Properties

Label 81.5.d.b.53.2
Level $81$
Weight $5$
Character 81.53
Analytic conductor $8.373$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(26,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.26");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 81.53
Dual form 81.5.d.b.26.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.59808 - 1.50000i) q^{2} +(-3.50000 + 6.06218i) q^{4} +(-28.5788 - 16.5000i) q^{5} +(9.50000 + 16.4545i) q^{7} +69.0000i q^{8} -99.0000 q^{10} +(-106.521 + 61.5000i) q^{11} +(-151.000 + 261.540i) q^{13} +(49.3634 + 28.5000i) q^{14} +(47.5000 + 82.2724i) q^{16} -414.000i q^{17} -304.000 q^{19} +(200.052 - 115.500i) q^{20} +(-184.500 + 319.563i) q^{22} +(259.808 + 150.000i) q^{23} +(232.000 + 401.836i) q^{25} +906.000i q^{26} -133.000 q^{28} +(587.165 - 339.000i) q^{29} +(-119.500 + 206.980i) q^{31} +(-709.275 - 409.500i) q^{32} +(-621.000 - 1075.60i) q^{34} -627.000i q^{35} +740.000 q^{37} +(-789.815 + 456.000i) q^{38} +(1138.50 - 1971.94i) q^{40} +(197.454 + 114.000i) q^{41} +(491.000 + 850.437i) q^{43} -861.000i q^{44} +900.000 q^{46} +(-1875.81 + 1083.00i) q^{47} +(1020.00 - 1766.69i) q^{49} +(1205.51 + 696.000i) q^{50} +(-1057.00 - 1830.78i) q^{52} +1593.00i q^{53} +4059.00 q^{55} +(-1135.36 + 655.500i) q^{56} +(1017.00 - 1761.50i) q^{58} +(-2530.53 - 1461.00i) q^{59} +(158.000 + 273.664i) q^{61} +717.000i q^{62} -3977.00 q^{64} +(8630.81 - 4983.00i) q^{65} +(-2311.00 + 4002.77i) q^{67} +(2509.74 + 1449.00i) q^{68} +(-940.500 - 1628.99i) q^{70} -1818.00i q^{71} -3031.00 q^{73} +(1922.58 - 1110.00i) q^{74} +(1064.00 - 1842.90i) q^{76} +(-2023.90 - 1168.50i) q^{77} +(5225.00 + 9049.97i) q^{79} -3135.00i q^{80} +684.000 q^{82} +(-10940.5 + 6316.50i) q^{83} +(-6831.00 + 11831.6i) q^{85} +(2551.31 + 1473.00i) q^{86} +(-4243.50 - 7349.96i) q^{88} +7002.00i q^{89} -5738.00 q^{91} +(-1818.65 + 1050.00i) q^{92} +(-3249.00 + 5627.43i) q^{94} +(8687.97 + 5016.00i) q^{95} +(3258.50 + 5643.89i) q^{97} -6120.00i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{4} + 38 q^{7} - 396 q^{10} - 604 q^{13} + 190 q^{16} - 1216 q^{19} - 738 q^{22} + 928 q^{25} - 532 q^{28} - 478 q^{31} - 2484 q^{34} + 2960 q^{37} + 4554 q^{40} + 1964 q^{43} + 3600 q^{46} + 4080 q^{49}+ \cdots + 13034 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.59808 1.50000i 0.649519 0.375000i −0.138753 0.990327i \(-0.544309\pi\)
0.788272 + 0.615327i \(0.210976\pi\)
\(3\) 0 0
\(4\) −3.50000 + 6.06218i −0.218750 + 0.378886i
\(5\) −28.5788 16.5000i −1.14315 0.660000i −0.195944 0.980615i \(-0.562777\pi\)
−0.947210 + 0.320615i \(0.896110\pi\)
\(6\) 0 0
\(7\) 9.50000 + 16.4545i 0.193878 + 0.335806i 0.946532 0.322610i \(-0.104560\pi\)
−0.752654 + 0.658416i \(0.771227\pi\)
\(8\) 69.0000i 1.07812i
\(9\) 0 0
\(10\) −99.0000 −0.990000
\(11\) −106.521 + 61.5000i −0.880340 + 0.508264i −0.870770 0.491690i \(-0.836379\pi\)
−0.00956942 + 0.999954i \(0.503046\pi\)
\(12\) 0 0
\(13\) −151.000 + 261.540i −0.893491 + 1.54757i −0.0578301 + 0.998326i \(0.518418\pi\)
−0.835661 + 0.549246i \(0.814915\pi\)
\(14\) 49.3634 + 28.5000i 0.251854 + 0.145408i
\(15\) 0 0
\(16\) 47.5000 + 82.2724i 0.185547 + 0.321377i
\(17\) 414.000i 1.43253i −0.697830 0.716263i \(-0.745851\pi\)
0.697830 0.716263i \(-0.254149\pi\)
\(18\) 0 0
\(19\) −304.000 −0.842105 −0.421053 0.907036i \(-0.638339\pi\)
−0.421053 + 0.907036i \(0.638339\pi\)
\(20\) 200.052 115.500i 0.500130 0.288750i
\(21\) 0 0
\(22\) −184.500 + 319.563i −0.381198 + 0.660255i
\(23\) 259.808 + 150.000i 0.491130 + 0.283554i 0.725043 0.688704i \(-0.241820\pi\)
−0.233913 + 0.972257i \(0.575153\pi\)
\(24\) 0 0
\(25\) 232.000 + 401.836i 0.371200 + 0.642937i
\(26\) 906.000i 1.34024i
\(27\) 0 0
\(28\) −133.000 −0.169643
\(29\) 587.165 339.000i 0.698175 0.403092i −0.108492 0.994097i \(-0.534602\pi\)
0.806667 + 0.591006i \(0.201269\pi\)
\(30\) 0 0
\(31\) −119.500 + 206.980i −0.124350 + 0.215380i −0.921479 0.388429i \(-0.873018\pi\)
0.797129 + 0.603809i \(0.206351\pi\)
\(32\) −709.275 409.500i −0.692651 0.399902i
\(33\) 0 0
\(34\) −621.000 1075.60i −0.537197 0.930453i
\(35\) 627.000i 0.511837i
\(36\) 0 0
\(37\) 740.000 0.540541 0.270270 0.962784i \(-0.412887\pi\)
0.270270 + 0.962784i \(0.412887\pi\)
\(38\) −789.815 + 456.000i −0.546963 + 0.315789i
\(39\) 0 0
\(40\) 1138.50 1971.94i 0.711562 1.23246i
\(41\) 197.454 + 114.000i 0.117462 + 0.0678168i 0.557580 0.830123i \(-0.311730\pi\)
−0.440118 + 0.897940i \(0.645063\pi\)
\(42\) 0 0
\(43\) 491.000 + 850.437i 0.265549 + 0.459944i 0.967707 0.252077i \(-0.0811135\pi\)
−0.702158 + 0.712021i \(0.747780\pi\)
\(44\) 861.000i 0.444731i
\(45\) 0 0
\(46\) 900.000 0.425331
\(47\) −1875.81 + 1083.00i −0.849168 + 0.490267i −0.860370 0.509670i \(-0.829767\pi\)
0.0112024 + 0.999937i \(0.496434\pi\)
\(48\) 0 0
\(49\) 1020.00 1766.69i 0.424823 0.735815i
\(50\) 1205.51 + 696.000i 0.482203 + 0.278400i
\(51\) 0 0
\(52\) −1057.00 1830.78i −0.390902 0.677063i
\(53\) 1593.00i 0.567106i 0.958957 + 0.283553i \(0.0915131\pi\)
−0.958957 + 0.283553i \(0.908487\pi\)
\(54\) 0 0
\(55\) 4059.00 1.34182
\(56\) −1135.36 + 655.500i −0.362041 + 0.209024i
\(57\) 0 0
\(58\) 1017.00 1761.50i 0.302319 0.523631i
\(59\) −2530.53 1461.00i −0.726954 0.419707i 0.0903529 0.995910i \(-0.471200\pi\)
−0.817307 + 0.576203i \(0.804534\pi\)
\(60\) 0 0
\(61\) 158.000 + 273.664i 0.0424617 + 0.0735458i 0.886475 0.462776i \(-0.153147\pi\)
−0.844013 + 0.536322i \(0.819813\pi\)
\(62\) 717.000i 0.186524i
\(63\) 0 0
\(64\) −3977.00 −0.970947
\(65\) 8630.81 4983.00i 2.04280 1.17941i
\(66\) 0 0
\(67\) −2311.00 + 4002.77i −0.514814 + 0.891684i 0.485038 + 0.874493i \(0.338806\pi\)
−0.999852 + 0.0171910i \(0.994528\pi\)
\(68\) 2509.74 + 1449.00i 0.542764 + 0.313365i
\(69\) 0 0
\(70\) −940.500 1628.99i −0.191939 0.332448i
\(71\) 1818.00i 0.360643i −0.983608 0.180321i \(-0.942286\pi\)
