Properties

Label 81.5.f.a.17.1
Level $81$
Weight $5$
Character 81.17
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 17.1
Character \(\chi\) \(=\) 81.17
Dual form 81.5.f.a.62.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.52261 + 6.93081i) q^{2} +(-29.4158 - 24.6828i) q^{4} +(-21.3946 - 3.77244i) q^{5} +(-45.7826 + 38.4162i) q^{7} +(143.077 - 82.6054i) q^{8} +(80.1161 - 138.765i) q^{10} +(103.631 - 18.2729i) q^{11} +(214.739 - 78.1587i) q^{13} +(-150.764 - 414.219i) q^{14} +(104.907 + 594.959i) q^{16} +(-64.7695 - 37.3947i) q^{17} +(-82.6450 - 143.145i) q^{19} +(536.224 + 639.047i) q^{20} +(-134.774 + 764.340i) q^{22} +(-63.6548 + 75.8608i) q^{23} +(-143.812 - 52.3434i) q^{25} +1685.48i q^{26} +2294.95 q^{28} +(431.252 - 1184.85i) q^{29} +(-1129.02 - 947.356i) q^{31} +(-1784.97 - 314.738i) q^{32} +(422.563 - 354.573i) q^{34} +(1124.42 - 649.185i) q^{35} +(279.857 - 484.726i) q^{37} +(1200.59 - 211.697i) q^{38} +(-3372.69 + 1227.56i) q^{40} +(63.9089 + 175.588i) q^{41} +(-121.465 - 688.861i) q^{43} +(-3499.41 - 2020.38i) q^{44} +(-365.201 - 632.546i) q^{46} +(-231.919 - 276.390i) q^{47} +(203.316 - 1153.06i) q^{49} +(725.564 - 864.694i) q^{50} +(-8245.91 - 3001.27i) q^{52} +176.131i q^{53} -2286.07 q^{55} +(-3377.05 + 9278.36i) q^{56} +(7124.12 + 5977.85i) q^{58} +(-4044.66 - 713.183i) q^{59} +(3799.73 - 3188.35i) q^{61} +(9414.01 - 5435.18i) q^{62} +(1851.07 - 3206.15i) q^{64} +(-4889.10 + 862.080i) q^{65} +(5460.16 - 1987.33i) q^{67} +(982.242 + 2698.69i) q^{68} +(1662.90 + 9430.78i) q^{70} +(3882.84 + 2241.76i) q^{71} +(1087.02 + 1882.78i) q^{73} +(2653.58 + 3162.41i) q^{74} +(-1102.16 + 6250.65i) q^{76} +(-4042.51 + 4817.68i) q^{77} +(-9033.76 - 3288.02i) q^{79} -13124.6i q^{80} -1378.18 q^{82} +(1749.95 - 4807.94i) q^{83} +(1244.64 + 1044.38i) q^{85} +(5080.77 + 895.877i) q^{86} +(13317.7 - 11174.9i) q^{88} +(-7759.36 + 4479.87i) q^{89} +(-6828.77 + 11827.8i) q^{91} +(3744.92 - 660.330i) q^{92} +(2500.64 - 910.160i) q^{94} +(1228.15 + 3374.30i) q^{95} +(-1725.07 - 9783.37i) q^{97} +(7478.77 + 4317.87i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.52261 + 6.93081i −0.630652 + 1.73270i 0.0486226 + 0.998817i \(0.484517\pi\)
−0.679274 + 0.733884i \(0.737705\pi\)
\(3\) 0 0
\(4\) −29.4158 24.6828i −1.83849 1.54268i
\(5\) −21.3946 3.77244i −0.855782 0.150897i −0.271490 0.962441i \(-0.587516\pi\)
−0.584292 + 0.811544i \(0.698628\pi\)
\(6\) 0 0
\(7\) −45.7826 + 38.4162i −0.934339 + 0.784004i −0.976591 0.215103i \(-0.930991\pi\)
0.0422522 + 0.999107i \(0.486547\pi\)
\(8\) 143.077 82.6054i 2.23558 1.29071i
\(9\) 0 0
\(10\) 80.1161 138.765i 0.801161 1.38765i
\(11\) 103.631 18.2729i 0.856452 0.151016i 0.271854 0.962339i \(-0.412363\pi\)
0.584598 + 0.811323i \(0.301252\pi\)
\(12\) 0 0
\(13\) 214.739 78.1587i 1.27065 0.462478i 0.383319 0.923616i \(-0.374781\pi\)
0.887328 + 0.461139i \(0.152559\pi\)
\(14\) −150.764 414.219i −0.769202 2.11336i
\(15\) 0 0
\(16\) 104.907 + 594.959i 0.409794 + 2.32406i
\(17\) −64.7695 37.3947i −0.224116 0.129393i 0.383739 0.923442i \(-0.374636\pi\)
−0.607855 + 0.794048i \(0.707970\pi\)
\(18\) 0 0
\(19\) −82.6450 143.145i −0.228934 0.396524i 0.728559 0.684983i \(-0.240191\pi\)
−0.957492 + 0.288459i \(0.906857\pi\)
\(20\) 536.224 + 639.047i 1.34056 + 1.59762i
\(21\) 0 0
\(22\) −134.774 + 764.340i −0.278458 + 1.57921i
\(23\) −63.6548 + 75.8608i −0.120330 + 0.143404i −0.822847 0.568264i \(-0.807615\pi\)
0.702516 + 0.711668i \(0.252060\pi\)
\(24\) 0 0
\(25\) −143.812 52.3434i −0.230100 0.0837495i
\(26\) 1685.48i 2.49331i
\(27\) 0 0
\(28\) 2294.95 2.92723
\(29\) 431.252 1184.85i 0.512785 1.40886i −0.365538 0.930796i \(-0.619115\pi\)
0.878323 0.478068i \(-0.158663\pi\)
\(30\) 0 0
\(31\) −1129.02 947.356i −1.17483 0.985803i −0.999999 0.00120490i \(-0.999616\pi\)
−0.174835 0.984598i \(-0.555939\pi\)
\(32\) −1784.97 314.738i −1.74313 0.307362i
\(33\) 0 0
\(34\) 422.563 354.573i 0.365539 0.306724i
\(35\) 1124.42 649.185i 0.917895 0.529947i
\(36\) 0 0
\(37\) 279.857 484.726i 0.204424 0.354073i −0.745525 0.666478i \(-0.767801\pi\)
0.949949 + 0.312405i \(0.101134\pi\)
\(38\) 1200.59 211.697i 0.831436 0.146605i
\(39\) 0 0
\(40\) −3372.69 + 1227.56i −2.10793 + 0.767224i
\(41\) 63.9089 + 175.588i 0.0380184 + 0.104455i 0.957249 0.289264i \(-0.0934106\pi\)
−0.919231 + 0.393719i \(0.871188\pi\)
\(42\) 0 0
\(43\) −121.465 688.861i −0.0656921 0.372559i −0.999876 0.0157659i \(-0.994981\pi\)
0.934184 0.356793i \(-0.116130\pi\)
\(44\) −3499.41 2020.38i −1.80755 1.04359i
\(45\) 0 0
\(46\) −365.201 632.546i −0.172590 0.298935i
\(47\) −231.919 276.390i −0.104988 0.125120i 0.710992 0.703200i \(-0.248246\pi\)
−0.815980 + 0.578081i \(0.803802\pi\)
\(48\) 0 0
\(49\) 203.316 1153.06i 0.0846797 0.480243i
\(50\) 725.564 864.694i 0.290226 0.345878i
\(51\) 0 0
\(52\) −8245.91 3001.27i −3.04952 1.10994i
\(53\) 176.131i 0.0627023i 0.999508 + 0.0313512i \(0.00998102\pi\)
−0.999508 + 0.0313512i \(0.990019\pi\)
\(54\) 0 0
\(55\) −2286.07 −0.755724
\(56\) −3377.05 + 9278.36i −1.07686 + 2.95866i
\(57\) 0 0
\(58\) 7124.12 + 5977.85i 2.11775 + 1.77701i
\(59\) −4044.66 713.183i −1.16193 0.204879i −0.440749 0.897630i \(-0.645287\pi\)
−0.721177 + 0.692751i \(0.756398\pi\)
\(60\) 0 0
\(61\) 3799.73 3188.35i 1.02116 0.856854i 0.0313863 0.999507i \(-0.490008\pi\)
0.989773 + 0.142653i \(0.0455634\pi\)
\(62\) 9414.01 5435.18i 2.44901 1.41394i
\(63\) 0 0
\(64\) 1851.07 3206.15i 0.451921 0.782751i
\(65\) −4889.10 + 862.080i −1.15718 + 0.204043i
\(66\) 0 0
\(67\) 5460.16 1987.33i 1.21634 0.442712i 0.347442 0.937701i \(-0.387050\pi\)
0.868899 + 0.494989i \(0.164828\pi\)
\(68\) 982.242 + 2698.69i 0.212423 + 0.583626i
\(69\) 0 0
\(70\) 1662.90 + 9430.78i 0.339368 + 1.92465i
\(71\) 3882.84 + 2241.76i 0.770251 + 0.444705i 0.832964 0.553327i \(-0.186642\pi\)
−0.0627128 + 0.998032i \(0.519975\pi\)
\(72\) 0 0
\(73\) 1087.02 + 1882.78i 0.203982 + 0.353308i 0.949808 0.312833i \(-0.101278\pi\)
−0.745826 + 0.666141i \(0.767945\pi\)
\(74\) 2653.58 + 3162.41i 0.484583 + 0.577503i
\(75\) 0 0
\(76\) −1102.16 + 6250.65i −0.190817 + 1.08218i
\(77\) −4042.51 + 4817.68i −0.681820 + 0.812561i
