464267 0.127556i 0.914312 0.405010i \(-0.132732\pi\)
−0.960739 + 0.277453i \(0.910510\pi\)
\(42\) 0 0
\(43\) 447.021 + 2535.18i 0.241764 + 1.37111i 0.827890 + 0.560890i \(0.189541\pi\)
−0.586127 + 0.810219i \(0.699348\pi\)
\(44\) 946.837 + 546.657i 0.489069 + 0.282364i
\(45\) 0 0
\(46\) 1761.67 + 3051.30i 0.832548 + 1.44201i
\(47\) −153.262 182.650i −0.0693806 0.0826846i 0.730238 0.683193i \(-0.239409\pi\)
−0.799618 + 0.600509i \(0.794965\pi\)
\(48\) 0 0
\(49\) −347.870 + 1972.87i −0.144886 + 0.821687i
\(50\) 1897.89 2261.81i 0.759155 0.904725i
\(51\) 0 0
\(52\) −130.105 47.3542i −0.0481156 0.0175127i
\(53\) 4752.36i 1.69183i 0.533314 + 0.845917i \(0.320946\pi\)
−0.533314 + 0.845917i \(0.679054\pi\)
\(54\) 0 0
\(55\) −313.409 −0.103606
\(56\) 305.482 839.305i 0.0974114 0.267636i
\(57\) 0 0
\(58\) −2718.13 2280.78i −0.808006 0.677997i
\(59\) −653.572 115.242i −0.187754 0.0331061i 0.0789804 0.996876i \(-0.474834\pi\)
−0.266734 + 0.963770i \(0.585945\pi\)
\(60\) 0 0
\(61\) 5458.87 4580.53i 1.46704 1.23100i 0.548215 0.836337i \(-0.315308\pi\)
0.918828 0.394658i \(-0.129137\pi\)
\(62\) 2123.10 1225.77i 0.552315 0.318879i
\(63\) 0 0
\(64\) 657.314 1138.50i 0.160477 0.277954i
\(65\) 39.0864 6.89198i 0.00925121 0.00163124i
\(66\) 0 0
\(67\) −5444.09 + 1981.49i −1.21276 + 0.441410i −0.867661 0.497155i \(-0.834378\pi\)
−0.345102 + 0.938565i \(0.612156\pi\)
\(68\) 709.638 + 1949.72i 0.153468 + 0.421651i
\(69\) 0 0
\(70\) −31.0018 175.820i −0.00632691 0.0358817i
\(71\) 6331.20 + 3655.32i 1.25594 + 0.725118i 0.972283 0.233807i \(-0.0751184\pi\)
0.283659 + 0.958925i \(0.408452\pi\)
\(72\) 0 0
\(73\) −3172.37 5494.71i −0.595303 1.03110i −0.993504 0.113797i \(-0.963698\pi\)
0.398200 0.917298i \(-0.369635\pi\)
\(74\) −6451.18 7688.22i −1.17808 1.40398i
\(75\) 0 0
\(76\) 317.039 1798.02i 0.0548890 0.311291i
\(77\) 2132.10 2540.94i 0.359605 0.428561i
\(78\) 0 0
\(79\) 1366.51 + 497.371i 0.218958 + 0.0796941i 0.449170 0.893446i \(-0.351720\pi\)
−0.230212 + 0.973140i \(0.573942\pi\)
\(80\) 599.134i 0.0936148i
\(81\) 0 0
\(82\) 1084.13 0.161233
\(83\) 398.389 1094.57i 0.0578298 0.158886i −0.907414 0.420239i \(-0.861946\pi\)
0.965243 + 0.261353i \(0.0841686\pi\)
\(84\) 0 0
\(85\) −455.624 382.314i −0.0630621 0.0529154i
\(86\) −12045.0 2123.85i −1.62858 0.287162i
\(87\) 0 0
\(88\) 5706.62 4788.43i 0.736909 0.618340i
\(89\) −6289.55 + 3631.27i −0.794035 + 0.458436i −0.841381 0.540442i \(-0.818257\pi\)
0.0473463 + 0.998879i \(0.484924\pi\)
\(90\) 0 0
\(91\) −210.026 + 363.775i −0.0253624 + 0.0439289i
\(92\) −4800.52 + 846.461i −0.567169 + 0.100007i
\(93\) 0 0
\(94\) 1064.51 387.449i 0.120474 0.0438490i
\(95\) 179.003 + 491.807i 0.0198341 + 0.0544938i
\(96\) 0 0
\(97\) 2242.60 + 12718.4i 0.238346 + 1.35173i 0.835451 + 0.549566i \(0.185207\pi\)
−0.597104 + 0.802164i \(0.703682\pi\)
\(98\) −8242.80 4758.98i −0.858268 0.495521i
\(99\) 0 0
\(100\) 2042.47 + 3537.66i 0.204247 + 0.353766i
\(101\) 7137.94 + 8506.66i 0.699729 + 0.833905i 0.992496 0.122279i \(-0.0390203\pi\)
−0.292767 + 0.956184i \(0.594576\pi\)
\(102\) 0 0
\(103\) 384.623 2181.30i 0.0362544 0.205609i −0.961300 0.275504i \(-0.911155\pi\)
0.997554 + 0.0698950i \(0.0222664\pi\)
\(104\) −606.394 + 722.673i −0.0560646 + 0.0668152i
\(105\) 0 0
\(106\) −21217.4 7722.50i −1.88834 0.687300i
\(107\) 5073.79i 0.443164i −0.975142 0.221582i \(-0.928878\pi\)
0.975142 0.221582i \(-0.0711221\pi\)
\(108\) 0 0
\(109\) −5369.02 −0.451900 −0.225950 0.974139i \(-0.572549\pi\)
−0.225950 + 0.974139i \(0.572549\pi\)
\(110\) 509.284 1399.25i 0.0420896 0.115640i
\(111\) 0 0
\(112\) 4857.43 + 4075.87i 0.387232 + 0.324926i
\(113\) −5225.02 921.312i −0.409196 0.0721522i −0.0347384 0.999396i \(-0.511060\pi\)
−0.374457 + 0.927244i \(0.622171\pi\)
\(114\) 0 0
\(115\) 1070.43 898.196i 0.0809398 0.0679165i
\(116\) 4251.37 2454.53i 0.315946 0.182412i
\(117\) 0 0
\(118\) 1576.55 2730.67i 0.113226 0.196112i
\(119\) 6199.15 1093.08i 0.437762 0.0771893i
\(120\) 0 0
\(121\) 12238.6 4454.48i 0.835913 0.304247i
\(122\) 11579.7 + 31815.0i 0.777996 + 2.13753i
\(123\) 0 0
\(124\) 588.969 + 3340.21i 0.0383044 + 0.217235i
\(125\) −2034.00 1174.33i −0.130176 0.0751572i
\(126\) 0 0
\(127\) −2667.49 4620.24i −0.165385 0.286455i 0.771407 0.636342i \(-0.219553\pi\)
−0.936792 + 0.349887i \(0.886220\pi\)
\(128\) 12181.7 + 14517.6i 0.743511 + 0.886082i
\(129\) 0 0
\(130\) −32.7447 + 185.704i −0.00193756 + 0.0109884i
\(131\) 20646.0 24605.0i 1.20308 1.43377i 0.331544 0.943440i \(-0.392430\pi\)
0.871535 0.490334i \(-0.163125\pi\)
\(132\) 0 0
\(133\) −5205.03 1894.48i −0.294252 0.107099i
\(134\) 27525.6i 1.53295i
\(135\) 0 0
\(136\) 14137.3 0.764343
\(137\) −3593.24 + 9872.36i −0.191446 + 0.525993i −0.997862 0.0653555i \(-0.979182\pi\)
0.806416 + 0.591348i \(0.201404\pi\)
\(138\) 0 0
\(139\) 15211.8 + 12764.3i 0.787322 + 0.660641i 0.945081 0.326836i \(-0.105983\pi\)
−0.157759 + 0.987478i \(0.550427\pi\)
\(140\) 243.249 + 42.8913i 0.0124107 + 0.00218833i
\(141\) 0 0
\(142\) −26607.6 + 22326.5i −1.31956 + 1.10724i
\(143\) −3034.06 + 1751.72i −0.148372 + 0.0856627i
\(144\) 0 0
\(145\) −703.616 + 1218.70i −0.0334657 + 0.0579642i
\(146\) 29686.7 5234.57i 1.39270 0.245570i
\(147\) 0 0
\(148\) 13047.9 4749.04i 0.595684 0.216811i
\(149\) 840.965 + 2310.53i 0.0378796 + 0.104073i 0.957191 0.289459i \(-0.0934753\pi\)
−0.919311 + 0.393532i \(0.871253\pi\)
\(150\) 0 0
\(151\) −491.537 2787.65i −0.0215577 0.122260i 0.972130 0.234443i \(-0.0753267\pi\)
−0.993688 + 0.112183i \(0.964216\pi\)
\(152\) −10773.4 6220.03i −0.466301 0.269219i
\(153\) 0 0
\(154\) 7879.65 + 13648.0i 0.332250 + 0.575475i
