Properties

Label 81.5.d.b.26.2
Level $81$
Weight $5$
Character 81.26
Analytic conductor $8.373$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(26,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.26");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 81.26
Dual form 81.5.d.b.53.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.59808 + 1.50000i) q^{2} +(-3.50000 - 6.06218i) q^{4} +(-28.5788 + 16.5000i) q^{5} +(9.50000 - 16.4545i) q^{7} -69.0000i q^{8} -99.0000 q^{10} +(-106.521 - 61.5000i) q^{11} +(-151.000 - 261.540i) q^{13} +(49.3634 - 28.5000i) q^{14} +(47.5000 - 82.2724i) q^{16} +414.000i q^{17} -304.000 q^{19} +(200.052 + 115.500i) q^{20} +(-184.500 - 319.563i) q^{22} +(259.808 - 150.000i) q^{23} +(232.000 - 401.836i) q^{25} -906.000i q^{26} -133.000 q^{28} +(587.165 + 339.000i) q^{29} +(-119.500 - 206.980i) q^{31} +(-709.275 + 409.500i) q^{32} +(-621.000 + 1075.60i) q^{34} +627.000i q^{35} +740.000 q^{37} +(-789.815 - 456.000i) q^{38} +(1138.50 + 1971.94i) q^{40} +(197.454 - 114.000i) q^{41} +(491.000 - 850.437i) q^{43} +861.000i q^{44} +900.000 q^{46} +(-1875.81 - 1083.00i) q^{47} +(1020.00 + 1766.69i) q^{49} +(1205.51 - 696.000i) q^{50} +(-1057.00 + 1830.78i) q^{52} -1593.00i q^{53} +4059.00 q^{55} +(-1135.36 - 655.500i) q^{56} +(1017.00 + 1761.50i) q^{58} +(-2530.53 + 1461.00i) q^{59} +(158.000 - 273.664i) q^{61} -717.000i q^{62} -3977.00 q^{64} +(8630.81 + 4983.00i) q^{65} +(-2311.00 - 4002.77i) q^{67} +(2509.74 - 1449.00i) q^{68} +(-940.500 + 1628.99i) q^{70} +1818.00i q^{71} -3031.00 q^{73} +(1922.58 + 1110.00i) q^{74} +(1064.00 + 1842.90i) q^{76} +(-2023.90 + 1168.50i) q^{77} +(5225.00 - 9049.97i) q^{79} +3135.00i q^{80} +684.000 q^{82} +(-10940.5 - 6316.50i) q^{83} +(-6831.00 - 11831.6i) q^{85} +(2551.31 - 1473.00i) q^{86} +(-4243.50 + 7349.96i) q^{88} -7002.00i q^{89} -5738.00 q^{91} +(-1818.65 - 1050.00i) q^{92} +(-3249.00 - 5627.43i) q^{94} +(8687.97 - 5016.00i) q^{95} +(3258.50 - 5643.89i) q^{97} +6120.00i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{4} + 38 q^{7} - 396 q^{10} - 604 q^{13} + 190 q^{16} - 1216 q^{19} - 738 q^{22} + 928 q^{25} - 532 q^{28} - 478 q^{31} - 2484 q^{34} + 2960 q^{37} + 4554 q^{40} + 1964 q^{43} + 3600 q^{46} + 4080 q^{49}+ \cdots + 13034 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.59808 + 1.50000i 0.649519 + 0.375000i 0.788272 0.615327i \(-0.210976\pi\)
−0.138753 + 0.990327i \(0.544309\pi\)
\(3\) 0 0
\(4\) −3.50000 6.06218i −0.218750 0.378886i
\(5\) −28.5788 + 16.5000i −1.14315 + 0.660000i −0.947210 0.320615i \(-0.896110\pi\)
−0.195944 + 0.980615i \(0.562777\pi\)
\(6\) 0 0
\(7\) 9.50000 16.4545i 0.193878 0.335806i −0.752654 0.658416i \(-0.771227\pi\)
0.946532 + 0.322610i \(0.104560\pi\)
\(8\) 69.0000i 1.07812i
\(9\) 0 0
\(10\) −99.0000 −0.990000
\(11\) −106.521 61.5000i −0.880340 0.508264i −0.00956942 0.999954i \(-0.503046\pi\)
−0.870770 + 0.491690i \(0.836379\pi\)
\(12\) 0 0
\(13\) −151.000 261.540i −0.893491 1.54757i −0.835661 0.549246i \(-0.814915\pi\)
−0.0578301 0.998326i \(-0.518418\pi\)
\(14\) 49.3634 28.5000i 0.251854 0.145408i
\(15\) 0 0
\(16\) 47.5000 82.2724i 0.185547 0.321377i
\(17\) 414.000i 1.43253i 0.697830 + 0.716263i \(0.254149\pi\)
−0.697830 + 0.716263i \(0.745851\pi\)
\(18\) 0 0
\(19\) −304.000 −0.842105 −0.421053 0.907036i \(-0.638339\pi\)
−0.421053 + 0.907036i \(0.638339\pi\)
\(20\) 200.052 + 115.500i 0.500130 + 0.288750i
\(21\) 0 0
\(22\) −184.500 319.563i −0.381198 0.660255i
\(23\) 259.808 150.000i 0.491130 0.283554i −0.233913 0.972257i \(-0.575153\pi\)
0.725043 + 0.688704i \(0.241820\pi\)
\(24\) 0 0
\(25\) 232.000 401.836i 0.371200 0.642937i
\(26\) 906.000i 1.34024i
\(27\) 0 0
\(28\) −133.000 −0.169643
\(29\) 587.165 + 339.000i 0.698175 + 0.403092i 0.806667 0.591006i \(-0.201269\pi\)
−0.108492 + 0.994097i \(0.534602\pi\)
\(30\) 0 0
\(31\) −119.500 206.980i −0.124350 0.215380i 0.797129 0.603809i \(-0.206351\pi\)
−0.921479 + 0.388429i \(0.873018\pi\)
\(32\) −709.275 + 409.500i −0.692651 + 0.399902i
\(33\) 0 0
\(34\) −621.000 + 1075.60i −0.537197 + 0.930453i
\(35\) 627.000i 0.511837i
\(36\) 0 0
\(37\) 740.000 0.540541 0.270270 0.962784i \(-0.412887\pi\)
0.270270 + 0.962784i \(0.412887\pi\)
\(38\) −789.815 456.000i −0.546963 0.315789i
\(39\) 0 0
\(40\) 1138.50 + 1971.94i 0.711562 + 1.23246i
\(41\) 197.454 114.000i 0.117462 0.0678168i −0.440118 0.897940i \(-0.645063\pi\)
0.557580 + 0.830123i \(0.311730\pi\)
\(42\) 0 0
\(43\) 491.000 850.437i 0.265549 0.459944i −0.702158 0.712021i \(-0.747780\pi\)
0.967707 + 0.252077i \(0.0811135\pi\)
\(44\) 861.000i 0.444731i
\(45\) 0 0
\(46\) 900.000 0.425331
\(47\) −1875.81 1083.00i −0.849168 0.490267i 0.0112024 0.999937i \(-0.496434\pi\)
−0.860370 + 0.509670i \(0.829767\pi\)
\(48\) 0 0
\(49\) 1020.00 + 1766.69i 0.424823 + 0.735815i
\(50\) 1205.51 696.000i 0.482203 0.278400i
\(51\) 0 0
\(52\) −1057.00 + 1830.78i −0.390902 + 0.677063i
\(53\) 1593.00i 0.567106i −0.958957 0.283553i \(-0.908487\pi\)
0.958957 0.283553i \(-0.0915131\pi\)
\(54\) 0 0
\(55\) 4059.00 1.34182
\(56\) −1135.36 655.500i −0.362041 0.209024i
\(57\) 0 0
\(58\) 1017.00 + 1761.50i 0.302319 + 0.523631i
\(59\) −2530.53 + 1461.00i −0.726954 + 0.419707i −0.817307 0.576203i \(-0.804534\pi\)
0.0903529 + 0.995910i \(0.471200\pi\)
\(60\) 0 0
\(61\) 158.000 273.664i 0.0424617 0.0735458i −0.844013 0.536322i \(-0.819813\pi\)
0.886475 + 0.462776i \(0.153147\pi\)
\(62\) 717.000i 0.186524i
\(63\) 0 0
\(64\) −3977.00 −0.970947
\(65\) 8630.81 + 4983.00i 2.04280 + 1.17941i
\(66\) 0 0
\(67\) −2311.00 4002.77i −0.514814 0.891684i −0.999852 0.0171910i \(-0.994528\pi\)
0.485038 0.874493i \(-0.338806\pi\)
\(68\) 2509.74 1449.00i 0.542764 0.313365i
\(69\) 0 0
\(70\) −940.500 + 1628.99i −0.191939 + 0.332448i
\(71\) 1818.00i 0.360643i 0.983608 + 0.180321i \(0.0577138\pi\)
−0.983608 + 0.180321i \(0.942286\pi\)
