Properties

Label 81.5.f.a.17.2
Level $81$
Weight $5$
Character 81.17
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 17.2
Character \(\chi\) \(=\) 81.17
Dual form 81.5.f.a.62.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.28985 + 6.29131i) q^{2} +(-22.0805 - 18.5277i) q^{4} +(25.7110 + 4.53354i) q^{5} +(68.4999 - 57.4782i) q^{7} +(74.3553 - 42.9290i) q^{8} +(-87.3962 + 151.375i) q^{10} +(114.832 - 20.2479i) q^{11} +(79.4001 - 28.8993i) q^{13} +(204.759 + 562.571i) q^{14} +(19.7336 + 111.915i) q^{16} +(-177.240 - 102.329i) q^{17} +(29.8600 + 51.7191i) q^{19} +(-483.715 - 576.469i) q^{20} +(-135.561 + 768.806i) q^{22} +(-197.425 + 235.282i) q^{23} +(53.1928 + 19.3606i) q^{25} +565.706i q^{26} -2577.45 q^{28} +(-118.070 + 324.395i) q^{29} +(913.317 + 766.364i) q^{31} +(603.579 + 106.427i) q^{32} +(1049.64 - 880.751i) q^{34} +(2021.78 - 1167.27i) q^{35} +(765.910 - 1326.59i) q^{37} +(-393.756 + 69.4298i) q^{38} +(2106.37 - 766.655i) q^{40} +(172.539 + 474.046i) q^{41} +(409.482 + 2322.29i) q^{43} +(-2910.69 - 1680.49i) q^{44} +(-1028.16 - 1780.82i) q^{46} +(-856.572 - 1020.82i) q^{47} +(971.558 - 5509.98i) q^{49} +(-243.607 + 290.320i) q^{50} +(-2288.63 - 832.994i) q^{52} +2366.23i q^{53} +3044.22 q^{55} +(2625.84 - 7214.44i) q^{56} +(-1770.51 - 1485.63i) q^{58} +(1320.08 + 232.766i) q^{59} +(1145.64 - 961.305i) q^{61} +(-6912.80 + 3991.10i) q^{62} +(-2960.81 + 5128.27i) q^{64} +(2172.47 - 383.065i) q^{65} +(-3328.14 + 1211.34i) q^{67} +(2017.61 + 5543.33i) q^{68} +(2714.12 + 15392.5i) q^{70} +(-8066.81 - 4657.37i) q^{71} +(1018.24 + 1763.64i) q^{73} +(6592.21 + 7856.28i) q^{74} +(298.914 - 1695.22i) q^{76} +(6702.13 - 7987.29i) q^{77} +(-6418.45 - 2336.12i) q^{79} +2966.91i q^{80} -3377.46 q^{82} +(-866.863 + 2381.69i) q^{83} +(-4093.09 - 3434.51i) q^{85} +(-15547.9 - 2741.51i) q^{86} +(7669.11 - 6435.15i) q^{88} +(-5059.72 + 2921.23i) q^{89} +(3777.82 - 6543.37i) q^{91} +(8718.50 - 1537.31i) q^{92} +(8383.74 - 3051.43i) q^{94} +(533.260 + 1465.12i) q^{95} +(1671.44 + 9479.22i) q^{97} +(32440.3 + 18729.4i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.28985 + 6.29131i −0.572463 + 1.57283i 0.228137 + 0.973629i \(0.426737\pi\)
−0.800600 + 0.599200i \(0.795486\pi\)
\(3\) 0 0
\(4\) −22.0805 18.5277i −1.38003 1.15798i
\(5\) 25.7110 + 4.53354i 1.02844 + 0.181341i 0.662316 0.749225i \(-0.269574\pi\)
0.366123 + 0.930566i \(0.380685\pi\)
\(6\) 0 0
\(7\) 68.4999 57.4782i 1.39796 1.17302i 0.435959 0.899966i \(-0.356409\pi\)
0.961997 0.273058i \(-0.0880352\pi\)
\(8\) 74.3553 42.9290i 1.16180 0.670766i
\(9\) 0 0
\(10\) −87.3962 + 151.375i −0.873962 + 1.51375i
\(11\) 114.832 20.2479i 0.949021 0.167338i 0.322349 0.946621i \(-0.395528\pi\)
0.626672 + 0.779283i \(0.284416\pi\)
\(12\) 0 0
\(13\) 79.4001 28.8993i 0.469823 0.171002i −0.0962491 0.995357i \(-0.530685\pi\)
0.566072 + 0.824356i \(0.308462\pi\)
\(14\) 204.759 + 562.571i 1.04469 + 2.87026i
\(15\) 0 0
\(16\) 19.7336 + 111.915i 0.0770845 + 0.437168i
\(17\) −177.240 102.329i −0.613286 0.354081i 0.160965 0.986960i \(-0.448539\pi\)
−0.774250 + 0.632880i \(0.781873\pi\)
\(18\) 0 0
\(19\) 29.8600 + 51.7191i 0.0827147 + 0.143266i 0.904415 0.426654i \(-0.140308\pi\)
−0.821700 + 0.569920i \(0.806974\pi\)
\(20\) −483.715 576.469i −1.20929 1.44117i
\(21\) 0 0
\(22\) −135.561 + 768.806i −0.280085 + 1.58844i
\(23\) −197.425 + 235.282i −0.373204 + 0.444768i −0.919657 0.392722i \(-0.871533\pi\)
0.546453 + 0.837490i \(0.315978\pi\)
\(24\) 0 0
\(25\) 53.1928 + 19.3606i 0.0851084 + 0.0309769i
\(26\) 565.706i 0.836843i
\(27\) 0 0
\(28\) −2577.45 −3.28757
\(29\) −118.070 + 324.395i −0.140392 + 0.385725i −0.989884 0.141877i \(-0.954686\pi\)
0.849492 + 0.527602i \(0.176909\pi\)
\(30\) 0 0
\(31\) 913.317 + 766.364i 0.950382 + 0.797465i 0.979362 0.202115i \(-0.0647815\pi\)
−0.0289801 + 0.999580i \(0.509226\pi\)
\(32\) 603.579 + 106.427i 0.589433 + 0.103933i
\(33\) 0 0
\(34\) 1049.64 880.751i 0.907991 0.761895i
\(35\) 2021.78 1167.27i 1.65043 0.952876i
\(36\) 0 0
\(37\) 765.910 1326.59i 0.559467 0.969025i −0.438074 0.898939i \(-0.644339\pi\)
0.997541 0.0700859i \(-0.0223273\pi\)
\(38\) −393.756 + 69.4298i −0.272684 + 0.0480816i
\(39\) 0 0
\(40\) 2106.37 766.655i 1.31648 0.479159i
\(41\) 172.539 + 474.046i 0.102640 + 0.282002i 0.980374 0.197147i \(-0.0631676\pi\)
−0.877734 + 0.479149i \(0.840945\pi\)
\(42\) 0 0
\(43\) 409.482 + 2322.29i 0.221461 + 1.25597i 0.869335 + 0.494222i \(0.164547\pi\)
−0.647874 + 0.761747i \(0.724342\pi\)
\(44\) −2910.69 1680.49i −1.50345 0.868020i
\(45\) 0 0
\(46\) −1028.16 1780.82i −0.485898 0.841600i
\(47\) −856.572 1020.82i −0.387764 0.462120i 0.536484 0.843910i \(-0.319752\pi\)
−0.924249 + 0.381791i \(0.875308\pi\)
\(48\) 0 0
\(49\) 971.558 5509.98i 0.404647 2.29487i
\(50\) −243.607 + 290.320i −0.0974428 + 0.116128i
\(51\) 0 0
\(52\) −2288.63 832.994i −0.846388 0.308060i
\(53\) 2366.23i 0.842375i 0.906974 + 0.421187i \(0.138387\pi\)
−0.906974 + 0.421187i \(0.861613\pi\)
\(54\) 0 0
\(55\) 3044.22 1.00636
\(56\) 2625.84 7214.44i 0.837322 2.30052i
\(57\) 0 0
\(58\) −1770.51 1485.63i −0.526310 0.441627i
\(59\) 1320.08 + 232.766i 0.379225 + 0.0668677i 0.360012 0.932948i \(-0.382773\pi\)
0.0192136 + 0.999815i \(0.493884\pi\)
\(60\) 0 0
\(61\) 1145.64 961.305i 0.307885 0.258346i −0.475732 0.879590i \(-0.657817\pi\)
0.783617 + 0.621244i \(0.213372\pi\)
\(62\) −6912.80 + 3991.10i −1.79833 + 1.03827i
\(63\) 0 0
\(64\) −2960.81 + 5128.27i −0.722853 + 1.25202i
\(65\) 2172.47 383.065i 0.514194 0.0906663i
\(66\) 0 0
\(67\) −3328.14 + 1211.34i −0.741400 + 0.269847i −0.684982 0.728560i \(-0.740190\pi\)
−0.0564175 + 0.998407i \(0.517968\pi\)
\(68\) 2017.61 + 5543.33i 0.436334 + 1.19882i
\(69\) 0 0
\(70\) 2714.12 + 15392.5i 0.553901 + 3.14133i
\(71\) −8066.81 4657.37i −1.60024 0.923899i −0.991438 0.130575i \(-0.958318\pi\)
−0.608801 0.793323i \(-0.708349\pi\)
\(72\) 0 0
\(73\) 1018.24 + 1763.64i 0.191075 + 0.330952i 0.945607 0.325312i \(-0.105469\pi\)
−0.754532 + 0.656264i \(0.772136\pi\)
\(74\) 6592.21 + 7856.28i 1.20384 + 1.43468i
\(75\) 0 0
\(76\) 298.914 1695.22i 0.0517510 0.293494i
