Properties

Label 81.5.b.a.80.1
Level $81$
Weight $5$
Character 81.80
Analytic conductor $8.373$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,5,Mod(80,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.80"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.39400128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 80.1
Root \(1.89154 + 3.27625i\) of defining polynomial
Character \(\chi\) \(=\) 81.80
Dual form 81.5.b.a.80.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.55250i q^{2} -26.9353 q^{4} -11.7830i q^{5} -53.2728 q^{7} +71.6534i q^{8} -77.2081 q^{10} +124.971i q^{11} -74.6104 q^{13} +349.070i q^{14} +38.5445 q^{16} -7.70989i q^{17} -54.1307 q^{19} +317.378i q^{20} +818.874 q^{22} -399.954i q^{23} +486.161 q^{25} +488.885i q^{26} +1434.92 q^{28} -540.653i q^{29} -1532.17 q^{31} +893.891i q^{32} -50.5190 q^{34} +627.714i q^{35} -1719.10 q^{37} +354.691i q^{38} +844.292 q^{40} -1259.63i q^{41} -2607.79 q^{43} -3366.13i q^{44} -2620.70 q^{46} -800.034i q^{47} +436.996 q^{49} -3185.57i q^{50} +2009.65 q^{52} -4229.81i q^{53} +1472.54 q^{55} -3817.18i q^{56} -3542.63 q^{58} +3333.19i q^{59} -15.0169 q^{61} +10039.5i q^{62} +6473.94 q^{64} +879.134i q^{65} +5182.39 q^{67} +207.668i q^{68} +4113.10 q^{70} -1924.16i q^{71} +949.554 q^{73} +11264.4i q^{74} +1458.02 q^{76} -6657.57i q^{77} -237.980 q^{79} -454.169i q^{80} -8253.75 q^{82} -13165.9i q^{83} -90.8456 q^{85} +17087.5i q^{86} -8954.61 q^{88} -575.925i q^{89} +3974.71 q^{91} +10772.9i q^{92} -5242.22 q^{94} +637.822i q^{95} +15123.4 q^{97} -2863.41i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 30 q^{4} - 24 q^{7} - 36 q^{10} + 12 q^{13} - 30 q^{16} - 258 q^{19} + 738 q^{22} + 546 q^{25} + 1308 q^{28} - 2580 q^{31} - 1026 q^{34} + 12 q^{37} + 2628 q^{40} + 570 q^{43} - 5760 q^{46} + 3726 q^{49}+ \cdots + 57918 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 6.55250i − 1.63813i −0.573704 0.819063i \(-0.694494\pi\)
0.573704 0.819063i \(-0.305506\pi\)
\(3\) 0 0
\(4\) −26.9353 −1.68345
\(5\) − 11.7830i − 0.471320i −0.971836 0.235660i \(-0.924275\pi\)
0.971836 0.235660i \(-0.0757252\pi\)
\(6\) 0 0
\(7\) −53.2728 −1.08720 −0.543600 0.839344i \(-0.682939\pi\)
−0.543600 + 0.839344i \(0.682939\pi\)
\(8\) 71.6534i 1.11958i
\(9\) 0 0
\(10\) −77.2081 −0.772081
\(11\) 124.971i 1.03282i 0.856341 + 0.516410i \(0.172732\pi\)
−0.856341 + 0.516410i \(0.827268\pi\)
\(12\) 0 0
\(13\) −74.6104 −0.441482 −0.220741 0.975332i \(-0.570848\pi\)