\(72\) 0 0
\(73\) −3031.00 −0.568775 −0.284387 0.958709i \(-0.591790\pi\)
−0.284387 + 0.958709i \(0.591790\pi\)
\(74\) 1922.58 + 1110.00i 0.351091 + 0.202703i
\(75\) 0 0
\(76\) 1064.00 + 1842.90i 0.184211 + 0.319062i
\(77\) −2023.90 + 1168.50i −0.341356 + 0.197082i
\(78\) 0 0
\(79\) 5225.00 9049.97i 0.837206 1.45008i −0.0550164 0.998485i \(-0.517521\pi\)
0.892222 0.451597i \(-0.149146\pi\)
\(80\) 3135.00i 0.489844i
\(81\) 0 0
\(82\) 684.000 0.101725
\(83\) −10940.5 6316.50i −1.58811 0.916897i −0.993618 0.112796i \(-0.964019\pi\)
−0.594493 0.804101i \(-0.702647\pi\)
\(84\) 0 0
\(85\) −6831.00 11831.6i −0.945467 1.63760i
\(86\) 2551.31 1473.00i 0.344958 0.199162i
\(87\) 0 0
\(88\) −4243.50 + 7349.96i −0.547973 + 0.949116i
\(89\) 7002.00i 0.883979i −0.897020 0.441990i \(-0.854273\pi\)
0.897020 0.441990i \(-0.145727\pi\)
\(90\) 0 0
\(91\) −5738.00 −0.692911
\(92\) −1818.65 1050.00i −0.214869 0.124055i
\(93\) 0 0
\(94\) −3249.00 5627.43i −0.367700 0.636876i
\(95\) 8687.97 5016.00i 0.962656 0.555789i
\(96\) 0 0
\(97\) 3258.50 5643.89i 0.346317 0.599839i −0.639275 0.768978i \(-0.720765\pi\)
0.985592 + 0.169139i \(0.0540987\pi\)
\(98\) 6120.00i 0.637234i
\(99\) 0 0
\(100\) −3248.00 −0.324800
\(101\) −5126.00 2959.50i −0.502500 0.290119i 0.227245 0.973838i \(-0.427028\pi\)
−0.729745 + 0.683719i \(0.760361\pi\)
\(102\) 0 0
\(103\) 3827.00 + 6628.56i 0.360731 + 0.624805i 0.988081 0.153932i \(-0.0491938\pi\)
−0.627350 + 0.778737i \(0.715860\pi\)
\(104\) −18046.2 + 10419.0i −1.66848 + 0.963295i
\(105\) 0 0
\(106\) 2389.50 4138.74i 0.212665 0.368346i
\(107\) 513.000i 0.0448074i −0.999749 0.0224037i \(-0.992868\pi\)
0.999749 0.0224037i \(-0.00713192\pi\)
\(108\) 0 0
\(109\) 2324.00 0.195606 0.0978032 0.995206i \(-0.468818\pi\)
0.0978032 + 0.995206i \(0.468818\pi\)
\(110\) 10545.6 + 6088.50i 0.871536 + 0.503182i
\(111\) 0 0
\(112\) −902.500 1563.18i −0.0719467 0.124615i
\(113\) −4260.84 + 2460.00i −0.333687 + 0.192654i −0.657477 0.753475i \(-0.728376\pi\)
0.323790 + 0.946129i \(0.395043\pi\)
\(114\) 0 0
\(115\) −4950.00 + 8573.65i −0.374291 + 0.648291i
\(116\) 4746.00i 0.352705i
\(117\) 0 0
\(118\) −8766.00 −0.629560
\(119\) 6812.16 + 3933.00i 0.481050 + 0.277735i
\(120\) 0 0
\(121\) 244.000 + 422.620i 0.0166655 + 0.0288655i
\(122\) 820.992 474.000i 0.0551594 0.0318463i
\(123\) 0 0
\(124\) −836.500 + 1448.86i −0.0544030 + 0.0942287i
\(125\) 5313.00i 0.340032i
\(126\) 0 0
\(127\) 24995.0 1.54969 0.774847 0.632149i \(-0.217827\pi\)
0.774847 + 0.632149i \(0.217827\pi\)
\(128\) 1015.85 + 586.500i 0.0620024 + 0.0357971i
\(129\) 0 0
\(130\) 14949.0 + 25892.4i 0.884556 + 1.53210i
\(131\) 24647.9 14230.5i 1.43628 0.829235i 0.438688 0.898639i \(-0.355443\pi\)
0.997589 + 0.0694044i \(0.0221099\pi\)
\(132\) 0 0
\(133\) −2888.00 + 5002.16i −0.163265 + 0.282784i
\(134\) 13866.0i 0.772221i
\(135\) 0 0
\(136\) 28566.0 1.54444
\(137\) −2125.23 1227.00i −0.113231 0.0653738i 0.442315 0.896860i \(-0.354157\pi\)
−0.555546 + 0.831486i \(0.687491\pi\)
\(138\) 0 0
\(139\) 5942.00 + 10291.8i 0.307541 + 0.532677i 0.977824 0.209429i \(-0.0671605\pi\)
−0.670283 + 0.742106i \(0.733827\pi\)
\(140\) 3800.99 2194.50i 0.193928 0.111964i
\(141\) 0 0
\(142\) −2727.00 + 4723.30i −0.135241 + 0.234244i
\(143\) 37146.0i 1.81652i
\(144\) 0 0
\(145\) −22374.0 −1.06416
\(146\) −7874.77 4546.50i −0.369430 0.213290i
\(147\) 0 0
\(148\) −2590.00 4486.01i −0.118243 0.204803i
\(149\) −19046.5 + 10996.5i −0.857912 + 0.495316i −0.863312 0.504670i \(-0.831614\pi\)
0.00540074 + 0.999985i \(0.498281\pi\)
\(150\) 0 0
\(151\) 1341.50 2323.55i 0.0588351 0.101905i −0.835108 0.550087i \(-0.814595\pi\)
0.893943 + 0.448181i \(0.147928\pi\)
\(152\) 20976.0i 0.907895i
\(153\) 0 0
\(154\) −7011.00 −0.295623
\(155\) 6830.34 + 3943.50i 0.284301 + 0.164142i
\(156\) 0 0
\(157\) 16058.0 + 27813.3i 0.651467 + 1.12837i 0.982767 + 0.184848i \(0.0591793\pi\)
−0.331301 + 0.943525i \(0.607487\pi\)
\(158\) 27149.9 15675.0i 1.08756 0.627904i
\(159\) 0 0
\(160\) 13513.5 23406.1i 0.527871 0.914300i
\(161\) 5700.00i 0.219899i
\(162\) 0 0
\(163\) 22790.0 0.857767 0.428883 0.903360i \(-0.358907\pi\)
0.428883 + 0.903360i \(0.358907\pi\)
\(164\) −1382.18 798.000i −0.0513897 0.0296698i
\(165\) 0 0
\(166\) −18949.5 32821.5i −0.687672 1.19108i
\(167\) −31244.5 + 18039.0i −1.12031 + 0.646814i −0.941481 0.337065i \(-0.890566\pi\)
−0.178834 + 0.983879i \(0.557232\pi\)
\(168\) 0 0
\(169\) −31321.5 + 54250.4i −1.09665 + 1.89946i
\(170\) 40986.0i 1.41820i
\(171\) 0 0
\(172\) −6874.00 −0.232355
\(173\) −17082.4 9862.50i −0.570763 0.329530i 0.186691 0.982419i \(-0.440224\pi\)
−0.757454 + 0.652889i \(0.773557\pi\)
\(174\) 0 0
\(175\) −4408.00 7634.88i −0.143935 0.249302i
\(176\) −10119.5 + 5842.50i −0.326689 + 0.188614i
\(177\) 0 0
\(178\) 10503.0 18191.7i 0.331492 0.574161i
\(179\) 48915.0i 1.52664i −0.646022 0.763319i \(-0.723569\pi\)
0.646022 0.763319i \(-0.276431\pi\)
\(180\) 0 0
\(181\) −49552.0 −1.51253 −0.756265 0.654265i \(-0.772978\pi\)
−0.756265 + 0.654265i \(0.772978\pi\)
\(182\) −14907.8 8607.00i −0.450059 0.259842i
\(183\) 0 0
\(184\) −10350.0 17926.7i −0.305707 0.529499i
\(185\) −21148.3 + 12210.0i −0.617921 + 0.356757i
\(186\) 0 0
\(187\) 25461.0 44099.7i 0.728102 1.26111i
\(188\) 15162.0i 0.428984i
\(189\) 0 0
\(190\) 30096.0 0.833684
\(191\) 39308.9 + 22695.0i 1.07752 + 0.622105i 0.930225 0.366988i \(-0.119611\pi\)
0.147291 + 0.989093i \(0.452944\pi\)
\(192\) 0 0
\(193\) −17723.5 30698.0i −0.475811 0.824130i 0.523805 0.851838i \(-0.324512\pi\)
−0.999616 + 0.0277089i \(0.991179\pi\)
\(194\) 16931.7 9775.50i 0.449879 0.259738i
\(195\) 0 0
\(196\) 7140.00 12366.8i 0.185860 0.321919i
\(197\) 35739.0i 0.920895i 0.887687 + 0.460447i \(0.152311\pi\)
−0.887687 + 0.460447i \(0.847689\pi\)
\(198\) 0 0
\(199\) −31255.0 −0.789248 −0.394624 0.918843i \(-0.629125\pi\)