\(77\) 6702.13 7987.29i 1.13040 1.34716i
\(78\) 0 0
\(79\) −6418.45 2336.12i −1.02843 0.374319i −0.227949 0.973673i \(-0.573202\pi\)
−0.800484 + 0.599354i \(0.795424\pi\)
\(80\) 2966.91i 0.463579i
\(81\) 0 0
\(82\) −3377.46 −0.502299
\(83\) −866.863 + 2381.69i −0.125833 + 0.345723i −0.986573 0.163322i \(-0.947779\pi\)
0.860740 + 0.509045i \(0.170001\pi\)
\(84\) 0 0
\(85\) −4093.09 3434.51i −0.566517 0.475364i
\(86\) −15547.9 2741.51i −2.10220 0.370675i
\(87\) 0 0
\(88\) 7669.11 6435.15i 0.990329 0.830985i
\(89\) −5059.72 + 2921.23i −0.638773 + 0.368796i −0.784142 0.620582i \(-0.786897\pi\)
0.145369 + 0.989378i \(0.453563\pi\)
\(90\) 0 0
\(91\) 3777.82 6543.37i 0.456203 0.790167i
\(92\) 8718.50 1537.31i 1.03007 0.181629i
\(93\) 0 0
\(94\) 8383.74 3051.43i 0.948816 0.345341i
\(95\) 533.260 + 1465.12i 0.0590869 + 0.162340i
\(96\) 0 0
\(97\) 1671.44 + 9479.22i 0.177643 + 1.00746i 0.935049 + 0.354519i \(0.115355\pi\)
−0.757406 + 0.652944i \(0.773534\pi\)
\(98\) 32440.3 + 18729.4i 3.37779 + 1.95017i
\(99\) 0 0
\(100\) −815.816 1413.03i −0.0815816 0.141303i
\(101\) −5351.94 6378.20i −0.524649 0.625252i 0.437025 0.899450i \(-0.356032\pi\)
−0.961673 + 0.274197i \(0.911588\pi\)
\(102\) 0 0
\(103\) −2148.25 + 12183.3i −0.202493 + 1.14840i 0.698843 + 0.715275i \(0.253699\pi\)
−0.901336 + 0.433121i \(0.857412\pi\)
\(104\) 4663.20 5557.38i 0.431139 0.513811i
\(105\) 0 0
\(106\) −14886.7 5418.32i −1.32491 0.482228i
\(107\) 18289.2i 1.59745i −0.601695 0.798726i \(-0.705508\pi\)
0.601695 0.798726i \(-0.294492\pi\)
\(108\) 0 0
\(109\) 15025.2 1.26464 0.632320 0.774707i \(-0.282103\pi\)
0.632320 + 0.774707i \(0.282103\pi\)
\(110\) −6970.82 + 19152.2i −0.576101 + 1.58282i
\(111\) 0 0
\(112\) 7784.43 + 6531.91i 0.620570 + 0.520720i
\(113\) 16147.7 + 2847.27i 1.26460 + 0.222983i 0.765429 0.643520i \(-0.222527\pi\)
0.499171 + 0.866504i \(0.333638\pi\)
\(114\) 0 0
\(115\) −6142.65 + 5154.30i −0.464473 + 0.389739i
\(116\) 8617.35 4975.23i 0.640410 0.369741i
\(117\) 0 0
\(118\) −4487.20 + 7772.06i −0.322264 + 0.558177i
\(119\) −18022.6 + 3177.87i −1.27269 + 0.224410i
\(120\) 0 0
\(121\) −981.730 + 357.320i −0.0670535 + 0.0244055i
\(122\) 3424.53 + 9408.82i 0.230081 + 0.632143i
\(123\) 0 0
\(124\) −5967.51 33843.4i −0.388105 2.20105i
\(125\) −12851.3 7419.69i −0.822482 0.474860i
\(126\) 0 0
\(127\) −10486.5 18163.1i −0.650163 1.12612i −0.983083 0.183160i \(-0.941367\pi\)
0.332920 0.942955i \(-0.391966\pi\)
\(128\) −19180.4 22858.3i −1.17068 1.39516i
\(129\) 0 0
\(130\) −2564.65 + 14544.8i −0.151754 + 0.860642i
\(131\) −8641.82 + 10298.9i −0.503574 + 0.600136i −0.956615 0.291354i \(-0.905894\pi\)
0.453042 + 0.891489i \(0.350339\pi\)
\(132\) 0 0
\(133\) 5018.13 + 1826.45i 0.283686 + 0.103253i
\(134\) 23712.2i 1.32057i
\(135\) 0 0
\(136\) −17571.6 −0.950021
\(137\) 284.313 781.142i 0.0151480 0.0416188i −0.931888 0.362746i \(-0.881839\pi\)
0.947036 + 0.321127i \(0.104062\pi\)
\(138\) 0 0
\(139\) 8787.22 + 7373.35i 0.454801 + 0.381624i 0.841214 0.540702i \(-0.181841\pi\)
−0.386413 + 0.922326i \(0.626286\pi\)
\(140\) −66268.8 11685.0i −3.38106 0.596173i
\(141\) 0 0
\(142\) 47772.8 40086.1i 2.36921 1.98800i
\(143\) 8532.49 4926.23i 0.417257 0.240903i
\(144\) 0 0
\(145\) −4506.35 + 7805.23i −0.214333 + 0.371236i
\(146\) −13427.3 + 2367.59i −0.629914 + 0.111071i
\(147\) 0 0
\(148\) −41490.5 + 15101.3i −1.89420 + 0.689431i
\(149\) 5305.67 + 14577.2i 0.238983 + 0.656602i 0.999969 + 0.00783318i \(0.00249340\pi\)
−0.760986 + 0.648768i \(0.775284\pi\)
\(150\) 0 0
\(151\) −675.777 3832.52i −0.0296381 0.168086i 0.966396 0.257058i \(-0.0827530\pi\)
−0.996034 + 0.0889718i \(0.971642\pi\)
\(152\) 4440.50 + 2563.72i 0.192196 + 0.110965i
\(153\) 0 0
\(154\) 34903.7 + 60454.9i 1.47174 + 2.54912i
\(155\) 20007.9 + 23844.5i 0.832796 + 0.992487i
\(156\) 0 0
\(157\) 4167.47 23634.9i 0.169072 0.958858i −0.775693 0.631110i \(-0.782599\pi\)
0.944765 0.327747i \(-0.106289\pi\)
\(158\) 29394.6 35031.1i 1.17748 1.40326i
\(159\) 0 0
\(160\) 15036.1 + 5472.70i 0.587348 + 0.213777i
\(161\) 27464.4i 1.05954i
\(162\) 0 0
\(163\) 3197.22 0.120336 0.0601682 0.998188i \(-0.480836\pi\)
0.0601682 + 0.998188i \(0.480836\pi\)
\(164\) 4973.26 13663.9i 0.184907 0.508028i
\(165\) 0 0
\(166\) −12999.0 10907.4i −0.471729 0.395827i
\(167\) 15221.2 + 2683.90i 0.545776 + 0.0962351i 0.439737 0.898127i \(-0.355072\pi\)
0.106040 + 0.994362i \(0.466183\pi\)
\(168\) 0 0
\(169\) −16409.8 + 13769.4i −0.574552 + 0.482107i
\(170\) 30980.1 17886.4i 1.07198 0.618906i
\(171\) 0 0
\(172\) 33985.2 58864.1i 1.14877 1.98973i
\(173\) 2896.29 510.694i 0.0967720 0.0170635i −0.125052 0.992150i \(-0.539910\pi\)
0.221824 + 0.975087i \(0.428799\pi\)
\(174\) 0 0
\(175\) 4756.51 1731.23i 0.155315 0.0565299i
\(176\) 4532.09 + 12451.8i 0.146310 + 0.401983i
\(177\) 0 0
\(178\) −6792.38 38521.5i −0.214379 1.21580i
\(179\) 15637.7 + 9028.43i 0.488053 + 0.281778i 0.723766 0.690045i \(-0.242409\pi\)
−0.235713 + 0.971823i \(0.575743\pi\)
\(180\) 0 0
\(181\) −12607.6 21837.1i −0.384837 0.666557i 0.606910 0.794771i \(-0.292409\pi\)
−0.991747 + 0.128214i \(0.959076\pi\)
\(182\) 32515.8 + 38750.8i 0.981638 + 1.16987i
\(183\) 0 0
\(184\) −4579.17 + 25969.7i −0.135254 + 0.767065i
\(185\) 25706.4 30635.7i 0.751101 0.895128i
\(186\) 0 0
\(187\) −22424.6 8161.90i −0.641272 0.233404i
\(188\) 38410.6i 1.08677i
\(189\) 0 0
\(190\) −10438.6 −0.289158
\(191\) 4428.43 12167.0i 0.121390 0.333517i −0.864083 0.503350i \(-0.832101\pi\)
0.985473 + 0.169833i \(0.0543229\pi\)
\(192\) 0 0
\(193\) 21097.8 + 17703.2i 0.566400 + 0.475266i 0.880449 0.474141i \(-0.157241\pi\)
−0.314049 + 0.949407i \(0.601686\pi\)
\(194\) −63464.1 11190.4i −1.68626 0.297333i
\(195\) 0 0
\(196\) −123540. + 103662.i −3.21585 + 2.69842i
\(197\) −25871.2 + 14936.7i −0.666628 + 0.384878i −0.794798 0.606874i \(-0.792423\pi\)
0.128169 + 0.991752i \(0.459090\pi\)
\(198\) 0 0
\(199\) −1874.31 + 3246.39i −0.0473298 + 0.0819776i −0.888720 0.458451i \(-0.848404\pi\)
0.841390 + 0.540428i \(0.181738\pi\)
\(200\) 4786.29 843.953i 0.119657 0.0210988i
\(201\) 0 0
\(202\) 52382.4 19065.6i 1.28376 0.467249i
\(203\) 10557.9 + 29007.5i 0.256203 + 0.703911i