−0.220741 + 0.975332i \(0.570848\pi\)
\(14\) 349.070i 1.78097i
\(15\) 0 0
\(16\) 38.5445 0.150564
\(17\) − 7.70989i − 0.0266778i −0.999911 0.0133389i \(-0.995754\pi\)
0.999911 0.0133389i \(-0.00424603\pi\)
\(18\) 0 0
\(19\) −54.1307 −0.149946 −0.0749732 0.997186i \(-0.523887\pi\)
−0.0749732 + 0.997186i \(0.523887\pi\)
\(20\) 317.378i 0.793446i
\(21\) 0 0
\(22\) 818.874 1.69189
\(23\) − 399.954i − 0.756057i −0.925794 0.378029i \(-0.876602\pi\)
0.925794 0.378029i \(-0.123398\pi\)
\(24\) 0 0
\(25\) 486.161 0.777858
\(26\) 488.885i 0.723202i
\(27\) 0 0
\(28\) 1434.92 1.83025
\(29\) − 540.653i − 0.642869i −0.946932 0.321435i \(-0.895835\pi\)
0.946932 0.321435i \(-0.104165\pi\)
\(30\) 0 0
\(31\) −1532.17 −1.59435 −0.797173 0.603751i \(-0.793672\pi\)
−0.797173 + 0.603751i \(0.793672\pi\)
\(32\) 893.891i 0.872941i
\(33\) 0 0
\(34\) −50.5190 −0.0437016
\(35\) 627.714i 0.512419i
\(36\) 0 0
\(37\) −1719.10 −1.25574 −0.627868 0.778320i \(-0.716072\pi\)
−0.627868 + 0.778320i \(0.716072\pi\)
\(38\) 354.691i 0.245631i
\(39\) 0 0
\(40\) 844.292 0.527682
\(41\) − 1259.63i − 0.749335i −0.927159 0.374668i \(-0.877757\pi\)
0.927159 0.374668i \(-0.122243\pi\)
\(42\) 0 0
\(43\) −2607.79 −1.41038 −0.705189 0.709020i \(-0.749138\pi\)
−0.705189 + 0.709020i \(0.749138\pi\)
\(44\) − 3366.13i − 1.73871i
\(45\) 0 0
\(46\) −2620.70 −1.23852
\(47\) − 800.034i − 0.362170i −0.983467 0.181085i \(-0.942039\pi\)
0.983467 0.181085i \(-0.0579609\pi\)
\(48\) 0 0
\(49\) 436.996 0.182006
\(50\) − 3185.57i − 1.27423i
\(51\) 0 0
\(52\) 2009.65 0.743214
\(53\) − 4229.81i − 1.50581i −0.658131 0.752904i \(-0.728653\pi\)
0.658131 0.752904i \(-0.271347\pi\)
\(54\) 0 0
\(55\) 1472.54 0.486789
\(56\) − 3817.18i − 1.21721i
\(57\) 0 0
\(58\) −3542.63 −1.05310
\(59\) 3333.19i 0.957538i 0.877941 + 0.478769i \(0.158917\pi\)
−0.877941 + 0.478769i \(0.841083\pi\)
\(60\) 0 0
\(61\) −15.0169 −0.00403570 −0.00201785 0.999998i \(-0.500642\pi\)
−0.00201785 + 0.999998i \(0.500642\pi\)
\(62\) 10039.5i 2.61174i
\(63\) 0 0
\(64\) 6473.94 1.58055
\(65\) 879.134i 0.208079i
\(66\) 0 0
\(67\) 5182.39 1.15447 0.577233 0.816580i \(-0.304133\pi\)
0.577233 + 0.816580i \(0.304133\pi\)
\(68\) 207.668i 0.0449109i
\(69\) 0 0
\(70\) 4113.10 0.839407
\(71\) − 1924.16i − 0.381701i −0.981619 0.190851i \(-0.938875\pi\)
0.981619 0.190851i \(-0.0611246\pi\)
\(72\) 0 0
\(73\) 949.554 0.178186 0.0890931 0.996023i \(-0.471603\pi\)