0.983608 0.180321i \(-0.0577138\pi\)
\(72\) 0 0
\(73\) −3031.00 −0.568775 −0.284387 0.958709i \(-0.591790\pi\)
−0.284387 + 0.958709i \(0.591790\pi\)
\(74\) 1922.58 1110.00i 0.351091 0.202703i
\(75\) 0 0
\(76\) 1064.00 1842.90i 0.184211 0.319062i
\(77\) −2023.90 1168.50i −0.341356 0.197082i
\(78\) 0 0
\(79\) 5225.00 + 9049.97i 0.837206 + 1.45008i 0.892222 + 0.451597i \(0.149146\pi\)
−0.0550164 + 0.998485i \(0.517521\pi\)
\(80\) 3135.00i 0.489844i
\(81\) 0 0
\(82\) 684.000 0.101725
\(83\) −10940.5 + 6316.50i −1.58811 + 0.916897i −0.594493 + 0.804101i \(0.702647\pi\)
−0.993618 + 0.112796i \(0.964019\pi\)
\(84\) 0 0
\(85\) −6831.00 + 11831.6i −0.945467 + 1.63760i
\(86\) 2551.31 + 1473.00i 0.344958 + 0.199162i
\(87\) 0 0
\(88\) −4243.50 7349.96i −0.547973 0.949116i
\(89\) 7002.00i 0.883979i 0.897020 + 0.441990i \(0.145727\pi\)
−0.897020 + 0.441990i \(0.854273\pi\)
\(90\) 0 0
\(91\) −5738.00 −0.692911
\(92\) −1818.65 + 1050.00i −0.214869 + 0.124055i
\(93\) 0 0
\(94\) −3249.00 + 5627.43i −0.367700 + 0.636876i
\(95\) 8687.97 + 5016.00i 0.962656 + 0.555789i
\(96\) 0 0
\(97\) 3258.50 + 5643.89i 0.346317 + 0.599839i 0.985592 0.169139i \(-0.0540987\pi\)
−0.639275 + 0.768978i \(0.720765\pi\)
\(98\) 6120.00i 0.637234i
\(99\) 0 0
\(100\) −3248.00 −0.324800
\(101\) −5126.00 + 2959.50i −0.502500 + 0.290119i −0.729745 0.683719i \(-0.760361\pi\)
0.227245 + 0.973838i \(0.427028\pi\)
\(102\) 0 0
\(103\) 3827.00 6628.56i 0.360731 0.624805i −0.627350 0.778737i \(-0.715860\pi\)
0.988081 + 0.153932i \(0.0491938\pi\)
\(104\) −18046.2 10419.0i −1.66848 0.963295i
\(105\) 0 0
\(106\) 2389.50 + 4138.74i 0.212665 + 0.368346i
\(107\) 513.000i 0.0448074i 0.999749 + 0.0224037i \(0.00713192\pi\)
−0.999749 + 0.0224037i \(0.992868\pi\)
\(108\) 0 0
\(109\) 2324.00 0.195606 0.0978032 0.995206i \(-0.468818\pi\)
0.0978032 + 0.995206i \(0.468818\pi\)
\(110\) 10545.6 6088.50i 0.871536 0.503182i
\(111\) 0 0
\(112\) −902.500 + 1563.18i −0.0719467 + 0.124615i
\(113\) −4260.84 2460.00i −0.333687 0.192654i 0.323790 0.946129i \(-0.395043\pi\)
−0.657477 + 0.753475i \(0.728376\pi\)
\(114\) 0 0
\(115\) −4950.00 8573.65i −0.374291 0.648291i
\(116\) 4746.00i 0.352705i
\(117\) 0 0
\(118\) −8766.00 −0.629560
\(119\) 6812.16 3933.00i 0.481050 0.277735i
\(120\) 0 0
\(121\) 244.000 422.620i 0.0166655 0.0288655i
\(122\) 820.992 + 474.000i 0.0551594 + 0.0318463i
\(123\) 0 0
\(124\) −836.500 1448.86i −0.0544030 0.0942287i
\(125\) 5313.00i 0.340032i
\(126\) 0 0
\(127\) 24995.0 1.54969 0.774847 0.632149i \(-0.217827\pi\)
0.774847 + 0.632149i \(0.217827\pi\)
\(128\) 1015.85 586.500i 0.0620024 0.0357971i
\(129\) 0 0
\(130\) 14949.0 25892.4i 0.884556 1.53210i
\(131\) 24647.9 + 14230.5i 1.43628 + 0.829235i 0.997589 0.0694044i \(-0.0221099\pi\)
0.438688 + 0.898639i \(0.355443\pi\)
\(132\) 0 0
\(133\) −2888.00 5002.16i −0.163265 0.282784i
\(134\) 13866.0i 0.772221i
\(135\) 0 0
\(136\) 28566.0 1.54444
\(137\) −2125.23 + 1227.00i −0.113231 + 0.0653738i −0.555546 0.831486i \(-0.687491\pi\)
0.442315 + 0.896860i \(0.354157\pi\)
\(138\) 0 0
\(139\) 5942.00 10291.8i 0.307541 0.532677i −0.670283 0.742106i \(-0.733827\pi\)
0.977824 + 0.209429i \(0.0671605\pi\)
\(140\) 3800.99 + 2194.50i 0.193928 + 0.111964i
\(141\) 0 0
\(142\) −2727.00 4723.30i −0.135241 0.234244i
\(143\) 37146.0i 1.81652i
\(144\) 0 0
\(145\) −22374.0 −1.06416
\(146\) −7874.77 + 4546.50i −0.369430 + 0.213290i
\(147\) 0 0
\(148\) −2590.00 + 4486.01i −0.118243 + 0.204803i
\(149\) −19046.5 10996.5i −0.857912 0.495316i 0.00540074 0.999985i \(-0.498281\pi\)
−0.863312 + 0.504670i \(0.831614\pi\)
\(150\) 0 0
\(151\) 1341.50 + 2323.55i 0.0588351 + 0.101905i 0.893943 0.448181i \(-0.147928\pi\)
−0.835108 + 0.550087i \(0.814595\pi\)
\(152\) 20976.0i 0.907895i
\(153\) 0 0
\(154\) −7011.00 −0.295623
\(155\) 6830.34 3943.50i 0.284301 0.164142i
\(156\) 0 0
\(157\) 16058.0 27813.3i 0.651467 1.12837i −0.331301 0.943525i \(-0.607487\pi\)
0.982767 0.184848i \(-0.0591793\pi\)
\(158\) 27149.9 + 15675.0i 1.08756 + 0.627904i
\(159\) 0 0
\(160\) 13513.5 + 23406.1i 0.527871 + 0.914300i
\(161\) 5700.00i 0.219899i
\(162\) 0 0
\(163\) 22790.0 0.857767 0.428883 0.903360i \(-0.358907\pi\)
0.428883 + 0.903360i \(0.358907\pi\)
\(164\) −1382.18 + 798.000i −0.0513897 + 0.0296698i
\(165\) 0 0
\(166\) −18949.5 + 32821.5i −0.687672 + 1.19108i
\(167\) −31244.5 18039.0i −1.12031 0.646814i −0.178834 0.983879i \(-0.557232\pi\)
−0.941481 + 0.337065i \(0.890566\pi\)
\(168\) 0 0
\(169\) −31321.5 54250.4i −1.09665 1.89946i
\(170\) 40986.0i 1.41820i
\(171\) 0 0
\(172\) −6874.00 −0.232355
\(173\) −17082.4 + 9862.50i −0.570763 + 0.329530i −0.757454 0.652889i \(-0.773557\pi\)
0.186691 + 0.982419i \(0.440224\pi\)
\(174\) 0 0
\(175\) −4408.00 + 7634.88i −0.143935 + 0.249302i
\(176\) −10119.5 5842.50i −0.326689 0.188614i
\(177\) 0 0
\(178\) 10503.0 + 18191.7i 0.331492 + 0.574161i
\(179\) 48915.0i 1.52664i 0.646022 + 0.763319i \(0.276431\pi\)
−0.646022 + 0.763319i \(0.723569\pi\)
\(180\) 0 0
\(181\) −49552.0 −1.51253 −0.756265 0.654265i \(-0.772978\pi\)
−0.756265 + 0.654265i \(0.772978\pi\)
\(182\) −14907.8 + 8607.00i −0.450059 + 0.259842i
\(183\) 0 0
\(184\) −10350.0 + 17926.7i −0.305707 + 0.529499i
\(185\) −21148.3 12210.0i −0.617921 0.356757i
\(186\) 0 0
\(187\) 25461.0 + 44099.7i 0.728102 + 1.26111i
\(188\) 15162.0i 0.428984i
\(189\) 0 0
\(190\) 30096.0 0.833684
\(191\) 39308.9 22695.0i 1.07752 0.622105i 0.147291 0.989093i \(-0.452944\pi\)
0.930225 + 0.366988i \(0.119611\pi\)
\(192\) 0 0
\(193\) −17723.5 + 30698.0i −0.475811 + 0.824130i −0.999616 0.0277089i \(-0.991179\pi\)
0.523805 + 0.851838i \(0.324512\pi\)
\(194\) 16931.7 + 9775.50i 0.449879 + 0.259738i
\(195\) 0 0
\(196\) 7140.00 + 12366.8i 0.185860 + 0.321919i
\(197\) 35739.0i 0.920895i −0.887687 0.460447i \(-0.847689\pi\)
0.887687 0.460447i \(-0.152311\pi\)
\(198\) 0 0
\(199\) −31255.0 −0.789248 −0.394624 0.918843i \(-0.629125\pi\)