−0.394624 + 0.918843i \(0.629125\pi\)
\(200\) −27726.7 16008.0i −0.693167 0.400200i
\(201\) 0 0
\(202\) −8878.50 15378.0i −0.217589 0.376875i
\(203\) 11156.1 6441.00i 0.270721 0.156301i
\(204\) 0 0
\(205\) −3762.00 + 6515.98i −0.0895181 + 0.155050i
\(206\) 22962.0i 0.541097i
\(207\) 0 0
\(208\) −28690.0 −0.663138
\(209\) 32382.4 + 18696.0i 0.741339 + 0.428012i
\(210\) 0 0
\(211\) 7526.00 + 13035.4i 0.169044 + 0.292792i 0.938084 0.346408i \(-0.112599\pi\)
−0.769040 + 0.639201i \(0.779265\pi\)
\(212\) −9657.05 + 5575.50i −0.214868 + 0.124054i
\(213\) 0 0
\(214\) 769.500 1332.81i 0.0168028 0.0291033i
\(215\) 32406.0i 0.701049i
\(216\) 0 0
\(217\) −4541.00 −0.0964344
\(218\) 6037.93 + 3486.00i 0.127050 + 0.0733524i
\(219\) 0 0
\(220\) −14206.5 24606.4i −0.293523 0.508396i
\(221\) 108277. 62514.0i 2.21694 1.27995i
\(222\) 0 0
\(223\) −25087.0 + 43452.0i −0.504474 + 0.873775i 0.495512 + 0.868601i \(0.334980\pi\)
−0.999987 + 0.00517415i \(0.998353\pi\)
\(224\) 15561.0i 0.310128i
\(225\) 0 0
\(226\) −14760.0 −0.288981
\(227\) −16684.8 9633.00i −0.323795 0.186943i 0.329288 0.944230i \(-0.393191\pi\)
−0.653083 + 0.757286i \(0.726525\pi\)
\(228\) 0 0
\(229\) −17107.0 29630.2i −0.326214 0.565020i 0.655543 0.755158i \(-0.272440\pi\)
−0.981757 + 0.190138i \(0.939106\pi\)
\(230\) −25721.0 + 14850.0i −0.486218 + 0.280718i
\(231\) 0 0
\(232\) 23391.0 40514.4i 0.434583 0.752720i
\(233\) 37386.0i 0.688648i −0.938851 0.344324i \(-0.888108\pi\)
0.938851 0.344324i \(-0.111892\pi\)
\(234\) 0 0
\(235\) 71478.0 1.29431
\(236\) 17713.7 + 10227.0i 0.318042 + 0.183622i
\(237\) 0 0
\(238\) 11799.0 + 20436.5i 0.208301 + 0.360788i
\(239\) −53520.4 + 30900.0i −0.936965 + 0.540957i −0.889008 0.457892i \(-0.848604\pi\)
−0.0479573 + 0.998849i \(0.515271\pi\)
\(240\) 0 0
\(241\) −20695.0 + 35844.8i −0.356313 + 0.617152i −0.987342 0.158607i \(-0.949300\pi\)
0.631029 + 0.775759i \(0.282633\pi\)
\(242\) 1464.00i 0.0249983i
\(243\) 0 0
\(244\) −2212.00 −0.0371540
\(245\) −58300.8 33660.0i −0.971276 0.560766i
\(246\) 0 0
\(247\) 45904.0 + 79508.1i 0.752414 + 1.30322i
\(248\) −14281.6 + 8245.50i −0.232206 + 0.134064i
\(249\) 0 0
\(250\) 7969.50 13803.6i 0.127512 0.220857i
\(251\) 82818.0i 1.31455i −0.753651 0.657275i \(-0.771709\pi\)
0.753651 0.657275i \(-0.228291\pi\)
\(252\) 0 0
\(253\) −36900.0 −0.576481
\(254\) 64938.9 + 37492.5i 1.00656 + 0.581135i
\(255\) 0 0
\(256\) 33575.5 + 58154.5i 0.512321 + 0.887367i
\(257\) −16965.4 + 9795.00i −0.256861 + 0.148299i −0.622902 0.782300i \(-0.714046\pi\)
0.366041 + 0.930599i \(0.380713\pi\)
\(258\) 0 0
\(259\) 7030.00 12176.3i 0.104799 0.181517i
\(260\) 69762.0i 1.03198i
\(261\) 0 0
\(262\) 85383.0 1.24385
\(263\) −14455.7 8346.00i −0.208991 0.120661i 0.391851 0.920029i \(-0.371835\pi\)
−0.600842 + 0.799368i \(0.705168\pi\)
\(264\) 0 0
\(265\) 26284.5 + 45526.1i 0.374290 + 0.648289i
\(266\) −15006.5 + 8664.00i −0.212088 + 0.122449i
\(267\) 0 0
\(268\) −16177.0 + 28019.4i −0.225231 + 0.390112i
\(269\) 120906.i 1.67087i 0.549587 + 0.835436i \(0.314785\pi\)
−0.549587 + 0.835436i \(0.685215\pi\)
\(270\) 0 0
\(271\) 73739.0 1.00406 0.502029 0.864851i \(-0.332587\pi\)
0.502029 + 0.864851i \(0.332587\pi\)
\(272\) 34060.8 + 19665.0i 0.460380 + 0.265801i
\(273\) 0 0
\(274\) −3681.00 6375.68i −0.0490303 0.0849230i
\(275\) −49425.8 + 28536.0i −0.653564 + 0.377336i
\(276\) 0 0
\(277\) −5998.00 + 10388.8i −0.0781712 + 0.135397i −0.902461 0.430772i \(-0.858241\pi\)
0.824290 + 0.566168i \(0.191575\pi\)
\(278\) 35652.0i 0.461312i
\(279\) 0 0
\(280\) 43263.0 0.551824
\(281\) −44276.4 25563.0i −0.560738 0.323742i 0.192704 0.981257i \(-0.438274\pi\)
−0.753442 + 0.657515i \(0.771608\pi\)
\(282\) 0 0
\(283\) 524.000 + 907.595i 0.00654272 + 0.0113323i 0.869278 0.494323i \(-0.164584\pi\)
−0.862736 + 0.505655i \(0.831251\pi\)
\(284\) 11021.0 6363.00i 0.136643 0.0788906i
\(285\) 0 0
\(286\) −55719.0 + 96508.1i −0.681195 + 1.17986i
\(287\) 4332.00i 0.0525926i
\(288\) 0 0
\(289\) −87875.0 −1.05213
\(290\) −58129.4 33561.0i −0.691193 0.399061i
\(291\) 0 0
\(292\) 10608.5 + 18374.5i 0.124419 + 0.215501i
\(293\) 55583.2 32091.0i 0.647454 0.373807i −0.140026 0.990148i \(-0.544719\pi\)
0.787480 + 0.616340i \(0.211385\pi\)
\(294\) 0 0
\(295\) 48213.0 83507.4i 0.554013 0.959579i
\(296\) 51060.0i 0.582770i
\(297\) 0 0
\(298\) −65979.0 −0.742973
\(299\) −78461.9 45300.0i −0.877640 0.506706i
\(300\) 0 0
\(301\) −9329.00 16158.3i −0.102968 0.178346i
\(302\) 6970.64 4024.50i 0.0764291 0.0441264i
\(303\) 0 0
\(304\) −14440.0 + 25010.8i −0.156250 + 0.270633i
\(305\) 10428.0i 0.112099i
\(306\) 0 0
\(307\) 154154. 1.63560 0.817802 0.575500i \(-0.195193\pi\)
0.817802 + 0.575500i \(0.195193\pi\)
\(308\) 14167.3 + 8179.50i 0.149343 + 0.0862234i
\(309\) 0 0
\(310\) 11830.5 + 20491.0i 0.123106 + 0.213226i
\(311\) 81475.7 47040.0i 0.842378 0.486347i −0.0156936 0.999877i \(-0.504996\pi\)
0.858072 + 0.513530i \(0.171662\pi\)
\(312\) 0 0
\(313\) 12951.5 22432.7i 0.132200 0.228977i −0.792324 0.610100i \(-0.791129\pi\)
0.924524 + 0.381123i \(0.124463\pi\)
\(314\) 96348.0i 0.977200i
\(315\) 0 0
\(316\) −73150.0 −0.732555
\(317\) 83868.5 + 48421.5i 0.834604 + 0.481859i 0.855426 0.517924i \(-0.173295\pi\)
−0.0208226 + 0.999783i \(0.506629\pi\)
\(318\) 0 0
\(319\) −41697.0 72221.3i −0.409754 0.709715i
\(320\) 113658. 65620.5i 1.10994 0.640825i
\(321\) 0 0
\(322\) 8550.00 14809.0i 0.0824621 0.142829i
\(323\) 125856.i 1.20634i
\(324\) 0 0
\(325\) −140128. −1.32666
\(326\) 59210.2 + 34185.0i 0.557136 + 0.321662i
\(327\) 0 0
\(328\) −7866.00 13624.3i −0.0731150 0.126639i
\(329\) −35640.4 + 20577.0i −0.329269 + 0.190104i
\(330\) 0 0
\(331\) 82427.0 142768.i 0.752339 1.30309i −0.194348 0.980933i \(-0.562259\pi\)
0.946686 0.322156i \(-0.104408\pi\)
\(332\) 88431.0i 0.802284i
\(333\) 0 0
\(334\) −108234. −0.970221
\(335\) 132091. + 76263.0i 1.17702 + 0.679554i