\(78\) 0 0
\(79\) −9033.76 3288.02i −1.44749 0.526842i −0.505598 0.862769i \(-0.668728\pi\)
−0.941888 + 0.335927i \(0.890950\pi\)
\(80\) 13124.6i 2.05072i
\(81\) 0 0
\(82\) −1378.18 −0.204965
\(83\) 1749.95 4807.94i 0.254020 0.697915i −0.745487 0.666520i \(-0.767783\pi\)
0.999507 0.0313946i \(-0.00999486\pi\)
\(84\) 0 0
\(85\) 1244.64 + 1044.38i 0.172269 + 0.144551i
\(86\) 5080.77 + 895.877i 0.686962 + 0.121130i
\(87\) 0 0
\(88\) 13317.7 11174.9i 1.71975 1.44304i
\(89\) −7759.36 + 4479.87i −0.979594 + 0.565569i −0.902147 0.431428i \(-0.858010\pi\)
−0.0774461 + 0.996997i \(0.524677\pi\)
\(90\) 0 0
\(91\) −6828.77 + 11827.8i −0.824631 + 1.42830i
\(92\) 3744.92 660.330i 0.442452 0.0780163i
\(93\) 0 0
\(94\) 2500.64 910.160i 0.283006 0.103006i
\(95\) 1228.15 + 3374.30i 0.136083 + 0.373884i
\(96\) 0 0
\(97\) −1725.07 9783.37i −0.183343 1.03979i −0.928066 0.372415i \(-0.878530\pi\)
0.744723 0.667373i \(-0.232581\pi\)
\(98\) 7478.77 + 4317.87i 0.778714 + 0.449591i
\(99\) 0 0
\(100\) 2938.38 + 5089.42i 0.293838 + 0.508942i
\(101\) −4925.66 5870.18i −0.482861 0.575451i 0.468526 0.883450i \(-0.344785\pi\)
−0.951387 + 0.307999i \(0.900341\pi\)
\(102\) 0 0
\(103\) −1736.36 + 9847.40i −0.163669 + 0.928212i 0.786757 + 0.617262i \(0.211758\pi\)
−0.950426 + 0.310950i \(0.899353\pi\)
\(104\) 24267.9 28921.3i 2.24370 2.67394i
\(105\) 0 0
\(106\) −1220.73 444.309i −0.108644 0.0395433i
\(107\) 10041.9i 0.877097i −0.898707 0.438549i \(-0.855493\pi\)
0.898707 0.438549i \(-0.144507\pi\)
\(108\) 0 0
\(109\) 4648.23 0.391232 0.195616 0.980681i \(-0.437329\pi\)
0.195616 + 0.980681i \(0.437329\pi\)
\(110\) 5766.85 15844.3i 0.476599 1.30944i
\(111\) 0 0
\(112\) −27659.0 23208.6i −2.20496 1.85018i
\(113\) −10131.3 1786.41i −0.793426 0.139902i −0.237778 0.971320i \(-0.576419\pi\)
−0.555649 + 0.831417i \(0.687530\pi\)
\(114\) 0 0
\(115\) 1648.05 1382.87i 0.124616 0.104565i
\(116\) −41931.2 + 24209.0i −3.11617 + 1.79912i
\(117\) 0 0
\(118\) 15146.0 26233.7i 1.08776 1.88406i
\(119\) 4401.88 776.170i 0.310845 0.0548104i
\(120\) 0 0
\(121\) −3352.61 + 1220.25i −0.228988 + 0.0833447i
\(122\) 12512.6 + 34378.2i 0.840677 + 2.30974i
\(123\) 0 0
\(124\) 9827.50 + 55734.5i 0.639145 + 3.62477i
\(125\) 14638.1 + 8451.32i 0.936840 + 0.540885i
\(126\) 0 0
\(127\) 1339.59 + 2320.23i 0.0830546 + 0.143855i 0.904561 0.426345i \(-0.140199\pi\)
−0.821506 + 0.570200i \(0.806866\pi\)
\(128\) −1089.24 1298.10i −0.0664818 0.0792299i
\(129\) 0 0
\(130\) 6358.37 36060.1i 0.376235 2.13373i
\(131\) −16301.2 + 19427.0i −0.949898 + 1.13204i 0.0412321 + 0.999150i \(0.486872\pi\)
−0.991130 + 0.132895i \(0.957573\pi\)
\(132\) 0 0
\(133\) 9282.80 + 3378.66i 0.524778 + 0.191004i
\(134\) 42856.5i 2.38675i
\(135\) 0 0
\(136\) −12356.0 −0.668037
\(137\) −991.834 + 2725.04i −0.0528442 + 0.145188i −0.963306 0.268404i \(-0.913504\pi\)
0.910462 + 0.413592i \(0.135726\pi\)
\(138\) 0 0
\(139\) 9156.36 + 7683.10i 0.473907 + 0.397655i 0.848217 0.529648i \(-0.177676\pi\)
−0.374310 + 0.927303i \(0.622121\pi\)
\(140\) −49099.5 8657.56i −2.50507 0.441712i
\(141\) 0 0
\(142\) −25332.1 + 21256.1i −1.25630 + 1.05416i
\(143\) 20825.4 12023.6i 1.01841 0.587978i
\(144\) 0 0
\(145\) −13696.2 + 23722.6i −0.651426 + 1.12830i
\(146\) −15791.3 + 2784.43i −0.740819 + 0.130626i
\(147\) 0 0
\(148\) −20196.6 + 7350.97i −0.922052 + 0.335599i
\(149\) −13624.2 37432.2i −0.613676 1.68606i −0.721955 0.691940i \(-0.756756\pi\)
0.108279 0.994121i \(-0.465466\pi\)
\(150\) 0 0
\(151\) −2099.22 11905.3i −0.0920669 0.522137i −0.995607 0.0936332i \(-0.970152\pi\)
0.903540 0.428504i \(-0.140959\pi\)
\(152\) −23649.2 13653.9i −1.02360 0.590974i
\(153\) 0 0
\(154\) −23192.7 40171.0i −0.977936 1.69383i
\(155\) 20580.9 + 24527.4i 0.856647 + 1.02091i
\(156\) 0 0
\(157\) 5503.73 31213.2i 0.223284 1.26631i −0.642654 0.766156i \(-0.722167\pi\)
0.865938 0.500151i \(-0.166722\pi\)
\(158\) 45577.3 54316.9i 1.82572 2.17581i
\(159\) 0 0
\(160\) 37001.3 + 13467.4i 1.44536 + 0.526069i
\(161\) 5918.48i 0.228328i
\(162\) 0 0
\(163\) 6984.52 0.262882 0.131441 0.991324i \(-0.458040\pi\)
0.131441 + 0.991324i \(0.458040\pi\)
\(164\) 2454.08 6742.52i 0.0912432 0.250689i
\(165\) 0 0
\(166\) 28908.5 + 24257.1i 1.04908 + 0.880283i
\(167\) 9614.67 + 1695.33i 0.344748 + 0.0607883i 0.343341 0.939211i \(-0.388441\pi\)
0.00140631 + 0.999999i \(0.499552\pi\)
\(168\) 0 0
\(169\) 18125.2 15208.8i 0.634613 0.532504i
\(170\) −10378.2 + 5991.83i −0.359106 + 0.207330i
\(171\) 0 0
\(172\) −13430.0 + 23261.5i −0.453963 + 0.786286i
\(173\) 43917.3 7743.80i 1.46738 0.258739i 0.617859 0.786289i \(-0.288000\pi\)
0.849524 + 0.527550i \(0.176889\pi\)
\(174\) 0 0
\(175\) 8594.94 3128.30i 0.280651 0.102149i
\(176\) 21743.2 + 59739.1i 0.701938 + 1.92856i
\(177\) 0 0
\(178\) −11475.3 65079.6i −0.362179 2.05402i
\(179\) −1176.35 679.166i −0.0367139 0.0211968i 0.481531 0.876429i \(-0.340081\pi\)
−0.518245 + 0.855232i \(0.673414\pi\)
\(180\) 0 0
\(181\) −7938.82 13750.4i −0.242325 0.419720i 0.719051 0.694957i \(-0.244577\pi\)
−0.961376 + 0.275238i \(0.911243\pi\)
\(182\) −64749.7 77165.7i −1.95477 2.32960i
\(183\) 0 0
\(184\) −2841.01 + 16112.2i −0.0839145 + 0.475903i
\(185\) −7816.01 + 9314.76i −0.228371 + 0.272162i
\(186\) 0 0
\(187\) −7395.42 2691.71i −0.211485 0.0769742i
\(188\) 13854.6i 0.391994i
\(189\) 0 0
\(190\) −26484.8 −0.733650
\(191\) −1671.83 + 4593.33i −0.0458275 + 0.125910i −0.960495 0.278297i \(-0.910230\pi\)
0.914668 + 0.404207i \(0.132452\pi\)
\(192\) 0 0
\(193\) −47354.8 39735.4i −1.27130 1.06675i −0.994381 0.105858i \(-0.966241\pi\)
−0.276923 0.960892i \(-0.589315\pi\)
\(194\) 72158.3 + 12723.5i 1.91727 + 0.338066i
\(195\) 0 0
\(196\) −34441.5 + 28899.9i −0.896541 + 0.752287i
\(197\) 53245.4 30741.2i 1.37199 0.792116i 0.380808 0.924654i \(-0.375646\pi\)
0.991178 + 0.132538i \(0.0423126\pi\)
\(198\) 0 0
\(199\) −18250.2 + 31610.2i −0.460851 + 0.798217i −0.999004 0.0446304i \(-0.985789\pi\)
0.538153 + 0.842847i \(0.319122\pi\)
\(200\) −24900.1 + 4390.55i −0.622502 + 0.109764i
\(201\) 0 0
\(202\) 53110.6 19330.7i 1.30160 0.473745i
\(203\) 25773.8 + 70812.8i 0.625440 + 1.71838i