\(204\) 0 0
\(205\) 2287.03 + 12970.4i 0.0544207 + 0.308635i
\(206\) −71730.0 41413.3i −1.69031 0.975901i
\(207\) 0 0
\(208\) 4801.12 + 8315.78i 0.110973 + 0.192210i
\(209\) 4476.08 + 5334.38i 0.102472 + 0.122121i
\(210\) 0 0
\(211\) −2992.43 + 16970.9i −0.0672138 + 0.381188i 0.932582 + 0.360959i \(0.117551\pi\)
−0.999795 + 0.0202291i \(0.993560\pi\)
\(212\) 43840.9 52247.6i 0.975457 1.16250i
\(213\) 0 0
\(214\) 115063. + 41879.6i 2.51252 + 0.914482i
\(215\) 61564.7i 1.33185i
\(216\) 0 0
\(217\) 106611. 2.26404
\(218\) −34405.5 + 94528.3i −0.723960 + 1.98906i
\(219\) 0 0
\(220\) −67218.0 56402.6i −1.38880 1.16534i
\(221\) −17030.1 3002.86i −0.348684 0.0614824i
\(222\) 0 0
\(223\) −52469.8 + 44027.4i −1.05511 + 0.885346i −0.993622 0.112761i \(-0.964030\pi\)
−0.0614925 + 0.998108i \(0.519586\pi\)
\(224\) 47462.4 27402.4i 0.945918 0.546126i
\(225\) 0 0
\(226\) −54888.9 + 95070.3i −1.07465 + 1.86135i
\(227\) −2085.83 + 367.788i −0.0404787 + 0.00713749i −0.193851 0.981031i \(-0.562098\pi\)
0.153372 + 0.988169i \(0.450987\pi\)
\(228\) 0 0
\(229\) −55758.2 + 20294.3i −1.06326 + 0.386993i −0.813650 0.581354i \(-0.802523\pi\)
−0.249605 + 0.968348i \(0.580301\pi\)
\(230\) −18361.5 50447.9i −0.347099 0.953647i
\(231\) 0 0
\(232\) 5146.83 + 29189.1i 0.0956233 + 0.542306i
\(233\) −859.319 496.128i −0.0158286 0.00913865i 0.492065 0.870559i \(-0.336242\pi\)
−0.507893 + 0.861420i \(0.669576\pi\)
\(234\) 0 0
\(235\) −17395.3 30129.6i −0.314990 0.545579i
\(236\) −24835.5 29597.8i −0.445912 0.531417i
\(237\) 0 0
\(238\) 21276.1 120663.i 0.375610 2.13019i
\(239\) −65023.4 + 77491.9i −1.13835 + 1.35663i −0.213203 + 0.977008i \(0.568390\pi\)
−0.925143 + 0.379620i \(0.876055\pi\)
\(240\) 0 0
\(241\) −8987.19 3271.07i −0.154735 0.0563191i 0.263491 0.964662i \(-0.415126\pi\)
−0.418227 + 0.908343i \(0.637348\pi\)
\(242\) 6994.58i 0.119435i
\(243\) 0 0
\(244\) −43107.1 −0.724051
\(245\) 49959.4 137262.i 0.832309 2.28675i
\(246\) 0 0
\(247\) 3865.53 + 3243.57i 0.0633600 + 0.0531654i
\(248\) 100809. + 17775.4i 1.63907 + 0.289012i
\(249\) 0 0
\(250\) 76107.2 63861.5i 1.21771 1.02178i
\(251\) −99454.3 + 57420.0i −1.57862 + 0.911414i −0.583562 + 0.812068i \(0.698342\pi\)
−0.995053 + 0.0993455i \(0.968325\pi\)
\(252\) 0 0
\(253\) −17906.7 + 31015.3i −0.279752 + 0.484545i
\(254\) 138282. 24382.9i 2.14338 0.377936i
\(255\) 0 0
\(256\) 98697.2 35922.8i 1.50600 0.548139i
\(257\) 10228.5 + 28102.5i 0.154862 + 0.425479i 0.992725 0.120400i \(-0.0384179\pi\)
−0.837864 + 0.545880i \(0.816196\pi\)
\(258\) 0 0
\(259\) −23785.6 134895.i −0.354580 2.01092i
\(260\) −55066.6 31792.7i −0.814594 0.470306i
\(261\) 0 0
\(262\) −45005.3 77951.5i −0.655633 1.13559i
\(263\) −69051.5 82292.4i −0.998301 1.18973i −0.981810 0.189865i \(-0.939195\pi\)
−0.0164913 0.999864i \(-0.505250\pi\)
\(264\) 0 0
\(265\) −10727.4 + 60838.1i −0.152758 + 0.866331i
\(266\) −22981.5 + 27388.3i −0.324800 + 0.387081i
\(267\) 0 0
\(268\) 95930.6 + 34915.9i 1.33563 + 0.486131i
\(269\) 93032.6i 1.28567i −0.766003 0.642837i \(-0.777757\pi\)
0.766003 0.642837i \(-0.222243\pi\)
\(270\) 0 0
\(271\) −116322. −1.58389 −0.791943 0.610595i \(-0.790930\pi\)
−0.791943 + 0.610595i \(0.790930\pi\)
\(272\) 7954.61 21855.1i 0.107518 0.295403i
\(273\) 0 0
\(274\) 4263.38 + 3577.40i 0.0567875 + 0.0476504i
\(275\) 6500.22 + 1146.16i 0.0859533 + 0.0151559i
\(276\) 0 0
\(277\) 35882.2 30108.7i 0.467648 0.392404i −0.378288 0.925688i \(-0.623487\pi\)
0.845936 + 0.533285i \(0.179042\pi\)
\(278\) −66509.5 + 38399.3i −0.860586 + 0.496859i
\(279\) 0 0
\(280\) 100220. 173586.i 1.27831 2.21411i
\(281\) 47538.9 8382.39i 0.602055 0.106159i 0.135691 0.990751i \(-0.456675\pi\)
0.466364 + 0.884593i \(0.345564\pi\)
\(282\) 0 0
\(283\) 61394.4 22345.7i 0.766577 0.279011i 0.0710129 0.997475i \(-0.477377\pi\)
0.695564 + 0.718464i \(0.255155\pi\)
\(284\) 91828.6 + 252297.i 1.13852 + 3.12806i
\(285\) 0 0
\(286\) 11454.4 + 64960.9i 0.140036 + 0.794182i
\(287\) 39066.2 + 22554.9i 0.474283 + 0.273827i
\(288\) 0 0
\(289\) −20817.9 36057.7i −0.249254 0.431720i
\(290\) −38786.3 46223.7i −0.461192 0.549628i
\(291\) 0 0
\(292\) 10193.1 57807.9i 0.119547 0.677987i
\(293\) 81822.2 97512.0i 0.953095 1.13585i −0.0375370 0.999295i \(-0.511951\pi\)
0.990632 0.136559i \(-0.0436043\pi\)
\(294\) 0 0
\(295\) 32885.4 + 11969.3i 0.377884 + 0.137539i
\(296\) 131519.i 1.50109i
\(297\) 0 0
\(298\) −103859. −1.16953
\(299\) −8876.09 + 24386.9i −0.0992841 + 0.272781i
\(300\) 0 0
\(301\) 161530. + 135540.i 1.78288 + 1.49601i
\(302\) 25659.0 + 4524.38i 0.281337 + 0.0496073i
\(303\) 0 0
\(304\) −5198.90 + 4362.39i −0.0562554 + 0.0472039i
\(305\) 33813.6 19522.3i 0.363489 0.209861i
\(306\) 0 0
\(307\) −84380.8 + 146152.i −0.895297 + 1.55070i −0.0618593 + 0.998085i \(0.519703\pi\)
−0.833437 + 0.552614i \(0.813630\pi\)
\(308\) −295973. + 52188.0i −3.11997 + 0.550135i
\(309\) 0 0
\(310\) −195828. + 71275.7i −2.03776 + 0.741683i
\(311\) −40368.2 110911.i −0.417368 1.14671i −0.953188 0.302377i \(-0.902220\pi\)
0.535821 0.844332i \(-0.320002\pi\)
\(312\) 0 0
\(313\) −192.485 1091.64i −0.00196476 0.0111427i 0.983810 0.179217i \(-0.0573563\pi\)
−0.985774 + 0.168074i \(0.946245\pi\)
\(314\) 139152. + 80339.2i 1.41133 + 0.814832i
\(315\) 0 0
\(316\) 98439.5 + 170502.i 0.985815 + 1.70748i
\(317\) −13432.5 16008.2i −0.133671 0.159303i 0.695057 0.718955i \(-0.255379\pi\)
−0.828728 + 0.559652i \(0.810935\pi\)
\(318\) 0 0
\(319\) −6989.85 + 39641.4i −0.0686889 + 0.389554i
\(320\) −99374.4 + 118430.i −0.970453 + 1.15654i
\(321\) 0 0
\(322\) −172787. 62889.5i −1.66648 0.606550i
\(323\) 12222.2i 0.117151i
\(324\) 0 0
\(325\) 4783.02 0.0452830
\(326\) −7321.15 + 20114.7i −0.0688881 + 0.189269i
\(327\) 0 0
\(328\) 33179.5 + 27840.9i 0.308405 + 0.258783i
\(329\) −117350. 20692.0i −1.08416 0.191166i
\(330\) 0 0
\(331\) 29579.5 24820.1i 0.269982 0.226542i −0.497738 0.867328i \(-0.665836\pi\)
0.767720 + 0.640786i \(0.221391\pi\)
\(332\) 63268.1 36527.8i 0.573996 0.331397i
\(333\) 0 0
\(334\) −51739.5 + 89615.4i −0.463798 + 0.803322i
\(335\) −91061.4 + 16056.6i −0.811418 + 0.143075i
\(336\) 0 0