\(336\) 0 0
\(337\) −74347.0 128773.i −0.654642 1.13387i −0.981984 0.188967i \(-0.939486\pi\)
0.327342 0.944906i \(-0.393847\pi\)
\(338\) −162751. + 93964.5i −1.42459 + 0.822490i
\(339\) 0 0
\(340\) −47817.0 + 82821.5i −0.413642 + 0.716449i
\(341\) 29397.0i 0.252810i
\(342\) 0 0
\(343\) 84379.0 0.717210
\(344\) −58680.1 33879.0i −0.495877 0.286295i
\(345\) 0 0
\(346\) −29587.5 51247.1i −0.247147 0.428072i
\(347\) −93247.6 + 53836.5i −0.774423 + 0.447114i −0.834450 0.551083i \(-0.814215\pi\)
0.0600269 + 0.998197i \(0.480881\pi\)
\(348\) 0 0
\(349\) −63760.0 + 110436.i −0.523477 + 0.906688i 0.476150 + 0.879364i \(0.342032\pi\)
−0.999627 + 0.0273243i \(0.991301\pi\)
\(350\) 26448.0i 0.215902i
\(351\) 0 0
\(352\) 100737. 0.813025
\(353\) 123066. + 71052.0i 0.987615 + 0.570200i 0.904560 0.426345i \(-0.140199\pi\)
0.0830542 + 0.996545i \(0.473533\pi\)
\(354\) 0 0
\(355\) −29997.0 51956.3i −0.238024 0.412270i
\(356\) −42447.4 + 24507.0i −0.334927 + 0.193370i
\(357\) 0 0
\(358\) 73372.5 127085.i 0.572489 0.991580i
\(359\) 19422.0i 0.150697i −0.997157 0.0753486i \(-0.975993\pi\)
0.997157 0.0753486i \(-0.0240069\pi\)
\(360\) 0 0
\(361\) −37905.0 −0.290859
\(362\) −128740. 74328.0i −0.982417 0.567199i
\(363\) 0 0
\(364\) 20083.0 + 34784.8i 0.151574 + 0.262535i
\(365\) 86622.5 50011.5i 0.650197 0.375391i
\(366\) 0 0
\(367\) 75672.5 131069.i 0.561831 0.973120i −0.435505 0.900186i \(-0.643430\pi\)
0.997337 0.0729343i \(-0.0232363\pi\)
\(368\) 28500.0i 0.210450i
\(369\) 0 0
\(370\) −73260.0 −0.535135
\(371\) −26212.0 15133.5i −0.190437 0.109949i
\(372\) 0 0
\(373\) −118753. 205686.i −0.853546 1.47839i −0.877987 0.478684i \(-0.841114\pi\)
0.0244414 0.999701i \(-0.492219\pi\)
\(374\) 132299. 76383.0i 0.945832 0.546077i
\(375\) 0 0
\(376\) −74727.0 + 129431.i −0.528569 + 0.915509i
\(377\) 204756.i 1.44063i
\(378\) 0 0
\(379\) −261952. −1.82366 −0.911829 0.410571i \(-0.865330\pi\)
−0.911829 + 0.410571i \(0.865330\pi\)
\(380\) −60815.8 35112.0i −0.421162 0.243158i
\(381\) 0 0
\(382\) 68085.0 + 117927.i 0.466578 + 0.808138i
\(383\) −75484.5 + 43581.0i −0.514589 + 0.297098i −0.734718 0.678373i \(-0.762685\pi\)
0.220129 + 0.975471i \(0.429352\pi\)
\(384\) 0 0
\(385\) 38560.5 66788.7i 0.260148 0.450590i
\(386\) 106341.i 0.713717i
\(387\) 0 0
\(388\) −45619.0 −0.303028
\(389\) −207277. 119672.i −1.36978 0.790845i −0.378884 0.925444i \(-0.623692\pi\)
−0.990900 + 0.134599i \(0.957025\pi\)
\(390\) 0 0
\(391\) 62100.0 + 107560.i 0.406198 + 0.703556i
\(392\) 121902. 70380.0i 0.793301 0.458012i
\(393\) 0 0
\(394\) −53608.5 + 92852.6i −0.345335 + 0.598139i
\(395\) 344850.i 2.21022i
\(396\) 0 0
\(397\) 217154. 1.37780 0.688901 0.724855i \(-0.258093\pi\)
0.688901 + 0.724855i \(0.258093\pi\)
\(398\) −81202.9 46882.5i −0.512631 0.295968i
\(399\) 0 0
\(400\) −22040.0 38174.4i −0.137750 0.238590i
\(401\) −221876. + 128100.i −1.37982 + 0.796637i −0.992137 0.125158i \(-0.960056\pi\)
−0.387679 + 0.921795i \(0.626723\pi\)
\(402\) 0 0
\(403\) −36089.0 + 62508.0i −0.222211 + 0.384880i
\(404\) 41433.0i 0.253854i
\(405\) 0 0
\(406\) 38646.0 0.234451
\(407\) −78825.6 45510.0i −0.475859 0.274738i
\(408\) 0 0
\(409\) 99645.5 + 172591.i 0.595677 + 1.03174i 0.993451 + 0.114260i \(0.0364496\pi\)
−0.397774 + 0.917484i \(0.630217\pi\)
\(410\) −19547.9 + 11286.0i −0.116287 + 0.0671386i
\(411\) 0 0
\(412\) 26789.0 46399.9i 0.157820 0.273352i
\(413\) 55518.0i 0.325487i
\(414\) 0 0
\(415\) 416889. 2.42061
\(416\) 214201. + 123669.i 1.23776 + 0.714618i
\(417\) 0 0
\(418\) 56088.0 + 97147.3i 0.321009 + 0.556004i
\(419\) 217610. 125637.i 1.23951 0.715632i 0.270516 0.962715i \(-0.412806\pi\)
0.968994 + 0.247084i \(0.0794723\pi\)
\(420\) 0 0
\(421\) 15206.0 26337.6i 0.0857928 0.148597i −0.819936 0.572455i \(-0.805991\pi\)
0.905729 + 0.423858i \(0.139324\pi\)
\(422\) 45156.0i 0.253566i
\(423\) 0 0
\(424\) −109917. −0.611411
\(425\) 166360. + 96048.0i 0.921024 + 0.531754i
\(426\) 0 0
\(427\) −3002.00 5199.62i −0.0164647 0.0285178i
\(428\) −3109.90 + 1795.50i −0.0169769 + 0.00980162i
\(429\) 0 0
\(430\) −48609.0 + 84193.3i −0.262893 + 0.455345i
\(431\) 161730.i 0.870635i 0.900277 + 0.435317i \(0.143364\pi\)
−0.900277 + 0.435317i \(0.856636\pi\)
\(432\) 0 0
\(433\) −213541. −1.13895 −0.569476 0.822008i \(-0.692854\pi\)
−0.569476 + 0.822008i \(0.692854\pi\)
\(434\) −11797.9 6811.50i −0.0626360 0.0361629i
\(435\) 0 0
\(436\) −8134.00 14088.5i −0.0427889 0.0741126i
\(437\) −78981.5 + 45600.0i −0.413583 + 0.238782i
\(438\) 0 0
\(439\) −33362.5 + 57785.5i −0.173113 + 0.299840i −0.939507 0.342531i \(-0.888716\pi\)
0.766394 + 0.642371i \(0.222049\pi\)
\(440\) 280071.i 1.44665i
\(441\) 0 0
\(442\) 375084. 1.91992
\(443\) 237438. + 137085.i 1.20988 + 0.698526i 0.962734 0.270452i \(-0.0871730\pi\)
0.247149 + 0.968978i \(0.420506\pi\)
\(444\) 0 0
\(445\) 115533. + 200109.i 0.583426 + 1.01052i
\(446\) −130356. + 75261.0i −0.655331 + 0.378356i
\(447\) 0 0
\(448\) −37781.5 + 65439.5i −0.188245 + 0.326050i
\(449\) 233784.i 1.15964i −0.814746 0.579819i \(-0.803123\pi\)
0.814746 0.579819i \(-0.196877\pi\)
\(450\) 0 0
\(451\) −28044.0 −0.137875
\(452\) 29825.9 + 17220.0i 0.145988 + 0.0842862i
\(453\) 0 0
\(454\) −28899.0 50054.5i −0.140207 0.242846i
\(455\) 163985. 94677.0i 0.792104 0.457322i
\(456\) 0 0
\(457\) 45333.5 78519.9i 0.217064 0.375965i −0.736845 0.676061i \(-0.763685\pi\)
0.953909 + 0.300096i \(0.0970188\pi\)
\(458\) 102642.i 0.489321i
\(459\) 0 0
\(460\) 69300.0 0.327505
\(461\) −174900. 100978.i −0.822977 0.475146i 0.0284650 0.999595i \(-0.490938\pi\)
−0.851442 + 0.524449i \(0.824271\pi\)
\(462\) 0 0
\(463\) 161988. + 280572.i 0.755653 + 1.30883i 0.945049 + 0.326928i \(0.106013\pi\)
−0.189397 + 0.981901i \(0.560653\pi\)
\(464\) 55780.7 32205.0i 0.259088 0.149585i
\(465\) 0 0
\(466\) 56079.0 97131.7i 0.258243 0.447290i