\(204\) 0 0
\(205\) −704.906 3997.72i −0.0167735 0.0951273i
\(206\) −63870.3 36875.5i −1.50510 0.868968i
\(207\) 0 0
\(208\) 69028.9 + 119562.i 1.59553 + 2.76354i
\(209\) −11180.2 13324.1i −0.255952 0.305032i
\(210\) 0 0
\(211\) −13914.8 + 78914.7i −0.312544 + 1.77253i 0.273126 + 0.961978i \(0.411943\pi\)
−0.585670 + 0.810549i \(0.699169\pi\)
\(212\) 4347.40 5181.03i 0.0967293 0.115278i
\(213\) 0 0
\(214\) 69598.4 + 25331.7i 1.51975 + 0.553143i
\(215\) 15196.1i 0.328742i
\(216\) 0 0
\(217\) 88083.1 1.87057
\(218\) −11725.6 + 32215.9i −0.246731 + 0.677888i
\(219\) 0 0
\(220\) 67246.5 + 56426.5i 1.38939 + 1.16584i
\(221\) −16831.3 2967.81i −0.344614 0.0607647i
\(222\) 0 0
\(223\) −1913.36 + 1605.50i −0.0384758 + 0.0322850i −0.661823 0.749660i \(-0.730217\pi\)
0.623347 + 0.781945i \(0.285772\pi\)
\(224\) 93811.6 54162.1i 1.86965 1.07944i
\(225\) 0 0
\(226\) 37938.5 65711.4i 0.742785 1.28654i
\(227\) −59661.7 + 10520.0i −1.15783 + 0.204156i −0.719390 0.694606i \(-0.755579\pi\)
−0.438436 + 0.898762i \(0.644468\pi\)
\(228\) 0 0
\(229\) −16816.2 + 6120.60i −0.320669 + 0.116714i −0.497339 0.867556i \(-0.665690\pi\)
0.176670 + 0.984270i \(0.443467\pi\)
\(230\) 5427.07 + 14910.7i 0.102591 + 0.281867i
\(231\) 0 0
\(232\) −36173.3 205149.i −0.672066 3.81148i
\(233\) −56263.0 32483.4i −1.03636 0.598343i −0.117560 0.993066i \(-0.537507\pi\)
−0.918800 + 0.394723i \(0.870841\pi\)
\(234\) 0 0
\(235\) 3919.13 + 6788.14i 0.0709666 + 0.122918i
\(236\) 101374. + 120813.i 1.82013 + 2.16914i
\(237\) 0 0
\(238\) −5724.72 + 32466.5i −0.101065 + 0.573168i
\(239\) 49542.8 59042.8i 0.867330 1.03364i −0.131772 0.991280i \(-0.542067\pi\)
0.999102 0.0423636i \(-0.0134888\pi\)
\(240\) 0 0
\(241\) 64608.0 + 23515.4i 1.11238 + 0.404872i 0.831865 0.554978i \(-0.187273\pi\)
0.280512 + 0.959850i \(0.409496\pi\)
\(242\) 26314.5i 0.449329i
\(243\) 0 0
\(244\) −190470. −3.19924
\(245\) −8699.71 + 23902.3i −0.144935 + 0.398205i
\(246\) 0 0
\(247\) −28935.2 24279.5i −0.474277 0.397966i
\(248\) −239793. 42281.9i −3.89882 0.687466i
\(249\) 0 0
\(250\) −95500.7 + 80134.6i −1.52801 + 1.28215i
\(251\) −18118.3 + 10460.6i −0.287588 + 0.166039i −0.636854 0.770985i \(-0.719764\pi\)
0.349266 + 0.937024i \(0.386431\pi\)
\(252\) 0 0
\(253\) −5210.40 + 9024.67i −0.0814010 + 0.140991i
\(254\) −19460.3 + 3431.38i −0.301636 + 0.0531866i
\(255\) 0 0
\(256\) 67406.6 24534.0i 1.02854 0.374359i
\(257\) −16391.4 45035.0i −0.248170 0.681842i −0.999753 0.0222038i \(-0.992932\pi\)
0.751583 0.659638i \(-0.229290\pi\)
\(258\) 0 0
\(259\) 5808.75 + 32943.1i 0.0865931 + 0.491094i
\(260\) 165095. + 95317.9i 2.44224 + 1.41003i
\(261\) 0 0
\(262\) −93523.3 161987.i −1.36244 2.35982i
\(263\) 70364.7 + 83857.4i 1.01729 + 1.21236i 0.977016 + 0.213166i \(0.0683776\pi\)
0.0402708 + 0.999189i \(0.487178\pi\)
\(264\) 0 0
\(265\) 664.442 3768.24i 0.00946162 0.0536595i
\(266\) −46833.7 + 55814.3i −0.661905 + 0.788827i
\(267\) 0 0
\(268\) −209668. 76312.9i −2.91919 1.06250i
\(269\) 40040.7i 0.553347i −0.960964 0.276673i \(-0.910768\pi\)
0.960964 0.276673i \(-0.0892320\pi\)
\(270\) 0 0
\(271\) 76589.9 1.04288 0.521438 0.853289i \(-0.325396\pi\)
0.521438 + 0.853289i \(0.325396\pi\)
\(272\) 15453.5 42458.1i 0.208876 0.573883i
\(273\) 0 0
\(274\) −16384.7 13748.4i −0.218242 0.183127i
\(275\) −15859.8 2796.52i −0.209717 0.0369788i
\(276\) 0 0
\(277\) −62598.7 + 52526.6i −0.815842 + 0.684573i −0.951994 0.306115i \(-0.900971\pi\)
0.136153 + 0.990688i \(0.456526\pi\)
\(278\) −76347.9 + 44079.5i −0.987888 + 0.570357i
\(279\) 0 0
\(280\) 107252. 185767.i 1.36802 2.36947i
\(281\) 24750.1 4364.12i 0.313448 0.0552693i −0.0147114 0.999892i \(-0.504683\pi\)
0.328159 + 0.944623i \(0.393572\pi\)
\(282\) 0 0
\(283\) −134029. + 48782.5i −1.67350 + 0.609103i −0.992396 0.123087i \(-0.960721\pi\)
−0.681101 + 0.732190i \(0.738498\pi\)
\(284\) −58884.0 161782.i −0.730063 2.00583i
\(285\) 0 0
\(286\) 30798.6 + 174668.i 0.376529 + 2.13540i
\(287\) −9671.34 5583.75i −0.117415 0.0677895i
\(288\) 0 0
\(289\) −38963.8 67487.2i −0.466515 0.808027i
\(290\) −129866. 154769.i −1.54419 1.84029i
\(291\) 0 0
\(292\) 14496.6 82214.2i 0.170020 0.964231i
\(293\) −40927.6 + 48775.7i −0.476740 + 0.568156i −0.949794 0.312877i \(-0.898707\pi\)
0.473054 + 0.881034i \(0.343152\pi\)
\(294\) 0 0
\(295\) 83843.3 + 30516.5i 0.963440 + 0.350663i
\(296\) 92470.8i 1.05541i
\(297\) 0 0
\(298\) 293804. 3.30846
\(299\) −7740.00 + 21265.5i −0.0865763 + 0.237866i
\(300\) 0 0
\(301\) 32024.4 + 26871.6i 0.353466 + 0.296593i
\(302\) 87808.5 + 15483.0i 0.962770 + 0.169762i
\(303\) 0 0
\(304\) 76495.5 64187.4i 0.827730 0.694548i
\(305\) −93321.4 + 53879.2i −1.00319 + 0.579190i
\(306\) 0 0
\(307\) −52523.8 + 90973.9i −0.557288 + 0.965250i 0.440434 + 0.897785i \(0.354825\pi\)
−0.997722 + 0.0674654i \(0.978509\pi\)
\(308\) 237828. 41935.4i 2.50704 0.442058i
\(309\) 0 0
\(310\) −221912. + 80769.5i −2.30918 + 0.840473i
\(311\) −25478.6 70001.8i −0.263423 0.723750i −0.998931 0.0462329i \(-0.985278\pi\)
0.735507 0.677517i \(-0.236944\pi\)
\(312\) 0 0
\(313\) 1372.40 + 7783.24i 0.0140085 + 0.0794460i 0.991011 0.133784i \(-0.0427128\pi\)
−0.977002 + 0.213230i \(0.931602\pi\)
\(314\) 202449. + 116884.i 2.05332 + 1.18548i
\(315\) 0 0
\(316\) 184578. + 319698.i 1.84844 + 3.20159i
\(317\) 102731. + 122430.i 1.02231 + 1.21834i 0.975628 + 0.219429i \(0.0704196\pi\)
0.0466797 + 0.998910i \(0.485136\pi\)
\(318\) 0 0
\(319\) 23040.2 130668.i 0.226415 1.28406i
\(320\) −51697.8 + 61611.0i −0.504861 + 0.601670i
\(321\) 0 0
\(322\) 41019.9 + 14930.0i 0.395624 + 0.143995i
\(323\) 12361.9i 0.118490i
\(324\) 0 0
\(325\) −34973.3 −0.331108
\(326\) −17619.2 + 48408.3i −0.165787 + 0.455496i
\(327\) 0 0
\(328\) 23648.4 + 19843.4i 0.219814 + 0.184445i
\(329\) 21235.7 + 3744.42i 0.196189 + 0.0345934i
\(330\) 0 0
\(331\) 121009. 101539.i 1.10449 0.926777i 0.106771 0.994284i \(-0.465949\pi\)
0.997719 + 0.0675065i \(0.0215043\pi\)
\(332\) −170149. + 98235.8i −1.54367 + 0.891238i
\(333\) 0 0
\(334\) −36004.0 + 62360.8i −0.322744 + 0.559008i
\(335\) −124315. + 21920.0i −1.10773 + 0.195322i
\(336\) 0 0