−0.394624 + 0.918843i \(0.629125\pi\)
\(200\) −27726.7 + 16008.0i −0.693167 + 0.400200i
\(201\) 0 0
\(202\) −8878.50 + 15378.0i −0.217589 + 0.376875i
\(203\) 11156.1 + 6441.00i 0.270721 + 0.156301i
\(204\) 0 0
\(205\) −3762.00 6515.98i −0.0895181 0.155050i
\(206\) 22962.0i 0.541097i
\(207\) 0 0
\(208\) −28690.0 −0.663138
\(209\) 32382.4 18696.0i 0.741339 0.428012i
\(210\) 0 0
\(211\) 7526.00 13035.4i 0.169044 0.292792i −0.769040 0.639201i \(-0.779265\pi\)
0.938084 + 0.346408i \(0.112599\pi\)
\(212\) −9657.05 5575.50i −0.214868 0.124054i
\(213\) 0 0
\(214\) 769.500 + 1332.81i 0.0168028 + 0.0291033i
\(215\) 32406.0i 0.701049i
\(216\) 0 0
\(217\) −4541.00 −0.0964344
\(218\) 6037.93 3486.00i 0.127050 0.0733524i
\(219\) 0 0
\(220\) −14206.5 + 24606.4i −0.293523 + 0.508396i
\(221\) 108277. + 62514.0i 2.21694 + 1.27995i
\(222\) 0 0
\(223\) −25087.0 43452.0i −0.504474 0.873775i −0.999987 0.00517415i \(-0.998353\pi\)
0.495512 0.868601i \(-0.334980\pi\)
\(224\) 15561.0i 0.310128i
\(225\) 0 0
\(226\) −14760.0 −0.288981
\(227\) −16684.8 + 9633.00i −0.323795 + 0.186943i −0.653083 0.757286i \(-0.726525\pi\)
0.329288 + 0.944230i \(0.393191\pi\)
\(228\) 0 0
\(229\) −17107.0 + 29630.2i −0.326214 + 0.565020i −0.981757 0.190138i \(-0.939106\pi\)
0.655543 + 0.755158i \(0.272440\pi\)
\(230\) −25721.0 14850.0i −0.486218 0.280718i
\(231\) 0 0
\(232\) 23391.0 + 40514.4i 0.434583 + 0.752720i
\(233\) 37386.0i 0.688648i 0.938851 + 0.344324i \(0.111892\pi\)
−0.938851 + 0.344324i \(0.888108\pi\)
\(234\) 0 0
\(235\) 71478.0 1.29431
\(236\) 17713.7 10227.0i 0.318042 0.183622i
\(237\) 0 0
\(238\) 11799.0 20436.5i 0.208301 0.360788i
\(239\) −53520.4 30900.0i −0.936965 0.540957i −0.0479573 0.998849i \(-0.515271\pi\)
−0.889008 + 0.457892i \(0.848604\pi\)
\(240\) 0 0
\(241\) −20695.0 35844.8i −0.356313 0.617152i 0.631029 0.775759i \(-0.282633\pi\)
−0.987342 + 0.158607i \(0.949300\pi\)
\(242\) 1464.00i 0.0249983i
\(243\) 0 0
\(244\) −2212.00 −0.0371540
\(245\) −58300.8 + 33660.0i −0.971276 + 0.560766i
\(246\) 0 0
\(247\) 45904.0 79508.1i 0.752414 1.30322i
\(248\) −14281.6 8245.50i −0.232206 0.134064i
\(249\) 0 0
\(250\) 7969.50 + 13803.6i 0.127512 + 0.220857i
\(251\) 82818.0i 1.31455i 0.753651 + 0.657275i \(0.228291\pi\)
−0.753651 + 0.657275i \(0.771709\pi\)
\(252\) 0 0
\(253\) −36900.0 −0.576481
\(254\) 64938.9 37492.5i 1.00656 0.581135i
\(255\) 0 0
\(256\) 33575.5 58154.5i 0.512321 0.887367i
\(257\) −16965.4 9795.00i −0.256861 0.148299i 0.366041 0.930599i \(-0.380713\pi\)
−0.622902 + 0.782300i \(0.714046\pi\)
\(258\) 0 0
\(259\) 7030.00 + 12176.3i 0.104799 + 0.181517i
\(260\) 69762.0i 1.03198i
\(261\) 0 0
\(262\) 85383.0 1.24385
\(263\) −14455.7 + 8346.00i −0.208991 + 0.120661i −0.600842 0.799368i \(-0.705168\pi\)
0.391851 + 0.920029i \(0.371835\pi\)
\(264\) 0 0
\(265\) 26284.5 45526.1i 0.374290 0.648289i
\(266\) −15006.5 8664.00i −0.212088 0.122449i
\(267\) 0 0
\(268\) −16177.0 28019.4i −0.225231 0.390112i
\(269\) 120906.i 1.67087i −0.549587 0.835436i \(-0.685215\pi\)
0.549587 0.835436i \(-0.314785\pi\)
\(270\) 0 0
\(271\) 73739.0 1.00406 0.502029 0.864851i \(-0.332587\pi\)
0.502029 + 0.864851i \(0.332587\pi\)
\(272\) 34060.8 19665.0i 0.460380 0.265801i
\(273\) 0 0
\(274\) −3681.00 + 6375.68i −0.0490303 + 0.0849230i
\(275\) −49425.8 28536.0i −0.653564 0.377336i
\(276\) 0 0
\(277\) −5998.00 10388.8i −0.0781712 0.135397i 0.824290 0.566168i \(-0.191575\pi\)
−0.902461 + 0.430772i \(0.858241\pi\)
\(278\) 35652.0i 0.461312i
\(279\) 0 0
\(280\) 43263.0 0.551824
\(281\) −44276.4 + 25563.0i −0.560738 + 0.323742i −0.753442 0.657515i \(-0.771608\pi\)
0.192704 + 0.981257i \(0.438274\pi\)
\(282\) 0 0
\(283\) 524.000 907.595i 0.00654272 0.0113323i −0.862736 0.505655i \(-0.831251\pi\)
0.869278 + 0.494323i \(0.164584\pi\)
\(284\) 11021.0 + 6363.00i 0.136643 + 0.0788906i
\(285\) 0 0
\(286\) −55719.0 96508.1i −0.681195 1.17986i
\(287\) 4332.00i 0.0525926i
\(288\) 0 0
\(289\) −87875.0 −1.05213
\(290\) −58129.4 + 33561.0i −0.691193 + 0.399061i
\(291\) 0 0
\(292\) 10608.5 18374.5i 0.124419 0.215501i
\(293\) 55583.2 + 32091.0i 0.647454 + 0.373807i 0.787480 0.616340i \(-0.211385\pi\)
−0.140026 + 0.990148i \(0.544719\pi\)
\(294\) 0 0
\(295\) 48213.0 + 83507.4i 0.554013 + 0.959579i
\(296\) 51060.0i 0.582770i
\(297\) 0 0
\(298\) −65979.0 −0.742973
\(299\) −78461.9 + 45300.0i −0.877640 + 0.506706i
\(300\) 0 0
\(301\) −9329.00 + 16158.3i −0.102968 + 0.178346i
\(302\) 6970.64 + 4024.50i 0.0764291 + 0.0441264i
\(303\) 0 0
\(304\) −14440.0 25010.8i −0.156250 0.270633i
\(305\) 10428.0i 0.112099i
\(306\) 0 0
\(307\) 154154. 1.63560 0.817802 0.575500i \(-0.195193\pi\)
0.817802 + 0.575500i \(0.195193\pi\)
\(308\) 14167.3 8179.50i 0.149343 0.0862234i
\(309\) 0 0
\(310\) 11830.5 20491.0i 0.123106 0.213226i
\(311\) 81475.7 + 47040.0i 0.842378 + 0.486347i 0.858072 0.513530i \(-0.171662\pi\)
−0.0156936 + 0.999877i \(0.504996\pi\)
\(312\) 0 0
\(313\) 12951.5 + 22432.7i 0.132200 + 0.228977i 0.924524 0.381123i \(-0.124463\pi\)
−0.792324 + 0.610100i \(0.791129\pi\)
\(314\) 96348.0i 0.977200i
\(315\) 0 0
\(316\) −73150.0 −0.732555
\(317\) 83868.5 48421.5i 0.834604 0.481859i −0.0208226 0.999783i \(-0.506629\pi\)
0.855426 + 0.517924i \(0.173295\pi\)
\(318\) 0 0
\(319\) −41697.0 + 72221.3i −0.409754 + 0.709715i
\(320\) 113658. + 65620.5i 1.10994 + 0.640825i
\(321\) 0 0
\(322\) 8550.00 + 14809.0i 0.0824621 + 0.142829i
\(323\) 125856.i 1.20634i
\(324\) 0 0
\(325\) −140128. −1.32666
\(326\) 59210.2 34185.0i 0.557136 0.321662i
\(327\) 0 0
\(328\) −7866.00 + 13624.3i −0.0731150 + 0.126639i
\(329\) −35640.4 20577.0i −0.329269 0.190104i
\(330\) 0 0
\(331\) 82427.0 + 142768.i 0.752339 + 1.30309i 0.946686 + 0.322156i \(0.104408\pi\)
−0.194348 + 0.980933i \(0.562259\pi\)
\(332\) 88431.0i 0.802284i
\(333\) 0 0
\(334\) −108234. −0.970221