\(467\) 76941.0i 0.352796i 0.984319 + 0.176398i \(0.0564446\pi\)
−0.984319 + 0.176398i \(0.943555\pi\)
\(468\) 0 0
\(469\) −87818.0 −0.399244
\(470\) 185705. + 107217.i 0.840676 + 0.485364i
\(471\) 0 0
\(472\) 100809. + 174606.i 0.452497 + 0.783747i
\(473\) −104604. + 60393.0i −0.467547 + 0.269938i
\(474\) 0 0
\(475\) −70528.0 + 122158.i −0.312589 + 0.541421i
\(476\) 55062.0i 0.243018i
\(477\) 0 0
\(478\) −185400. −0.811435
\(479\) −167332. 96609.0i −0.729302 0.421062i 0.0888650 0.996044i \(-0.471676\pi\)
−0.818167 + 0.574981i \(0.805009\pi\)
\(480\) 0 0
\(481\) −111740. 193539.i −0.482968 0.836525i
\(482\) −107534. + 62085.0i −0.462864 + 0.267235i
\(483\) 0 0
\(484\) 1708.00 2958.34i 0.00729117 0.0126287i
\(485\) 215061.i 0.914278i
\(486\) 0 0
\(487\) −34882.0 −0.147077 −0.0735383 0.997292i \(-0.523429\pi\)
−0.0735383 + 0.997292i \(0.523429\pi\)
\(488\) −18882.8 10902.0i −0.0792916 0.0457790i
\(489\) 0 0
\(490\) −100980. 174902.i −0.420575 0.728457i
\(491\) 187968. 108524.i 0.779689 0.450154i −0.0566310 0.998395i \(-0.518036\pi\)
0.836320 + 0.548241i \(0.184703\pi\)
\(492\) 0 0
\(493\) −140346. + 243086.i −0.577439 + 1.00015i
\(494\) 275424.i 1.12862i
\(495\) 0 0
\(496\) −22705.0 −0.0922907
\(497\) 29914.2 + 17271.0i 0.121106 + 0.0699205i
\(498\) 0 0
\(499\) −232405. 402537.i −0.933350 1.61661i −0.777551 0.628820i \(-0.783538\pi\)
−0.155799 0.987789i \(-0.549795\pi\)
\(500\) −32208.4 + 18595.5i −0.128833 + 0.0743820i
\(501\) 0 0
\(502\) 124227. 215167.i 0.492956 0.853826i
\(503\) 167580.i 0.662348i −0.943570 0.331174i \(-0.892555\pi\)
0.943570 0.331174i \(-0.107445\pi\)
\(504\) 0 0
\(505\) 195327. 0.765913
\(506\) −95869.0 55350.0i −0.374436 0.216181i
\(507\) 0 0
\(508\) −87482.5 151524.i −0.338995 0.587157i
\(509\) 30914.5 17848.5i 0.119324 0.0688916i −0.439150 0.898414i \(-0.644720\pi\)
0.558474 + 0.829522i \(0.311387\pi\)
\(510\) 0 0
\(511\) −28794.5 + 49873.5i −0.110273 + 0.190998i
\(512\) 182685.i 0.696888i
\(513\) 0 0
\(514\) −58770.0 −0.222448
\(515\) −218742. 126291.i −0.824743 0.476166i
\(516\) 0 0
\(517\) 133209. + 230725.i 0.498371 + 0.863203i
\(518\) 36529.0 21090.0i 0.136137 0.0785990i
\(519\) 0 0
\(520\) 343827. 595526.i 1.27155 2.20239i
\(521\) 42750.0i 0.157493i −0.996895 0.0787464i \(-0.974908\pi\)
0.996895 0.0787464i \(-0.0250917\pi\)
\(522\) 0 0
\(523\) −176434. −0.645028 −0.322514 0.946565i \(-0.604528\pi\)
−0.322514 + 0.946565i \(0.604528\pi\)
\(524\) −172536. 99613.5i −0.628371 0.362790i
\(525\) 0 0
\(526\) −25038.0 43367.1i −0.0904957 0.156743i
\(527\) 85689.7 49473.0i 0.308537 0.178134i
\(528\) 0 0
\(529\) −94920.5 + 164407.i −0.339194 + 0.587502i
\(530\) 157707.i 0.561435i
\(531\) 0 0
\(532\) 40432.0 0.142857
\(533\) −59631.0 34428.0i −0.209903 0.121187i
\(534\) 0 0
\(535\) 8464.50 + 14660.9i 0.0295729 + 0.0512217i
\(536\) −276191. + 159459.i −0.961347 + 0.555034i
\(537\) 0 0
\(538\) −181359. + 314123.i −0.626577 + 1.08526i
\(539\) 250920.i 0.863690i
\(540\) 0 0
\(541\) −323836. −1.10645 −0.553223 0.833033i \(-0.686602\pi\)
−0.553223 + 0.833033i \(0.686602\pi\)
\(542\) 191580. + 110609.i 0.652155 + 0.376522i
\(543\) 0 0
\(544\) −169533. 293640.i −0.572870 0.992241i
\(545\) −66417.2 + 38346.0i −0.223608 + 0.129100i
\(546\) 0 0
\(547\) 111695. 193461.i 0.373301 0.646576i −0.616770 0.787143i \(-0.711559\pi\)
0.990071 + 0.140567i \(0.0448926\pi\)
\(548\) 17178.0i 0.0572020i
\(549\) 0 0
\(550\) −171216. −0.566003
\(551\) −178498. 103056.i −0.587937 0.339446i
\(552\) 0 0
\(553\) −99275.0 171949.i −0.324631 0.562277i
\(554\) −31166.5 + 17994.0i −0.101547 + 0.0586284i
\(555\) 0 0
\(556\) 41594.0 72042.9i 0.134549 0.233046i
\(557\) 585027.i 1.88567i −0.333261 0.942835i \(-0.608149\pi\)
0.333261 0.942835i \(-0.391851\pi\)
\(558\) 0 0
\(559\) −296564. −0.949063
\(560\) 51584.8 + 29782.5i 0.164492 + 0.0949697i
\(561\) 0 0
\(562\) −76689.0 132829.i −0.242807 0.420553i
\(563\) −72811.1 + 42037.5i −0.229710 + 0.132623i −0.610438 0.792064i \(-0.709007\pi\)
0.380728 + 0.924687i \(0.375673\pi\)
\(564\) 0 0
\(565\) 81180.0 140608.i 0.254303 0.440466i
\(566\) 3144.00i 0.00981408i
\(567\) 0 0
\(568\) 125442. 0.388818
\(569\) 551998. + 318696.i 1.70495 + 0.984356i 0.940573 + 0.339591i \(0.110289\pi\)
0.764381 + 0.644765i \(0.223045\pi\)
\(570\) 0 0
\(571\) −40363.0 69910.8i −0.123797 0.214423i 0.797465 0.603365i \(-0.206174\pi\)
−0.921262 + 0.388942i \(0.872841\pi\)
\(572\) 225186. 130011.i 0.688254 0.397364i
\(573\) 0 0
\(574\) 6498.00 11254.9i 0.0197222 0.0341599i
\(575\) 139200.i 0.421021i
\(576\) 0 0
\(577\) 261182. 0.784498 0.392249 0.919859i \(-0.371697\pi\)
0.392249 + 0.919859i \(0.371697\pi\)
\(578\) −228306. 131812.i −0.683379 0.394549i
\(579\) 0 0
\(580\) 78309.0 + 135635.i 0.232785 + 0.403196i
\(581\) −207869. + 120013.i −0.615798 + 0.355531i
\(582\) 0 0
\(583\) −97969.5 + 169688.i −0.288240 + 0.499246i
\(584\) 209139.i 0.613210i
\(585\) 0 0
\(586\) 192546. 0.560711
\(587\) 338880. + 195652.i 0.983490 + 0.567818i 0.903322 0.428963i \(-0.141121\pi\)
0.0801678 + 0.996781i \(0.474454\pi\)
\(588\) 0 0
\(589\) 36328.0 + 62921.9i 0.104715 + 0.181373i
\(590\) 250522. 144639.i 0.719684 0.415510i
\(591\) 0 0
\(592\) 35150.0 60881.6i 0.100296 0.173717i
\(593\) 302670.i 0.860716i 0.902658 + 0.430358i \(0.141613\pi\)
−0.902658 + 0.430358i \(0.858387\pi\)
\(594\) 0 0
\(595\) −259578. −0.733219
\(596\) 133325. + 76975.5i 0.375336 + 0.216701i
\(597\) 0 0
\(598\) −135900. 235386.i −0.380029 0.658230i
\(599\) −252445. + 145749.i −0.703579 + 0.406211i −0.808679 0.588250i \(-0.799817\pi\)
0.105100 + 0.994462i \(0.466484\pi\)
\(600\) 0 0
\(601\) −201087. + 348292.i −0.556716 + 0.964261i 0.441051 + 0.897482i \(0.354606\pi\)
−0.997768 + 0.0667792i \(0.978728\pi\)
\(602\) 55974.0i 0.154452i
\(603\) 0 0
\(604\) −18781.0 −0.0514807
\(605\) −13946.5 8052.00i −0.0381025 0.0219985i
\(606\) 0 0