\(337\) −38630.3 + 14060.3i −0.340148 + 0.123804i −0.506446 0.862272i \(-0.669041\pi\)
0.166298 + 0.986076i \(0.446819\pi\)
\(338\) 59686.8 + 163988.i 0.522450 + 1.43542i
\(339\) 0 0
\(340\) −10834.0 61442.6i −0.0937197 0.531511i
\(341\) −134312. 77544.9i −1.15506 0.666875i
\(342\) 0 0
\(343\) −36759.9 63670.1i −0.312454 0.541187i
\(344\) −74282.4 88526.4i −0.627725 0.748093i
\(345\) 0 0
\(346\) −57115.3 + 323917.i −0.477090 + 2.70571i
\(347\) 34115.4 40657.1i 0.283329 0.337658i −0.605544 0.795812i \(-0.707045\pi\)
0.888873 + 0.458153i \(0.151489\pi\)
\(348\) 0 0
\(349\) −44594.5 16231.1i −0.366126 0.133259i 0.152404 0.988318i \(-0.451298\pi\)
−0.518530 + 0.855059i \(0.673521\pi\)
\(350\) 67461.4i 0.550705i
\(351\) 0 0
\(352\) −190729. −1.53933
\(353\) 22124.4 60786.2i 0.177550 0.487816i −0.818711 0.574206i \(-0.805311\pi\)
0.996261 + 0.0863900i \(0.0275331\pi\)
\(354\) 0 0
\(355\) −74614.7 62609.1i −0.592063 0.496799i
\(356\) 338824. + 59743.8i 2.67346 + 0.471403i
\(357\) 0 0
\(358\) 7674.63 6439.78i 0.0598814 0.0502464i
\(359\) −29839.9 + 17228.1i −0.231530 + 0.133674i −0.611278 0.791416i \(-0.709344\pi\)
0.379747 + 0.925090i \(0.376011\pi\)
\(360\) 0 0
\(361\) 51500.1 89200.8i 0.395179 0.684470i
\(362\) 115328. 20335.5i 0.880072 0.155180i
\(363\) 0 0
\(364\) 492816. 179371.i 3.71948 1.35378i
\(365\) −16153.7 44381.9i −0.121251 0.333135i
\(366\) 0 0
\(367\) 15268.7 + 86593.3i 0.113363 + 0.642913i 0.987548 + 0.157319i \(0.0502852\pi\)
−0.874185 + 0.485593i \(0.838604\pi\)
\(368\) −51811.9 29913.6i −0.382590 0.220889i
\(369\) 0 0
\(370\) −44842.1 77668.7i −0.327553 0.567339i
\(371\) −6766.27 8063.73i −0.0491589 0.0585852i
\(372\) 0 0
\(373\) 30169.5 171099.i 0.216845 1.22979i −0.660831 0.750535i \(-0.729796\pi\)
0.877676 0.479255i \(-0.159093\pi\)
\(374\) 37311.5 44466.1i 0.266747 0.317896i
\(375\) 0 0
\(376\) −56013.5 20387.2i −0.396202 0.144206i
\(377\) 288141.i 2.02732i
\(378\) 0 0
\(379\) 169412. 1.17941 0.589707 0.807617i \(-0.299243\pi\)
0.589707 + 0.807617i \(0.299243\pi\)
\(380\) 47160.3 129572.i 0.326595 0.897313i
\(381\) 0 0
\(382\) −27618.1 23174.3i −0.189263 0.158811i
\(383\) −1781.76 314.173i −0.0121465 0.00214176i 0.167572 0.985860i \(-0.446407\pi\)
−0.179718 + 0.983718i \(0.557519\pi\)
\(384\) 0 0
\(385\) 104662. 87821.9i 0.706103 0.592491i
\(386\) 394856. 227970.i 2.65011 1.53004i
\(387\) 0 0
\(388\) −190737. + 330365.i −1.26698 + 2.19448i
\(389\) −178130. + 31409.1i −1.17717 + 0.207566i −0.727805 0.685784i \(-0.759460\pi\)
−0.449362 + 0.893350i \(0.648348\pi\)
\(390\) 0 0
\(391\) 6959.68 2533.12i 0.0455235 0.0165692i
\(392\) −66159.4 181772.i −0.430546 1.18292i
\(393\) 0 0
\(394\) 78744.4 + 446582.i 0.507256 + 2.87679i
\(395\) 180869. + 104425.i 1.15923 + 0.669284i
\(396\) 0 0
\(397\) −148101. 256519.i −0.939675 1.62756i −0.766078 0.642747i \(-0.777794\pi\)
−0.173597 0.984817i \(-0.555539\pi\)
\(398\) −173046. 206228.i −1.09244 1.30191i
\(399\) 0 0
\(400\) 16055.2 91053.7i 0.100345 0.569085i
\(401\) −44510.5 + 53045.5i −0.276805 + 0.329883i −0.886479 0.462769i \(-0.846856\pi\)
0.609674 + 0.792652i \(0.291300\pi\)
\(402\) 0 0
\(403\) −316488. 115192.i −1.94871 0.709273i
\(404\) 294255.i 1.80286i
\(405\) 0 0
\(406\) −555807. −3.37188
\(407\) 20144.4 55346.3i 0.121609 0.334118i
\(408\) 0 0
\(409\) 119306. + 100110.i 0.713208 + 0.598452i 0.925497 0.378754i \(-0.123648\pi\)
−0.212289 + 0.977207i \(0.568092\pi\)
\(410\) 29485.6 + 5199.11i 0.175405 + 0.0309287i
\(411\) 0 0
\(412\) 294138. 246811.i 1.73283 1.45402i
\(413\) 212573. 122729.i 1.24626 0.719528i
\(414\) 0 0
\(415\) −55576.9 + 96262.1i −0.322700 + 0.558932i
\(416\) −407903. + 71924.2i −2.35706 + 0.415612i
\(417\) 0 0
\(418\) 120550. 43876.6i 0.689946 0.251120i
\(419\) 71878.9 + 197486.i 0.409424 + 1.12488i 0.957494 + 0.288452i \(0.0931404\pi\)
−0.548070 + 0.836432i \(0.684637\pi\)
\(420\) 0 0
\(421\) −38834.3 220240.i −0.219104 1.24260i −0.873640 0.486572i \(-0.838247\pi\)
0.654536 0.756031i \(-0.272864\pi\)
\(422\) −511841. 295512.i −2.87416 1.65939i
\(423\) 0 0
\(424\) 14549.4 + 25200.2i 0.0809305 + 0.140176i
\(425\) 7357.29 + 8768.07i 0.0407324 + 0.0485430i
\(426\) 0 0
\(427\) −51477.3 + 291942.i −0.282332 + 1.60118i
\(428\) −247862. + 295390.i −1.35308 + 1.61253i
\(429\) 0 0
\(430\) −105321. 38333.8i −0.569611 0.207322i
\(431\) 317947.i 1.71159i 0.517312 + 0.855797i \(0.326933\pi\)
−0.517312 + 0.855797i \(0.673067\pi\)
\(432\) 0 0
\(433\) 95041.9 0.506920 0.253460 0.967346i \(-0.418431\pi\)
0.253460 + 0.967346i \(0.418431\pi\)
\(434\) −222199. + 610487.i −1.17968 + 3.24113i
\(435\) 0 0
\(436\) −136731. 114731.i −0.719275 0.603544i
\(437\) 16119.9 + 2842.37i 0.0844110 + 0.0148839i
\(438\) 0 0
\(439\) −188629. + 158279.i −0.978770 + 0.821285i −0.983903 0.178702i \(-0.942810\pi\)
0.00513380 + 0.999987i \(0.498366\pi\)
\(440\) −327083. + 188842.i −1.68948 + 0.975421i
\(441\) 0 0
\(442\) 63028.0 109168.i 0.322618 0.558791i
\(443\) 275106. 48508.6i 1.40182 0.247179i 0.578930 0.815377i \(-0.303471\pi\)
0.822891 + 0.568199i \(0.192359\pi\)
\(444\) 0 0
\(445\) 182908. 66573.1i 0.923661 0.336185i
\(446\) −6300.75 17311.2i −0.0316755 0.0870276i
\(447\) 0 0
\(448\) 38421.1 + 217897.i 0.191432 + 1.08566i
\(449\) −34995.0 20204.4i −0.173586 0.100220i 0.410690 0.911775i \(-0.365288\pi\)
−0.584275 + 0.811555i \(0.698621\pi\)
\(450\) 0 0
\(451\) 9831.43 + 17028.5i 0.0483352 + 0.0837190i
\(452\) 253926. + 302617.i 1.24288 + 1.48121i
\(453\) 0 0
\(454\) 77591.1 440041.i 0.376444 2.13492i
\(455\) 190718. 227289.i 0.921232 1.09788i
\(456\) 0 0
\(457\) 189104. + 68828.3i 0.905460 + 0.329560i 0.752438 0.658663i \(-0.228878\pi\)
0.153021 + 0.988223i \(0.451100\pi\)
\(458\) 131990.i 0.629230i
\(459\) 0 0
\(460\) −82611.9 −0.390415
\(461\) 93148.4 255923.i 0.438302 1.20423i −0.502294 0.864697i \(-0.667510\pi\)
0.940596 0.339528i \(-0.110267\pi\)
\(462\) 0 0
\(463\) 86499.1 + 72581.3i 0.403505 + 0.338581i 0.821847 0.569709i \(-0.192944\pi\)
−0.418341 + 0.908290i \(0.637388\pi\)
\(464\) 750181. + 132277.i 3.48442 + 0.614397i
\(465\) 0 0
\(466\) 367066. 308005.i 1.69033 1.41836i