\(155\) −624.966 744.806i −0.0260132 0.0310013i
\(156\) 0 0
\(157\) −1222.97 + 6935.82i −0.0496155 + 0.281383i −0.999514 0.0311753i \(-0.990075\pi\)
0.949898 + 0.312559i \(0.101186\pi\)
\(158\) −4441.12 + 5292.73i −0.177901 + 0.212014i
\(159\) 0 0
\(160\) 1406.04 + 511.758i 0.0549236 + 0.0199905i
\(161\) 14788.8i 0.570533i
\(162\) 0 0
\(163\) −13689.6 −0.515246 −0.257623 0.966246i \(-0.582939\pi\)
−0.257623 + 0.966246i \(0.582939\pi\)
\(164\) −512.997 + 1409.45i −0.0190734 + 0.0524036i
\(165\) 0 0
\(166\) 4239.42 + 3557.30i 0.153848 + 0.129093i
\(167\) −40997.2 7228.91i −1.47001 0.259203i −0.619434 0.785049i \(-0.712638\pi\)
−0.850580 + 0.525846i \(0.823749\pi\)
\(168\) 0 0
\(169\) −21539.1 + 18073.5i −0.754145 + 0.632803i
\(170\) 2447.26 1412.93i 0.0846802 0.0488901i
\(171\) 0 0
\(172\) 8460.70 14654.4i 0.285989 0.495348i
\(173\) −21652.5 + 3817.93i −0.723463 + 0.127566i −0.523241 0.852184i \(-0.675277\pi\)
−0.200222 + 0.979751i \(0.564166\pi\)
\(174\) 0 0
\(175\) 11645.7 4238.69i 0.380268 0.138406i
\(176\) 18088.2 + 49697.0i 0.583943 + 1.60437i
\(177\) 0 0
\(178\) −5991.78 33981.1i −0.189111 1.07250i
\(179\) −13909.9 8030.88i −0.434128 0.250644i 0.266976 0.963703i \(-0.413976\pi\)
−0.701104 + 0.713059i \(0.747309\pi\)
\(180\) 0 0
\(181\) −25231.5 43702.2i −0.770168 1.33397i −0.937470 0.348065i \(-0.886839\pi\)
0.167302 0.985906i \(-0.446494\pi\)
\(182\) −1282.82 1528.81i −0.0387279 0.0461541i
\(183\) 0 0
\(184\) −5767.50 + 32709.1i −0.170354 + 0.966125i
\(185\) −2558.52 + 3049.12i −0.0747558 + 0.0890905i
\(186\) 0 0
\(187\) 49335.3 + 17956.6i 1.41083 + 0.513500i
\(188\) 1567.28i 0.0443435i
\(189\) 0 0
\(190\) −2486.60 −0.0688808
\(191\) 7238.53 19887.7i 0.198419 0.545152i −0.800082 0.599891i \(-0.795211\pi\)
0.998501 + 0.0547393i \(0.0174328\pi\)
\(192\) 0 0
\(193\) −24191.9 20299.4i −0.649463 0.544964i 0.257445 0.966293i \(-0.417119\pi\)
−0.906908 + 0.421329i \(0.861564\pi\)
\(194\) −60426.9 10654.9i −1.60556 0.283104i
\(195\) 0 0
\(196\) 10087.4 8464.35i 0.262584 0.220334i
\(197\) 16697.9 9640.53i 0.430258 0.248410i −0.269199 0.963085i \(-0.586759\pi\)
0.699457 + 0.714675i \(0.253425\pi\)
\(198\) 0 0
\(199\) 7059.56 12227.5i 0.178267 0.308768i −0.763020 0.646375i \(-0.776284\pi\)
0.941287 + 0.337607i \(0.109618\pi\)
\(200\) 27410.5 4833.21i 0.685262 0.120830i
\(201\) 0 0
\(202\) −49577.9 + 18044.9i −1.21502 + 0.442233i
\(203\) −5093.84 13995.2i −0.123610 0.339616i
\(204\) 0 0
\(205\) −74.6621 423.430i −0.00177661 0.0100757i
\(206\) 9113.65 + 5261.77i 0.214762 + 0.123993i
\(207\) 0 0
\(208\) −3348.70 5800.12i −0.0774016 0.134063i
\(209\) −29695.9 35390.2i −0.679835 0.810196i
\(210\) 0 0
\(211\) 12177.4 69061.2i 0.273519 1.55121i −0.470106 0.882610i \(-0.655784\pi\)
0.743626 0.668596i \(-0.233104\pi\)
\(212\) 20079.6 23930.0i 0.446770 0.532440i
\(213\) 0 0
\(214\) 22652.4 + 8244.82i 0.494638 + 0.180034i
\(215\) 4850.69i 0.104936i
\(216\) 0 0
\(217\) 10290.1 0.218523
\(218\) 8724.56 23970.5i 0.183582 0.504388i
\(219\) 0 0
\(220\) 1578.14 + 1324.21i 0.0326061 + 0.0273598i
\(221\) −6547.66 1154.53i −0.134061 0.0236385i
\(222\) 0 0
\(223\) 13450.4 11286.3i 0.270475 0.226955i −0.497454 0.867490i \(-0.665732\pi\)
0.767929 + 0.640535i \(0.221287\pi\)
\(224\) −13714.3 + 7917.93i −0.273323 + 0.157803i
\(225\) 0 0
\(226\) 12603.9 21830.5i 0.246767 0.427412i
\(227\) −61635.7 + 10868.0i −1.19614 + 0.210911i −0.736027 0.676952i \(-0.763301\pi\)
−0.460108 + 0.887863i \(0.652189\pi\)
\(228\) 0 0
\(229\) −6917.96 + 2517.93i −0.131919 + 0.0480146i −0.407136 0.913368i \(-0.633473\pi\)
0.275217 + 0.961382i \(0.411250\pi\)
\(230\) 2270.66 + 6238.59i 0.0429236 + 0.117932i
\(231\) 0 0
\(232\) −5808.30 32940.5i −0.107913 0.612005i
\(233\) 59079.9 + 34109.8i 1.08825 + 0.628300i 0.933109 0.359593i \(-0.117084\pi\)
0.155138 + 0.987893i \(0.450418\pi\)
\(234\) 0 0
\(235\) −224.638 389.084i −0.00406768 0.00704543i
\(236\) 2804.07 + 3341.76i 0.0503459 + 0.0599999i
\(237\) 0 0
\(238\) −5193.35 + 29453.0i −0.0916841 + 0.519966i
\(239\) 34019.0 40542.2i 0.595560 0.709761i −0.381104 0.924532i \(-0.624456\pi\)
0.976664 + 0.214771i \(0.0689006\pi\)
\(240\) 0 0
\(241\) 42191.0 + 15356.3i 0.726416 + 0.264394i 0.678647 0.734465i \(-0.262567\pi\)
0.0477690 + 0.998858i \(0.484789\pi\)
\(242\) 61878.9i 1.05660i
\(243\) 0 0
\(244\) −46841.2 −0.786770
\(245\) −1291.06 + 3547.15i −0.0215086 + 0.0590945i
\(246\) 0 0
\(247\) 4481.72 + 3760.61i 0.0734600 + 0.0616403i
\(248\) 22759.1 + 4013.04i 0.370042 + 0.0652484i
\(249\) 0 0
\(250\) 8548.14 7172.74i 0.136770 0.114764i
\(251\) 40082.7 23141.8i 0.636223 0.367324i −0.146935 0.989146i \(-0.546941\pi\)
0.783158 + 0.621823i \(0.213607\pi\)
\(252\) 0 0
\(253\) −61672.8 + 106820.i −0.963502 + 1.66883i
\(254\) 24962.1 4401.50i 0.386914 0.0682234i
\(255\) 0 0
\(256\) −64844.6 + 23601.5i −0.989450 + 0.360130i
\(257\) 4989.20 + 13707.7i 0.0755379 + 0.207539i 0.971714 0.236159i \(-0.0758886\pi\)
−0.896177 + 0.443698i \(0.853666\pi\)
\(258\) 0 0
\(259\) −7315.09 41485.9i −0.109049 0.618445i
\(260\) −225.935 130.444i −0.00334223 0.00192964i
\(261\) 0 0
\(262\) 76302.0 + 132159.i 1.11156 + 1.92528i
\(263\) −970.286 1156.34i −0.0140278 0.0167176i 0.758985 0.651108i \(-0.225696\pi\)
−0.773013 + 0.634391i \(0.781251\pi\)
\(264\) 0 0
\(265\) −1554.98 + 8818.75i −0.0221429 + 0.125578i
\(266\) 16916.2 20159.9i 0.239077 0.284921i
\(267\) 0 0
\(268\) 35785.3 + 13024.8i 0.498236 + 0.181343i
\(269\) 60267.0i 0.832866i 0.909166 + 0.416433i \(0.136720\pi\)
−0.909166 + 0.416433i \(0.863280\pi\)
\(270\) 0 0
\(271\) 93699.0 1.27584 0.637920 0.770103i \(-0.279795\pi\)
0.637920 + 0.770103i \(0.279795\pi\)