\(335\) 132091. 76263.0i 1.17702 0.679554i
\(336\) 0 0
\(337\) −74347.0 + 128773.i −0.654642 + 1.13387i 0.327342 + 0.944906i \(0.393847\pi\)
−0.981984 + 0.188967i \(0.939486\pi\)
\(338\) −162751. 93964.5i −1.42459 0.822490i
\(339\) 0 0
\(340\) −47817.0 82821.5i −0.413642 0.716449i
\(341\) 29397.0i 0.252810i
\(342\) 0 0
\(343\) 84379.0 0.717210
\(344\) −58680.1 + 33879.0i −0.495877 + 0.286295i
\(345\) 0 0
\(346\) −29587.5 + 51247.1i −0.247147 + 0.428072i
\(347\) −93247.6 53836.5i −0.774423 0.447114i 0.0600269 0.998197i \(-0.480881\pi\)
−0.834450 + 0.551083i \(0.814215\pi\)
\(348\) 0 0
\(349\) −63760.0 110436.i −0.523477 0.906688i −0.999627 0.0273243i \(-0.991301\pi\)
0.476150 0.879364i \(-0.342032\pi\)
\(350\) 26448.0i 0.215902i
\(351\) 0 0
\(352\) 100737. 0.813025
\(353\) 123066. 71052.0i 0.987615 0.570200i 0.0830542 0.996545i \(-0.473533\pi\)
0.904560 + 0.426345i \(0.140199\pi\)
\(354\) 0 0
\(355\) −29997.0 + 51956.3i −0.238024 + 0.412270i
\(356\) −42447.4 24507.0i −0.334927 0.193370i
\(357\) 0 0
\(358\) 73372.5 + 127085.i 0.572489 + 0.991580i
\(359\) 19422.0i 0.150697i 0.997157 + 0.0753486i \(0.0240069\pi\)
−0.997157 + 0.0753486i \(0.975993\pi\)
\(360\) 0 0
\(361\) −37905.0 −0.290859
\(362\) −128740. + 74328.0i −0.982417 + 0.567199i
\(363\) 0 0
\(364\) 20083.0 34784.8i 0.151574 0.262535i
\(365\) 86622.5 + 50011.5i 0.650197 + 0.375391i
\(366\) 0 0
\(367\) 75672.5 + 131069.i 0.561831 + 0.973120i 0.997337 + 0.0729343i \(0.0232363\pi\)
−0.435505 + 0.900186i \(0.643430\pi\)
\(368\) 28500.0i 0.210450i
\(369\) 0 0
\(370\) −73260.0 −0.535135
\(371\) −26212.0 + 15133.5i −0.190437 + 0.109949i
\(372\) 0 0
\(373\) −118753. + 205686.i −0.853546 + 1.47839i 0.0244414 + 0.999701i \(0.492219\pi\)
−0.877987 + 0.478684i \(0.841114\pi\)
\(374\) 132299. + 76383.0i 0.945832 + 0.546077i
\(375\) 0 0
\(376\) −74727.0 129431.i −0.528569 0.915509i
\(377\) 204756.i 1.44063i
\(378\) 0 0
\(379\) −261952. −1.82366 −0.911829 0.410571i \(-0.865330\pi\)
−0.911829 + 0.410571i \(0.865330\pi\)
\(380\) −60815.8 + 35112.0i −0.421162 + 0.243158i
\(381\) 0 0
\(382\) 68085.0 117927.i 0.466578 0.808138i
\(383\) −75484.5 43581.0i −0.514589 0.297098i 0.220129 0.975471i \(-0.429352\pi\)
−0.734718 + 0.678373i \(0.762685\pi\)
\(384\) 0 0
\(385\) 38560.5 + 66788.7i 0.260148 + 0.450590i
\(386\) 106341.i 0.713717i
\(387\) 0 0
\(388\) −45619.0 −0.303028
\(389\) −207277. + 119672.i −1.36978 + 0.790845i −0.990900 0.134599i \(-0.957025\pi\)
−0.378884 + 0.925444i \(0.623692\pi\)
\(390\) 0 0
\(391\) 62100.0 107560.i 0.406198 0.703556i
\(392\) 121902. + 70380.0i 0.793301 + 0.458012i
\(393\) 0 0
\(394\) −53608.5 92852.6i −0.345335 0.598139i
\(395\) 344850.i 2.21022i
\(396\) 0 0
\(397\) 217154. 1.37780 0.688901 0.724855i \(-0.258093\pi\)
0.688901 + 0.724855i \(0.258093\pi\)
\(398\) −81202.9 + 46882.5i −0.512631 + 0.295968i
\(399\) 0 0
\(400\) −22040.0 + 38174.4i −0.137750 + 0.238590i
\(401\) −221876. 128100.i −1.37982 0.796637i −0.387679 0.921795i \(-0.626723\pi\)
−0.992137 + 0.125158i \(0.960056\pi\)
\(402\) 0 0
\(403\) −36089.0 62508.0i −0.222211 0.384880i
\(404\) 41433.0i 0.253854i
\(405\) 0 0
\(406\) 38646.0 0.234451
\(407\) −78825.6 + 45510.0i −0.475859 + 0.274738i
\(408\) 0 0
\(409\) 99645.5 172591.i 0.595677 1.03174i −0.397774 0.917484i \(-0.630217\pi\)
0.993451 0.114260i \(-0.0364496\pi\)
\(410\) −19547.9 11286.0i −0.116287 0.0671386i
\(411\) 0 0
\(412\) 26789.0 + 46399.9i 0.157820 + 0.273352i
\(413\) 55518.0i 0.325487i
\(414\) 0 0
\(415\) 416889. 2.42061
\(416\) 214201. 123669.i 1.23776 0.714618i
\(417\) 0 0
\(418\) 56088.0 97147.3i 0.321009 0.556004i
\(419\) 217610. + 125637.i 1.23951 + 0.715632i 0.968994 0.247084i \(-0.0794723\pi\)
0.270516 + 0.962715i \(0.412806\pi\)
\(420\) 0 0
\(421\) 15206.0 + 26337.6i 0.0857928 + 0.148597i 0.905729 0.423858i \(-0.139324\pi\)
−0.819936 + 0.572455i \(0.805991\pi\)
\(422\) 45156.0i 0.253566i
\(423\) 0 0
\(424\) −109917. −0.611411
\(425\) 166360. 96048.0i 0.921024 0.531754i
\(426\) 0 0
\(427\) −3002.00 + 5199.62i −0.0164647 + 0.0285178i
\(428\) −3109.90 1795.50i −0.0169769 0.00980162i
\(429\) 0 0
\(430\) −48609.0 84193.3i −0.262893 0.455345i
\(431\) 161730.i 0.870635i −0.900277 0.435317i \(-0.856636\pi\)
0.900277 0.435317i \(-0.143364\pi\)
\(432\) 0 0
\(433\) −213541. −1.13895 −0.569476 0.822008i \(-0.692854\pi\)
−0.569476 + 0.822008i \(0.692854\pi\)
\(434\) −11797.9 + 6811.50i −0.0626360 + 0.0361629i
\(435\) 0 0
\(436\) −8134.00 + 14088.5i −0.0427889 + 0.0741126i
\(437\) −78981.5 45600.0i −0.413583 0.238782i
\(438\) 0 0
\(439\) −33362.5 57785.5i −0.173113 0.299840i 0.766394 0.642371i \(-0.222049\pi\)
−0.939507 + 0.342531i \(0.888716\pi\)
\(440\) 280071.i 1.44665i
\(441\) 0 0
\(442\) 375084. 1.91992
\(443\) 237438. 137085.i 1.20988 0.698526i 0.247149 0.968978i \(-0.420506\pi\)
0.962734 + 0.270452i \(0.0871730\pi\)
\(444\) 0 0
\(445\) 115533. 200109.i 0.583426 1.01052i
\(446\) −130356. 75261.0i −0.655331 0.378356i
\(447\) 0 0
\(448\) −37781.5 65439.5i −0.188245 0.326050i
\(449\) 233784.i 1.15964i 0.814746 + 0.579819i \(0.196877\pi\)
−0.814746 + 0.579819i \(0.803123\pi\)
\(450\) 0 0
\(451\) −28044.0 −0.137875
\(452\) 29825.9 17220.0i 0.145988 0.0842862i
\(453\) 0 0
\(454\) −28899.0 + 50054.5i −0.140207 + 0.242846i
\(455\) 163985. + 94677.0i 0.792104 + 0.457322i
\(456\) 0 0
\(457\) 45333.5 + 78519.9i 0.217064 + 0.375965i 0.953909 0.300096i \(-0.0970188\pi\)
−0.736845 + 0.676061i \(0.763685\pi\)
\(458\) 102642.i 0.489321i
\(459\) 0 0
\(460\) 69300.0 0.327505
\(461\) −174900. + 100978.i −0.822977 + 0.475146i −0.851442 0.524449i \(-0.824271\pi\)
0.0284650 + 0.999595i \(0.490938\pi\)
\(462\) 0 0
\(463\) 161988. 280572.i 0.755653 1.30883i −0.189397 0.981901i \(-0.560653\pi\)
0.945049 0.326928i \(-0.106013\pi\)
\(464\) 55780.7 + 32205.0i 0.259088 + 0.149585i
\(465\) 0 0
\(466\) 56079.0 + 97131.7i 0.258243 + 0.447290i