\(467\) −177670. + 102578.i −0.814669 + 0.470349i −0.848575 0.529076i \(-0.822539\pi\)
0.0339059 + 0.999425i \(0.489205\pi\)
\(468\) 0 0
\(469\) −173634. + 300744.i −0.789387 + 1.36726i
\(470\) −56933.7 + 10038.9i −0.257735 + 0.0454456i
\(471\) 0 0
\(472\) −637611. + 232071.i −2.86201 + 1.04169i
\(473\) −25175.0 69167.6i −0.112524 0.309158i
\(474\) 0 0
\(475\) 4392.66 + 24912.0i 0.0194688 + 0.110413i
\(476\) −148643. 85819.0i −0.656040 0.378765i
\(477\) 0 0
\(478\) 284237. + 492313.i 1.24401 + 2.15469i
\(479\) −216950. 258551.i −0.945559 1.12687i −0.991782 0.127942i \(-0.959163\pi\)
0.0462229 0.998931i \(-0.485282\pi\)
\(480\) 0 0
\(481\) 22210.7 125963.i 0.0960001 0.544444i
\(482\) −325961. + 388465.i −1.40305 + 1.67208i
\(483\) 0 0
\(484\) 128739. + 46857.2i 0.549565 + 0.200025i
\(485\) 215819.i 0.917498i
\(486\) 0 0
\(487\) 141608. 0.597078 0.298539 0.954398i \(-0.403501\pi\)
0.298539 + 0.954398i \(0.403501\pi\)
\(488\) 280278. 770058.i 1.17693 3.23358i
\(489\) 0 0
\(490\) −143716. 120592.i −0.598567 0.502257i
\(491\) −84542.2 14907.1i −0.350680 0.0618343i −0.00446623 0.999990i \(-0.501422\pi\)
−0.346214 + 0.938156i \(0.612533\pi\)
\(492\) 0 0
\(493\) −72239.2 + 60615.9i −0.297221 + 0.249398i
\(494\) 241269. 139297.i 0.988660 0.570803i
\(495\) 0 0
\(496\) 445196. 771102.i 1.80962 3.13436i
\(497\) −263886. + 46530.3i −1.06833 + 0.188375i
\(498\) 0 0
\(499\) −65507.9 + 23842.9i −0.263083 + 0.0957543i −0.470194 0.882563i \(-0.655816\pi\)
0.207111 + 0.978317i \(0.433594\pi\)
\(500\) −221990. 609912.i −0.887960 2.43965i
\(501\) 0 0
\(502\) −26795.1 151963.i −0.106328 0.603017i
\(503\) 177766. + 102633.i 0.702609 + 0.405652i 0.808318 0.588746i \(-0.200378\pi\)
−0.105709 + 0.994397i \(0.533711\pi\)
\(504\) 0 0
\(505\) 83237.5 + 144172.i 0.326390 + 0.565323i
\(506\) −49404.5 58878.0i −0.192959 0.229960i
\(507\) 0 0
\(508\) 17864.8 101316.i 0.0692263 0.392602i
\(509\) −240103. + 286143.i −0.926748 + 1.10446i 0.0675389 + 0.997717i \(0.478485\pi\)
−0.994287 + 0.106739i \(0.965959\pi\)
\(510\) 0 0
\(511\) −122096. 44439.3i −0.467583 0.170186i
\(512\) 501959.i 1.91482i
\(513\) 0 0
\(514\) 353478. 1.33794
\(515\) 74297.4 204130.i 0.280130 0.769650i
\(516\) 0 0
\(517\) −29084.3 24404.7i −0.108812 0.0913044i
\(518\) −242975. 42843.1i −0.905529 0.159669i
\(519\) 0 0
\(520\) −628304. + 527210.i −2.32361 + 1.94974i
\(521\) −42563.3 + 24573.9i −0.156805 + 0.0905313i −0.576349 0.817204i \(-0.695523\pi\)
0.419544 + 0.907735i \(0.362190\pi\)
\(522\) 0 0
\(523\) 80649.7 139689.i 0.294849 0.510693i −0.680101 0.733119i \(-0.738064\pi\)
0.974950 + 0.222425i \(0.0713974\pi\)
\(524\) 959026. 169102.i 3.49275 0.615867i
\(525\) 0 0
\(526\) −758702. + 276145.i −2.74220 + 0.998080i
\(527\) 37699.7 + 103579.i 0.135743 + 0.372950i
\(528\) 0 0
\(529\) 46890.9 + 265932.i 0.167563 + 0.950296i
\(530\) 24440.8 + 14110.9i 0.0870090 + 0.0502346i
\(531\) 0 0
\(532\) −189666. 328512.i −0.670142 1.16072i
\(533\) 27447.5 + 32710.7i 0.0966158 + 0.115142i
\(534\) 0 0
\(535\) −37882.4 + 214842.i −0.132352 + 0.750604i
\(536\) 617057. 735380.i 2.14781 2.55966i
\(537\) 0 0
\(538\) 277514. + 101007.i 0.958785 + 0.348969i
\(539\) 123208.i 0.424093i
\(540\) 0 0
\(541\) −385473. −1.31704 −0.658520 0.752563i \(-0.728817\pi\)
−0.658520 + 0.752563i \(0.728817\pi\)
\(542\) −193206. + 530829.i −0.657692 + 1.80699i
\(543\) 0 0
\(544\) 103842. + 87133.8i 0.350893 + 0.294435i
\(545\) −99446.7 17535.1i −0.334809 0.0590359i
\(546\) 0 0
\(547\) −14228.4 + 11939.1i −0.0475535 + 0.0399021i −0.666255 0.745724i \(-0.732104\pi\)
0.618701 + 0.785626i \(0.287659\pi\)
\(548\) 96437.2 55678.1i 0.321132 0.185406i
\(549\) 0 0
\(550\) 59390.3 102867.i 0.196332 0.340056i
\(551\) −205247. + 36190.6i −0.676043 + 0.119205i
\(552\) 0 0
\(553\) 539902. 196508.i 1.76549 0.642585i
\(554\) −206139. 566364.i −0.671648 1.84534i
\(555\) 0 0
\(556\) −79701.4 452009.i −0.257820 1.46217i
\(557\) 413631. + 238810.i 1.33322 + 0.769737i 0.985792 0.167969i \(-0.0537209\pi\)
0.347431 + 0.937706i \(0.387054\pi\)
\(558\) 0 0
\(559\) −79923.7 138432.i −0.255771 0.443009i
\(560\) 504198. + 600880.i 1.60777 + 1.91607i
\(561\) 0 0
\(562\) −32188.0 + 182547.i −0.101911 + 0.577967i
\(563\) −94339.1 + 112429.i −0.297629 + 0.354700i −0.894047 0.447974i \(-0.852146\pi\)
0.596418 + 0.802674i \(0.296590\pi\)
\(564\) 0 0
\(565\) 210015. + 76439.1i 0.657889 + 0.239452i
\(566\) 1.05199e6i 3.28380i
\(567\) 0 0
\(568\) 740725. 2.29594
\(569\) −56131.6 + 154220.i −0.173373 + 0.476340i −0.995696 0.0926824i \(-0.970456\pi\)
0.822322 + 0.569022i \(0.192678\pi\)
\(570\) 0 0
\(571\) 294790. + 247358.i 0.904151 + 0.758673i 0.970997 0.239091i \(-0.0768493\pi\)
−0.0668465 + 0.997763i \(0.521294\pi\)
\(572\) −909371. 160347.i −2.77939 0.490081i
\(573\) 0 0
\(574\) 63096.9 52944.6i 0.191507 0.160693i
\(575\) 13125.2 7577.82i 0.0396980 0.0229197i
\(576\) 0 0
\(577\) −204899. + 354895.i −0.615442 + 1.06598i 0.374865 + 0.927080i \(0.377689\pi\)
−0.990307 + 0.138898i \(0.955644\pi\)
\(578\) 566031. 99806.6i 1.69428 0.298747i
\(579\) 0 0
\(580\) 988425. 359757.i 2.93824 1.06943i
\(581\) 104585. + 287346.i 0.309827 + 0.851242i
\(582\) 0 0
\(583\) 3218.42 + 18252.6i 0.00946903 + 0.0537016i
\(584\) 311055. + 179588.i 0.912036 + 0.526564i
\(585\) 0 0
\(586\) −234810. 406703.i −0.683789 1.18436i
\(587\) 25038.3 + 29839.4i 0.0726654 + 0.0865993i 0.801152 0.598460i \(-0.204221\pi\)
−0.728487 + 0.685060i \(0.759776\pi\)
\(588\) 0 0
\(589\) −42302.2 + 239908.i −0.121936 + 0.691534i
\(590\) −423008. + 504121.i −1.21519 + 1.44821i
\(591\) 0 0
\(592\) 317751. + 115652.i 0.906659 + 0.329997i
\(593\) 179775.i 0.511234i 0.966778 + 0.255617i \(0.0822785\pi\)
−0.966778 + 0.255617i \(0.917721\pi\)
\(594\) 0 0
\(595\) −97104.2 −0.274286
\(596\) −523165. + 1.43738e6i −1.47281 + 4.04651i
\(597\) 0 0
\(598\) −127862. 107289.i −0.357552 0.300022i
\(599\) 198367. + 34977.5i 0.552861 + 0.0974843i 0.443098 0.896473i \(-0.353880\pi\)
0.109764 + 0.993958i \(0.464991\pi\)
\(600\) 0 0
\(601\) −333121. + 279521.i −0.922258 + 0.773867i −0.974411 0.224773i \(-0.927836\pi\)
0.0521530 + 0.998639i \(0.483392\pi\)