\(272\) −34327.0 + 94312.8i −0.463979 + 1.27477i
\(273\) 0 0
\(274\) −38237.2 32084.8i −0.509313 0.427364i
\(275\) 101794. + 17949.1i 1.34604 + 0.237343i
\(276\) 0 0
\(277\) −92990.1 + 78028.0i −1.21193 + 1.01693i −0.212722 + 0.977113i \(0.568233\pi\)
−0.999207 + 0.0398165i \(0.987323\pi\)
\(278\) −81706.3 + 47173.1i −1.05722 + 0.610387i
\(279\) 0 0
\(280\) 841.492 1457.51i 0.0107333 0.0185907i
\(281\) −83488.0 + 14721.2i −1.05733 + 0.186436i −0.675173 0.737660i \(-0.735931\pi\)
−0.382160 + 0.924096i \(0.624820\pi\)
\(282\) 0 0
\(283\) 99524.9 36224.1i 1.24268 0.452298i 0.364758 0.931102i \(-0.381152\pi\)
0.877922 + 0.478804i \(0.158930\pi\)
\(284\) −16435.6 45156.5i −0.203774 0.559866i
\(285\) 0 0
\(286\) −2890.42 16392.4i −0.0353369 0.200406i
\(287\) 3940.84 + 2275.25i 0.0478438 + 0.0276226i
\(288\) 0 0
\(289\) 8057.09 + 13955.3i 0.0964678 + 0.167087i
\(290\) −4297.64 5121.72i −0.0511015 0.0609004i
\(291\) 0 0
\(292\) −7242.08 + 41071.9i −0.0849372 + 0.481703i
\(293\) 51586.3 61478.2i 0.600896 0.716120i −0.376765 0.926309i \(-0.622964\pi\)
0.977661 + 0.210189i \(0.0674080\pi\)
\(294\) 0 0
\(295\) −1175.10 427.700i −0.0135030 0.00491468i
\(296\) 94609.5i 1.07982i
\(297\) 0 0
\(298\) −11682.2 −0.131550
\(299\) 5342.41 14678.2i 0.0597579 0.164183i
\(300\) 0 0
\(301\) −39326.6 32998.9i −0.434063 0.364222i
\(302\) 13244.5 + 2335.36i 0.145218 + 0.0256059i
\(303\) 0 0
\(304\) 67654.3 56768.7i 0.732062 0.614273i
\(305\) 11628.5 6713.74i 0.125004 0.0721713i
\(306\) 0 0
\(307\) −72803.7 + 126100.i −0.772461 + 1.33794i 0.163749 + 0.986502i \(0.447641\pi\)
−0.936210 + 0.351440i \(0.885692\pi\)
\(308\) −21471.9 + 3786.08i −0.226344 + 0.0399106i
\(309\) 0 0
\(310\) 4340.82 1579.93i 0.0451698 0.0164405i
\(311\) 3893.50 + 10697.3i 0.0402549 + 0.110599i 0.958192 0.286128i \(-0.0923681\pi\)
−0.917937 + 0.396727i \(0.870146\pi\)
\(312\) 0 0
\(313\) −1865.86 10581.8i −0.0190454 0.108012i 0.973803 0.227393i \(-0.0730201\pi\)
−0.992849 + 0.119381i \(0.961909\pi\)
\(314\) −28978.4 16730.7i −0.293910 0.169689i
\(315\) 0 0
\(316\) −4779.45 8278.24i −0.0478634 0.0829018i
\(317\) 68121.3 + 81183.8i 0.677898 + 0.807887i 0.989836 0.142215i \(-0.0454226\pi\)
−0.311938 + 0.950102i \(0.600978\pi\)
\(318\) 0 0
\(319\) 21570.3 122331.i 0.211970 1.20214i
\(320\) 1592.27 1897.59i 0.0155495 0.0185312i
\(321\) 0 0
\(322\) −66026.0 24031.5i −0.636800 0.231776i
\(323\) 87673.7i 0.840358i
\(324\) 0 0
\(325\) −13089.8 −0.123927
\(326\) 22245.3 61118.4i 0.209316 0.575091i
\(327\) 0 0
\(328\) 7828.85 + 6569.18i 0.0727696 + 0.0610610i
\(329\) 4682.66 + 825.679i 0.0432614 + 0.00762815i
\(330\) 0 0
\(331\) 72098.0 60497.4i 0.658063 0.552180i −0.251443 0.967872i \(-0.580905\pi\)
0.909505 + 0.415692i \(0.136461\pi\)
\(332\) −6630.79 + 3828.29i −0.0601574 + 0.0347319i
\(333\) 0 0
\(334\) 98893.9 171289.i 0.886496 1.53546i
\(335\) −10750.7 + 1895.64i −0.0957961 + 0.0168914i
\(336\) 0 0
\(337\) 30936.9 11260.1i 0.272406 0.0991477i −0.202205 0.979343i \(-0.564811\pi\)
0.474611 + 0.880195i \(0.342589\pi\)
\(338\) −45690.2 125533.i −0.399935 1.09881i
\(339\) 0 0
\(340\) 678.893 + 3850.19i 0.00587278 + 0.0333062i
\(341\) 74325.8 + 42912.0i 0.639191 + 0.369037i
\(342\) 0 0
\(343\) −43915.9 76064.6i −0.373279 0.646538i
\(344\) −74111.3 88322.4i −0.626279 0.746370i
\(345\) 0 0
\(346\) 18139.5 102874.i 0.151521 0.859317i
\(347\) −99295.2 + 118335.i −0.824649 + 0.982778i −0.999999 0.00172777i \(-0.999450\pi\)
0.175349 + 0.984506i \(0.443894\pi\)
\(348\) 0 0
\(349\) −207919. 75676.2i −1.70704 0.621310i −0.710441 0.703757i \(-0.751504\pi\)
−0.996595 + 0.0824466i \(0.973727\pi\)
\(350\) 58881.3i 0.480663i
\(351\) 0 0
\(352\) −132079. −1.06598
\(353\) −45001.8 + 123641.i −0.361144 + 0.992235i 0.617481 + 0.786585i \(0.288153\pi\)
−0.978626 + 0.205650i \(0.934069\pi\)
\(354\) 0 0
\(355\) 10552.5 + 8854.60i 0.0837334 + 0.0702607i
\(356\) 47013.1 + 8289.69i 0.370953 + 0.0654091i
\(357\) 0 0
\(358\) 58458.0 49052.1i 0.456119 0.382729i
\(359\) −63982.9 + 36940.5i −0.496449 + 0.286625i −0.727246 0.686377i \(-0.759200\pi\)
0.230797 + 0.973002i \(0.425867\pi\)
\(360\) 0 0
\(361\) 26586.4 46049.0i 0.204007 0.353351i
\(362\) 236114. 41633.2i 1.80179 0.317704i
\(363\) 0 0
\(364\) 2594.58 944.351i 0.0195823 0.00712739i
\(365\) −4088.95 11234.3i −0.0306921 0.0843257i
\(366\) 0 0
\(367\) 45822.8 + 259874.i 0.340212 + 1.92944i 0.368007 + 0.929823i \(0.380040\pi\)
−0.0277952 + 0.999614i \(0.508849\pi\)
\(368\) −204205. 117898.i −1.50790 0.870584i
\(369\) 0 0
\(370\) −9455.57 16377.5i −0.0690692 0.119631i
\(371\) −60918.8 72600.2i −0.442592 0.527461i
\(372\) 0 0
\(373\) −23994.2 + 136078.i −0.172460 + 0.978072i 0.768574 + 0.639761i \(0.220967\pi\)
−0.941034 + 0.338311i \(0.890144\pi\)
\(374\) −160338. + 191083.i −1.14629 + 1.36609i
\(375\) 0 0
\(376\) 10034.9 + 3652.40i 0.0709800 + 0.0258346i
\(377\) 15730.7i 0.110679i
\(378\) 0 0
\(379\) 101556. 0.707014 0.353507 0.935432i \(-0.384989\pi\)
0.353507 + 0.935432i \(0.384989\pi\)
\(380\) 1176.63 3232.76i 0.00814840 0.0223875i
\(381\) 0 0
\(382\) 77028.1 + 64634.3i 0.527865 + 0.442931i
\(383\) −54179.8 9553.36i −0.369352 0.0651267i −0.0141082 0.999900i \(-0.504491\pi\)
−0.355243 + 0.934774i \(0.615602\pi\)
\(384\) 0 0
\(385\) 4787.84 4017.48i 0.0323012 0.0271039i
\(386\) 129940. 75020.9i 0.872104 0.503509i
\(387\) 0 0
\(388\) 42445.4 73517.6i 0.281947 0.488346i
\(389\) −109721. + 19346.8i −0.725089 + 0.127853i −0.523997 0.851720i \(-0.675560\pi\)
−0.201091 + 0.979573i \(0.564449\pi\)
\(390\) 0 0
\(391\) −219963. + 80060.0i −1.43879 + 0.523676i
\(392\) −30687.3 84312.7i −0.199704 0.548682i