\(607\) 189335. + 327938.i 0.513870 + 0.890049i 0.999871 + 0.0160908i \(0.00512208\pi\)
−0.486000 + 0.873959i \(0.661545\pi\)
\(608\) 215620. 124488.i 0.583285 0.336760i
\(609\) 0 0
\(610\) −15642.0 + 27092.7i −0.0420371 + 0.0728104i
\(611\) 654132.i 1.75220i
\(612\) 0 0
\(613\) 287570. 0.765284 0.382642 0.923897i \(-0.375014\pi\)
0.382642 + 0.923897i \(0.375014\pi\)
\(614\) 400504. + 231231.i 1.06236 + 0.613351i
\(615\) 0 0
\(616\) 80626.5 + 139649.i 0.212479 + 0.368025i
\(617\) 499059. 288132.i 1.31094 0.756870i 0.328686 0.944439i \(-0.393394\pi\)
0.982251 + 0.187570i \(0.0600610\pi\)
\(618\) 0 0
\(619\) −111631. + 193351.i −0.291342 + 0.504620i −0.974127 0.226000i \(-0.927435\pi\)
0.682785 + 0.730619i \(0.260769\pi\)
\(620\) 55209.0i 0.143624i
\(621\) 0 0
\(622\) 282240. 0.729521
\(623\) −115214. 66519.0i −0.296845 0.171384i
\(624\) 0 0
\(625\) 232664. + 402987.i 0.595621 + 1.03165i
\(626\) 67298.0 38854.5i 0.171733 0.0991500i
\(627\) 0 0
\(628\) 112406. 194693.i 0.285017 0.493663i
\(629\) 306360.i 0.774338i
\(630\) 0 0
\(631\) 43373.0 0.108933 0.0544667 0.998516i \(-0.482654\pi\)
0.0544667 + 0.998516i \(0.482654\pi\)
\(632\) −624448. 360525.i −1.56337 0.902612i
\(633\) 0 0
\(634\) 145264. + 251605.i 0.361394 + 0.625953i
\(635\) −714328. + 412418.i −1.77154 + 1.02280i
\(636\) 0 0
\(637\) 308040. 533541.i 0.759151 1.31489i
\(638\) 250182.i 0.614631i
\(639\) 0 0
\(640\) −38709.0 −0.0945044
\(641\) −366692. 211710.i −0.892454 0.515259i −0.0177097 0.999843i \(-0.505637\pi\)
−0.874744 + 0.484584i \(0.838971\pi\)
\(642\) 0 0
\(643\) 273044. + 472926.i 0.660406 + 1.14386i 0.980509 + 0.196473i \(0.0629489\pi\)
−0.320104 + 0.947383i \(0.603718\pi\)
\(644\) −34554.4 + 19950.0i −0.0833166 + 0.0481029i
\(645\) 0 0
\(646\) 188784. 326983.i 0.452377 0.783539i
\(647\) 418932.i 1.00077i −0.865803 0.500386i \(-0.833192\pi\)
0.865803 0.500386i \(-0.166808\pi\)
\(648\) 0 0
\(649\) 359406. 0.853289
\(650\) −364063. 210192.i −0.861688 0.497496i
\(651\) 0 0
\(652\) −79765.0 138157.i −0.187636 0.324996i
\(653\) 608997. 351604.i 1.42820 0.824571i 0.431220 0.902247i \(-0.358083\pi\)
0.996979 + 0.0776757i \(0.0247499\pi\)
\(654\) 0 0
\(655\) −469606. + 813382.i −1.09459 + 1.89589i
\(656\) 21660.0i 0.0503328i
\(657\) 0 0
\(658\) −123462. −0.285155
\(659\) −88352.8 51010.5i −0.203446 0.117460i 0.394816 0.918760i \(-0.370808\pi\)
−0.598262 + 0.801301i \(0.704142\pi\)
\(660\) 0 0
\(661\) −115360. 199809.i −0.264029 0.457312i 0.703279 0.710914i \(-0.251718\pi\)
−0.967309 + 0.253601i \(0.918385\pi\)
\(662\) 428303. 247281.i 0.977317 0.564254i
\(663\) 0 0
\(664\) −435838. + 754894.i −0.988529 + 1.71218i
\(665\) 190608.i 0.431020i
\(666\) 0 0
\(667\) 203400. 0.457193
\(668\) 218711. + 126273.i 0.490138 + 0.282981i
\(669\) 0 0
\(670\) 228789. + 396274.i 0.509666 + 0.882767i
\(671\) −33660.7 + 19434.0i −0.0747615 + 0.0431636i
\(672\) 0 0
\(673\) 234684. 406485.i 0.518149 0.897460i −0.481629 0.876375i \(-0.659955\pi\)
0.999778 0.0210845i \(-0.00671189\pi\)
\(674\) 446082.i 0.981963i
\(675\) 0 0
\(676\) 438501. 0.959571
\(677\) 297173. + 171573.i 0.648384 + 0.374345i 0.787837 0.615884i \(-0.211201\pi\)
−0.139453 + 0.990229i \(0.544534\pi\)
\(678\) 0 0
\(679\) −61911.5 107234.i −0.134286 0.232591i
\(680\) −816383. + 471339.i −1.76553 + 1.01933i
\(681\) 0 0
\(682\) −44095.5 + 76375.6i −0.0948038 + 0.164205i
\(683\) 24642.0i 0.0528244i 0.999651 + 0.0264122i \(0.00840824\pi\)
−0.999651 + 0.0264122i \(0.991592\pi\)
\(684\) 0 0
\(685\) 80982.0 0.172587
\(686\) 219223. + 126568.i 0.465841 + 0.268954i
\(687\) 0 0
\(688\) −46645.0 80791.5i −0.0985436 0.170682i
\(689\) −416633. + 240543.i −0.877637 + 0.506704i
\(690\) 0 0
\(691\) 133250. 230796.i 0.279069 0.483361i −0.692085 0.721816i \(-0.743308\pi\)
0.971154 + 0.238455i \(0.0766409\pi\)
\(692\) 138075.i 0.288339i
\(693\) 0 0
\(694\) −323019. −0.670670
\(695\) −339631. 196086.i −0.703133 0.405954i
\(696\) 0 0
\(697\) 47196.0 + 81745.9i 0.0971493 + 0.168268i
\(698\) −331307. + 191280.i −0.680016 + 0.392608i
\(699\) 0 0
\(700\) −30856.0 + 53444.2i −0.0629714 + 0.109070i
\(701\) 690309.i 1.40478i 0.711794 + 0.702389i \(0.247883\pi\)
−0.711794 + 0.702389i \(0.752117\pi\)
\(702\) 0 0
\(703\) −224960. −0.455192
\(704\) 423635. + 244586.i 0.854764 + 0.493498i
\(705\) 0 0
\(706\) 213156. + 369197.i 0.427650 + 0.740711i
\(707\) −97394.1 + 56230.5i −0.194847 + 0.112495i
\(708\) 0 0
\(709\) 52592.0 91092.0i 0.104623 0.181212i −0.808961 0.587862i \(-0.799970\pi\)
0.913584 + 0.406650i \(0.133303\pi\)
\(710\) 179982.i 0.357036i
\(711\) 0 0
\(712\) −483138. −0.953040
\(713\) −62094.0 35850.0i −0.122144 0.0705196i
\(714\) 0 0
\(715\) −612909. 1.06159e6i −1.19890 2.07656i
\(716\) −296531. + 171202.i −0.578422 + 0.333952i
\(717\) 0 0
\(718\) 29133.0 50459.8i 0.0565114 0.0978807i
\(719\) 704988.i 1.36372i −0.731485 0.681858i \(-0.761172\pi\)
0.731485 0.681858i \(-0.238828\pi\)
\(720\) 0 0
\(721\) 145426. 0.279751
\(722\) −98480.1 56857.5i −0.188918 0.109072i
\(723\) 0 0
\(724\) 173432. + 300393.i 0.330866 + 0.573077i
\(725\) 272445. 157296.i 0.518325 0.299255i
\(726\) 0 0
\(727\) −63044.5 + 109196.i −0.119283 + 0.206604i −0.919484 0.393128i \(-0.871393\pi\)
0.800201 + 0.599732i \(0.204726\pi\)
\(728\) 395922.i 0.747045i
\(729\) 0 0
\(730\) 300069. 0.563087
\(731\) 352081. + 203274.i 0.658882 + 0.380406i
\(732\) 0 0
\(733\) −48868.0 84641.9i −0.0909529 0.157535i 0.816959 0.576695i \(-0.195658\pi\)
−0.907912 + 0.419160i \(0.862325\pi\)
\(734\) 393206. 227018.i 0.729840 0.421373i
\(735\) 0 0
\(736\) −122850. + 212782.i −0.226788 + 0.392808i
\(737\) 568506.i 1.04665i
\(738\) 0 0
\(739\) −857158. −1.56954 −0.784769 0.619788i \(-0.787219\pi\)
−0.784769 + 0.619788i \(0.787219\pi\)
\(740\) 148038. + 85470.0i 0.270340 + 0.156081i
\(741\) 0 0
\(742\) −45400.5 78636.0i −0.0824618 0.142828i