\(602\) −267027. + 154168.i −0.736821 + 0.425404i
\(603\) 0 0
\(604\) −232105. + 402017.i −0.636224 + 1.10197i
\(605\) 76330.9 13459.2i 0.208540 0.0367713i
\(606\) 0 0
\(607\) 281891. 102600.i 0.765074 0.278464i 0.0701392 0.997537i \(-0.477656\pi\)
0.694934 + 0.719073i \(0.255433\pi\)
\(608\) 102465. + 281522.i 0.277185 + 0.761561i
\(609\) 0 0
\(610\) −138013. 782709.i −0.370902 2.10349i
\(611\) −71404.3 41225.3i −0.191268 0.110429i
\(612\) 0 0
\(613\) 149401. + 258771.i 0.397588 + 0.688643i 0.993428 0.114461i \(-0.0365140\pi\)
−0.595840 + 0.803103i \(0.703181\pi\)
\(614\) −498025. 593524.i −1.32104 1.57435i
\(615\) 0 0
\(616\) −180423. + 1.02323e6i −0.475479 + 2.69657i
\(617\) 175999. 209747.i 0.462317 0.550968i −0.483637 0.875269i \(-0.660685\pi\)
0.945954 + 0.324301i \(0.105129\pi\)
\(618\) 0 0
\(619\) −349308. 127138.i −0.911648 0.331813i −0.156737 0.987640i \(-0.550098\pi\)
−0.754911 + 0.655828i \(0.772320\pi\)
\(620\) 1.22949e6i 3.19846i
\(621\) 0 0
\(622\) 549441. 1.42017
\(623\) 183144. 503185.i 0.471865 1.29644i
\(624\) 0 0
\(625\) −208021. 174550.i −0.532533 0.446849i
\(626\) −57406.2 10122.3i −0.146491 0.0258303i
\(627\) 0 0
\(628\) −932326. + 782314.i −2.36401 + 1.98364i
\(629\) −36252.4 + 20930.3i −0.0916294 + 0.0529023i
\(630\) 0 0
\(631\) 315797. 546976.i 0.793139 1.37376i −0.130876 0.991399i \(-0.541779\pi\)
0.924014 0.382357i \(-0.124888\pi\)
\(632\) −1.56413e6 + 275798.i −3.91596 + 0.690490i
\(633\) 0 0
\(634\) −1.10769e6 + 403165.i −2.75574 + 1.00301i
\(635\) −19906.9 54693.9i −0.0493693 0.135641i
\(636\) 0 0
\(637\) −46461.9 263499.i −0.114503 0.649381i
\(638\) 847510. + 489310.i 2.08211 + 1.20211i
\(639\) 0 0
\(640\) 18406.7 + 31881.4i 0.0449383 + 0.0778355i
\(641\) 350320. + 417495.i 0.852608 + 1.01610i 0.999636 + 0.0269659i \(0.00858456\pi\)
−0.147029 + 0.989132i \(0.546971\pi\)
\(642\) 0 0
\(643\) 42907.2 243339.i 0.103779 0.588558i −0.887922 0.459993i \(-0.847852\pi\)
0.991701 0.128565i \(-0.0410370\pi\)
\(644\) −146085. + 174097.i −0.352235 + 0.419778i
\(645\) 0 0
\(646\) −85678.1 31184.3i −0.205308 0.0747259i
\(647\) 116065.i 0.277263i 0.990344 + 0.138632i \(0.0442704\pi\)
−0.990344 + 0.138632i \(0.955730\pi\)
\(648\) 0 0
\(649\) −432183. −1.02607
\(650\) 88223.8 242393.i 0.208814 0.573711i
\(651\) 0 0
\(652\) −205455. 172397.i −0.483306 0.405542i
\(653\) 216448. + 38165.6i 0.507606 + 0.0895047i 0.421586 0.906789i \(-0.361474\pi\)
0.0860208 + 0.996293i \(0.472585\pi\)
\(654\) 0 0
\(655\) 422044. 354137.i 0.983728 0.825446i
\(656\) −97763.3 + 56443.6i −0.227179 + 0.131162i
\(657\) 0 0
\(658\) −79521.2 + 137735.i −0.183667 + 0.318120i
\(659\) −547567. + 96550.9i −1.26086 + 0.222324i −0.763834 0.645412i \(-0.776686\pi\)
−0.497025 + 0.867736i \(0.665574\pi\)
\(660\) 0 0
\(661\) 98410.6 35818.5i 0.225237 0.0819794i −0.226937 0.973910i \(-0.572871\pi\)
0.452173 + 0.891930i \(0.350649\pi\)
\(662\) 398486. + 1.09483e6i 0.909280 + 2.49823i
\(663\) 0 0
\(664\) −146785. 832459.i −0.332924 1.88811i
\(665\) −185856. 107304.i −0.420274 0.242645i
\(666\) 0 0
\(667\) 62432.8 + 108137.i 0.140334 + 0.243065i
\(668\) −240978. 287186.i −0.540038 0.643592i
\(669\) 0 0
\(670\) 161674. 916896.i 0.360155 2.04254i
\(671\) 335509. 399844.i 0.745176 0.888066i
\(672\) 0 0
\(673\) 153084. + 55718.1i 0.337987 + 0.123017i 0.505438 0.862863i \(-0.331331\pi\)
−0.167450 + 0.985881i \(0.553553\pi\)
\(674\) 303207.i 0.667452i
\(675\) 0 0
\(676\) −908564. −1.98821
\(677\) 282532. 776249.i 0.616439 1.69365i −0.0990996 0.995078i \(-0.531596\pi\)
0.715538 0.698574i \(-0.246182\pi\)
\(678\) 0 0
\(679\) 454818. + 381638.i 0.986502 + 0.827774i
\(680\) 264351. + 46612.3i 0.571694 + 0.100805i
\(681\) 0 0
\(682\) 876264. 735273.i 1.88394 1.58081i
\(683\) −378309. + 218417.i −0.810970 + 0.468214i −0.847293 0.531126i \(-0.821769\pi\)
0.0363224 + 0.999340i \(0.488436\pi\)
\(684\) 0 0
\(685\) 31499.9 54559.4i 0.0671317 0.116276i
\(686\) 534016. 94161.4i 1.13476 0.200090i
\(687\) 0 0
\(688\) 397101. 144533.i 0.838927 0.305345i
\(689\) 13766.2 + 37822.2i 0.0289984 + 0.0796725i
\(690\) 0 0
\(691\) −112114. 635833.i −0.234804 1.33164i −0.843026 0.537873i \(-0.819228\pi\)
0.608222 0.793767i \(-0.291883\pi\)
\(692\) −1.48300e6 856211.i −3.09692 1.78801i
\(693\) 0 0
\(694\) 195727. + 339009.i 0.406379 + 0.703869i
\(695\) −166912. 198918.i −0.345556 0.411817i
\(696\) 0 0
\(697\) 2426.72 13762.6i 0.00499521 0.0283293i
\(698\) 224989. 268131.i 0.461796 0.550347i
\(699\) 0 0
\(700\) −330042. 120126.i −0.673556 0.245154i
\(701\) 142622.i 0.290236i −0.989414 0.145118i \(-0.953644\pi\)
0.989414 0.145118i \(-0.0463562\pi\)
\(702\) 0 0
\(703\) −92515.1 −0.187198
\(704\) 133242. 366080.i 0.268841 0.738636i
\(705\) 0 0
\(706\) 365487. + 306680.i 0.733267 + 0.615284i
\(707\) 451020. + 79526.9i 0.902312 + 0.159102i
\(708\) 0 0
\(709\) −314956. + 264279.i −0.626552 + 0.525740i −0.899855 0.436188i \(-0.856328\pi\)
0.273303 + 0.961928i \(0.411884\pi\)
\(710\) 622155. 359202.i 1.23419 0.712560i
\(711\) 0 0
\(712\) −740123. + 1.28193e6i −1.45997 + 2.52874i
\(713\) 143735. 25344.3i 0.282737 0.0498541i
\(714\) 0 0
\(715\) −490908. + 178676.i −0.960259 + 0.349506i
\(716\) 17839.6 + 49013.8i 0.0347983 + 0.0956076i
\(717\) 0 0
\(718\) −44130.0 250274.i −0.0856023 0.485475i
\(719\) −574218. 331525.i −1.11076 0.641296i −0.171731 0.985144i \(-0.554936\pi\)
−0.939025 + 0.343848i \(0.888269\pi\)
\(720\) 0 0
\(721\) −298804. 517544.i −0.574799 0.995582i
\(722\) 488319. + 581956.i 0.936762 + 1.11639i
\(723\) 0 0
\(724\) −105872. + 600433.i −0.201979 + 1.14548i
\(725\) −124039. + 147824.i −0.235983 + 0.281234i
\(726\) 0 0
\(727\) −63974.6 23284.9i −0.121043 0.0440560i 0.280789 0.959770i \(-0.409404\pi\)
−0.401831 + 0.915714i \(0.631626\pi\)
\(728\) 2.25637e6i 4.25744i
\(729\) 0 0
\(730\) 348352. 0.653691
\(731\) −17892.5 + 49159.3i −0.0334839 + 0.0919964i
\(732\) 0 0
\(733\) −69209.9 58074.0i −0.128813 0.108087i 0.576105 0.817376i \(-0.304572\pi\)
−0.704918 + 0.709289i \(0.749016\pi\)
\(734\) −638678. 112616.i −1.18547 0.209030i
\(735\) 0 0
\(736\) 137498. 115375.i 0.253829 0.212988i
\(737\) 529526. 305722.i 0.974882 0.562848i