\(393\) 0 0
\(394\) 15907.3 + 90215.1i 0.102472 + 0.581148i
\(395\) 2373.04 + 1370.08i 0.0152094 + 0.00878113i
\(396\) 0 0
\(397\) −58336.7 101042.i −0.370136 0.641094i 0.619450 0.785036i \(-0.287356\pi\)
−0.989586 + 0.143942i \(0.954022\pi\)
\(398\) 43119.3 + 51387.6i 0.272211 + 0.324409i
\(399\) 0 0
\(400\) −34312.7 + 194597.i −0.214454 + 1.21623i
\(401\) −172322. + 205365.i −1.07165 + 1.27714i −0.112676 + 0.993632i \(0.535942\pi\)
−0.958970 + 0.283507i \(0.908502\pi\)
\(402\) 0 0
\(403\) −10213.1 3717.26i −0.0628850 0.0228883i
\(404\) 72993.5i 0.447220i
\(405\) 0 0
\(406\) 70760.5 0.429278
\(407\) 120169. 330161.i 0.725443 1.99314i
\(408\) 0 0
\(409\) 134207. + 112613.i 0.802284 + 0.673196i 0.948753 0.316019i \(-0.102346\pi\)
−0.146469 + 0.989215i \(0.546791\pi\)
\(410\) 2011.77 + 354.729i 0.0119677 + 0.00211023i
\(411\) 0 0
\(412\) −11153.2 + 9358.61i −0.0657057 + 0.0551337i
\(413\) 11461.6 6617.38i 0.0671965 0.0387959i
\(414\) 0 0
\(415\) 1097.42 1900.78i 0.00637200 0.0110366i
\(416\) 16472.0 2904.46i 0.0951831 0.0167834i
\(417\) 0 0
\(418\) 206258. 75071.9i 1.18048 0.429660i
\(419\) 14885.3 + 40897.0i 0.0847870 + 0.232950i 0.974840 0.222907i \(-0.0715548\pi\)
−0.890053 + 0.455858i \(0.849333\pi\)
\(420\) 0 0
\(421\) 22869.9 + 129702.i 0.129033 + 0.731783i 0.978830 + 0.204673i \(0.0656132\pi\)
−0.849797 + 0.527110i \(0.823276\pi\)
\(422\) 288543. + 166590.i 1.62026 + 0.935459i
\(423\) 0 0
\(424\) −106424. 184332.i −0.591981 1.02534i
\(425\) 126090. + 150268.i 0.698075 + 0.831933i
\(426\) 0 0
\(427\) −24677.1 + 139951.i −0.135344 + 0.767571i
\(428\) −21437.7 + 25548.5i −0.117028 + 0.139469i
\(429\) 0 0
\(430\) −21656.4 7882.28i −0.117125 0.0426300i
\(431\) 25320.4i 0.136306i 0.997675 + 0.0681531i \(0.0217106\pi\)
−0.997675 + 0.0681531i \(0.978289\pi\)
\(432\) 0 0
\(433\) −85329.9 −0.455119 −0.227560 0.973764i \(-0.573075\pi\)
−0.227560 + 0.973764i \(0.573075\pi\)
\(434\) −16721.1 + 45941.0i −0.0887742 + 0.243905i
\(435\) 0 0
\(436\) 27035.1 + 22685.1i 0.142218 + 0.119335i
\(437\) 202849. + 35767.7i 1.06221 + 0.187296i
\(438\) 0 0
\(439\) 34199.0 28696.4i 0.177454 0.148901i −0.549735 0.835339i \(-0.685271\pi\)
0.727188 + 0.686438i \(0.240827\pi\)
\(440\) 12156.3 7018.45i 0.0627909 0.0362523i
\(441\) 0 0
\(442\) 15794.3 27356.6i 0.0808457 0.140029i
\(443\) 287860. 50757.5i 1.46681 0.258638i 0.617517 0.786558i \(-0.288139\pi\)
0.849294 + 0.527919i \(0.177028\pi\)
\(444\) 0 0
\(445\) −12859.4 + 4680.44i −0.0649382 + 0.0236356i
\(446\) 28531.9 + 78390.9i 0.143437 + 0.394090i
\(447\) 0 0
\(448\) 4552.48 + 25818.4i 0.0226825 + 0.128639i
\(449\) −183382. 105876.i −0.909629 0.525175i −0.0293175 0.999570i \(-0.509333\pi\)
−0.880312 + 0.474395i \(0.842667\pi\)
\(450\) 0 0
\(451\) 18976.7 + 32868.5i 0.0932968 + 0.161595i
\(452\) 22417.3 + 26715.9i 0.109725 + 0.130765i
\(453\) 0 0
\(454\) 51635.4 292839.i 0.250516 1.42075i
\(455\) −508.763 + 606.321i −0.00245750 + 0.00292873i
\(456\) 0 0
\(457\) −64052.8 23313.3i −0.306694 0.111628i 0.184088 0.982910i \(-0.441067\pi\)
−0.490782 + 0.871282i \(0.663289\pi\)
\(458\) 34977.5i 0.166747i
\(459\) 0 0
\(460\) −9185.08 −0.0434077
\(461\) 28265.9 77659.9i 0.133003 0.365422i −0.855257 0.518204i \(-0.826601\pi\)
0.988260 + 0.152782i \(0.0488231\pi\)
\(462\) 0 0
\(463\) −52983.6 44458.5i −0.247161 0.207392i 0.510788 0.859707i \(-0.329354\pi\)
−0.757948 + 0.652314i \(0.773798\pi\)
\(464\) 233856. + 41235.2i 1.08621 + 0.191528i
\(465\) 0 0
\(466\) −248290. + 208340.i −1.14337 + 0.959404i
\(467\) 156825. 90543.1i 0.719088 0.415166i −0.0953288 0.995446i \(-0.530390\pi\)
0.814417 + 0.580280i \(0.197057\pi\)
\(468\) 0 0
\(469\) 57767.6 100056.i 0.262627 0.454883i
\(470\) 2102.14 370.663i 0.00951623 0.00167797i
\(471\) 0 0
\(472\) 27931.0 10166.1i 0.125373 0.0456320i
\(473\) −146445. 402355.i −0.654565 1.79840i
\(474\) 0 0
\(475\) −29973.6 169989.i −0.132847 0.753413i
\(476\) −35833.6 20688.5i −0.158153 0.0913095i
\(477\) 0 0
\(478\) 125725. + 217762.i 0.550256 + 0.953072i
\(479\) 230764. + 275014.i 1.00577 + 1.19862i 0.980008 + 0.198956i \(0.0637552\pi\)
0.0257572 + 0.999668i \(0.491800\pi\)
\(480\) 0 0
\(481\) −7726.33 + 43818.2i −0.0333951 + 0.189393i
\(482\) −137119. + 163412.i −0.590206 + 0.703381i
\(483\) 0 0
\(484\) −80447.1 29280.4i −0.343415 0.124993i
\(485\) 24334.8i 0.103453i
\(486\) 0 0
\(487\) −29733.0 −0.125366 −0.0626831 0.998033i \(-0.519966\pi\)
−0.0626831 + 0.998033i \(0.519966\pi\)
\(488\) −109159. + 299912.i −0.458374 + 1.25937i
\(489\) 0 0
\(490\) −13738.7 11528.1i −0.0572205 0.0480137i
\(491\) −61339.6 10815.8i −0.254436 0.0448639i 0.0449753 0.998988i \(-0.485679\pi\)
−0.299411 + 0.954124i \(0.596790\pi\)
\(492\) 0 0
\(493\) 180584. 151528.i 0.742995 0.623447i
\(494\) −24072.3 + 13898.2i −0.0986426 + 0.0569513i
\(495\) 0 0
\(496\) −82033.5 + 142086.i −0.333448 + 0.577549i
\(497\) −143576. + 25316.3i −0.581258 + 0.102491i
\(498\) 0 0
\(499\) 167103. 60820.4i 0.671092 0.244258i 0.0160740 0.999871i \(-0.494883\pi\)
0.655018 + 0.755613i \(0.272661\pi\)
\(500\) 5280.21 + 14507.3i 0.0211208 + 0.0580290i
\(501\) 0 0
\(502\) 38185.1 + 216558.i 0.151526 + 0.859344i
\(503\) −343298. 198203.i −1.35686 0.783384i −0.367661 0.929960i \(-0.619841\pi\)
−0.989199 + 0.146576i \(0.953175\pi\)
\(504\) 0 0
\(505\) 10462.2 + 18121.0i 0.0410240 + 0.0710557i
\(506\) −376693. 448926.i −1.47125 1.75337i
\(507\) 0 0
\(508\) −6089.52 + 34535.4i −0.0235969 + 0.133825i
\(509\) −45256.8 + 53934.9i −0.174682 + 0.208178i −0.846281 0.532737i \(-0.821163\pi\)
0.671599 + 0.740915i \(0.265608\pi\)
\(510\) 0 0
\(511\) 118898. + 43275.3i 0.455337 + 0.165729i