0.0890931 + 0.996023i \(0.471603\pi\)
\(74\) 11264.4i 2.05705i
\(75\) 0 0
\(76\) 1458.02 0.252428
\(77\) − 6657.57i − 1.12288i
\(78\) 0 0
\(79\) −237.980 −0.0381318 −0.0190659 0.999818i \(-0.506069\pi\)
−0.0190659 + 0.999818i \(0.506069\pi\)
\(80\) − 454.169i − 0.0709640i
\(81\) 0 0
\(82\) −8253.75 −1.22751
\(83\) − 13165.9i − 1.91115i −0.294750 0.955574i \(-0.595236\pi\)
0.294750 0.955574i \(-0.404764\pi\)
\(84\) 0 0
\(85\) −90.8456 −0.0125738
\(86\) 17087.5i 2.31038i
\(87\) 0 0
\(88\) −8954.61 −1.15633
\(89\) − 575.925i − 0.0727086i −0.999339 0.0363543i \(-0.988426\pi\)
0.999339 0.0363543i \(-0.0115745\pi\)
\(90\) 0 0
\(91\) 3974.71 0.479979
\(92\) 10772.9i 1.27279i
\(93\) 0 0
\(94\) −5242.22 −0.593280
\(95\) 637.822i 0.0706728i
\(96\) 0 0
\(97\) 15123.4 1.60733 0.803667 0.595079i \(-0.202879\pi\)
0.803667 + 0.595079i \(0.202879\pi\)
\(98\) − 2863.41i − 0.298148i
\(99\) 0 0
\(100\) −13094.9 −1.30949
\(101\) 11060.8i 1.08428i 0.840287 + 0.542141i \(0.182386\pi\)
−0.840287 + 0.542141i \(0.817614\pi\)
\(102\) 0 0
\(103\) −3562.92 −0.335839 −0.167920 0.985801i \(-0.553705\pi\)
−0.167920 + 0.985801i \(0.553705\pi\)
\(104\) − 5346.09i − 0.494276i
\(105\) 0 0
\(106\) −27715.9 −2.46670
\(107\) 11432.7i 0.998576i 0.866436 + 0.499288i \(0.166405\pi\)
−0.866436 + 0.499288i \(0.833595\pi\)
\(108\) 0 0
\(109\) −4780.43 −0.402359 −0.201180 0.979554i \(-0.564478\pi\)
−0.201180 + 0.979554i \(0.564478\pi\)
\(110\) − 9648.79i − 0.797421i
\(111\) 0 0
\(112\) −2053.37 −0.163694
\(113\) − 4491.39i − 0.351742i −0.984413 0.175871i \(-0.943726\pi\)
0.984413 0.175871i \(-0.0562741\pi\)
\(114\) 0 0
\(115\) −4712.66 −0.356345
\(116\) 14562.6i 1.08224i
\(117\) 0 0
\(118\) 21840.7 1.56857
\(119\) 410.728i 0.0290041i
\(120\) 0 0
\(121\) −976.812 −0.0667176
\(122\) 98.3979i 0.00661099i
\(123\) 0 0
\(124\) 41269.3 2.68401
\(125\) − 13092.8i − 0.837940i
\(126\) 0 0
\(127\) 13521.3 0.838322 0.419161 0.907912i \(-0.362324\pi\)
0.419161 + 0.907912i \(0.362324\pi\)
\(128\) − 28118.2i − 1.71620i
\(129\) 0 0
\(130\) 5760.53 0.340860
\(131\) − 3396.97i − 0.197947i −0.995090 0.0989735i \(-0.968444\pi\)
0.995090 0.0989735i \(-0.0315559\pi\)
\(132\) 0 0
\(133\) 2883.69 0.163022
\(134\) − 33957.6i − 1.89116i
\(135\) 0 0
\(136\) 552.439 0.0298680
\(137\) 3823.19i 0.203697i 0.994800 + 0.101849i \(0.0324757\pi\)
−0.994800 + 0.101849i \(0.967524\pi\)
\(138\) 0 0
\(139\) 3476.63 0.179940 0.0899702 0.995944i \(-0.471323\pi\)
0.0899702 + 0.995944i \(0.471323\pi\)