\(738\) 0 0
\(739\) 386462. 669372.i 0.707650 1.22569i −0.258077 0.966124i \(-0.583089\pi\)
0.965727 0.259561i \(-0.0835779\pi\)
\(740\) 459829. 81080.2i 0.839716 0.148065i
\(741\) 0 0
\(742\) 72956.8 26554.1i 0.132513 0.0482307i
\(743\) −318668. 875534.i −0.577246 1.58597i −0.792802 0.609480i \(-0.791378\pi\)
0.215555 0.976492i \(-0.430844\pi\)
\(744\) 0 0
\(745\) 150273. + 852242.i 0.270751 + 1.53550i
\(746\) 1.10975e6 + 640715.i 1.99411 + 1.15130i
\(747\) 0 0
\(748\) 151103. + 261718.i 0.270066 + 0.467769i
\(749\) 385771. + 459744.i 0.687647 + 0.819506i
\(750\) 0 0
\(751\) 88120.6 499757.i 0.156242 0.886092i −0.801400 0.598129i \(-0.795911\pi\)
0.957642 0.287963i \(-0.0929779\pi\)
\(752\) 140111. 166977.i 0.247762 0.295272i
\(753\) 0 0
\(754\) 1.99705e6 + 726867.i 3.51274 + 1.27853i
\(755\) 262627.i 0.460728i
\(756\) 0 0
\(757\) −131229. −0.229001 −0.114501 0.993423i \(-0.536527\pi\)
−0.114501 + 0.993423i \(0.536527\pi\)
\(758\) −427360. + 1.17416e6i −0.743799 + 2.04357i
\(759\) 0 0
\(760\) 454455. + 381333.i 0.786799 + 0.660203i
\(761\) 113901. + 20083.9i 0.196680 + 0.0346799i 0.271120 0.962546i \(-0.412606\pi\)
−0.0744405 + 0.997225i \(0.523717\pi\)
\(762\) 0 0
\(763\) −212808. + 178567.i −0.365543 + 0.306727i
\(764\) 162555. 93850.9i 0.278492 0.160787i
\(765\) 0 0
\(766\) 6672.16 11556.5i 0.0113713 0.0196956i
\(767\) −924290. + 162977.i −1.57115 + 0.277036i
\(768\) 0 0
\(769\) −764397. + 278218.i −1.29261 + 0.470470i −0.894582 0.446905i \(-0.852526\pi\)
−0.398024 + 0.917375i \(0.630304\pi\)
\(770\) 344655. + 946933.i 0.581304 + 1.59712i
\(771\) 0 0
\(772\) 412199. + 2.33770e6i 0.691628 + 3.92242i
\(773\) −407984. 235550.i −0.682786 0.394207i 0.118118 0.993000i \(-0.462314\pi\)
−0.800904 + 0.598793i \(0.795647\pi\)
\(774\) 0 0
\(775\) 112779. + 195338.i 0.187769 + 0.325225i
\(776\) −1.05498e6 1.25727e6i −1.75194 2.08788i
\(777\) 0 0
\(778\) 231662. 1.31382e6i 0.382732 2.17058i
\(779\) 19852.9 23659.7i 0.0327151 0.0389884i
\(780\) 0 0
\(781\) 443345. + 161364.i 0.726841 + 0.264549i
\(782\) 54626.3i 0.0893281i
\(783\) 0 0
\(784\) 707354. 1.15081
\(785\) −235500. + 647030.i −0.382165 + 1.04999i
\(786\) 0 0
\(787\) −758382. 636358.i −1.22444 1.02743i −0.998580 0.0532707i \(-0.983035\pi\)
−0.225863 0.974159i \(-0.572520\pi\)
\(788\) −2.32504e6 409967.i −3.74436 0.660231i
\(789\) 0 0
\(790\) −1.18001e6 + 990148.i −1.89074 + 1.58652i
\(791\) 532463. 307418.i 0.851013 0.491333i
\(792\) 0 0
\(793\) 566754. 981647.i 0.901257 1.56102i
\(794\) 2.15148e6 379365.i 3.41269 0.601749i
\(795\) 0 0
\(796\) 1.31707e6 479375.i 2.07866 0.756570i
\(797\) −20232.1 55587.3i −0.0318511 0.0875102i 0.922748 0.385404i \(-0.125938\pi\)
−0.954599 + 0.297894i \(0.903716\pi\)
\(798\) 0 0
\(799\) 4685.74 + 26574.1i 0.00733981 + 0.0416261i
\(800\) 240226. + 138695.i 0.375353 + 0.216710i
\(801\) 0 0
\(802\) −255366. 442307.i −0.397022 0.687661i
\(803\) 147053. + 175251.i 0.228056 + 0.271787i
\(804\) 0 0
\(805\) −22327.1 + 126623.i −0.0344541 + 0.195399i
\(806\) 1.59675e6 1.90293e6i 2.45792 2.92923i
\(807\) 0 0
\(808\) −1.18966e6 433000.i −1.82221 0.663231i
\(809\) 332453.i 0.507964i 0.967209 + 0.253982i \(0.0817404\pi\)
−0.967209 + 0.253982i \(0.918260\pi\)
\(810\) 0 0
\(811\) 481760. 0.732469 0.366235 0.930523i \(-0.380647\pi\)
0.366235 + 0.930523i \(0.380647\pi\)
\(812\) 989702. 2.71918e6i 1.50104 4.12408i
\(813\) 0 0
\(814\) 332778. + 279234.i 0.502234 + 0.421424i
\(815\) −149431. 26348.7i −0.224970 0.0396683i
\(816\) 0 0
\(817\) −88568.8 + 74318.0i −0.132689 + 0.111340i
\(818\) −994804. + 574350.i −1.48673 + 0.858361i
\(819\) 0 0
\(820\) −77939.6 + 134995.i −0.115913 + 0.200766i
\(821\) 17048.1 3006.03i 0.0252923 0.00445972i −0.160988 0.986956i \(-0.551468\pi\)
0.186280 + 0.982497i \(0.440357\pi\)
\(822\) 0 0
\(823\) −6205.19 + 2258.50i −0.00916126 + 0.00333443i −0.346597 0.938014i \(-0.612663\pi\)
0.337435 + 0.941349i \(0.390441\pi\)
\(824\) 565016. + 1.55237e6i 0.832159 + 2.28634i
\(825\) 0 0
\(826\) 314373. + 1.78290e6i 0.460772 + 2.61317i
\(827\) 280787. + 162112.i 0.410549 + 0.237031i 0.691026 0.722830i \(-0.257159\pi\)
−0.280476 + 0.959861i \(0.590492\pi\)
\(828\) 0 0
\(829\) 398558. + 690323.i 0.579939 + 1.00448i 0.995486 + 0.0949122i \(0.0302570\pi\)
−0.415546 + 0.909572i \(0.636410\pi\)
\(830\) −526975. 628024.i −0.764951 0.911634i
\(831\) 0 0
\(832\) 146909. 833163.i 0.212228 1.20360i
\(833\) −56287.1 + 67080.3i −0.0811183 + 0.0966730i
\(834\) 0 0
\(835\) −199306. 72541.4i −0.285856 0.104043i
\(836\) 667899.i 0.955648i
\(837\) 0 0
\(838\) −1.55006e6 −2.20729
\(839\) −33686.8 + 92553.8i −0.0478560 + 0.131483i −0.961318 0.275441i \(-0.911176\pi\)
0.913462 + 0.406924i \(0.133399\pi\)
\(840\) 0 0
\(841\) −676094. 567310.i −0.955906 0.802100i
\(842\) 1.62441e6 + 286427.i 2.29124 + 0.404007i
\(843\) 0 0
\(844\) 2.35715e6 1.97788e6i 3.30904 2.77662i
\(845\) −445155. + 257010.i −0.623444 + 0.359946i
\(846\) 0 0
\(847\) 106614. 184661.i 0.148610 0.257400i
\(848\) −104791. + 18477.4i −0.145724 + 0.0256950i
\(849\) 0 0
\(850\) −79329.4 + 28873.5i −0.109798 + 0.0399634i
\(851\) 18957.5 + 52085.3i 0.0261771 + 0.0719211i
\(852\) 0 0
\(853\) 133616. + 757773.i 0.183637 + 1.04146i 0.927694 + 0.373341i \(0.121788\pi\)
−0.744057 + 0.668116i \(0.767101\pi\)
\(854\) −1.89354e6 1.09324e6i −2.59632 1.49899i
\(855\) 0 0
\(856\) −829514. 1.43676e6i −1.13208 1.96082i
\(857\) 578341. + 689240.i 0.787449 + 0.938446i 0.999244 0.0388684i \(-0.0123753\pi\)
−0.211795 + 0.977314i \(0.567931\pi\)
\(858\) 0 0
\(859\) −167429. + 949536.i −0.226905 + 1.28684i 0.632105 + 0.774883i \(0.282191\pi\)
−0.859010 + 0.511959i \(0.828920\pi\)
\(860\) 375082. 447005.i 0.507142 0.604388i
\(861\) 0 0
\(862\) −2.20363e6 802056.i −2.96568 1.07942i
\(863\) 76954.8i 0.103327i 0.998665 + 0.0516635i \(0.0164523\pi\)
−0.998665 + 0.0516635i \(0.983548\pi\)
\(864\) 0 0
\(865\) −968804. −1.29480
\(866\) −239753. + 658717.i −0.319690 + 0.878341i
\(867\) 0 0
\(868\) −2.59104e6 2.17414e6i −3.43901 2.88568i
\(869\) −996257. 175667.i −1.31926 0.232622i
\(870\) 0 0
\(871\) 1.01718e6 853517.i 1.34080 1.12506i