\(512\) 24636.0i 0.0939789i
\(513\) 0 0
\(514\) −69306.9 −0.262331
\(515\) 1427.45 3921.90i 0.00538205 0.0147871i
\(516\) 0 0
\(517\) 30379.9 + 25491.8i 0.113659 + 0.0953715i
\(518\) 197105. + 34754.9i 0.734578 + 0.129526i
\(519\) 0 0
\(520\) −1361.72 + 1142.62i −0.00503594 + 0.00422566i
\(521\) −298759. + 172489.i −1.10064 + 0.635456i −0.936389 0.350963i \(-0.885854\pi\)
−0.164252 + 0.986418i \(0.552521\pi\)
\(522\) 0 0
\(523\) −58824.8 + 101888.i −0.215059 + 0.372493i −0.953291 0.302054i \(-0.902328\pi\)
0.738232 + 0.674547i \(0.235661\pi\)
\(524\) −207922. + 36662.2i −0.757246 + 0.133523i
\(525\) 0 0
\(526\) 6739.30 2452.90i 0.0243581 0.00886562i
\(527\) 55705.9 + 153051.i 0.200576 + 0.551079i
\(528\) 0 0
\(529\) −46902.3 265996.i −0.167603 0.950526i
\(530\) −36845.4 21272.7i −0.131169 0.0757305i
\(531\) 0 0
\(532\) 18204.8 + 31531.7i 0.0643225 + 0.111410i
\(533\) −3089.44 3681.85i −0.0108749 0.0129602i
\(534\) 0 0
\(535\) 1660.15 9415.20i 0.00580017 0.0328944i
\(536\) 166789. 198771.i 0.580547 0.691869i
\(537\) 0 0
\(538\) −269068. 97932.8i −0.929604 0.338348i
\(539\) 333206.i 1.14693i
\(540\) 0 0
\(541\) 439148. 1.50043 0.750217 0.661192i \(-0.229949\pi\)
0.750217 + 0.661192i \(0.229949\pi\)
\(542\) −152259. + 418328.i −0.518304 + 1.42403i
\(543\) 0 0
\(544\) −192012. 161117.i −0.648828 0.544431i
\(545\) −9963.05 1756.75i −0.0335428 0.00591450i
\(546\) 0 0
\(547\) 66909.6 56143.8i 0.223622 0.187641i −0.524093 0.851661i \(-0.675596\pi\)
0.747715 + 0.664020i \(0.231151\pi\)
\(548\) 59806.0 34529.0i 0.199151 0.114980i
\(549\) 0 0
\(550\) −245549. + 425304.i −0.811733 + 1.40596i
\(551\) −204284. + 36020.7i −0.672869 + 0.118645i
\(552\) 0 0
\(553\) −27251.4 + 9918.70i −0.0891125 + 0.0324343i
\(554\) −197257. 541958.i −0.642705 1.76582i
\(555\) 0 0
\(556\) −22666.1 128546.i −0.0733209 0.415823i
\(557\) 325780. + 188089.i 1.05006 + 0.606251i 0.922666 0.385601i \(-0.126006\pi\)
0.127393 + 0.991852i \(0.459339\pi\)
\(558\) 0 0
\(559\) 27111.6 + 46958.7i 0.0867625 + 0.150277i
\(560\) 7680.09 + 9152.77i 0.0244901 + 0.0291861i
\(561\) 0 0
\(562\) 69942.3 396662.i 0.221446 1.25588i
\(563\) 186793. 222611.i 0.589309 0.702311i −0.386164 0.922430i \(-0.626200\pi\)
0.975473 + 0.220119i \(0.0706447\pi\)
\(564\) 0 0
\(565\) −9394.38 3419.27i −0.0294287 0.0107112i
\(566\) 503203.i 1.57076i
\(567\) 0 0
\(568\) −327428. −1.01489
\(569\) 121458. 333704.i 0.375148 1.03071i −0.598193 0.801352i \(-0.704115\pi\)
0.973342 0.229360i \(-0.0736633\pi\)
\(570\) 0 0
\(571\) −331981. 278565.i −1.01822 0.854387i −0.0288162 0.999585i \(-0.509174\pi\)
−0.989403 + 0.145198i \(0.953618\pi\)
\(572\) 22679.0 + 3998.92i 0.0693158 + 0.0122222i
\(573\) 0 0
\(574\) −16561.9 + 13897.1i −0.0502673 + 0.0421793i
\(575\) −399112. + 230427.i −1.20714 + 0.696944i
\(576\) 0 0
\(577\) 247060. 427921.i 0.742082 1.28532i −0.209464 0.977816i \(-0.567172\pi\)
0.951546 0.307507i \(-0.0994946\pi\)
\(578\) −75397.4 + 13294.6i −0.225684 + 0.0397942i
\(579\) 0 0
\(580\) 8692.21 3163.71i 0.0258389 0.00940460i
\(581\) 7944.78 + 21828.1i 0.0235358 + 0.0646642i
\(582\) 0 0
\(583\) −137260. 778443.i −0.403839 2.29029i
\(584\) 246096. + 142084.i 0.721570 + 0.416599i
\(585\) 0 0
\(586\) 190649. + 330213.i 0.555186 + 0.961610i
\(587\) 154023. + 183557.i 0.447001 + 0.532715i 0.941747 0.336323i \(-0.109183\pi\)
−0.494746 + 0.869038i \(0.664739\pi\)
\(588\) 0 0
\(589\) 24887.2 141142.i 0.0717374 0.406843i
\(590\) 3819.02 4551.33i 0.0109710 0.0130748i
\(591\) 0 0
\(592\) 631159. + 229723.i 1.80093 + 0.655483i
\(593\) 117438.i 0.333964i 0.985960 + 0.166982i \(0.0534022\pi\)
−0.985960 + 0.166982i \(0.946598\pi\)
\(594\) 0 0
\(595\) 11861.1 0.0335037
\(596\) 5527.86 15187.7i 0.0155620 0.0427562i
\(597\) 0 0
\(598\) 56850.8 + 47703.5i 0.158977 + 0.133398i
\(599\) 219751. + 38748.0i 0.612459 + 0.107993i 0.471269 0.881990i \(-0.343796\pi\)
0.141190 + 0.989983i \(0.454907\pi\)
\(600\) 0 0
\(601\) −233356. + 195809.i −0.646056 + 0.542106i −0.905871 0.423553i \(-0.860783\pi\)
0.259815 + 0.965658i \(0.416338\pi\)
\(602\) 211232. 121955.i 0.582863 0.336516i
\(603\) 0 0
\(604\) −9303.27 + 16113.7i −0.0255013 + 0.0441695i
\(605\) 24168.1 4261.49i 0.0660286 0.0116426i
\(606\) 0 0
\(607\) −364496. + 132666.i −0.989272 + 0.360065i −0.785438 0.618940i \(-0.787562\pi\)
−0.203833 + 0.979006i \(0.565340\pi\)
\(608\) 75436.5 + 207260.i 0.204068 + 0.560672i
\(609\) 0 0
\(610\) 11078.0 + 62826.5i 0.0297716 + 0.168843i
\(611\) −4349.36 2511.10i −0.0116505 0.00672639i
\(612\) 0 0
\(613\) −157313. 272474.i −0.418642 0.725110i 0.577161 0.816630i \(-0.304161\pi\)
−0.995803 + 0.0915207i \(0.970827\pi\)
\(614\) −444680. 529949.i −1.17954 1.40572i
\(615\) 0 0
\(616\) −25797.0 + 146302.i −0.0679843 + 0.385558i
\(617\) 271816. 323938.i 0.714011 0.850925i −0.280024 0.959993i \(-0.590342\pi\)
0.994034 + 0.109068i \(0.0347867\pi\)
\(618\) 0 0
\(619\) 651711. + 237203.i 1.70088 + 0.619070i 0.995925 0.0901821i \(-0.0287449\pi\)
0.704955 + 0.709252i \(0.250967\pi\)
\(620\) 6390.99i 0.0166259i
\(621\) 0 0
\(622\) −54086.0 −0.139799
\(623\) 49535.3 136097.i 0.127626 0.350649i
\(624\) 0 0
\(625\) 294146. + 246818.i 0.753014 + 0.631854i
\(626\) 50275.5 + 8864.93i 0.128294 + 0.0226218i
\(627\) 0 0
\(628\) 35463.3 29757.3i 0.0899208 0.0754525i
\(629\) 577447. 333389.i 1.45952 0.842655i
\(630\) 0 0
\(631\) −168075. + 291114.i −0.422127 + 0.731146i −0.996147 0.0876956i \(-0.972050\pi\)
0.574020 + 0.818841i \(0.305383\pi\)
\(632\) −64141.6 + 11309.9i −0.160585 + 0.0283155i
\(633\) 0 0
\(634\) −473149. + 172212.i −1.17712 + 0.428435i
\(635\) −3438.20 9446.38i −0.00852675 0.0234271i