\(337\) 204490. 74428.4i 1.80058 0.655358i 0.802290 0.596934i \(-0.203615\pi\)
0.998292 0.0584241i \(-0.0186076\pi\)
\(338\) −49051.9 134769.i −0.429361 1.17966i
\(339\) 0 0
\(340\) 26743.7 + 151671.i 0.231347 + 1.31204i
\(341\) 120395. + 69510.0i 1.03538 + 0.597776i
\(342\) 0 0
\(343\) −142803. 247342.i −1.21381 2.10237i
\(344\) 130141. + 155096.i 1.09976 + 1.31064i
\(345\) 0 0
\(346\) −3419.13 + 19390.9i −0.0285604 + 0.161974i
\(347\) −91221.8 + 108714.i −0.757599 + 0.902872i −0.997694 0.0678779i \(-0.978377\pi\)
0.240094 + 0.970750i \(0.422822\pi\)
\(348\) 0 0
\(349\) −106148. 38634.6i −0.871484 0.317194i −0.132716 0.991154i \(-0.542370\pi\)
−0.738768 + 0.673960i \(0.764592\pi\)
\(350\) 33889.0i 0.276645i
\(351\) 0 0
\(352\) 71464.9 0.576776
\(353\) −6289.31 + 17279.7i −0.0504724 + 0.138672i −0.962367 0.271752i \(-0.912397\pi\)
0.911895 + 0.410424i \(0.134619\pi\)
\(354\) 0 0
\(355\) −186291. 156317.i −1.47821 1.24036i
\(356\) 165845. + 29243.0i 1.30859 + 0.230739i
\(357\) 0 0
\(358\) −92608.8 + 77708.0i −0.722580 + 0.606317i
\(359\) −13604.2 + 7854.36i −0.105556 + 0.0609427i −0.551849 0.833944i \(-0.686077\pi\)
0.446293 + 0.894887i \(0.352744\pi\)
\(360\) 0 0
\(361\) 63377.3 109773.i 0.486317 0.842325i
\(362\) 166254. 29315.0i 1.26869 0.223703i
\(363\) 0 0
\(364\) −204650. + 74486.6i −1.54458 + 0.562180i
\(365\) 18184.4 + 49961.2i 0.136494 + 0.375014i
\(366\) 0 0
\(367\) 33676.1 + 190987.i 0.250029 + 1.41798i 0.808518 + 0.588472i \(0.200270\pi\)
−0.558489 + 0.829512i \(0.688619\pi\)
\(368\) −30227.5 17451.9i −0.223207 0.128868i
\(369\) 0 0
\(370\) 133875. + 231879.i 0.977905 + 1.69378i
\(371\) 136007. + 162087.i 0.988127 + 1.17760i
\(372\) 0 0
\(373\) −23955.5 + 135858.i −0.172182 + 0.976493i 0.769164 + 0.639051i \(0.220673\pi\)
−0.941346 + 0.337442i \(0.890438\pi\)
\(374\) 102698. 122391.i 0.734209 0.874996i
\(375\) 0 0
\(376\) −107514. 39131.7i −0.760479 0.276792i
\(377\) 29169.1i 0.205230i
\(378\) 0 0
\(379\) 252626. 1.75873 0.879367 0.476145i \(-0.157966\pi\)
0.879367 + 0.476145i \(0.157966\pi\)
\(380\) 15370.7 42230.7i 0.106445 0.292456i
\(381\) 0 0
\(382\) 66406.1 + 55721.3i 0.455073 + 0.381852i
\(383\) 214247. + 37777.5i 1.46055 + 0.257535i 0.846778 0.531947i \(-0.178539\pi\)
0.613774 + 0.789481i \(0.289650\pi\)
\(384\) 0 0
\(385\) 208529. 174977.i 1.40684 1.18048i
\(386\) −159687. + 92195.5i −1.07175 + 0.618778i
\(387\) 0 0
\(388\) 138722. 240274.i 0.921473 1.59604i
\(389\) 138469. 24415.8i 0.915069 0.161351i 0.303765 0.952747i \(-0.401756\pi\)
0.611304 + 0.791396i \(0.290645\pi\)
\(390\) 0 0
\(391\) 59067.8 21498.9i 0.386365 0.140625i
\(392\) −164298. 451404.i −1.06920 2.93760i
\(393\) 0 0
\(394\) −34730.5 196967.i −0.223727 1.26882i
\(395\) −154434. 89162.3i −0.989800 0.571461i
\(396\) 0 0
\(397\) 84254.1 + 145932.i 0.534577 + 0.925914i 0.999184 + 0.0403969i \(0.0128622\pi\)
−0.464607 + 0.885517i \(0.653804\pi\)
\(398\) −16132.2 19225.6i −0.101842 0.121371i
\(399\) 0 0
\(400\) −1117.05 + 6335.13i −0.00698159 + 0.0395945i
\(401\) 8280.32 9868.10i 0.0514942 0.0613684i −0.739683 0.672956i \(-0.765024\pi\)
0.791177 + 0.611588i \(0.209469\pi\)
\(402\) 0 0
\(403\) 94664.8 + 34455.2i 0.582879 + 0.212151i
\(404\) 239993.i 1.47040i
\(405\) 0 0
\(406\) −206671. −1.25380
\(407\) 61089.9 167843.i 0.368791 1.01324i
\(408\) 0 0
\(409\) −163827. 137468.i −0.979354 0.821776i 0.00463745 0.999989i \(-0.498524\pi\)
−0.983992 + 0.178213i \(0.942968\pi\)
\(410\) −86837.7 15311.8i −0.516584 0.0910876i
\(411\) 0 0
\(412\) 273164. 229212.i 1.60927 1.35034i
\(413\) 103805. 59931.6i 0.608578 0.351363i
\(414\) 0 0
\(415\) −33085.4 + 57305.5i −0.192105 + 0.332736i
\(416\) 50999.9 8992.66i 0.294702 0.0519639i
\(417\) 0 0
\(418\) −43809.8 + 15945.5i −0.250737 + 0.0912609i
\(419\) −51671.9 141967.i −0.294325 0.808650i −0.995421 0.0955842i \(-0.969528\pi\)
0.701097 0.713066i \(-0.252694\pi\)
\(420\) 0 0
\(421\) −8285.29 46988.2i −0.0467459 0.265109i 0.952473 0.304623i \(-0.0985303\pi\)
−0.999219 + 0.0395134i \(0.987419\pi\)
\(422\) −99917.0 57687.1i −0.561067 0.323932i
\(423\) 0 0
\(424\) 101580. + 175942.i 0.565037 + 0.978672i
\(425\) −7446.71 8874.64i −0.0412274 0.0491330i
\(426\) 0 0
\(427\) 23222.0 131699.i 0.127363 0.722313i
\(428\) −338858. + 403836.i −1.84982 + 2.20454i
\(429\) 0 0
\(430\) −387323. 140974.i −2.09477 0.762433i
\(431\) 178097.i 0.958744i 0.877612 + 0.479372i \(0.159136\pi\)
−0.877612 + 0.479372i \(0.840864\pi\)
\(432\) 0 0
\(433\) 245595. 1.30992 0.654960 0.755664i \(-0.272686\pi\)
0.654960 + 0.755664i \(0.272686\pi\)
\(434\) −244124. + 670725.i −1.29608 + 3.56094i
\(435\) 0 0
\(436\) −331764. 278383.i −1.74524 1.46443i
\(437\) −18063.7 3185.12i −0.0945897 0.0166787i
\(438\) 0 0
\(439\) −135369. + 113588.i −0.702407 + 0.589390i −0.922457 0.386099i \(-0.873822\pi\)
0.220050 + 0.975489i \(0.429378\pi\)
\(440\) 226354. 130686.i 1.16918 0.675029i
\(441\) 0 0
\(442\) 57888.3 100265.i 0.296310 0.513224i
\(443\) −84669.8 + 14929.6i −0.431441 + 0.0760746i −0.385151 0.922853i \(-0.625851\pi\)
−0.0462894 + 0.998928i \(0.514740\pi\)
\(444\) 0 0
\(445\) −143334. + 52169.3i −0.723817 + 0.263448i
\(446\) −156842. 430920.i −0.788484 2.16634i
\(447\) 0 0
\(448\) 91948.8 + 521468.i 0.458131 + 2.59819i
\(449\) −327830. 189273.i −1.62613 0.938847i −0.985232 0.171222i \(-0.945228\pi\)
−0.640899 0.767625i \(-0.721438\pi\)
\(450\) 0 0
\(451\) 29411.3 + 50941.9i 0.144598 + 0.250450i
\(452\) −303795. 362049.i −1.48698 1.77211i
\(453\) 0 0
\(454\) 2462.37 13964.8i 0.0119465 0.0677521i
\(455\) 126796. 151110.i 0.612467 0.729910i
\(456\) 0 0
\(457\) −200123. 72838.8i −0.958218 0.348763i −0.184883 0.982761i \(-0.559191\pi\)
−0.773335 + 0.633998i \(0.781413\pi\)
\(458\) 397263.i 1.89386i
\(459\) 0 0
\(460\) 231130. 1.09230
\(461\) 36759.6 100996.i 0.172969 0.475229i −0.822670 0.568520i \(-0.807516\pi\)
0.995639 + 0.0932907i \(0.0297386\pi\)
\(462\) 0 0
\(463\) 210371. + 176523.i 0.981352 + 0.823452i 0.984293 0.176543i \(-0.0564916\pi\)
−0.00294065 + 0.999996i \(0.500936\pi\)
\(464\) −38634.6 6812.33i −0.179449 0.0316417i
\(465\) 0 0
\(466\) 5089.01 4270.19i 0.0234348 0.0196641i