\(872\) 665053. 383969.i 0.874628 0.504967i
\(873\) 0 0
\(874\) −60364.0 + 104554.i −0.0790233 + 0.136872i
\(875\) −994839. + 175417.i −1.29938 + 0.229116i
\(876\) 0 0
\(877\) 665011. 242044.i 0.864629 0.314699i 0.128639 0.991692i \(-0.458939\pi\)
0.735990 + 0.676992i \(0.236717\pi\)
\(878\) −621162. 1.70663e6i −0.805779 2.21386i
\(879\) 0 0
\(880\) −239825. 1.36012e6i −0.309691 1.75635i
\(881\) −732035. 422641.i −0.943149 0.544527i −0.0522027 0.998637i \(-0.516624\pi\)
−0.890946 + 0.454109i \(0.849958\pi\)
\(882\) 0 0
\(883\) 412901. + 715165.i 0.529571 + 0.917244i 0.999405 + 0.0344895i \(0.0109805\pi\)
−0.469834 + 0.882755i \(0.655686\pi\)
\(884\) 421852. + 502743.i 0.539828 + 0.643342i
\(885\) 0 0
\(886\) −357781. + 2.02907e6i −0.455774 + 2.58482i
\(887\) −293621. + 349924.i −0.373199 + 0.444761i −0.919655 0.392726i \(-0.871532\pi\)
0.546456 + 0.837488i \(0.315976\pi\)
\(888\) 0 0
\(889\) −150464. 54764.5i −0.190384 0.0692941i
\(890\) 1.43564e6i 1.81245i
\(891\) 0 0
\(892\) 95911.3 0.120542
\(893\) −20397.0 + 56040.3i −0.0255778 + 0.0702745i
\(894\) 0 0
\(895\) 22605.4 + 18968.2i 0.0282205 + 0.0236798i
\(896\) 99736.3 + 17586.2i 0.124233 + 0.0219056i
\(897\) 0 0
\(898\) 228311. 191576.i 0.283123 0.237568i
\(899\) −1.60937e6 + 929170.i −1.99130 + 1.14968i
\(900\) 0 0
\(901\) 6586.36 11407.9i 0.00811326 0.0140526i
\(902\) −142822. + 25183.4i −0.175543 + 0.0309529i
\(903\) 0 0
\(904\) −1.59712e6 + 581303.i −1.95434 + 0.711321i
\(905\) 117975. + 324133.i 0.144043 + 0.395755i
\(906\) 0 0
\(907\) −29650.7 168158.i −0.0360430 0.204410i 0.961468 0.274915i \(-0.0886499\pi\)
−0.997511 + 0.0705055i \(0.977539\pi\)
\(908\) 2.01466e6 + 1.16316e6i 2.44360 + 1.41081i
\(909\) 0 0
\(910\) 1.09419e6 + 1.89519e6i 1.32132 + 2.28860i
\(911\) −637177. 759358.i −0.767757 0.914977i 0.230555 0.973059i \(-0.425946\pi\)
−0.998312 + 0.0580825i \(0.981501\pi\)
\(912\) 0 0
\(913\) 93493.3 530227.i 0.112160 0.636092i
\(914\) −954072. + 1.13702e6i −1.14206 + 1.36105i
\(915\) 0 0
\(916\) 645737. + 235029.i 0.769599 + 0.280111i
\(917\) 1.51565e6i 1.80244i
\(918\) 0 0
\(919\) 1.04171e6 1.23343 0.616717 0.787185i \(-0.288462\pi\)
0.616717 + 0.787185i \(0.288462\pi\)
\(920\) 121564. 333995.i 0.143625 0.394606i
\(921\) 0 0
\(922\) 1.53878e6 + 1.29119e6i 1.81015 + 1.51889i
\(923\) 1.00901e6 + 177916.i 1.18438 + 0.208839i
\(924\) 0 0
\(925\) −65619.1 + 55061.0i −0.0766914 + 0.0643518i
\(926\) −721250. + 416414.i −0.841132 + 0.485628i
\(927\) 0 0
\(928\) −1.14269e6 + 1.97920e6i −1.32688 + 2.29823i
\(929\) 1.68711e6 297482.i 1.95484 0.344691i 0.956187 0.292756i \(-0.0945723\pi\)
0.998650 0.0519347i \(-0.0165388\pi\)
\(930\) 0 0
\(931\) −181859. + 66191.1i −0.209814 + 0.0763660i
\(932\) 853239. + 2.34426e6i 0.982288 + 2.69881i
\(933\) 0 0
\(934\) −262756. 1.49016e6i −0.301202 1.70820i
\(935\) 148067. + 85486.7i 0.169370 + 0.0977857i
\(936\) 0 0
\(937\) −119828. 207549.i −0.136484 0.236397i 0.789680 0.613519i \(-0.210247\pi\)
−0.926163 + 0.377123i \(0.876913\pi\)
\(938\) −1.64638e6 1.96208e6i −1.87122 2.23004i
\(939\) 0 0
\(940\) 52265.7 296414.i 0.0591509 0.335461i
\(941\) −212705. + 253491.i −0.240214 + 0.286275i −0.872660 0.488329i \(-0.837607\pi\)
0.632446 + 0.774604i \(0.282051\pi\)
\(942\) 0 0
\(943\) −17388.4 6328.85i −0.0195540 0.00711708i
\(944\) 2.48123e6i 2.78434i
\(945\) 0 0
\(946\) 542894. 0.606642
\(947\) −19893.5 + 54657.1i −0.0221826 + 0.0609462i −0.950290 0.311367i \(-0.899213\pi\)
0.928107 + 0.372313i \(0.121435\pi\)
\(948\) 0 0
\(949\) 380582. + 319346.i 0.422587 + 0.354592i
\(950\) −183741. 32398.5i −0.203591 0.0358986i
\(951\) 0 0
\(952\) 565691. 474671.i 0.624173 0.523743i
\(953\) 864845. 499318.i 0.952253 0.549784i 0.0584729 0.998289i \(-0.481377\pi\)
0.893780 + 0.448505i \(0.148044\pi\)
\(954\) 0 0
\(955\) 53096.2 91965.3i 0.0582179 0.100836i
\(956\) −2.91468e6 + 513937.i −3.18915 + 0.562334i
\(957\) 0 0
\(958\) 2.33925e6 851416.i 2.54885 0.927707i
\(959\) −59276.9 162862.i −0.0644538 0.177085i
\(960\) 0 0
\(961\) 216824. + 1.22967e6i 0.234780 + 1.33150i
\(962\) 816997. + 471693.i 0.882816 + 0.509694i
\(963\) 0 0
\(964\) −1.32007e6 2.28643e6i −1.42051 2.46039i
\(965\) 863235. + 1.02876e6i 0.926989 + 1.10474i
\(966\) 0 0
\(967\) −79204.2 + 449189.i −0.0847023 + 0.480371i 0.912718 + 0.408590i \(0.133979\pi\)
−0.997420 + 0.0717808i \(0.977132\pi\)
\(968\) −378882. + 451533.i −0.404346 + 0.481880i
\(969\) 0 0
\(970\) −1.49580e6 544425.i −1.58975 0.578622i
\(971\) 795103.i 0.843305i −0.906757 0.421653i \(-0.861450\pi\)
0.906757 0.421653i \(-0.138550\pi\)
\(972\) 0 0
\(973\) −714357. −0.754553
\(974\) −357222. + 981460.i −0.376548 + 1.03456i
\(975\) 0 0
\(976\) 2.29556e6 + 1.92620e6i 2.40984 + 2.02210i
\(977\) −1.09358e6 192828.i −1.14568 0.202014i −0.431591 0.902070i \(-0.642047\pi\)
−0.714088 + 0.700056i \(0.753159\pi\)
\(978\) 0 0
\(979\) −722248. + 606038.i −0.753565 + 0.632316i
\(980\) 845884. 488371.i 0.880762 0.508508i
\(981\) 0 0
\(982\) 316585. 548341.i 0.328297 0.568628i
\(983\) 342960. 60473.2i 0.354925 0.0625829i 0.00665711 0.999978i \(-0.497881\pi\)
0.348268 + 0.937395i \(0.386770\pi\)
\(984\) 0 0
\(985\) −1.25513e6 + 456830.i −1.29365 + 0.470850i
\(986\) −237886. 653586.i −0.244689 0.672278i
\(987\) 0 0
\(988\) 251866. + 1.42840e6i 0.258021 + 1.46331i
\(989\) 59989.4 + 34634.9i 0.0613312 + 0.0354096i
\(990\) 0 0
\(991\) 202871. + 351383.i 0.206572 + 0.357794i 0.950633 0.310319i \(-0.100436\pi\)
−0.744060 + 0.668113i \(0.767102\pi\)
\(992\) 1.71709e6 + 2.04635e6i 1.74490 + 2.07948i
\(993\) 0 0
\(994\) 343189. 1.94632e6i 0.347345 1.96989i
\(995\) 509701. 607438.i 0.514837 0.613558i
\(996\) 0 0
\(997\) 830173. + 302158.i 0.835177 + 0.303980i 0.723982 0.689819i \(-0.242310\pi\)
0.111195 + 0.993799i \(0.464532\pi\)
\(998\) 514169.i 0.516232i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.17.1 66
3.2 odd 2 27.5.f.a.23.11 yes 66
27.7 even 9 27.5.f.a.20.11 66
27.20 odd 18 inner 81.5.f.a.62.1 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.20.11 66 27.7 even 9
27.5.f.a.23.11 yes 66 3.2 odd 2
81.5.f.a.17.1 66 1.1 even 1 trivial
81.5.f.a.62.1 66 27.20 odd 18 inner