\(467\) 76941.0i 0.352796i −0.984319 0.176398i \(-0.943555\pi\)
0.984319 0.176398i \(-0.0564446\pi\)
\(468\) 0 0
\(469\) −87818.0 −0.399244
\(470\) 185705. 107217.i 0.840676 0.485364i
\(471\) 0 0
\(472\) 100809. 174606.i 0.452497 0.783747i
\(473\) −104604. 60393.0i −0.467547 0.269938i
\(474\) 0 0
\(475\) −70528.0 122158.i −0.312589 0.541421i
\(476\) 55062.0i 0.243018i
\(477\) 0 0
\(478\) −185400. −0.811435
\(479\) −167332. + 96609.0i −0.729302 + 0.421062i −0.818167 0.574981i \(-0.805009\pi\)
0.0888650 + 0.996044i \(0.471676\pi\)
\(480\) 0 0
\(481\) −111740. + 193539.i −0.482968 + 0.836525i
\(482\) −107534. 62085.0i −0.462864 0.267235i
\(483\) 0 0
\(484\) 1708.00 + 2958.34i 0.00729117 + 0.0126287i
\(485\) 215061.i 0.914278i
\(486\) 0 0
\(487\) −34882.0 −0.147077 −0.0735383 0.997292i \(-0.523429\pi\)
−0.0735383 + 0.997292i \(0.523429\pi\)
\(488\) −18882.8 + 10902.0i −0.0792916 + 0.0457790i
\(489\) 0 0
\(490\) −100980. + 174902.i −0.420575 + 0.728457i
\(491\) 187968. + 108524.i 0.779689 + 0.450154i 0.836320 0.548241i \(-0.184703\pi\)
−0.0566310 + 0.998395i \(0.518036\pi\)
\(492\) 0 0
\(493\) −140346. 243086.i −0.577439 1.00015i
\(494\) 275424.i 1.12862i
\(495\) 0 0
\(496\) −22705.0 −0.0922907
\(497\) 29914.2 17271.0i 0.121106 0.0699205i
\(498\) 0 0
\(499\) −232405. + 402537.i −0.933350 + 1.61661i −0.155799 + 0.987789i \(0.549795\pi\)
−0.777551 + 0.628820i \(0.783538\pi\)
\(500\) −32208.4 18595.5i −0.128833 0.0743820i
\(501\) 0 0
\(502\) 124227. + 215167.i 0.492956 + 0.853826i
\(503\) 167580.i 0.662348i 0.943570 + 0.331174i \(0.107445\pi\)
−0.943570 + 0.331174i \(0.892555\pi\)
\(504\) 0 0
\(505\) 195327. 0.765913
\(506\) −95869.0 + 55350.0i −0.374436 + 0.216181i
\(507\) 0 0
\(508\) −87482.5 + 151524.i −0.338995 + 0.587157i
\(509\) 30914.5 + 17848.5i 0.119324 + 0.0688916i 0.558474 0.829522i \(-0.311387\pi\)
−0.439150 + 0.898414i \(0.644720\pi\)
\(510\) 0 0
\(511\) −28794.5 49873.5i −0.110273 0.190998i
\(512\) 182685.i 0.696888i
\(513\) 0 0
\(514\) −58770.0 −0.222448
\(515\) −218742. + 126291.i −0.824743 + 0.476166i
\(516\) 0 0
\(517\) 133209. 230725.i 0.498371 0.863203i
\(518\) 36529.0 + 21090.0i 0.136137 + 0.0785990i
\(519\) 0 0
\(520\) 343827. + 595526.i 1.27155 + 2.20239i
\(521\) 42750.0i 0.157493i 0.996895 + 0.0787464i \(0.0250917\pi\)
−0.996895 + 0.0787464i \(0.974908\pi\)
\(522\) 0 0
\(523\) −176434. −0.645028 −0.322514 0.946565i \(-0.604528\pi\)
−0.322514 + 0.946565i \(0.604528\pi\)
\(524\) −172536. + 99613.5i −0.628371 + 0.362790i
\(525\) 0 0
\(526\) −25038.0 + 43367.1i −0.0904957 + 0.156743i
\(527\) 85689.7 + 49473.0i 0.308537 + 0.178134i
\(528\) 0 0
\(529\) −94920.5 164407.i −0.339194 0.587502i
\(530\) 157707.i 0.561435i
\(531\) 0 0
\(532\) 40432.0 0.142857
\(533\) −59631.0 + 34428.0i −0.209903 + 0.121187i
\(534\) 0 0
\(535\) 8464.50 14660.9i 0.0295729 0.0512217i
\(536\) −276191. 159459.i −0.961347 0.555034i
\(537\) 0 0
\(538\) −181359. 314123.i −0.626577 1.08526i
\(539\) 250920.i 0.863690i
\(540\) 0 0
\(541\) −323836. −1.10645 −0.553223 0.833033i \(-0.686602\pi\)
−0.553223 + 0.833033i \(0.686602\pi\)
\(542\) 191580. 110609.i 0.652155 0.376522i
\(543\) 0 0
\(544\) −169533. + 293640.i −0.572870 + 0.992241i
\(545\) −66417.2 38346.0i −0.223608 0.129100i
\(546\) 0 0
\(547\) 111695. + 193461.i 0.373301 + 0.646576i 0.990071 0.140567i \(-0.0448926\pi\)
−0.616770 + 0.787143i \(0.711559\pi\)
\(548\) 17178.0i 0.0572020i
\(549\) 0 0
\(550\) −171216. −0.566003
\(551\) −178498. + 103056.i −0.587937 + 0.339446i
\(552\) 0 0
\(553\) −99275.0 + 171949.i −0.324631 + 0.562277i
\(554\) −31166.5 17994.0i −0.101547 0.0586284i
\(555\) 0 0
\(556\) 41594.0 + 72042.9i 0.134549 + 0.233046i
\(557\) 585027.i 1.88567i 0.333261 + 0.942835i \(0.391851\pi\)
−0.333261 + 0.942835i \(0.608149\pi\)
\(558\) 0 0
\(559\) −296564. −0.949063
\(560\) 51584.8 29782.5i 0.164492 0.0949697i
\(561\) 0 0
\(562\) −76689.0 + 132829.i −0.242807 + 0.420553i
\(563\) −72811.1 42037.5i −0.229710 0.132623i 0.380728 0.924687i \(-0.375673\pi\)
−0.610438 + 0.792064i \(0.709007\pi\)
\(564\) 0 0
\(565\) 81180.0 + 140608.i 0.254303 + 0.440466i
\(566\) 3144.00i 0.00981408i
\(567\) 0 0
\(568\) 125442. 0.388818
\(569\) 551998. 318696.i 1.70495 0.984356i 0.764381 0.644765i \(-0.223045\pi\)
0.940573 0.339591i \(-0.110289\pi\)
\(570\) 0 0
\(571\) −40363.0 + 69910.8i −0.123797 + 0.214423i −0.921262 0.388942i \(-0.872841\pi\)
0.797465 + 0.603365i \(0.206174\pi\)
\(572\) 225186. + 130011.i 0.688254 + 0.397364i
\(573\) 0 0
\(574\) 6498.00 + 11254.9i 0.0197222 + 0.0341599i
\(575\) 139200.i 0.421021i
\(576\) 0 0
\(577\) 261182. 0.784498 0.392249 0.919859i \(-0.371697\pi\)
0.392249 + 0.919859i \(0.371697\pi\)
\(578\) −228306. + 131812.i −0.683379 + 0.394549i
\(579\) 0 0
\(580\) 78309.0 135635.i 0.232785 0.403196i
\(581\) −207869. 120013.i −0.615798 0.355531i
\(582\) 0 0
\(583\) −97969.5 169688.i −0.288240 0.499246i
\(584\) 209139.i 0.613210i
\(585\) 0 0
\(586\) 192546. 0.560711
\(587\) 338880. 195652.i 0.983490 0.567818i 0.0801678 0.996781i \(-0.474454\pi\)
0.903322 + 0.428963i \(0.141121\pi\)
\(588\) 0 0
\(589\) 36328.0 62921.9i 0.104715 0.181373i
\(590\) 250522. + 144639.i 0.719684 + 0.415510i
\(591\) 0 0
\(592\) 35150.0 + 60881.6i 0.100296 + 0.173717i
\(593\) 302670.i 0.860716i −0.902658 0.430358i \(-0.858387\pi\)
0.902658 0.430358i \(-0.141613\pi\)
\(594\) 0 0
\(595\) −259578. −0.733219
\(596\) 133325. 76975.5i 0.375336 0.216701i
\(597\) 0 0
\(598\) −135900. + 235386.i −0.380029 + 0.658230i
\(599\) −252445. 145749.i −0.703579 0.406211i 0.105100 0.994462i \(-0.466484\pi\)
−0.808679 + 0.588250i \(0.799817\pi\)
\(600\) 0 0
\(601\) −201087. 348292.i −0.556716 0.964261i −0.997768 0.0667792i \(-0.978728\pi\)
0.441051 0.897482i \(-0.354606\pi\)
\(602\) 55974.0i 0.154452i
\(603\) 0 0
\(604\) −18781.0 −0.0514807
\(605\) −13946.5 + 8052.00i −0.0381025 + 0.0219985i
\(606\) 0 0