\(467\) 305797. 176552.i 1.40217 0.809540i 0.407551 0.913183i \(-0.366383\pi\)
0.994615 + 0.103642i \(0.0330497\pi\)
\(468\) 0 0
\(469\) −158351. + 274273.i −0.719907 + 1.24691i
\(470\) 229388. 40447.2i 1.03842 0.183102i
\(471\) 0 0
\(472\) 108148. 39362.5i 0.485437 0.176685i
\(473\) 94042.9 + 258381.i 0.420343 + 1.15488i
\(474\) 0 0
\(475\) 587.026 + 3329.19i 0.00260178 + 0.0147554i
\(476\) 456827. + 263749.i 2.01622 + 1.16406i
\(477\) 0 0
\(478\) −338632. 586528.i −1.48208 2.56704i
\(479\) 198315. + 236343.i 0.864341 + 1.03008i 0.999231 + 0.0392207i \(0.0124875\pi\)
−0.134890 + 0.990861i \(0.543068\pi\)
\(480\) 0 0
\(481\) 22475.7 127466.i 0.0971456 0.550940i
\(482\) 41158.7 49051.0i 0.177161 0.211132i
\(483\) 0 0
\(484\) 28297.4 + 10299.4i 0.120797 + 0.0439665i
\(485\) 251297.i 1.06833i
\(486\) 0 0
\(487\) 28076.8 0.118383 0.0591915 0.998247i \(-0.481148\pi\)
0.0591915 + 0.998247i \(0.481148\pi\)
\(488\) 43916.4 120659.i 0.184411 0.506665i
\(489\) 0 0
\(490\) 749160. + 628620.i 3.12020 + 2.61816i
\(491\) −330288. 58238.8i −1.37003 0.241573i −0.560259 0.828318i \(-0.689298\pi\)
−0.809772 + 0.586744i \(0.800409\pi\)
\(492\) 0 0
\(493\) 54121.8 45413.6i 0.222678 0.186849i
\(494\) −29257.8 + 16892.0i −0.119891 + 0.0692193i
\(495\) 0 0
\(496\) −67744.6 + 117337.i −0.275367 + 0.476949i
\(497\) −820273. + 144636.i −3.32082 + 0.585550i
\(498\) 0 0
\(499\) −286659. + 104335.i −1.15123 + 0.419015i −0.845958 0.533249i \(-0.820971\pi\)
−0.305276 + 0.952264i \(0.598749\pi\)
\(500\) 146293. + 401936.i 0.585171 + 1.60774i
\(501\) 0 0
\(502\) −133512. 757182.i −0.529799 3.00464i
\(503\) 169836. + 98054.7i 0.671264 + 0.387554i 0.796555 0.604566i \(-0.206653\pi\)
−0.125292 + 0.992120i \(0.539987\pi\)
\(504\) 0 0
\(505\) −108688. 188253.i −0.426185 0.738174i
\(506\) −154123. 183677.i −0.601959 0.717387i
\(507\) 0 0
\(508\) −104975. + 595342.i −0.406778 + 2.30695i
\(509\) 14669.5 17482.4i 0.0566211 0.0674784i −0.736991 0.675903i \(-0.763754\pi\)
0.793612 + 0.608425i \(0.208198\pi\)
\(510\) 0 0
\(511\) 171120. + 62282.7i 0.655330 + 0.238521i
\(512\) 225763.i 0.861216i
\(513\) 0 0
\(514\) −200223. −0.757858
\(515\) −110467. + 303506.i −0.416504 + 1.14433i
\(516\) 0 0
\(517\) −119031. 99878.8i −0.445327 0.373674i
\(518\) 903130. + 159246.i 3.36582 + 0.593485i
\(519\) 0 0
\(520\) 145090. 121745.i 0.536575 0.450240i
\(521\) −45748.9 + 26413.1i −0.168541 + 0.0973070i −0.581898 0.813262i \(-0.697690\pi\)
0.413357 + 0.910569i \(0.364356\pi\)
\(522\) 0 0
\(523\) −3648.58 + 6319.53i −0.0133389 + 0.0231037i −0.872618 0.488404i \(-0.837579\pi\)
0.859279 + 0.511507i \(0.170913\pi\)
\(524\) 381632. 67292.0i 1.38990 0.245076i
\(525\) 0 0
\(526\) 675845. 245987.i 2.44273 0.889081i
\(527\) −83454.4 229289.i −0.300489 0.825585i
\(528\) 0 0
\(529\) 32212.9 + 182688.i 0.115111 + 0.652829i
\(530\) −358187. 206800.i −1.27514 0.736204i
\(531\) 0 0
\(532\) −76962.8 133304.i −0.271930 0.470997i
\(533\) 27399.2 + 32653.0i 0.0964457 + 0.114939i
\(534\) 0 0
\(535\) 82914.9 470234.i 0.289684 1.64288i
\(536\) −195463. + 232944.i −0.680354 + 0.810815i
\(537\) 0 0
\(538\) 585298. + 213031.i 2.02214 + 0.736000i
\(539\) 652391.i 2.24559i
\(540\) 0 0
\(541\) −168037. −0.574132 −0.287066 0.957911i \(-0.592680\pi\)
−0.287066 + 0.957911i \(0.592680\pi\)
\(542\) 266360. 731819.i 0.906716 2.49118i
\(543\) 0 0
\(544\) −96087.5 80627.0i −0.324690 0.272447i
\(545\) 386312. + 68117.3i 1.30061 + 0.229332i
\(546\) 0 0
\(547\) −418801. + 351416.i −1.39969 + 1.17448i −0.438461 + 0.898750i \(0.644476\pi\)
−0.961234 + 0.275733i \(0.911079\pi\)
\(548\) −20750.6 + 11980.4i −0.0690986 + 0.0398941i
\(549\) 0 0
\(550\) −22095.4 + 38270.4i −0.0730427 + 0.126514i
\(551\) −20303.0 + 3579.96i −0.0668739 + 0.0117917i
\(552\) 0 0
\(553\) −573939. + 208897.i −1.87679 + 0.683096i
\(554\) 107259. + 294691.i 0.349472 + 0.960167i
\(555\) 0 0
\(556\) −57414.7 325615.i −0.185726 1.05331i
\(557\) 175084. + 101085.i 0.564333 + 0.325818i 0.754883 0.655860i \(-0.227694\pi\)
−0.190550 + 0.981678i \(0.561027\pi\)
\(558\) 0 0
\(559\) 99625.4 + 172556.i 0.318821 + 0.552213i
\(560\) 170533. + 203233.i 0.543790 + 0.648064i
\(561\) 0 0
\(562\) −56120.7 + 318276.i −0.177685 + 1.00770i
\(563\) −357122. + 425602.i −1.12668 + 1.34272i −0.194426 + 0.980917i \(0.562284\pi\)
−0.932253 + 0.361806i \(0.882160\pi\)
\(564\) 0 0
\(565\) 402264. + 146412.i 1.26013 + 0.458649i
\(566\) 437420.i 1.36542i
\(567\) 0 0
\(568\) −799746. −2.47888
\(569\) 83421.8 229199.i 0.257665 0.707928i −0.741646 0.670792i \(-0.765954\pi\)
0.999310 0.0371359i \(-0.0118234\pi\)
\(570\) 0 0
\(571\) −242431. 203424.i −0.743561 0.623922i 0.190230 0.981740i \(-0.439077\pi\)
−0.933792 + 0.357817i \(0.883521\pi\)
\(572\) −279674. 49314.0i −0.854790 0.150723i
\(573\) 0 0
\(574\) −231356. + 194130.i −0.702192 + 0.589209i
\(575\) −15056.8 + 8693.04i −0.0455404 + 0.0262928i
\(576\) 0 0
\(577\) −61386.3 + 106324.i −0.184383 + 0.319360i −0.943368 0.331747i \(-0.892362\pi\)
0.758986 + 0.651107i \(0.225695\pi\)
\(578\) 274520. 48405.4i 0.821711 0.144890i
\(579\) 0 0
\(580\) 244116. 88850.9i 0.725671 0.264123i
\(581\) 77515.1 + 212971.i 0.229633 + 0.630911i
\(582\) 0 0
\(583\) 47911.2 + 271718.i 0.140961 + 0.799432i
\(584\) 151423. + 87424.2i 0.443983 + 0.256334i
\(585\) 0 0
\(586\) 426118. + 738057.i 1.24089 + 2.14929i
\(587\) 260872. + 310895.i 0.757096 + 0.902272i 0.997661 0.0683614i \(-0.0217771\pi\)
−0.240565 + 0.970633i \(0.577333\pi\)
\(588\) 0 0
\(589\) −12364.0 + 70119.5i −0.0356391 + 0.202120i
\(590\) −150605. + 179484.i −0.432649 + 0.515611i
\(591\) 0 0
\(592\) 163580. + 59538.3i 0.466753 + 0.169884i
\(593\) 165039.i 0.469327i −0.972077 0.234664i \(-0.924601\pi\)
0.972077 0.234664i \(-0.0753989\pi\)
\(594\) 0 0
\(595\) −477785. −1.34958
\(596\) 152931. 420174.i 0.430530 1.18287i
\(597\) 0 0
\(598\) −133101. 111685.i −0.372201 0.312314i
\(599\) −67800.8 11955.1i −0.188965 0.0333196i 0.0783647 0.996925i \(-0.475030\pi\)
−0.267330 + 0.963605i \(0.586141\pi\)
\(600\) 0 0
\(601\) 211057. 177098.i 0.584320 0.490302i −0.302043 0.953294i \(-0.597669\pi\)
0.886362 + 0.462992i \(0.153224\pi\)