\(743\) 788054. 454983.i 1.42751 0.824171i 0.430583 0.902551i \(-0.358308\pi\)
0.996924 + 0.0783795i \(0.0249746\pi\)
\(744\) 0 0
\(745\) 362884. 628534.i 0.653816 1.13244i
\(746\) 712518.i 1.28032i
\(747\) 0 0
\(748\) −356454. −0.637089
\(749\) −8441.15 4873.50i −0.0150466 0.00868715i
\(750\) 0 0
\(751\) −30611.5 53020.7i −0.0542756 0.0940081i 0.837611 0.546267i \(-0.183952\pi\)
−0.891887 + 0.452259i \(0.850618\pi\)
\(752\) −178202. + 102885.i −0.315121 + 0.181935i
\(753\) 0 0
\(754\) 307134. 531972.i 0.540238 0.935720i
\(755\) 88539.0i 0.155325i
\(756\) 0 0
\(757\) 782570. 1.36562 0.682812 0.730594i \(-0.260757\pi\)
0.682812 + 0.730594i \(0.260757\pi\)
\(758\) −680571. 392928.i −1.18450 0.683872i
\(759\) 0 0
\(760\) −346104. 599470.i −0.599211 1.03786i
\(761\) 607430. 350700.i 1.04888 0.605573i 0.126547 0.991961i \(-0.459611\pi\)
0.922336 + 0.386388i \(0.126277\pi\)
\(762\) 0 0
\(763\) 22078.0 38240.2i 0.0379237 0.0656858i
\(764\) 317730.i 0.544342i
\(765\) 0 0
\(766\) −261486. −0.445647
\(767\) 764219. + 441222.i 1.29905 + 0.750009i
\(768\) 0 0
\(769\) 42522.5 + 73651.1i 0.0719062 + 0.124545i 0.899737 0.436433i \(-0.143758\pi\)
−0.827831 + 0.560978i \(0.810425\pi\)
\(770\) 200366. 115682.i 0.337943 0.195111i
\(771\) 0 0
\(772\) −124065. + 214886.i −0.208168 + 0.360557i
\(773\) 643122.i 1.07630i 0.842848 + 0.538151i \(0.180877\pi\)
−0.842848 + 0.538151i \(0.819123\pi\)
\(774\) 0 0
\(775\) −110896. −0.184634
\(776\) −389428. 224836.i −0.646702 0.373373i
\(777\) 0 0
\(778\) −359014. 621831.i −0.593134 1.02734i
\(779\) −60026.0 + 34656.0i −0.0989155 + 0.0571089i
\(780\) 0 0
\(781\) 111807. 193655.i 0.183302 0.317488i
\(782\) 372600.i 0.609297i
\(783\) 0 0
\(784\) 193800. 0.315298
\(785\) −917838. 529914.i −1.48945 0.859936i
\(786\) 0 0
\(787\) −534274. 925390.i −0.862610 1.49408i −0.869401 0.494108i \(-0.835495\pi\)
0.00679053 0.999977i \(-0.497838\pi\)
\(788\) 216656. 125086.i 0.348914 0.201446i
\(789\) 0 0
\(790\) −517275. + 895947.i −0.828834 + 1.43558i
\(791\) 93480.0i 0.149405i
\(792\) 0 0
\(793\) −95432.0 −0.151757
\(794\) 564183. + 325731.i 0.894909 + 0.516676i
\(795\) 0 0
\(796\) 109392. + 189473.i 0.172648 + 0.299035i
\(797\) −466731. + 269468.i −0.734768 + 0.424219i −0.820164 0.572128i \(-0.806118\pi\)
0.0853958 + 0.996347i \(0.472785\pi\)
\(798\) 0 0
\(799\) 448362. 776586.i 0.702320 1.21645i
\(800\) 380016.i 0.593775i
\(801\) 0 0
\(802\) −768600. −1.19496
\(803\) 322866. + 186406.i 0.500715 + 0.289088i
\(804\) 0 0
\(805\) 94050.0 + 162899.i 0.145133 + 0.251378i
\(806\) −187524. + 108267.i −0.288660 + 0.166658i
\(807\) 0 0
\(808\) −204205. + 353694.i −0.312784 + 0.541758i
\(809\) 459594.i 0.702227i −0.936333 0.351113i \(-0.885803\pi\)
0.936333 0.351113i \(-0.114197\pi\)
\(810\) 0 0
\(811\) −961360. −1.46165 −0.730827 0.682563i \(-0.760865\pi\)
−0.730827 + 0.682563i \(0.760865\pi\)
\(812\) −78093.0 45087.0i −0.118440 0.0683816i
\(813\) 0 0
\(814\) −136530. 236477.i −0.206053 0.356895i
\(815\) −651312. + 376035.i −0.980559 + 0.566126i
\(816\) 0 0
\(817\) −149264. + 258533.i −0.223620 + 0.387321i
\(818\) 597873.i 0.893516i
\(819\) 0 0
\(820\) 52668.0 0.0783284
\(821\) −91509.4 52833.0i −0.135762 0.0783825i 0.430580 0.902552i \(-0.358309\pi\)
−0.566343 + 0.824170i \(0.691642\pi\)
\(822\) 0 0
\(823\) 246778. + 427431.i 0.364339 + 0.631054i 0.988670 0.150106i \(-0.0479615\pi\)
−0.624331 + 0.781160i \(0.714628\pi\)
\(824\) 457371. 264063.i 0.673618 0.388914i
\(825\) 0 0
\(826\) −83277.0 + 144240.i −0.122058 + 0.211410i
\(827\) 192870.i 0.282003i 0.990009 + 0.141001i \(0.0450322\pi\)
−0.990009 + 0.141001i \(0.954968\pi\)
\(828\) 0 0
\(829\) 577226. 0.839918 0.419959 0.907543i \(-0.362044\pi\)
0.419959 + 0.907543i \(0.362044\pi\)
\(830\) 1.08311e6 + 625334.i 1.57223 + 0.907728i
\(831\) 0 0
\(832\) 600527. + 1.04014e6i 0.867533 + 1.50261i
\(833\) −731410. + 422280.i −1.05407 + 0.608570i
\(834\) 0 0
\(835\) 595287. 1.03107e6i 0.853795 1.47882i
\(836\) 261744.i 0.374511i
\(837\) 0 0
\(838\) 753822. 1.07345
\(839\) 61475.7 + 35493.0i 0.0873332 + 0.0504219i 0.543031 0.839713i \(-0.317277\pi\)
−0.455697 + 0.890135i \(0.650610\pi\)
\(840\) 0 0
\(841\) −123798. 214425.i −0.175034 0.303168i
\(842\) 79012.7 45618.0i 0.111448 0.0643446i
\(843\) 0 0
\(844\) 52682.0 91247.9i 0.0739567 0.128097i
\(845\) 2.06722e6i 2.89516i
\(846\) 0 0
\(847\) 9272.00 0.0129243
\(848\) −131060. 75667.5i −0.182255 0.105225i
\(849\) 0 0
\(850\) 288144. + 499080.i 0.398815 + 0.690768i
\(851\) 192258. 111000.i 0.265476 0.153272i
\(852\) 0 0
\(853\) −40603.0 + 70326.5i −0.0558033 + 0.0966542i −0.892578 0.450894i \(-0.851105\pi\)
0.836774 + 0.547548i \(0.184439\pi\)
\(854\) 18012.0i 0.0246971i
\(855\) 0 0
\(856\) −35397.0 −0.0483080
\(857\) −935687. 540219.i −1.27400 0.735543i −0.298260 0.954485i \(-0.596406\pi\)
−0.975738 + 0.218941i \(0.929740\pi\)
\(858\) 0 0
\(859\) −251674. 435912.i −0.341077 0.590762i 0.643556 0.765399i \(-0.277458\pi\)
−0.984633 + 0.174637i \(0.944125\pi\)
\(860\) 196451. 113421.i 0.265618 0.153355i
\(861\) 0 0
\(862\) −242595. + 420187.i −0.326488 + 0.565494i
\(863\) 548100.i 0.735933i −0.929839 0.367966i \(-0.880054\pi\)
0.929839 0.367966i \(-0.119946\pi\)
\(864\) 0 0
\(865\) 650925. 0.869959
\(866\) −554796. 320312.i −0.739771 0.427107i
\(867\) 0 0
\(868\) 15893.5 + 27528.3i 0.0210950 + 0.0365377i
\(869\) −1.11315e6 + 642675.i −1.47405 + 0.851044i
\(870\) 0 0
\(871\) −697922. + 1.20884e6i −0.919963 + 1.59342i
\(872\) 160356.i 0.210888i
\(873\) 0 0
\(874\) −273600. −0.358173
\(875\) −87422.7 50473.5i −0.114185 0.0659246i
\(876\) 0 0
\(877\) −350017. 606247.i −0.455082 0.788226i 0.543611 0.839338i \(-0.317057\pi\)
−0.998693 + 0.0511118i \(0.983724\pi\)
\(878\) −173357. + 100088.i −0.224880 + 0.129835i
\(879\) 0 0
\(880\) 192802. 333944.i 0.248970 0.431229i
\(881\) 806634.i 1.03926i 0.854391 + 0.519631i \(0.173930\pi\)