\(607\) 189335. 327938.i 0.513870 0.890049i −0.486000 0.873959i \(-0.661545\pi\)
0.999871 0.0160908i \(-0.00512208\pi\)
\(608\) 215620. + 124488.i 0.583285 + 0.336760i
\(609\) 0 0
\(610\) −15642.0 27092.7i −0.0420371 0.0728104i
\(611\) 654132.i 1.75220i
\(612\) 0 0
\(613\) 287570. 0.765284 0.382642 0.923897i \(-0.375014\pi\)
0.382642 + 0.923897i \(0.375014\pi\)
\(614\) 400504. 231231.i 1.06236 0.613351i
\(615\) 0 0
\(616\) 80626.5 139649.i 0.212479 0.368025i
\(617\) 499059. + 288132.i 1.31094 + 0.756870i 0.982251 0.187570i \(-0.0600610\pi\)
0.328686 + 0.944439i \(0.393394\pi\)
\(618\) 0 0
\(619\) −111631. 193351.i −0.291342 0.504620i 0.682785 0.730619i \(-0.260769\pi\)
−0.974127 + 0.226000i \(0.927435\pi\)
\(620\) 55209.0i 0.143624i
\(621\) 0 0
\(622\) 282240. 0.729521
\(623\) −115214. + 66519.0i −0.296845 + 0.171384i
\(624\) 0 0
\(625\) 232664. 402987.i 0.595621 1.03165i
\(626\) 67298.0 + 38854.5i 0.171733 + 0.0991500i
\(627\) 0 0
\(628\) 112406. + 194693.i 0.285017 + 0.493663i
\(629\) 306360.i 0.774338i
\(630\) 0 0
\(631\) 43373.0 0.108933 0.0544667 0.998516i \(-0.482654\pi\)
0.0544667 + 0.998516i \(0.482654\pi\)
\(632\) −624448. + 360525.i −1.56337 + 0.902612i
\(633\) 0 0
\(634\) 145264. 251605.i 0.361394 0.625953i
\(635\) −714328. 412418.i −1.77154 1.02280i
\(636\) 0 0
\(637\) 308040. + 533541.i 0.759151 + 1.31489i
\(638\) 250182.i 0.614631i
\(639\) 0 0
\(640\) −38709.0 −0.0945044
\(641\) −366692. + 211710.i −0.892454 + 0.515259i −0.874744 0.484584i \(-0.838971\pi\)
−0.0177097 + 0.999843i \(0.505637\pi\)
\(642\) 0 0
\(643\) 273044. 472926.i 0.660406 1.14386i −0.320104 0.947383i \(-0.603718\pi\)
0.980509 0.196473i \(-0.0629489\pi\)
\(644\) −34554.4 19950.0i −0.0833166 0.0481029i
\(645\) 0 0
\(646\) 188784. + 326983.i 0.452377 + 0.783539i
\(647\) 418932.i 1.00077i 0.865803 + 0.500386i \(0.166808\pi\)
−0.865803 + 0.500386i \(0.833192\pi\)
\(648\) 0 0
\(649\) 359406. 0.853289
\(650\) −364063. + 210192.i −0.861688 + 0.497496i
\(651\) 0 0
\(652\) −79765.0 + 138157.i −0.187636 + 0.324996i
\(653\) 608997. + 351604.i 1.42820 + 0.824571i 0.996979 0.0776757i \(-0.0247499\pi\)
0.431220 + 0.902247i \(0.358083\pi\)
\(654\) 0 0
\(655\) −469606. 813382.i −1.09459 1.89589i
\(656\) 21660.0i 0.0503328i
\(657\) 0 0
\(658\) −123462. −0.285155
\(659\) −88352.8 + 51010.5i −0.203446 + 0.117460i −0.598262 0.801301i \(-0.704142\pi\)
0.394816 + 0.918760i \(0.370808\pi\)
\(660\) 0 0
\(661\) −115360. + 199809.i −0.264029 + 0.457312i −0.967309 0.253601i \(-0.918385\pi\)
0.703279 + 0.710914i \(0.251718\pi\)
\(662\) 428303. + 247281.i 0.977317 + 0.564254i
\(663\) 0 0
\(664\) −435838. 754894.i −0.988529 1.71218i
\(665\) 190608.i 0.431020i
\(666\) 0 0
\(667\) 203400. 0.457193
\(668\) 218711. 126273.i 0.490138 0.282981i
\(669\) 0 0
\(670\) 228789. 396274.i 0.509666 0.882767i
\(671\) −33660.7 19434.0i −0.0747615 0.0431636i
\(672\) 0 0
\(673\) 234684. + 406485.i 0.518149 + 0.897460i 0.999778 + 0.0210845i \(0.00671189\pi\)
−0.481629 + 0.876375i \(0.659955\pi\)
\(674\) 446082.i 0.981963i
\(675\) 0 0
\(676\) 438501. 0.959571
\(677\) 297173. 171573.i 0.648384 0.374345i −0.139453 0.990229i \(-0.544534\pi\)
0.787837 + 0.615884i \(0.211201\pi\)
\(678\) 0 0
\(679\) −61911.5 + 107234.i −0.134286 + 0.232591i
\(680\) −816383. 471339.i −1.76553 1.01933i
\(681\) 0 0
\(682\) −44095.5 76375.6i −0.0948038 0.164205i
\(683\) 24642.0i 0.0528244i −0.999651 0.0264122i \(-0.991592\pi\)
0.999651 0.0264122i \(-0.00840824\pi\)
\(684\) 0 0
\(685\) 80982.0 0.172587
\(686\) 219223. 126568.i 0.465841 0.268954i
\(687\) 0 0
\(688\) −46645.0 + 80791.5i −0.0985436 + 0.170682i
\(689\) −416633. 240543.i −0.877637 0.506704i
\(690\) 0 0
\(691\) 133250. + 230796.i 0.279069 + 0.483361i 0.971154 0.238455i \(-0.0766409\pi\)
−0.692085 + 0.721816i \(0.743308\pi\)
\(692\) 138075.i 0.288339i
\(693\) 0 0
\(694\) −323019. −0.670670
\(695\) −339631. + 196086.i −0.703133 + 0.405954i
\(696\) 0 0
\(697\) 47196.0 81745.9i 0.0971493 0.168268i
\(698\) −331307. 191280.i −0.680016 0.392608i
\(699\) 0 0
\(700\) −30856.0 53444.2i −0.0629714 0.109070i
\(701\) 690309.i 1.40478i −0.711794 0.702389i \(-0.752117\pi\)
0.711794 0.702389i \(-0.247883\pi\)
\(702\) 0 0
\(703\) −224960. −0.455192
\(704\) 423635. 244586.i 0.854764 0.493498i
\(705\) 0 0
\(706\) 213156. 369197.i 0.427650 0.740711i
\(707\) −97394.1 56230.5i −0.194847 0.112495i
\(708\) 0 0
\(709\) 52592.0 + 91092.0i 0.104623 + 0.181212i 0.913584 0.406650i \(-0.133303\pi\)
−0.808961 + 0.587862i \(0.799970\pi\)
\(710\) 179982.i 0.357036i
\(711\) 0 0
\(712\) −483138. −0.953040
\(713\) −62094.0 + 35850.0i −0.122144 + 0.0705196i
\(714\) 0 0
\(715\) −612909. + 1.06159e6i −1.19890 + 2.07656i
\(716\) −296531. 171202.i −0.578422 0.333952i
\(717\) 0 0
\(718\) 29133.0 + 50459.8i 0.0565114 + 0.0978807i
\(719\) 704988.i 1.36372i 0.731485 + 0.681858i \(0.238828\pi\)
−0.731485 + 0.681858i \(0.761172\pi\)
\(720\) 0 0
\(721\) 145426. 0.279751
\(722\) −98480.1 + 56857.5i −0.188918 + 0.109072i
\(723\) 0 0
\(724\) 173432. 300393.i 0.330866 0.573077i
\(725\) 272445. + 157296.i 0.518325 + 0.299255i
\(726\) 0 0
\(727\) −63044.5 109196.i −0.119283 0.206604i 0.800201 0.599732i \(-0.204726\pi\)
−0.919484 + 0.393128i \(0.871393\pi\)
\(728\) 395922.i 0.747045i
\(729\) 0 0
\(730\) 300069. 0.563087
\(731\) 352081. 203274.i 0.658882 0.380406i
\(732\) 0 0
\(733\) −48868.0 + 84641.9i −0.0909529 + 0.157535i −0.907912 0.419160i \(-0.862325\pi\)
0.816959 + 0.576695i \(0.195658\pi\)
\(734\) 393206. + 227018.i 0.729840 + 0.421373i
\(735\) 0 0
\(736\) −122850. 212782.i −0.226788 0.392808i
\(737\) 568506.i 1.04665i
\(738\) 0 0
\(739\) −857158. −1.56954 −0.784769 0.619788i \(-0.787219\pi\)
−0.784769 + 0.619788i \(0.787219\pi\)
\(740\) 148038. 85470.0i 0.270340 0.156081i
\(741\) 0 0
\(742\) −45400.5 + 78636.0i −0.0824618 + 0.142828i