\(602\) −1.22261e6 + 705872.i −3.37360 + 1.94775i
\(603\) 0 0
\(604\) −56086.5 + 97144.7i −0.153739 + 0.266284i
\(605\) −26861.1 + 4736.35i −0.0733861 + 0.0129400i
\(606\) 0 0
\(607\) 366203. 133287.i 0.993905 0.361752i 0.206674 0.978410i \(-0.433736\pi\)
0.787231 + 0.616658i \(0.211514\pi\)
\(608\) 12518.6 + 34394.5i 0.0338647 + 0.0930426i
\(609\) 0 0
\(610\) 45392.7 + 257435.i 0.121991 + 0.691844i
\(611\) −97512.9 56299.1i −0.261204 0.150806i
\(612\) 0 0
\(613\) 91256.0 + 158060.i 0.242851 + 0.420631i 0.961525 0.274716i \(-0.0885839\pi\)
−0.718674 + 0.695347i \(0.755251\pi\)
\(614\) −726268. 865532.i −1.92646 2.29587i
\(615\) 0 0
\(616\) 155452. 881614.i 0.409671 2.32336i
\(617\) 306777. 365602.i 0.805846 0.960369i −0.193941 0.981013i \(-0.562127\pi\)
0.999787 + 0.0206438i \(0.00657159\pi\)
\(618\) 0 0
\(619\) −77561.0 28229.9i −0.202424 0.0736763i 0.238818 0.971064i \(-0.423240\pi\)
−0.441242 + 0.897388i \(0.645462\pi\)
\(620\) 897201.i 2.33403i
\(621\) 0 0
\(622\) 790212. 2.04250
\(623\) −178683. + 490928.i −0.460371 + 1.26486i
\(624\) 0 0
\(625\) −323883. 271770.i −0.829142 0.695732i
\(626\) 7308.60 + 1288.70i 0.0186503 + 0.00328855i
\(627\) 0 0
\(628\) −529921. + 444656.i −1.34367 + 1.12747i
\(629\) −271499. + 156750.i −0.686226 + 0.396193i
\(630\) 0 0
\(631\) 229945. 398277.i 0.577518 1.00029i −0.418245 0.908334i \(-0.637355\pi\)
0.995763 0.0919568i \(-0.0293122\pi\)
\(632\) −577533. + 101835.i −1.44591 + 0.254954i
\(633\) 0 0
\(634\) 131471. 47851.5i 0.327078 0.119047i
\(635\) −187274. 514532.i −0.464441 1.27604i
\(636\) 0 0
\(637\) −82092.6 465570.i −0.202314 1.14738i
\(638\) −233391. 134748.i −0.573380 0.331041i
\(639\) 0 0
\(640\) −389518. 674664.i −0.950971 1.64713i
\(641\) 436643. + 520371.i 1.06270 + 1.26648i 0.962434 + 0.271515i \(0.0875246\pi\)
0.100265 + 0.994961i \(0.468031\pi\)
\(642\) 0 0
\(643\) −44266.2 + 251046.i −0.107066 + 0.607200i 0.883309 + 0.468791i \(0.155310\pi\)
−0.990375 + 0.138410i \(0.955801\pi\)
\(644\) 508854. 606429.i 1.22694 1.46220i
\(645\) 0 0
\(646\) 76893.8 + 27987.1i 0.184258 + 0.0670644i
\(647\) 468446.i 1.11905i −0.828812 0.559527i \(-0.810983\pi\)
0.828812 0.559527i \(-0.189017\pi\)
\(648\) 0 0
\(649\) 156300. 0.371082
\(650\) −10952.4 + 30091.5i −0.0259228 + 0.0712224i
\(651\) 0 0
\(652\) −70596.2 59237.2i −0.166068 0.139348i
\(653\) 44397.4 + 7828.46i 0.104119 + 0.0183590i 0.225465 0.974251i \(-0.427610\pi\)
−0.121346 + 0.992610i \(0.538721\pi\)
\(654\) 0 0
\(655\) −268880. + 225617.i −0.626724 + 0.525884i
\(656\) −49648.0 + 28664.3i −0.115370 + 0.0666091i
\(657\) 0 0
\(658\) 398894. 690905.i 0.921310 1.59576i
\(659\) 274558. 48412.1i 0.632214 0.111476i 0.151647 0.988435i \(-0.451542\pi\)
0.480566 + 0.876958i \(0.340431\pi\)
\(660\) 0 0
\(661\) 314216. 114365.i 0.719160 0.261753i 0.0435909 0.999049i \(-0.486120\pi\)
0.675569 + 0.737297i \(0.263898\pi\)
\(662\) 88418.7 + 242928.i 0.201757 + 0.554322i
\(663\) 0 0
\(664\) 37787.7 + 214305.i 0.0857066 + 0.486066i
\(665\) 120741. + 69709.6i 0.273030 + 0.157634i
\(666\) 0 0
\(667\) −53014.3 91823.5i −0.119163 0.206396i
\(668\) −286364. 341276.i −0.641750 0.764808i
\(669\) 0 0
\(670\) 107500. 609663.i 0.239474 1.35813i
\(671\) 112091. 133585.i 0.248958 0.296697i
\(672\) 0 0
\(673\) 128784. + 46873.7i 0.284337 + 0.103490i 0.480252 0.877131i \(-0.340545\pi\)
−0.195915 + 0.980621i \(0.562768\pi\)
\(674\) 1.45694e6i 3.20718i
\(675\) 0 0
\(676\) 617453. 1.35117
\(677\) 27499.5 75554.3i 0.0599995 0.164847i −0.906071 0.423126i \(-0.860933\pi\)
0.966071 + 0.258278i \(0.0831551\pi\)
\(678\) 0 0
\(679\) 659342. + 553254.i 1.43012 + 1.20001i
\(680\) −451783. 79661.5i −0.977038 0.172278i
\(681\) 0 0
\(682\) −712996. + 598274.i −1.53292 + 1.28627i
\(683\) 19492.1 11253.8i 0.0417846 0.0241244i −0.478962 0.877836i \(-0.658987\pi\)
0.520747 + 0.853711i \(0.325654\pi\)
\(684\) 0 0
\(685\) 10851.3 18795.0i 0.0231260 0.0400554i
\(686\) 1.88311e6 332042.i 4.00153 0.705578i
\(687\) 0 0
\(688\) −251818. + 91654.4i −0.531999 + 0.193632i
\(689\) 68382.4 + 187879.i 0.144047 + 0.395767i
\(690\) 0 0
\(691\) −100053. 567432.i −0.209544 1.18839i −0.890126 0.455714i \(-0.849384\pi\)
0.680582 0.732672i \(-0.261727\pi\)
\(692\) −73413.5 42385.3i −0.153308 0.0885122i
\(693\) 0 0
\(694\) −475069. 822844.i −0.986365 1.70843i
\(695\) 192501. + 229413.i 0.398531 + 0.474951i
\(696\) 0 0
\(697\) 17928.1 101675.i 0.0369036 0.209291i
\(698\) 486125. 579341.i 0.997784 1.18911i
\(699\) 0 0
\(700\) −137102. 49901.0i −0.279800 0.101839i
\(701\) 678935.i 1.38163i 0.723030 + 0.690816i \(0.242749\pi\)
−0.723030 + 0.690816i \(0.757251\pi\)
\(702\) 0 0
\(703\) 91480.3 0.185105
\(704\) −236157. + 648837.i −0.476493 + 1.30915i
\(705\) 0 0
\(706\) −94310.7 79136.1i −0.189213 0.158769i
\(707\) −733215. 129286.i −1.46687 0.258649i
\(708\) 0 0
\(709\) 241064. 202277.i 0.479557 0.402396i −0.370709 0.928749i \(-0.620885\pi\)
0.850266 + 0.526353i \(0.176441\pi\)
\(710\) 1.41002e6 814073.i 2.79710 1.61490i
\(711\) 0 0
\(712\) −250811. + 434418.i −0.494752 + 0.856935i
\(713\) −360623. + 63587.6i −0.709373 + 0.125082i
\(714\) 0 0
\(715\) 241712. 87975.9i 0.472809 0.172088i
\(716\) −178012. 489084.i −0.347235 0.954020i
\(717\) 0 0
\(718\) −18262.8 103573.i −0.0354256 0.200909i
\(719\) 677863. + 391365.i 1.31125 + 0.757049i 0.982303 0.187301i \(-0.0599739\pi\)
0.328944 + 0.944349i \(0.393307\pi\)
\(720\) 0 0
\(721\) 553122. + 958035.i 1.06402 + 1.84294i
\(722\) 545490. + 650089.i 1.04643 + 1.24709i
\(723\) 0 0
\(724\) −126209. + 715765.i −0.240775 + 1.36551i
\(725\) −12560.9 + 14969.6i −0.0238972 + 0.0284795i
\(726\) 0 0
\(727\) 795962. + 289706.i 1.50599 + 0.548137i 0.957605 0.288086i \(-0.0930188\pi\)
0.548390 + 0.836223i \(0.315241\pi\)
\(728\) 648712.i 1.22402i
\(729\) 0 0
\(730\) −355961. −0.667970
\(731\) 165062. 453503.i 0.308896 0.848683i
\(732\) 0 0
\(733\) −420921. 353195.i −0.783417 0.657365i 0.160689 0.987005i \(-0.448628\pi\)
−0.944107 + 0.329640i \(0.893073\pi\)
\(734\) −1.27867e6 225464.i −2.37338 0.418491i
\(735\) 0 0
\(736\) −144202. + 121000.i −0.266205 + 0.223373i