\(636\) 0 0
\(637\) 7327.33 + 41555.3i 0.0180579 + 0.102411i
\(638\) 511108. + 295088.i 1.25566 + 0.724954i
\(639\) 0 0
\(640\) 17854.8 + 30925.5i 0.0435909 + 0.0755016i
\(641\) −29289.6 34906.0i −0.0712848 0.0849540i 0.729223 0.684276i \(-0.239881\pi\)
−0.800508 + 0.599322i \(0.795437\pi\)
\(642\) 0 0
\(643\) −93762.9 + 531756.i −0.226782 + 1.28615i 0.632466 + 0.774588i \(0.282043\pi\)
−0.859249 + 0.511558i \(0.829068\pi\)
\(644\) 62485.4 74467.2i 0.150663 0.179553i
\(645\) 0 0
\(646\) 391428. + 142468.i 0.937966 + 0.341392i
\(647\) 163593.i 0.390802i 0.980723 + 0.195401i \(0.0626009\pi\)
−0.980723 + 0.195401i \(0.937399\pi\)
\(648\) 0 0
\(649\) 110384. 0.262070
\(650\) 21270.7 58440.9i 0.0503449 0.138322i
\(651\) 0 0
\(652\) 68932.2 + 57841.0i 0.162154 + 0.136063i
\(653\) −685030. 120789.i −1.60651 0.283271i −0.702790 0.711397i \(-0.748063\pi\)
−0.903719 + 0.428126i \(0.859174\pi\)
\(654\) 0 0
\(655\) 46362.7 38903.0i 0.108065 0.0906776i
\(656\) −62833.8 + 36277.1i −0.146011 + 0.0842995i
\(657\) 0 0
\(658\) −11295.6 + 19564.5i −0.0260889 + 0.0451873i
\(659\) 121484. 21420.8i 0.279735 0.0493248i −0.0320204 0.999487i \(-0.510194\pi\)
0.311755 + 0.950162i \(0.399083\pi\)
\(660\) 0 0
\(661\) −440861. + 160460.i −1.00902 + 0.367252i −0.793055 0.609149i \(-0.791511\pi\)
−0.215962 + 0.976402i \(0.569289\pi\)
\(662\) 152939. + 420196.i 0.348981 + 0.958818i
\(663\) 0 0
\(664\) 9059.11 + 51376.8i 0.0205471 + 0.116528i
\(665\) −9038.86 5218.59i −0.0204395 0.0118008i
\(666\) 0 0
\(667\) 276916. + 479632.i 0.622437 + 1.07809i
\(668\) 175893. + 209621.i 0.394182 + 0.469767i
\(669\) 0 0
\(670\) 9006.43 51078.0i 0.0200633 0.113785i
\(671\) −761872. + 907963.i −1.69214 + 2.01662i
\(672\) 0 0
\(673\) 279041. + 101563.i 0.616081 + 0.224235i 0.631162 0.775651i \(-0.282578\pi\)
−0.0150807 + 0.999886i \(0.504801\pi\)
\(674\) 156418.i 0.344325i
\(675\) 0 0
\(676\) 184822. 0.404445
\(677\) 3442.16 9457.26i 0.00751024 0.0206342i −0.935881 0.352317i \(-0.885394\pi\)
0.943391 + 0.331682i \(0.107616\pi\)
\(678\) 0 0
\(679\) −197292. 165548.i −0.427928 0.359074i
\(680\) 26233.9 + 4625.75i 0.0567343 + 0.0100038i
\(681\) 0 0
\(682\) −312363. + 262104.i −0.671569 + 0.563514i
\(683\) −635684. + 367012.i −1.36270 + 0.786754i −0.989982 0.141191i \(-0.954907\pi\)
−0.372716 + 0.927945i \(0.621573\pi\)
\(684\) 0 0
\(685\) −9898.08 + 17144.0i −0.0210945 + 0.0365368i
\(686\) 410961. 72463.5i 0.873277 0.153982i
\(687\) 0 0
\(688\) 769169. 279955.i 1.62497 0.591440i
\(689\) 34236.5 + 94064.0i 0.0721192 + 0.198146i
\(690\) 0 0
\(691\) 62021.4 + 351741.i 0.129893 + 0.736660i 0.978281 + 0.207284i \(0.0664626\pi\)
−0.848388 + 0.529375i \(0.822426\pi\)
\(692\) 125160. + 72261.4i 0.261369 + 0.150902i
\(693\) 0 0
\(694\) −366967. 635606.i −0.761919 1.31968i
\(695\) 24051.5 + 28663.4i 0.0497934 + 0.0593414i
\(696\) 0 0
\(697\) −12507.2 + 70932.0i −0.0257451 + 0.146008i
\(698\) 675728. 805302.i 1.38695 1.65290i
\(699\) 0 0
\(700\) −76550.0 27861.9i −0.156224 0.0568611i
\(701\) 173679.i 0.353436i −0.984262 0.176718i \(-0.943452\pi\)
0.984262 0.176718i \(-0.0565480\pi\)
\(702\) 0 0
\(703\) −586729. −1.18721
\(704\) −74786.0 + 205473.i −0.150895 + 0.414581i
\(705\) 0 0
\(706\) −478883. 401830.i −0.960771 0.806182i
\(707\) −218088. 38454.7i −0.436307 0.0769327i
\(708\) 0 0
\(709\) −221488. + 185850.i −0.440613 + 0.369718i −0.835939 0.548823i \(-0.815076\pi\)
0.395326 + 0.918541i \(0.370632\pi\)
\(710\) −56679.9 + 32724.2i −0.112438 + 0.0649160i
\(711\) 0 0
\(712\) 162637. 281695.i 0.320818 0.555673i
\(713\) −376836. + 66446.3i −0.741265 + 0.130705i
\(714\) 0 0
\(715\) −6203.34 + 2257.83i −0.0121343 + 0.00441651i
\(716\) 36109.7 + 99210.6i 0.0704365 + 0.193523i
\(717\) 0 0
\(718\) −60953.7 345686.i −0.118236 0.670552i
\(719\) −35089.4 20258.8i −0.0678762 0.0391884i 0.465678 0.884954i \(-0.345811\pi\)
−0.533554 + 0.845766i \(0.679144\pi\)
\(720\) 0 0
\(721\) 22085.6 + 38253.4i 0.0424853 + 0.0735867i
\(722\) 162388. + 193526.i 0.311515 + 0.371250i
\(723\) 0 0
\(724\) −57599.9 + 326665.i −0.109887 + 0.623198i
\(725\) 298327. 355532.i 0.567567 0.676399i
\(726\) 0 0
\(727\) −714632. 260105.i −1.35211 0.492129i −0.438507 0.898728i \(-0.644493\pi\)
−0.913607 + 0.406598i \(0.866715\pi\)
\(728\) 18813.2i 0.0354976i
\(729\) 0 0
\(730\) 56801.1 0.106589
\(731\) 277917. 763571.i 0.520093 1.42894i
\(732\) 0 0
\(733\) 649822. + 545266.i 1.20945 + 1.01485i 0.999309 + 0.0371747i \(0.0118358\pi\)
0.210138 + 0.977672i \(0.432609\pi\)
\(734\) −1.23469e6 217710.i −2.29175 0.404098i
\(735\) 0 0
\(736\) 451106. 378523.i 0.832766 0.698774i
\(737\) 834519. 481810.i 1.53639 0.887035i
\(738\) 0 0
\(739\) 105879. 183388.i 0.193875 0.335801i −0.752656 0.658414i \(-0.771228\pi\)
0.946531 + 0.322613i \(0.104561\pi\)
\(740\) 25766.3 4543.29i 0.0470531 0.00829672i
\(741\) 0 0
\(742\) 423123. 154004.i 0.768527 0.279721i
\(743\) 289038. + 794124.i 0.523572 + 1.43850i 0.866517 + 0.499148i \(0.166354\pi\)
−0.342944 + 0.939356i \(0.611424\pi\)
\(744\) 0 0
\(745\) 804.530 + 4562.72i 0.00144954 + 0.00822075i
\(746\) −568544. 328249.i −1.02161 0.589829i
\(747\) 0 0
\(748\) −172552. 298870.i −0.308402 0.534169i
\(749\) 65039.1 + 77510.6i 0.115934 + 0.138165i
\(750\) 0 0
\(751\) 55207.1 313095.i 0.0978847 0.555132i −0.895940 0.444174i \(-0.853497\pi\)
0.993825 0.110958i \(-0.0353918\pi\)
\(752\) −48731.8 + 58076.3i −0.0861741 + 0.102698i
\(753\) 0 0
\(754\) −70231.2 25562.1i −0.123534 0.0449628i
\(755\) 5333.75i 0.00935704i
\(756\) 0 0
\(757\) 41402.7 0.0722498 0.0361249 0.999347i \(-0.488499\pi\)
0.0361249 + 0.999347i \(0.488499\pi\)