\(140\) − 16907.6i − 0.862635i
\(141\) 0 0
\(142\) −12608.0 −0.625275
\(143\) − 9324.16i − 0.455971i
\(144\) 0 0
\(145\) −6370.51 −0.302997
\(146\) − 6221.95i − 0.291891i
\(147\) 0 0
\(148\) 46304.5 2.11398
\(149\) − 8910.94i − 0.401376i −0.979655 0.200688i \(-0.935682\pi\)
0.979655 0.200688i \(-0.0643177\pi\)
\(150\) 0 0
\(151\) −9915.33 −0.434864 −0.217432 0.976076i \(-0.569768\pi\)
−0.217432 + 0.976076i \(0.569768\pi\)
\(152\) − 3878.65i − 0.167878i
\(153\) 0 0
\(154\) −43623.8 −1.83942
\(155\) 18053.5i 0.751447i
\(156\) 0 0
\(157\) 5646.94 0.229094 0.114547 0.993418i \(-0.463458\pi\)
0.114547 + 0.993418i \(0.463458\pi\)
\(158\) 1559.37i 0.0624646i
\(159\) 0 0
\(160\) 10532.7 0.411434
\(161\) 21306.7i 0.821986i
\(162\) 0 0
\(163\) −2153.55 −0.0810552 −0.0405276 0.999178i \(-0.512904\pi\)
−0.0405276 + 0.999178i \(0.512904\pi\)
\(164\) 33928.6i 1.26147i
\(165\) 0 0
\(166\) −86269.6 −3.13070
\(167\) 37020.2i 1.32741i 0.747994 + 0.663706i \(0.231017\pi\)
−0.747994 + 0.663706i \(0.768983\pi\)
\(168\) 0 0
\(169\) −22994.3 −0.805094
\(170\) 595.266i 0.0205974i
\(171\) 0 0
\(172\) 70241.5 2.37431
\(173\) − 48585.4i − 1.62336i −0.584105 0.811678i \(-0.698554\pi\)
0.584105 0.811678i \(-0.301446\pi\)
\(174\) 0 0
\(175\) −25899.2 −0.845687
\(176\) 4816.95i 0.155506i
\(177\) 0 0
\(178\) −3773.75 −0.119106
\(179\) 47717.9i 1.48928i 0.667468 + 0.744639i \(0.267378\pi\)
−0.667468 + 0.744639i \(0.732622\pi\)
\(180\) 0 0
\(181\) −45767.2 −1.39700 −0.698502 0.715608i \(-0.746150\pi\)
−0.698502 + 0.715608i \(0.746150\pi\)
\(182\) − 26044.3i − 0.786266i
\(183\) 0 0
\(184\) 28658.1 0.846469
\(185\) 20256.2i 0.591854i
\(186\) 0 0
\(187\) 963.514 0.0275534
\(188\) 21549.1i 0.609697i
\(189\) 0 0
\(190\) 4179.33 0.115771
\(191\) 46719.5i 1.28065i 0.768103 + 0.640326i \(0.221201\pi\)
−0.768103 + 0.640326i \(0.778799\pi\)
\(192\) 0 0
\(193\) −27207.8 −0.730430 −0.365215 0.930923i \(-0.619005\pi\)
−0.365215 + 0.930923i \(0.619005\pi\)
\(194\) − 99096.1i − 2.63301i
\(195\) 0 0
\(196\) −11770.6 −0.306398
\(197\) − 64665.2i − 1.66624i −0.553090 0.833122i \(-0.686551\pi\)
0.553090 0.833122i \(-0.313449\pi\)
\(198\) 0 0
\(199\) −25841.3 −0.652542 −0.326271 0.945276i \(-0.605792\pi\)
−0.326271 + 0.945276i \(0.605792\pi\)
\(200\) 34835.1i 0.870877i
\(201\) 0 0
\(202\) 72475.7 1.77619
\(203\) 28802.1i 0.698928i
\(204\) 0 0
\(205\) −14842.3 −0.353177
\(206\) 23346.0i 0.550147i
\(207\) 0 0