\(743\) 788054. + 454983.i 1.42751 + 0.824171i 0.996924 0.0783795i \(-0.0249746\pi\)
0.430583 + 0.902551i \(0.358308\pi\)
\(744\) 0 0
\(745\) 362884. + 628534.i 0.653816 + 1.13244i
\(746\) 712518.i 1.28032i
\(747\) 0 0
\(748\) −356454. −0.637089
\(749\) −8441.15 + 4873.50i −0.0150466 + 0.00868715i
\(750\) 0 0
\(751\) −30611.5 + 53020.7i −0.0542756 + 0.0940081i −0.891887 0.452259i \(-0.850618\pi\)
0.837611 + 0.546267i \(0.183952\pi\)
\(752\) −178202. 102885.i −0.315121 0.181935i
\(753\) 0 0
\(754\) 307134. + 531972.i 0.540238 + 0.935720i
\(755\) 88539.0i 0.155325i
\(756\) 0 0
\(757\) 782570. 1.36562 0.682812 0.730594i \(-0.260757\pi\)
0.682812 + 0.730594i \(0.260757\pi\)
\(758\) −680571. + 392928.i −1.18450 + 0.683872i
\(759\) 0 0
\(760\) −346104. + 599470.i −0.599211 + 1.03786i
\(761\) 607430. + 350700.i 1.04888 + 0.605573i 0.922336 0.386388i \(-0.126277\pi\)
0.126547 + 0.991961i \(0.459611\pi\)
\(762\) 0 0
\(763\) 22078.0 + 38240.2i 0.0379237 + 0.0656858i
\(764\) 317730.i 0.544342i
\(765\) 0 0
\(766\) −261486. −0.445647
\(767\) 764219. 441222.i 1.29905 0.750009i
\(768\) 0 0
\(769\) 42522.5 73651.1i 0.0719062 0.124545i −0.827831 0.560978i \(-0.810425\pi\)
0.899737 + 0.436433i \(0.143758\pi\)
\(770\) 200366. + 115682.i 0.337943 + 0.195111i
\(771\) 0 0
\(772\) −124065. 214886.i −0.208168 0.360557i
\(773\) 643122.i 1.07630i −0.842848 0.538151i \(-0.819123\pi\)
0.842848 0.538151i \(-0.180877\pi\)
\(774\) 0 0
\(775\) −110896. −0.184634
\(776\) −389428. + 224836.i −0.646702 + 0.373373i
\(777\) 0 0
\(778\) −359014. + 621831.i −0.593134 + 1.02734i
\(779\) −60026.0 34656.0i −0.0989155 0.0571089i
\(780\) 0 0
\(781\) 111807. + 193655.i 0.183302 + 0.317488i
\(782\) 372600.i 0.609297i
\(783\) 0 0
\(784\) 193800. 0.315298
\(785\) −917838. + 529914.i −1.48945 + 0.859936i
\(786\) 0 0
\(787\) −534274. + 925390.i −0.862610 + 1.49408i 0.00679053 + 0.999977i \(0.497838\pi\)
−0.869401 + 0.494108i \(0.835495\pi\)
\(788\) 216656. + 125086.i 0.348914 + 0.201446i
\(789\) 0 0
\(790\) −517275. 895947.i −0.828834 1.43558i
\(791\) 93480.0i 0.149405i
\(792\) 0 0
\(793\) −95432.0 −0.151757
\(794\) 564183. 325731.i 0.894909 0.516676i
\(795\) 0 0
\(796\) 109392. 189473.i 0.172648 0.299035i
\(797\) −466731. 269468.i −0.734768 0.424219i 0.0853958 0.996347i \(-0.472785\pi\)
−0.820164 + 0.572128i \(0.806118\pi\)
\(798\) 0 0
\(799\) 448362. + 776586.i 0.702320 + 1.21645i
\(800\) 380016.i 0.593775i
\(801\) 0 0
\(802\) −768600. −1.19496
\(803\) 322866. 186406.i 0.500715 0.289088i
\(804\) 0 0
\(805\) 94050.0 162899.i 0.145133 0.251378i
\(806\) −187524. 108267.i −0.288660 0.166658i
\(807\) 0 0
\(808\) −204205. 353694.i −0.312784 0.541758i
\(809\) 459594.i 0.702227i 0.936333 + 0.351113i \(0.114197\pi\)
−0.936333 + 0.351113i \(0.885803\pi\)
\(810\) 0 0
\(811\) −961360. −1.46165 −0.730827 0.682563i \(-0.760865\pi\)
−0.730827 + 0.682563i \(0.760865\pi\)
\(812\) −78093.0 + 45087.0i −0.118440 + 0.0683816i
\(813\) 0 0
\(814\) −136530. + 236477.i −0.206053 + 0.356895i
\(815\) −651312. 376035.i −0.980559 0.566126i
\(816\) 0 0
\(817\) −149264. 258533.i −0.223620 0.387321i
\(818\) 597873.i 0.893516i
\(819\) 0 0
\(820\) 52668.0 0.0783284
\(821\) −91509.4 + 52833.0i −0.135762 + 0.0783825i −0.566343 0.824170i \(-0.691642\pi\)
0.430580 + 0.902552i \(0.358309\pi\)
\(822\) 0 0
\(823\) 246778. 427431.i 0.364339 0.631054i −0.624331 0.781160i \(-0.714628\pi\)
0.988670 + 0.150106i \(0.0479615\pi\)
\(824\) 457371. + 264063.i 0.673618 + 0.388914i
\(825\) 0 0
\(826\) −83277.0 144240.i −0.122058 0.211410i
\(827\) 192870.i 0.282003i −0.990009 0.141001i \(-0.954968\pi\)
0.990009 0.141001i \(-0.0450322\pi\)
\(828\) 0 0
\(829\) 577226. 0.839918 0.419959 0.907543i \(-0.362044\pi\)
0.419959 + 0.907543i \(0.362044\pi\)
\(830\) 1.08311e6 625334.i 1.57223 0.907728i
\(831\) 0 0
\(832\) 600527. 1.04014e6i 0.867533 1.50261i
\(833\) −731410. 422280.i −1.05407 0.608570i
\(834\) 0 0
\(835\) 595287. + 1.03107e6i 0.853795 + 1.47882i
\(836\) 261744.i 0.374511i
\(837\) 0 0
\(838\) 753822. 1.07345
\(839\) 61475.7 35493.0i 0.0873332 0.0504219i −0.455697 0.890135i \(-0.650610\pi\)
0.543031 + 0.839713i \(0.317277\pi\)
\(840\) 0 0
\(841\) −123798. + 214425.i −0.175034 + 0.303168i
\(842\) 79012.7 + 45618.0i 0.111448 + 0.0643446i
\(843\) 0 0
\(844\) 52682.0 + 91247.9i 0.0739567 + 0.128097i
\(845\) 2.06722e6i 2.89516i
\(846\) 0 0
\(847\) 9272.00 0.0129243
\(848\) −131060. + 75667.5i −0.182255 + 0.105225i
\(849\) 0 0
\(850\) 288144. 499080.i 0.398815 0.690768i
\(851\) 192258. + 111000.i 0.265476 + 0.153272i
\(852\) 0 0
\(853\) −40603.0 70326.5i −0.0558033 0.0966542i 0.836774 0.547548i \(-0.184439\pi\)
−0.892578 + 0.450894i \(0.851105\pi\)
\(854\) 18012.0i 0.0246971i
\(855\) 0 0
\(856\) −35397.0 −0.0483080
\(857\) −935687. + 540219.i −1.27400 + 0.735543i −0.975738 0.218941i \(-0.929740\pi\)
−0.298260 + 0.954485i \(0.596406\pi\)
\(858\) 0 0
\(859\) −251674. + 435912.i −0.341077 + 0.590762i −0.984633 0.174637i \(-0.944125\pi\)
0.643556 + 0.765399i \(0.277458\pi\)
\(860\) 196451. + 113421.i 0.265618 + 0.153355i
\(861\) 0 0
\(862\) −242595. 420187.i −0.326488 0.565494i
\(863\) 548100.i 0.735933i 0.929839 + 0.367966i \(0.119946\pi\)
−0.929839 + 0.367966i \(0.880054\pi\)
\(864\) 0 0
\(865\) 650925. 0.869959
\(866\) −554796. + 320312.i −0.739771 + 0.427107i
\(867\) 0 0
\(868\) 15893.5 27528.3i 0.0210950 0.0365377i
\(869\) −1.11315e6 642675.i −1.47405 0.851044i
\(870\) 0 0
\(871\) −697922. 1.20884e6i −0.919963 1.59342i
\(872\) 160356.i 0.210888i
\(873\) 0 0
\(874\) −273600. −0.358173
\(875\) −87422.7 + 50473.5i −0.114185 + 0.0659246i
\(876\) 0 0
\(877\) −350017. + 606247.i −0.455082 + 0.788226i −0.998693 0.0511118i \(-0.983724\pi\)
0.543611 + 0.839338i \(0.317057\pi\)
\(878\) −173357. 100088.i −0.224880 0.129835i
\(879\) 0 0
\(880\) 192802. + 333944.i 0.248970 + 0.431229i
\(881\) 806634.i 1.03926i −0.854391 0.519631i \(-0.826070\pi\)