−0.854391 + 0.519631i \(0.826070\pi\)
\(882\) 0 0
\(883\) 342704. 0.439539 0.219770 0.975552i \(-0.429469\pi\)
0.219770 + 0.975552i \(0.429469\pi\)
\(884\) −757942. 437598.i −0.969910 0.559978i
\(885\) 0 0
\(886\) 411255. + 712315.i 0.523894 + 0.907412i
\(887\) 13962.1 8061.00i 0.0177461 0.0102457i −0.491101 0.871103i \(-0.663405\pi\)
0.508847 + 0.860857i \(0.330072\pi\)
\(888\) 0 0
\(889\) 237452. 411280.i 0.300451 0.520396i
\(890\) 693198.i 0.875140i
\(891\) 0 0
\(892\) 351218. 0.441415
\(893\) 570247. + 329232.i 0.715088 + 0.412856i
\(894\) 0 0
\(895\) 807098. + 1.39793e6i 1.00758 + 1.74518i
\(896\) 19301.1 11143.5i 0.0240418 0.0138805i
\(897\) 0 0
\(898\) 350676. 607389.i 0.434864 0.753206i
\(899\) 162042.i 0.200497i
\(900\) 0 0
\(901\) 659502. 0.812394
\(902\) −72860.4 42066.0i −0.0895527 0.0517033i
\(903\) 0 0
\(904\) 169740. + 293998.i 0.207705 + 0.359756i
\(905\) 1.41614e6 817608.i 1.72905 0.998270i
\(906\) 0 0
\(907\) −784750. + 1.35923e6i −0.953931 + 1.65226i −0.217134 + 0.976142i \(0.569671\pi\)
−0.736797 + 0.676114i \(0.763663\pi\)
\(908\) 134862.i 0.163575i
\(909\) 0 0
\(910\) 568062. 0.685982
\(911\) 433790. + 250449.i 0.522689 + 0.301775i 0.738034 0.674763i \(-0.235754\pi\)
−0.215345 + 0.976538i \(0.569088\pi\)
\(912\) 0 0
\(913\) 776930. + 1.34568e6i 0.932052 + 1.61436i
\(914\) 235560. 136000.i 0.281974 0.162798i
\(915\) 0 0
\(916\) −119749. + 207411.i −0.142719 + 0.247196i
\(917\) 540759.i 0.643080i
\(918\) 0 0
\(919\) 1.03715e6 1.22804 0.614019 0.789291i \(-0.289552\pi\)
0.614019 + 0.789291i \(0.289552\pi\)
\(920\) 591582. + 341550.i 0.698939 + 0.403533i
\(921\) 0 0
\(922\) −302936. 524700.i −0.356359 0.617233i
\(923\) 475479. 274518.i 0.558121 0.322231i
\(924\) 0 0
\(925\) 171680. 297358.i 0.200649 0.347534i
\(926\) 971931.i 1.13348i
\(927\) 0 0
\(928\) −555282. −0.644789
\(929\) −110917. 64038.0i −0.128519 0.0742004i 0.434362 0.900738i \(-0.356974\pi\)
−0.562881 + 0.826538i \(0.690307\pi\)
\(930\) 0 0
\(931\) −310080. 537074.i −0.357746 0.619634i
\(932\) −226641. + 130851.i −0.260919 + 0.150642i
\(933\) 0 0
\(934\) −115412. + 199899.i −0.132299 + 0.229148i
\(935\) 1.68043e6i 1.92219i
\(936\) 0 0
\(937\) −879451. −1.00169 −0.500844 0.865538i \(-0.666977\pi\)
−0.500844 + 0.865538i \(0.666977\pi\)
\(938\) −228158. 131727.i −0.259316 0.149716i
\(939\) 0 0
\(940\) −250173. 433312.i −0.283129 0.490394i
\(941\) 622029. 359128.i 0.702476 0.405574i −0.105793 0.994388i \(-0.533738\pi\)
0.808269 + 0.588814i \(0.200405\pi\)
\(942\) 0 0
\(943\) 34200.0 59236.1i 0.0384594 0.0666137i
\(944\) 277590.i 0.311501i
\(945\) 0 0
\(946\) −362358. −0.404907
\(947\) −63224.2 36502.5i −0.0704991 0.0407026i 0.464336 0.885659i \(-0.346293\pi\)
−0.534835 + 0.844956i \(0.679626\pi\)
\(948\) 0 0
\(949\) 457681. + 792727.i 0.508195 + 0.880220i
\(950\) −366474. + 211584.i −0.406066 + 0.234442i
\(951\) 0 0
\(952\) 271377. 470039.i 0.299433 0.518633i
\(953\) 309168.i 0.340415i 0.985408 + 0.170208i \(0.0544438\pi\)
−0.985408 + 0.170208i \(0.945556\pi\)
\(954\) 0 0
\(955\) −1.49787e6 −1.64236
\(956\) 374643. + 216300.i 0.409922 + 0.236669i
\(957\) 0 0
\(958\) −289827. 501995.i −0.315797 0.546976i
\(959\) −40379.3 + 23313.0i −0.0439058 + 0.0253490i
\(960\) 0 0
\(961\) 433200. 750324.i 0.469074 0.812461i
\(962\) 670440.i 0.724452i
\(963\) 0 0
\(964\) 289730. 0.311774
\(965\) 1.01303e6 + 584876.i 1.08785 + 0.628071i
\(966\) 0 0
\(967\) 183094. + 317127.i 0.195803 + 0.339141i 0.947164 0.320751i \(-0.103935\pi\)
−0.751360 + 0.659892i \(0.770602\pi\)
\(968\) 29160.8 16836.0i 0.0311207 0.0179675i
\(969\) 0 0
\(970\) −322592. + 558745.i −0.342854 + 0.593841i
\(971\) 1.43410e6i 1.52105i −0.649311 0.760523i \(-0.724943\pi\)
0.649311 0.760523i \(-0.275057\pi\)
\(972\) 0 0
\(973\) 225796. 0.238501
\(974\) −90626.1 52323.0i −0.0955290 0.0551537i
\(975\) 0 0
\(976\) −15010.0 25998.1i −0.0157573 0.0272924i
\(977\) −270028. + 155901.i −0.282892 + 0.163328i −0.634732 0.772732i \(-0.718889\pi\)
0.351840 + 0.936060i \(0.385556\pi\)
\(978\) 0 0
\(979\) −430623. + 745861.i −0.449295 + 0.778202i
\(980\) 471240.i 0.490671i
\(981\) 0 0
\(982\) 651141. 0.675231
\(983\) −597698. 345081.i −0.618550 0.357120i 0.157754 0.987478i \(-0.449575\pi\)
−0.776304 + 0.630359i \(0.782908\pi\)
\(984\) 0 0
\(985\) −589694. 1.02138e6i −0.607790 1.05272i
\(986\) −729259. + 421038.i −0.750115 + 0.433079i
\(987\) 0 0
\(988\) 321328. 556556.i 0.329181 0.570158i
\(989\) 294600.i 0.301190i
\(990\) 0 0
\(991\) 981875. 0.999790 0.499895 0.866086i \(-0.333372\pi\)
0.499895 + 0.866086i \(0.333372\pi\)
\(992\) 169517. + 97870.5i 0.172262 + 0.0994554i
\(993\) 0 0
\(994\) 51813.0 + 89742.7i 0.0524404 + 0.0908294i
\(995\) 893232. 515708.i 0.902231 0.520904i
\(996\) 0 0
\(997\) −120973. + 209531.i −0.121702 + 0.210794i −0.920439 0.390886i \(-0.872169\pi\)
0.798737 + 0.601680i \(0.205502\pi\)
\(998\) 1.39443e6i 1.40002i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.d.b.26.2 4
3.2 odd 2 inner 81.5.d.b.26.1 4
9.2 odd 6 27.5.b.c.26.2 yes 2
9.4 even 3 inner 81.5.d.b.53.1 4
9.5 odd 6 inner 81.5.d.b.53.2 4
9.7 even 3 27.5.b.c.26.1 2
36.7 odd 6 432.5.e.e.161.1 2
36.11 even 6 432.5.e.e.161.2 2
45.2 even 12 675.5.d.a.674.1 2
45.7 odd 12 675.5.d.d.674.1 2
45.29 odd 6 675.5.c.h.26.1 2
45.34 even 6 675.5.c.h.26.2 2
45.38 even 12 675.5.d.d.674.2 2
45.43 odd 12 675.5.d.a.674.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.b.c.26.1 2 9.7 even 3
27.5.b.c.26.2 yes 2 9.2 odd 6
81.5.d.b.26.1 4 3.2 odd 2 inner
81.5.d.b.26.2 4 1.1 even 1 trivial
81.5.d.b.53.1 4 9.4 even 3 inner
81.5.d.b.53.2 4 9.5 odd 6 inner
432.5.e.e.161.1 2 36.7 odd 6
432.5.e.e.161.2 2 36.11 even 6
675.5.c.h.26.1 2 45.29 odd 6
675.5.c.h.26.2 2 45.34 even 6
675.5.d.a.674.1 2 45.2 even 12
675.5.d.a.674.2 2 45.43 odd 12
675.5.d.d.674.1 2 45.7 odd 12
675.5.d.d.674.2 2 45.38 even 12