\(758\) −165027. + 453408.i −0.287221 + 0.789134i
\(759\) 0 0
\(760\) −17956.5 15067.3i −0.0310882 0.0260861i
\(761\) 465248. + 82035.8i 0.803369 + 0.141656i 0.560231 0.828336i \(-0.310712\pi\)
0.243138 + 0.969992i \(0.421823\pi\)
\(762\) 0 0
\(763\) 82020.7 68823.5i 0.140888 0.118219i
\(764\) −120478. + 69558.1i −0.206406 + 0.119168i
\(765\) 0 0
\(766\) 130693. 226367.i 0.222739 0.385795i
\(767\) −13766.4 + 2427.39i −0.0234008 + 0.00412619i
\(768\) 0 0
\(769\) 466733. 169877.i 0.789253 0.287264i 0.0842273 0.996447i \(-0.473158\pi\)
0.705025 + 0.709182i \(0.250936\pi\)
\(770\) 10156.3 + 27904.1i 0.0171298 + 0.0470638i
\(771\) 0 0
\(772\) 36046.6 + 204430.i 0.0604825 + 0.343013i
\(773\) −879082. 507538.i −1.47119 0.849395i −0.471718 0.881749i \(-0.656366\pi\)
−0.999476 + 0.0323544i \(0.989699\pi\)
\(774\) 0 0
\(775\) 160332. + 277702.i 0.266941 + 0.462356i
\(776\) −371800. 443094.i −0.617427 0.735821i
\(777\) 0 0
\(778\) 91919.1 521299.i 0.151861 0.861248i
\(779\) 40739.4 48551.3i 0.0671336 0.0800067i
\(780\) 0 0
\(781\) −1.14263e6 415885.i −1.87329 0.681822i
\(782\) 1.11214e6i 1.81864i
\(783\) 0 0
\(784\) 636980. 1.03632
\(785\) −4538.83 + 12470.3i −0.00736554 + 0.0202367i
\(786\) 0 0
\(787\) −562345. 471864.i −0.907933 0.761846i 0.0637919 0.997963i \(-0.479681\pi\)
−0.971725 + 0.236117i \(0.924125\pi\)
\(788\) −124813. 22008.0i −0.201006 0.0354428i
\(789\) 0 0
\(790\) −9972.99 + 8368.33i −0.0159798 + 0.0134086i
\(791\) 91630.8 52903.1i 0.146450 0.0845528i
\(792\) 0 0
\(793\) 75049.3 129989.i 0.119344 0.206710i
\(794\) 545909. 96258.5i 0.865924 0.152686i
\(795\) 0 0
\(796\) −87211.2 + 31742.3i −0.137641 + 0.0500971i
\(797\) −46013.8 126422.i −0.0724389 0.199024i 0.898189 0.439609i \(-0.144883\pi\)
−0.970628 + 0.240585i \(0.922661\pi\)
\(798\) 0 0
\(799\) 13069.0 + 74118.1i 0.0204715 + 0.116100i
\(800\) −427369. 246742.i −0.667765 0.385534i
\(801\) 0 0
\(802\) −636854. 1.10306e6i −0.990127 1.71495i
\(803\) 678340. + 808414.i 1.05200 + 1.25373i
\(804\) 0 0
\(805\) −4838.92 + 27442.9i −0.00746718 + 0.0423485i
\(806\) 33192.2 39556.9i 0.0510935 0.0608908i
\(807\) 0 0
\(808\) −467359. 170105.i −0.715860 0.260552i
\(809\) 120165.i 0.183603i 0.995777 + 0.0918016i \(0.0292626\pi\)
−0.995777 + 0.0918016i \(0.970737\pi\)
\(810\) 0 0
\(811\) 22600.0 0.0343610 0.0171805 0.999852i \(-0.494531\pi\)
0.0171805 + 0.999852i \(0.494531\pi\)
\(812\) −33483.0 + 91993.8i −0.0507823 + 0.139523i
\(813\) 0 0
\(814\) 1.27877e6 + 1.07301e6i 1.92993 + 1.61941i
\(815\) −25403.1 4479.25i −0.0382447 0.00674358i
\(816\) 0 0
\(817\) −547740. + 459608.i −0.820598 + 0.688563i
\(818\) −720855. + 416186.i −1.07731 + 0.621986i
\(819\) 0 0
\(820\) −1413.12 + 2447.60i −0.00210161 + 0.00364009i
\(821\) −804936. + 141932.i −1.19420 + 0.210569i −0.735188 0.677864i \(-0.762906\pi\)
−0.459007 + 0.888432i \(0.651795\pi\)
\(822\) 0 0
\(823\) 387747. 141128.i 0.572464 0.208360i −0.0395352 0.999218i \(-0.512588\pi\)
0.611999 + 0.790858i \(0.290366\pi\)
\(824\) 33929.4 + 93220.2i 0.0499714 + 0.137295i
\(825\) 0 0
\(826\) 10919.0 + 61924.8i 0.0160038 + 0.0907621i
\(827\) 33841.9 + 19538.6i 0.0494816 + 0.0285682i 0.524537 0.851388i \(-0.324239\pi\)
−0.475055 + 0.879956i \(0.657572\pi\)
\(828\) 0 0
\(829\) 412006. + 713616.i 0.599508 + 1.03838i 0.992894 + 0.119004i \(0.0379702\pi\)
−0.393386 + 0.919373i \(0.628696\pi\)
\(830\) 6702.95 + 7988.27i 0.00972994 + 0.0115957i
\(831\) 0 0
\(832\) 4808.41 27269.8i 0.00694632 0.0393945i
\(833\) 406463. 484404.i 0.585775 0.698100i
\(834\) 0 0
\(835\) −73711.4 26828.7i −0.105721 0.0384793i
\(836\) 303674.i 0.434505i
\(837\) 0 0
\(838\) −206777. −0.294452
\(839\) −383564. + 1.05383e6i −0.544897 + 1.49709i 0.295620 + 0.955306i \(0.404474\pi\)
−0.840517 + 0.541786i \(0.817748\pi\)
\(840\) 0 0
\(841\) 114548. + 96117.2i 0.161955 + 0.135897i
\(842\) −616231. 108658.i −0.869199 0.153263i
\(843\) 0 0
\(844\) −353115. + 296298.i −0.495714 + 0.415953i
\(845\) −45882.9 + 26490.5i −0.0642595 + 0.0371002i
\(846\) 0 0
\(847\) −129864. + 224932.i −0.181019 + 0.313534i
\(848\) 1.48813e6 262397.i 2.06942 0.364894i
\(849\) 0 0
\(850\) −875780. + 318758.i −1.21215 + 0.441187i
\(851\) 535777. + 1.47204e6i 0.739819 + 2.03264i
\(852\) 0 0
\(853\) 59860.1 + 339483.i 0.0822696 + 0.466574i 0.997912 + 0.0645813i \(0.0205712\pi\)
−0.915643 + 0.401993i \(0.868318\pi\)
\(854\) −584724. 337590.i −0.801742 0.462886i
\(855\) 0 0
\(856\) 113622. + 196799.i 0.155065 + 0.268581i
\(857\) 239359. + 285257.i 0.325902 + 0.388395i 0.903972 0.427592i \(-0.140638\pi\)
−0.578069 + 0.815988i \(0.696194\pi\)
\(858\) 0 0
\(859\) 130686. 741155.i 0.177109 1.00444i −0.758572 0.651590i \(-0.774102\pi\)
0.935681 0.352847i \(-0.114786\pi\)
\(860\) 20495.1 24425.1i 0.0277110 0.0330247i
\(861\) 0 0
\(862\) −113045. 41145.2i −0.152138 0.0553738i
\(863\) 691959.i 0.929092i −0.885549 0.464546i \(-0.846218\pi\)
0.885549 0.464546i \(-0.153782\pi\)
\(864\) 0 0
\(865\) −41428.9 −0.0553696
\(866\) 138660. 380964.i 0.184890 0.507982i
\(867\) 0 0
\(868\) −51814.4 43477.4i −0.0687719 0.0577065i
\(869\) −238202. 42001.5i −0.315432 0.0556192i
\(870\) 0 0
\(871\) −93480.7 + 78439.6i −0.123221 + 0.103395i
\(872\) 208250. 120233.i 0.273875 0.158122i
\(873\) 0 0
\(874\) −489314. + 847517.i −0.640567 + 1.10950i
\(875\) 46126.1 8133.27i 0.0602463 0.0106230i
\(876\) 0 0
\(877\) 985831. 358813.i 1.28175 0.466519i 0.390739 0.920501i \(-0.372219\pi\)
0.891011 + 0.453983i \(0.149997\pi\)
\(878\) 72545.2 + 199316.i 0.0941065 + 0.258555i
\(879\) 0 0
\(880\) 17304.5 + 98139.0i 0.0223457 + 0.126729i
\(881\) 1.11226e6 + 642162.i 1.43302 + 0.827357i 0.997350 0.0727481i \(-0.0231769\pi\)