\(737\) −357649. + 206489.i −0.658448 + 0.380155i
\(738\) 0 0
\(739\) 93328.8 161650.i 0.170894 0.295997i −0.767839 0.640643i \(-0.778668\pi\)
0.938733 + 0.344646i \(0.112001\pi\)
\(740\) −1.13522e6 + 200170.i −2.07309 + 0.365541i
\(741\) 0 0
\(742\) −1.33117e6 + 484507.i −2.41783 + 0.880020i
\(743\) 215328. + 591610.i 0.390053 + 1.07166i 0.966977 + 0.254864i \(0.0820307\pi\)
−0.576924 + 0.816798i \(0.695747\pi\)
\(744\) 0 0
\(745\) 70327.6 + 398848.i 0.126711 + 0.718612i
\(746\) −799874. 461807.i −1.43729 0.829819i
\(747\) 0 0
\(748\) 343926. + 595697.i 0.614698 + 1.06469i
\(749\) −1.05123e6 1.25281e6i −1.87385 2.23317i
\(750\) 0 0
\(751\) 51308.4 290985.i 0.0909722 0.515929i −0.904935 0.425550i \(-0.860081\pi\)
0.995907 0.0903797i \(-0.0288081\pi\)
\(752\) 97342.1 116008.i 0.172133 0.205141i
\(753\) 0 0
\(754\) −183512. 66793.0i −0.322791 0.117486i
\(755\) 101602.i 0.178240i
\(756\) 0 0
\(757\) −608815. −1.06241 −0.531207 0.847242i \(-0.678261\pi\)
−0.531207 + 0.847242i \(0.678261\pi\)
\(758\) −578476. + 1.58935e6i −1.00681 + 2.76619i
\(759\) 0 0
\(760\) 102547. + 86047.0i 0.177539 + 0.148973i
\(761\) 316069. + 55731.5i 0.545774 + 0.0962346i 0.439735 0.898127i \(-0.355072\pi\)
0.106038 + 0.994362i \(0.466183\pi\)
\(762\) 0 0
\(763\) 1.02922e6 863622.i 1.76791 1.48346i
\(764\) −323210. + 186605.i −0.553729 + 0.319696i
\(765\) 0 0
\(766\) −728264. + 1.26139e6i −1.24117 + 2.14977i
\(767\) 111542. 19667.8i 0.189603 0.0334322i
\(768\) 0 0
\(769\) −671028. + 244234.i −1.13472 + 0.413004i −0.840003 0.542582i \(-0.817447\pi\)
−0.294715 + 0.955585i \(0.595225\pi\)
\(770\) 623333. + 1.71259e6i 1.05133 + 2.88850i
\(771\) 0 0
\(772\) −137851. 781791.i −0.231299 1.31176i
\(773\) −417603. 241103.i −0.698883 0.403500i 0.108048 0.994146i \(-0.465540\pi\)
−0.806931 + 0.590645i \(0.798873\pi\)
\(774\) 0 0
\(775\) 33744.6 + 58447.4i 0.0561825 + 0.0973109i
\(776\) 531214. + 633076.i 0.882158 + 1.05131i
\(777\) 0 0
\(778\) −163466. + 927061.i −0.270065 + 1.53161i
\(779\) −19365.2 + 23078.6i −0.0319115 + 0.0380306i
\(780\) 0 0
\(781\) −1.02063e6 371477.i −1.67326 0.609018i
\(782\) 420843.i 0.688188i
\(783\) 0 0
\(784\) 635822. 1.03444
\(785\) 214299. 588782.i 0.347761 0.955466i
\(786\) 0 0
\(787\) 308970. + 259257.i 0.498846 + 0.418582i 0.857184 0.515010i \(-0.172212\pi\)
−0.358338 + 0.933592i \(0.616656\pi\)
\(788\) 847993. + 149524.i 1.36565 + 0.240801i
\(789\) 0 0
\(790\) 914578. 767422.i 1.46543 1.22965i
\(791\) 1.26977e6 733102.i 2.02942 1.17169i
\(792\) 0 0
\(793\) 63182.8 109436.i 0.100474 0.174026i
\(794\) −1.11104e6 + 195906.i −1.76233 + 0.310746i
\(795\) 0 0
\(796\) 101534. 36955.4i 0.160245 0.0583245i
\(797\) −409182. 1.12422e6i −0.644169 1.76984i −0.638217 0.769856i \(-0.720328\pi\)
−0.00595131 0.999982i \(-0.501894\pi\)
\(798\) 0 0
\(799\) 47358.3 + 268582.i 0.0741827 + 0.420711i
\(800\) 30045.6 + 17346.8i 0.0469462 + 0.0271044i
\(801\) 0 0
\(802\) 43122.6 + 74690.6i 0.0670435 + 0.116123i
\(803\) 152636. + 181905.i 0.236715 + 0.282106i
\(804\) 0 0
\(805\) −124511. + 706137.i −0.192139 + 1.08968i
\(806\) −433537. + 516669.i −0.667353 + 0.795321i
\(807\) 0 0
\(808\) −671755. 244499.i −1.02894 0.374502i
\(809\) 249260.i 0.380852i 0.981702 + 0.190426i \(0.0609869\pi\)
−0.981702 + 0.190426i \(0.939013\pi\)
\(810\) 0 0
\(811\) −573638. −0.872160 −0.436080 0.899908i \(-0.643634\pi\)
−0.436080 + 0.899908i \(0.643634\pi\)
\(812\) 304320. 836113.i 0.461550 1.26810i
\(813\) 0 0
\(814\) 916066. + 768671.i 1.38254 + 1.16009i
\(815\) 82203.5 + 14494.7i 0.123759 + 0.0218220i
\(816\) 0 0
\(817\) −107879. + 90521.6i −0.161620 + 0.135615i
\(818\) 1.23999e6 715910.i 1.85316 1.06992i
\(819\) 0 0
\(820\) 189813. 328766.i 0.282292 0.488944i
\(821\) 409959. 72286.8i 0.608211 0.107244i 0.138944 0.990300i \(-0.455629\pi\)
0.469267 + 0.883056i \(0.344518\pi\)
\(822\) 0 0
\(823\) 683645. 248827.i 1.00933 0.367364i 0.216152 0.976360i \(-0.430649\pi\)
0.793174 + 0.608995i \(0.208427\pi\)
\(824\) 363285. + 998118.i 0.535049 + 1.47003i
\(825\) 0 0
\(826\) 139352. + 790302.i 0.204245 + 1.15833i
\(827\) 340056. + 196331.i 0.497209 + 0.287064i 0.727560 0.686044i \(-0.240654\pi\)
−0.230351 + 0.973108i \(0.573987\pi\)
\(828\) 0 0
\(829\) −36689.1 63547.4i −0.0533860 0.0924673i 0.838097 0.545521i \(-0.183668\pi\)
−0.891483 + 0.453053i \(0.850335\pi\)
\(830\) −284767. 339372.i −0.413364 0.492628i
\(831\) 0 0
\(832\) −86885.2 + 492750.i −0.125516 + 0.711836i
\(833\) −736031. + 877167.i −1.06073 + 1.26413i
\(834\) 0 0
\(835\) 379183. + 138011.i 0.543846 + 0.197944i
\(836\) 200717.i 0.287192i
\(837\) 0 0
\(838\) 1.01148e6 1.44036
\(839\) 389586. 1.07038e6i 0.553452 1.52060i −0.275515 0.961297i \(-0.588848\pi\)
0.828966 0.559299i \(-0.188930\pi\)
\(840\) 0 0
\(841\) 450517. + 378029.i 0.636971 + 0.534482i
\(842\) 314590. + 55470.7i 0.443732 + 0.0782419i
\(843\) 0 0
\(844\) 380507. 319283.i 0.534167 0.448220i
\(845\) −484336. + 279631.i −0.678318 + 0.391627i
\(846\) 0 0
\(847\) −46710.2 + 80904.5i −0.0651096 + 0.112773i
\(848\) −264817. + 46694.4i −0.368260 + 0.0649341i
\(849\) 0 0
\(850\) 72885.0 26528.0i 0.100879 0.0367169i
\(851\) 160914. + 442108.i 0.222195 + 0.610477i
\(852\) 0 0
\(853\) −195430. 1.10834e6i −0.268592 1.52326i −0.758609 0.651546i \(-0.774121\pi\)
0.490018 0.871712i \(-0.336990\pi\)
\(854\) 775382. + 447667.i 1.06316 + 0.613818i
\(855\) 0 0
\(856\) −785139. 1.35990e6i −1.07152 1.85592i
\(857\) 425954. + 507632.i 0.579964 + 0.691174i 0.973644 0.228073i \(-0.0732426\pi\)
−0.393680 + 0.919248i \(0.628798\pi\)
\(858\) 0 0
\(859\) 96383.6 546618.i 0.130622 0.740795i −0.847187 0.531295i \(-0.821705\pi\)
0.977809 0.209499i \(-0.0671834\pi\)
\(860\) 1.14065e6 1.35938e6i 1.54226 1.83799i
\(861\) 0 0
\(862\) −1.12047e6 407816.i −1.50794 0.548845i
\(863\) 246831.i 0.331419i −0.986175 0.165710i \(-0.947009\pi\)
0.986175 0.165710i \(-0.0529915\pi\)
\(864\) 0 0
\(865\) 76781.6 0.102618
\(866\) −562377. + 1.54512e6i −0.749880 + 2.06028i
\(867\) 0 0
\(868\) −2.35403e6 1.97527e6i −3.12445 2.62172i
\(869\) −784342. 138301.i −1.03864 0.183141i
\(870\) 0 0
\(871\) −229248. + 192362.i −0.302182 + 0.253561i