0.854391 0.519631i \(-0.173930\pi\)
\(882\) 0 0
\(883\) 342704. 0.439539 0.219770 0.975552i \(-0.429469\pi\)
0.219770 + 0.975552i \(0.429469\pi\)
\(884\) −757942. + 437598.i −0.969910 + 0.559978i
\(885\) 0 0
\(886\) 411255. 712315.i 0.523894 0.907412i
\(887\) 13962.1 + 8061.00i 0.0177461 + 0.0102457i 0.508847 0.860857i \(-0.330072\pi\)
−0.491101 + 0.871103i \(0.663405\pi\)
\(888\) 0 0
\(889\) 237452. + 411280.i 0.300451 + 0.520396i
\(890\) 693198.i 0.875140i
\(891\) 0 0
\(892\) 351218. 0.441415
\(893\) 570247. 329232.i 0.715088 0.412856i
\(894\) 0 0
\(895\) 807098. 1.39793e6i 1.00758 1.74518i
\(896\) 19301.1 + 11143.5i 0.0240418 + 0.0138805i
\(897\) 0 0
\(898\) 350676. + 607389.i 0.434864 + 0.753206i
\(899\) 162042.i 0.200497i
\(900\) 0 0
\(901\) 659502. 0.812394
\(902\) −72860.4 + 42066.0i −0.0895527 + 0.0517033i
\(903\) 0 0
\(904\) 169740. 293998.i 0.207705 0.359756i
\(905\) 1.41614e6 + 817608.i 1.72905 + 0.998270i
\(906\) 0 0
\(907\) −784750. 1.35923e6i −0.953931 1.65226i −0.736797 0.676114i \(-0.763663\pi\)
−0.217134 0.976142i \(-0.569671\pi\)
\(908\) 134862.i 0.163575i
\(909\) 0 0
\(910\) 568062. 0.685982
\(911\) 433790. 250449.i 0.522689 0.301775i −0.215345 0.976538i \(-0.569088\pi\)
0.738034 + 0.674763i \(0.235754\pi\)
\(912\) 0 0
\(913\) 776930. 1.34568e6i 0.932052 1.61436i
\(914\) 235560. + 136000.i 0.281974 + 0.162798i
\(915\) 0 0
\(916\) −119749. 207411.i −0.142719 0.247196i
\(917\) 540759.i 0.643080i
\(918\) 0 0
\(919\) 1.03715e6 1.22804 0.614019 0.789291i \(-0.289552\pi\)
0.614019 + 0.789291i \(0.289552\pi\)
\(920\) 591582. 341550.i 0.698939 0.403533i
\(921\) 0 0
\(922\) −302936. + 524700.i −0.356359 + 0.617233i
\(923\) 475479. + 274518.i 0.558121 + 0.322231i
\(924\) 0 0
\(925\) 171680. + 297358.i 0.200649 + 0.347534i
\(926\) 971931.i 1.13348i
\(927\) 0 0
\(928\) −555282. −0.644789
\(929\) −110917. + 64038.0i −0.128519 + 0.0742004i −0.562881 0.826538i \(-0.690307\pi\)
0.434362 + 0.900738i \(0.356974\pi\)
\(930\) 0 0
\(931\) −310080. + 537074.i −0.357746 + 0.619634i
\(932\) −226641. 130851.i −0.260919 0.150642i
\(933\) 0 0
\(934\) −115412. 199899.i −0.132299 0.229148i
\(935\) 1.68043e6i 1.92219i
\(936\) 0 0
\(937\) −879451. −1.00169 −0.500844 0.865538i \(-0.666977\pi\)
−0.500844 + 0.865538i \(0.666977\pi\)
\(938\) −228158. + 131727.i −0.259316 + 0.149716i
\(939\) 0 0
\(940\) −250173. + 433312.i −0.283129 + 0.490394i
\(941\) 622029. + 359128.i 0.702476 + 0.405574i 0.808269 0.588814i \(-0.200405\pi\)
−0.105793 + 0.994388i \(0.533738\pi\)
\(942\) 0 0
\(943\) 34200.0 + 59236.1i 0.0384594 + 0.0666137i
\(944\) 277590.i 0.311501i
\(945\) 0 0
\(946\) −362358. −0.404907
\(947\) −63224.2 + 36502.5i −0.0704991 + 0.0407026i −0.534835 0.844956i \(-0.679626\pi\)
0.464336 + 0.885659i \(0.346293\pi\)
\(948\) 0 0
\(949\) 457681. 792727.i 0.508195 0.880220i
\(950\) −366474. 211584.i −0.406066 0.234442i
\(951\) 0 0
\(952\) 271377. + 470039.i 0.299433 + 0.518633i
\(953\) 309168.i 0.340415i −0.985408 0.170208i \(-0.945556\pi\)
0.985408 0.170208i \(-0.0544438\pi\)
\(954\) 0 0
\(955\) −1.49787e6 −1.64236
\(956\) 374643. 216300.i 0.409922 0.236669i
\(957\) 0 0
\(958\) −289827. + 501995.i −0.315797 + 0.546976i
\(959\) −40379.3 23313.0i −0.0439058 0.0253490i
\(960\) 0 0
\(961\) 433200. + 750324.i 0.469074 + 0.812461i
\(962\) 670440.i 0.724452i
\(963\) 0 0
\(964\) 289730. 0.311774
\(965\) 1.01303e6 584876.i 1.08785 0.628071i
\(966\) 0 0
\(967\) 183094. 317127.i 0.195803 0.339141i −0.751360 0.659892i \(-0.770602\pi\)
0.947164 + 0.320751i \(0.103935\pi\)
\(968\) 29160.8 + 16836.0i 0.0311207 + 0.0179675i
\(969\) 0 0
\(970\) −322592. 558745.i −0.342854 0.593841i
\(971\) 1.43410e6i 1.52105i 0.649311 + 0.760523i \(0.275057\pi\)
−0.649311 + 0.760523i \(0.724943\pi\)
\(972\) 0 0
\(973\) 225796. 0.238501
\(974\) −90626.1 + 52323.0i −0.0955290 + 0.0551537i
\(975\) 0 0
\(976\) −15010.0 + 25998.1i −0.0157573 + 0.0272924i
\(977\) −270028. 155901.i −0.282892 0.163328i 0.351840 0.936060i \(-0.385556\pi\)
−0.634732 + 0.772732i \(0.718889\pi\)
\(978\) 0 0
\(979\) −430623. 745861.i −0.449295 0.778202i
\(980\) 471240.i 0.490671i
\(981\) 0 0
\(982\) 651141. 0.675231
\(983\) −597698. + 345081.i −0.618550 + 0.357120i −0.776304 0.630359i \(-0.782908\pi\)
0.157754 + 0.987478i \(0.449575\pi\)
\(984\) 0 0
\(985\) −589694. + 1.02138e6i −0.607790 + 1.05272i
\(986\) −729259. 421038.i −0.750115 0.433079i
\(987\) 0 0
\(988\) 321328. + 556556.i 0.329181 + 0.570158i
\(989\) 294600.i 0.301190i
\(990\) 0 0
\(991\) 981875. 0.999790 0.499895 0.866086i \(-0.333372\pi\)
0.499895 + 0.866086i \(0.333372\pi\)
\(992\) 169517. 97870.5i 0.172262 0.0994554i
\(993\) 0 0
\(994\) 51813.0 89742.7i 0.0524404 0.0908294i
\(995\) 893232. + 515708.i 0.902231 + 0.520904i
\(996\) 0 0
\(997\) −120973. 209531.i −0.121702 0.210794i 0.798737 0.601680i \(-0.205502\pi\)
−0.920439 + 0.390886i \(0.872169\pi\)
\(998\) 1.39443e6i 1.40002i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.d.b.53.2 4
3.2 odd 2 inner 81.5.d.b.53.1 4
9.2 odd 6 inner 81.5.d.b.26.2 4
9.4 even 3 27.5.b.c.26.2 yes 2
9.5 odd 6 27.5.b.c.26.1 2
9.7 even 3 inner 81.5.d.b.26.1 4
36.23 even 6 432.5.e.e.161.1 2
36.31 odd 6 432.5.e.e.161.2 2
45.4 even 6 675.5.c.h.26.1 2
45.13 odd 12 675.5.d.d.674.2 2
45.14 odd 6 675.5.c.h.26.2 2
45.22 odd 12 675.5.d.a.674.1 2
45.23 even 12 675.5.d.a.674.2 2
45.32 even 12 675.5.d.d.674.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.b.c.26.1 2 9.5 odd 6
27.5.b.c.26.2 yes 2 9.4 even 3
81.5.d.b.26.1 4 9.7 even 3 inner
81.5.d.b.26.2 4 9.2 odd 6 inner
81.5.d.b.53.1 4 3.2 odd 2 inner
81.5.d.b.53.2 4 1.1 even 1 trivial
432.5.e.e.161.1 2 36.23 even 6
432.5.e.e.161.2 2 36.31 odd 6
675.5.c.h.26.1 2 45.4 even 6
675.5.c.h.26.2 2 45.14 odd 6
675.5.d.a.674.1 2 45.22 odd 12
675.5.d.a.674.2 2 45.23 even 12
675.5.d.d.674.1 2 45.32 even 12
675.5.d.d.674.2 2 45.13 odd 12