0.435673 + 0.900105i \(0.356510\pi\)
\(882\) 0 0
\(883\) 314345. + 544462.i 0.403167 + 0.698306i 0.994106 0.108410i \(-0.0345760\pi\)
−0.590939 + 0.806716i \(0.701243\pi\)
\(884\) 28091.9 + 33478.6i 0.0359481 + 0.0428413i
\(885\) 0 0
\(886\) −241156. + 1.36766e6i −0.307206 + 1.74225i
\(887\) −368852. + 439581.i −0.468819 + 0.558717i −0.947700 0.319163i \(-0.896598\pi\)
0.478881 + 0.877880i \(0.341043\pi\)
\(888\) 0 0
\(889\) 99975.6 + 36388.1i 0.126500 + 0.0460422i
\(890\) 65017.7i 0.0820827i
\(891\) 0 0
\(892\) −115415. −0.145055
\(893\) 22650.7 62232.2i 0.0284039 0.0780391i
\(894\) 0 0
\(895\) −23184.3 19453.9i −0.0289432 0.0242863i
\(896\) −372191. 65627.3i −0.463607 0.0817464i
\(897\) 0 0
\(898\) 770686. 646682.i 0.955707 0.801933i
\(899\) 333728. 192678.i 0.412927 0.238404i
\(900\) 0 0
\(901\) 750043. 1.29911e6i 0.923924 1.60028i
\(902\) −177582. + 31312.4i −0.218265 + 0.0384861i
\(903\) 0 0
\(904\) 223296. 81273.3i 0.273240 0.0994514i
\(905\) −32521.5 89352.0i −0.0397076 0.109096i
\(906\) 0 0
\(907\) 278989. + 1.58222e6i 0.339135 + 1.92333i 0.381815 + 0.924239i \(0.375299\pi\)
−0.0426804 + 0.999089i \(0.513590\pi\)
\(908\) 356279. + 205698.i 0.432134 + 0.249493i
\(909\) 0 0
\(910\) −1880.25 3256.69i −0.00227056 0.00393272i
\(911\) −586619. 699105.i −0.706837 0.842376i 0.286445 0.958097i \(-0.407527\pi\)
−0.993282 + 0.115721i \(0.963082\pi\)
\(912\) 0 0
\(913\) −33642.8 + 190798.i −0.0403599 + 0.228892i
\(914\) 208169. 248087.i 0.249186 0.296969i
\(915\) 0 0
\(916\) 45473.4 + 16551.0i 0.0541959 + 0.0197257i
\(917\) 640536.i 0.761737i
\(918\) 0 0
\(919\) −1.52311e6 −1.80343 −0.901715 0.432331i \(-0.857691\pi\)
−0.901715 + 0.432331i \(0.857691\pi\)
\(920\) −21405.0 + 58809.7i −0.0252895 + 0.0694822i
\(921\) 0 0
\(922\) 300789. + 252392.i 0.353834 + 0.296902i
\(923\) 151647. + 26739.5i 0.178005 + 0.0313870i
\(924\) 0 0
\(925\) 1.00562e6 843817.i 1.17531 0.986199i
\(926\) 284587. 164306.i 0.331889 0.191616i
\(927\) 0 0
\(928\) −296522. + 513591.i −0.344319 + 0.596377i
\(929\) 298014. 52547.9i 0.345307 0.0608869i 0.00169476 0.999999i \(-0.499461\pi\)
0.343612 + 0.939112i \(0.388349\pi\)
\(930\) 0 0
\(931\) −522873. + 190310.i −0.603249 + 0.219565i
\(932\) −153370. 421380.i −0.176566 0.485112i
\(933\) 0 0
\(934\) 149401. + 847293.i 0.171261 + 0.971270i
\(935\) 85673.9 + 49463.8i 0.0979998 + 0.0565802i
\(936\) 0 0
\(937\) −503151. 871484.i −0.573085 0.992613i −0.996247 0.0865587i \(-0.972413\pi\)
0.423161 0.906054i \(-0.360920\pi\)
\(938\) 352841. + 420499.i 0.401026 + 0.477925i
\(939\) 0 0
\(940\) −512.816 + 2908.32i −0.000580371 + 0.00329145i
\(941\) 695867. 829302.i 0.785863 0.936556i −0.213319 0.976983i \(-0.568427\pi\)
0.999182 + 0.0404270i \(0.0128718\pi\)
\(942\) 0 0
\(943\) −159011. 57875.4i −0.178815 0.0650834i
\(944\) 211018.i 0.236797i
\(945\) 0 0
\(946\) 2.03432e6 2.27320
\(947\) 519218. 1.42654e6i 0.578962 1.59069i −0.210971 0.977492i \(-0.567663\pi\)
0.789933 0.613193i \(-0.210115\pi\)
\(948\) 0 0
\(949\) −102376. 85903.3i −0.113675 0.0953844i
\(950\) 807639. + 142408.i 0.894890 + 0.157793i
\(951\) 0 0
\(952\) −215970. + 181221.i −0.238298 + 0.199956i
\(953\) 350869. 202574.i 0.386331 0.223048i −0.294238 0.955732i \(-0.595066\pi\)
0.680569 + 0.732684i \(0.261733\pi\)
\(954\) 0 0
\(955\) 19939.5 34536.2i 0.0218629 0.0378676i
\(956\) −342598. + 60409.2i −0.374859 + 0.0660978i
\(957\) 0 0
\(958\) −1.60281e6 + 583376.i −1.74643 + 0.635650i
\(959\) −71657.4 196877.i −0.0779155 0.214071i
\(960\) 0 0
\(961\) −114134. 647288.i −0.123586 0.700891i
\(962\) −183076. 105699.i −0.197825 0.114214i
\(963\) 0 0
\(964\) −147565. 255590.i −0.158792 0.275036i
\(965\) −38249.7 45584.3i −0.0410747 0.0489509i
\(966\) 0 0
\(967\) 20486.5 116185.i 0.0219086 0.124250i −0.971892 0.235427i \(-0.924351\pi\)
0.993801 + 0.111177i \(0.0354622\pi\)
\(968\) −374950. + 446848.i −0.400149 + 0.476880i
\(969\) 0 0
\(970\) −108645. 39543.6i −0.115469 0.0420274i
\(971\) 124920.i 0.132493i 0.997803 + 0.0662466i \(0.0211024\pi\)
−0.997803 + 0.0662466i \(0.978898\pi\)
\(972\) 0 0
\(973\) −396007. −0.418289
\(974\) 48315.6 132746.i 0.0509295 0.139928i
\(975\) 0 0
\(976\) −1.73573e6 1.45645e6i −1.82214 1.52896i
\(977\) −928550. 163728.i −0.972783 0.171528i −0.335401 0.942076i \(-0.608872\pi\)
−0.637382 + 0.770548i \(0.719983\pi\)
\(978\) 0 0
\(979\) 925355. 776465.i 0.965480 0.810134i
\(980\) 21488.3 12406.3i 0.0223744 0.0129178i
\(981\) 0 0
\(982\) 147964. 256281.i 0.153438 0.265763i
\(983\) −793468. + 139910.i −0.821150 + 0.144791i −0.568412 0.822744i \(-0.692442\pi\)
−0.252738 + 0.967535i \(0.581331\pi\)
\(984\) 0 0
\(985\) 34139.9 12425.9i 0.0351876 0.0128072i
\(986\) 383067. + 1.05247e6i 0.394022 + 1.08257i
\(987\) 0 0
\(988\) −6677.90 37872.3i −0.00684111 0.0387978i
\(989\) 1.65328e6 + 954521.i 1.69026 + 0.975872i
\(990\) 0 0
\(991\) 242535. + 420082.i 0.246960 + 0.427747i 0.962681 0.270639i \(-0.0872350\pi\)
−0.715721 + 0.698386i \(0.753902\pi\)
\(992\) −263377. 313880.i −0.267642 0.318963i
\(993\) 0 0
\(994\) 120281. 682148.i 0.121738 0.690408i
\(995\) 17101.0 20380.2i 0.0172733 0.0205855i
\(996\) 0 0
\(997\) 593091. + 215867.i 0.596665 + 0.217168i 0.622658 0.782494i \(-0.286053\pi\)
−0.0259933 + 0.999662i \(0.508275\pi\)
\(998\) 844878.i 0.848268i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.17.3 66
3.2 odd 2 27.5.f.a.23.9 yes 66
27.7 even 9 27.5.f.a.20.9 66
27.20 odd 18 inner 81.5.f.a.62.3 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.20.9 66 27.7 even 9
27.5.f.a.23.9 yes 66 3.2 odd 2
81.5.f.a.17.3 66 1.1 even 1 trivial
81.5.f.a.62.3 66 27.20 odd 18 inner