\(872\) 1.11720e6 645017.i 1.46926 0.848278i
\(873\) 0 0
\(874\) 61401.7 106351.i 0.0803818 0.139225i
\(875\) −1.30678e6 + 230421.i −1.70682 + 0.300958i
\(876\) 0 0
\(877\) −15899.4 + 5786.89i −0.0206719 + 0.00752395i −0.352335 0.935874i \(-0.614612\pi\)
0.331664 + 0.943398i \(0.392390\pi\)
\(878\) −404642. 1.11175e6i −0.524907 1.44217i
\(879\) 0 0
\(880\) 60073.6 + 340695.i 0.0775744 + 0.439946i
\(881\) −3640.78 2102.01i −0.00469076 0.00270821i 0.497653 0.867376i \(-0.334195\pi\)
−0.502344 + 0.864668i \(0.667529\pi\)
\(882\) 0 0
\(883\) −479018. 829683.i −0.614370 1.06412i −0.990495 0.137551i \(-0.956077\pi\)
0.376124 0.926569i \(-0.377256\pi\)
\(884\) 320397. + 381834.i 0.410000 + 0.488618i
\(885\) 0 0
\(886\) 99954.6 566871.i 0.127331 0.722132i
\(887\) 776929. 925908.i 0.987493 1.17685i 0.00325556 0.999995i \(-0.498964\pi\)
0.984237 0.176853i \(-0.0565918\pi\)
\(888\) 0 0
\(889\) −1.76231e6 641427.i −2.22986 0.811603i
\(890\) 1.02122e6i 1.28925i
\(891\) 0 0
\(892\) 1.97429e6 2.48131
\(893\) 27218.7 74782.9i 0.0341323 0.0937776i
\(894\) 0 0
\(895\) 361130. + 303024.i 0.450835 + 0.378295i
\(896\) −2.62771e6 463336.i −3.27312 0.577139i
\(897\) 0 0
\(898\) 1.94145e6 1.62907e6i 2.40755 2.02017i
\(899\) −356440. + 205791.i −0.441029 + 0.254628i
\(900\) 0 0
\(901\) 242135. 419390.i 0.298269 0.516616i
\(902\) −387839. + 68386.5i −0.476692 + 0.0840537i
\(903\) 0 0
\(904\) 1.32290e6 481495.i 1.61878 0.589189i
\(905\) −225156. 618610.i −0.274907 0.755300i
\(906\) 0 0
\(907\) 121229. + 687525.i 0.147365 + 0.835746i 0.965438 + 0.260632i \(0.0839310\pi\)
−0.818074 + 0.575113i \(0.804958\pi\)
\(908\) 52870.5 + 30524.8i 0.0641271 + 0.0370238i
\(909\) 0 0
\(910\) 660334. + 1.14373e6i 0.797408 + 1.38115i
\(911\) 244464. + 291341.i 0.294563 + 0.351047i 0.892946 0.450163i \(-0.148634\pi\)
−0.598383 + 0.801210i \(0.704190\pi\)
\(912\) 0 0
\(913\) −51319.1 + 291045.i −0.0615655 + 0.349155i
\(914\) 916503. 1.09225e6i 1.09709 1.30746i
\(915\) 0 0
\(916\) 1.60718e6 + 584965.i 1.91546 + 0.697170i
\(917\) 1.20219e6i 1.42967i
\(918\) 0 0
\(919\) −1.55045e6 −1.83580 −0.917901 0.396810i \(-0.870117\pi\)
−0.917901 + 0.396810i \(0.870117\pi\)
\(920\) −235470. + 646947.i −0.278201 + 0.764352i
\(921\) 0 0
\(922\) 551224. + 462532.i 0.648435 + 0.544102i
\(923\) −775100. 136671.i −0.909817 0.160425i
\(924\) 0 0
\(925\) 66424.5 55736.8i 0.0776327 0.0651416i
\(926\) −1.59228e6 + 919303.i −1.85694 + 1.07210i
\(927\) 0 0
\(928\) −105789. + 183232.i −0.122841 + 0.212768i
\(929\) 471397. 83119.9i 0.546204 0.0963105i 0.106265 0.994338i \(-0.466111\pi\)
0.439940 + 0.898027i \(0.355000\pi\)
\(930\) 0 0
\(931\) 313982. 114280.i 0.362247 0.131847i
\(932\) 9782.07 + 26876.0i 0.0112616 + 0.0309409i
\(933\) 0 0
\(934\) 410514. + 2.32814e6i 0.470581 + 2.66880i
\(935\) −539557. 311513.i −0.617183 0.356331i
\(936\) 0 0
\(937\) 231373. + 400750.i 0.263532 + 0.456451i 0.967178 0.254100i \(-0.0817792\pi\)
−0.703646 + 0.710551i \(0.748446\pi\)
\(938\) −1.36293e6 1.62428e6i −1.54906 1.84610i
\(939\) 0 0
\(940\) −174136. + 987574.i −0.197076 + 1.11767i
\(941\) −597872. + 712516.i −0.675195 + 0.804666i −0.989481 0.144663i \(-0.953790\pi\)
0.314286 + 0.949328i \(0.398235\pi\)
\(942\) 0 0
\(943\) −145598. 52993.3i −0.163731 0.0595933i
\(944\) 152331.i 0.170940i
\(945\) 0 0
\(946\) −1.84090e6 −2.05706
\(947\) 105465. 289762.i 0.117600 0.323104i −0.866901 0.498480i \(-0.833892\pi\)
0.984502 + 0.175376i \(0.0561141\pi\)
\(948\) 0 0
\(949\) 131816. + 110607.i 0.146365 + 0.122815i
\(950\) −22289.2 3930.18i −0.0246971 0.00435477i
\(951\) 0 0
\(952\) −1.20365e6 + 1.00998e6i −1.32809 + 1.11440i
\(953\) −421824. + 243540.i −0.464457 + 0.268154i −0.713917 0.700231i \(-0.753080\pi\)
0.249459 + 0.968385i \(0.419747\pi\)
\(954\) 0 0
\(955\) 169019. 292749.i 0.185323 0.320988i
\(956\) 2.87150e6 506323.i 3.14191 0.554003i
\(957\) 0 0
\(958\) −1.94102e6 + 706473.i −2.11494 + 0.769777i
\(959\) −25423.3 69849.9i −0.0276436 0.0759502i
\(960\) 0 0
\(961\) 86466.4 + 490375.i 0.0936269 + 0.530984i
\(962\) 750463. + 433280.i 0.810922 + 0.468186i
\(963\) 0 0
\(964\) 137836. + 238739.i 0.148323 + 0.256903i
\(965\) 462188. + 550814.i 0.496322 + 0.591494i
\(966\) 0 0
\(967\) −98732.1 + 559938.i −0.105586 + 0.598807i 0.885399 + 0.464832i \(0.153885\pi\)
−0.990985 + 0.133975i \(0.957226\pi\)
\(968\) −57657.4 + 68713.4i −0.0615325 + 0.0733315i
\(969\) 0 0
\(970\) −1.58099e6 575433.i −1.68030 0.611578i
\(971\) 570591.i 0.605183i −0.953120 0.302591i \(-0.902148\pi\)
0.953120 0.302591i \(-0.0978518\pi\)
\(972\) 0 0
\(973\) 1.02573e6 1.08345
\(974\) −64291.7 + 176640.i −0.0677699 + 0.186196i
\(975\) 0 0
\(976\) 130192. + 109244.i 0.136674 + 0.114683i
\(977\) 1.42905e6 + 251981.i 1.49713 + 0.263984i 0.861400 0.507928i \(-0.169588\pi\)
0.635729 + 0.771912i \(0.280700\pi\)
\(978\) 0 0
\(979\) −521867. + 437899.i −0.544496 + 0.456886i
\(980\) −3.64629e6 + 2.10519e6i −3.79664 + 2.19199i
\(981\) 0 0
\(982\) 1.12271e6 1.94459e6i 1.16425 2.01653i
\(983\) 338266. 59645.3i 0.350067 0.0617262i 0.00414985 0.999991i \(-0.498679\pi\)
0.345917 + 0.938265i \(0.387568\pi\)
\(984\) 0 0
\(985\) −732889. + 266750.i −0.755381 + 0.274936i
\(986\) 161780. + 444487.i 0.166407 + 0.457199i
\(987\) 0 0
\(988\) −25256.9 143239.i −0.0258742 0.146740i
\(989\) −627235. 362134.i −0.641265 0.370235i
\(990\) 0 0
\(991\) 886474. + 1.53542e6i 0.902649 + 1.56343i 0.824042 + 0.566528i \(0.191714\pi\)
0.0786066 + 0.996906i \(0.474953\pi\)
\(992\) 469697. + 559763.i 0.477303 + 0.568828i
\(993\) 0 0
\(994\) 968351. 5.49179e6i 0.980076 5.55829i
\(995\) −62907.9 + 74970.7i −0.0635417 + 0.0757260i
\(996\) 0 0
\(997\) 1.13454e6 + 412938.i 1.14138 + 0.415427i 0.842410 0.538837i \(-0.181136\pi\)
0.298966 + 0.954264i \(0.403358\pi\)
\(998\) 2.04237e6i 2.05057i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.17.2 66
3.2 odd 2 27.5.f.a.23.10 yes 66
27.7 even 9 27.5.f.a.20.10 66
27.20 odd 18 inner 81.5.f.a.62.2 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.20.10 66 27.7 even 9
27.5.f.a.23.10 yes 66 3.2 odd 2
81.5.f.a.17.2 66 1.1 even 1 trivial
81.5.f.a.62.2 66 27.20 odd 18 inner