\(208\) −2875.82 −0.0664714
\(209\) − 6764.78i − 0.154868i
\(210\) 0 0
\(211\) 46058.7 1.03454 0.517269 0.855823i \(-0.326949\pi\)
0.517269 + 0.855823i \(0.326949\pi\)
\(212\) 113931.i 2.53496i
\(213\) 0 0
\(214\) 74912.8 1.63579
\(215\) 30727.6i 0.664739i
\(216\) 0 0
\(217\) 81622.8 1.73337
\(218\) 31323.8i 0.659115i
\(219\) 0 0
\(220\) −39663.2 −0.819487
\(221\) 575.238i 0.0117778i
\(222\) 0 0
\(223\) 21911.1 0.440610 0.220305 0.975431i \(-0.429295\pi\)
0.220305 + 0.975431i \(0.429295\pi\)
\(224\) − 47620.1i − 0.949062i
\(225\) 0 0
\(226\) −29429.8 −0.576197
\(227\) 49785.7i 0.966168i 0.875574 + 0.483084i \(0.160483\pi\)
−0.875574 + 0.483084i \(0.839517\pi\)
\(228\) 0 0
\(229\) 28521.0 0.543868 0.271934 0.962316i \(-0.412337\pi\)
0.271934 + 0.962316i \(0.412337\pi\)
\(230\) 30879.7i 0.583737i
\(231\) 0 0
\(232\) 38739.6 0.719746
\(233\) 44050.2i 0.811403i 0.914006 + 0.405701i \(0.132973\pi\)
−0.914006 + 0.405701i \(0.867027\pi\)
\(234\) 0 0
\(235\) −9426.80 −0.170698
\(236\) − 89780.4i − 1.61197i
\(237\) 0 0
\(238\) 2691.29 0.0475124
\(239\) − 20575.2i − 0.360203i −0.983648 0.180102i \(-0.942357\pi\)
0.983648 0.180102i \(-0.0576427\pi\)
\(240\) 0 0
\(241\) −57917.5 −0.997185 −0.498593 0.866836i \(-0.666150\pi\)
−0.498593 + 0.866836i \(0.666150\pi\)
\(242\) 6400.56i 0.109292i
\(243\) 0 0
\(244\) 404.483 0.00679392
\(245\) − 5149.12i − 0.0857829i
\(246\) 0 0
\(247\) 4038.71 0.0661986
\(248\) − 109785.i − 1.78500i
\(249\) 0 0
\(250\) −85790.6 −1.37265
\(251\) − 54140.4i − 0.859357i −0.902982 0.429679i \(-0.858627\pi\)
0.902982 0.429679i \(-0.141373\pi\)
\(252\) 0 0
\(253\) 49982.8 0.780871
\(254\) − 88598.3i − 1.37328i
\(255\) 0 0
\(256\) −80661.6 −1.23080
\(257\) − 113764.i − 1.72242i −0.508248 0.861211i \(-0.669707\pi\)
0.508248 0.861211i \(-0.330293\pi\)
\(258\) 0 0
\(259\) 91581.5 1.36524
\(260\) − 23679.7i − 0.350292i
\(261\) 0 0
\(262\) −22258.6 −0.324262
\(263\) 44363.7i 0.641381i 0.947184 + 0.320691i \(0.103915\pi\)
−0.947184 + 0.320691i \(0.896085\pi\)
\(264\) 0 0
\(265\) −49839.9 −0.709717
\(266\) − 18895.4i − 0.267050i
\(267\) 0 0
\(268\) −139589. −1.94349
\(269\) − 4429.77i − 0.0612176i −0.999531 0.0306088i \(-0.990255\pi\)
0.999531 0.0306088i \(-0.00974461\pi\)
\(270\) 0 0
\(271\) −86111.9 −1.17253 −0.586266 0.810119i \(-0.699403\pi\)
−0.586266 + 0.810119i \(0.699403\pi\)
\(272\) − 297.174i − 0.00401673i
\(273\) 0 0
\(274\) 25051.5 0.333681
\(275\) 60756.1i 0.803387i
\(276\) 0 0
\(277\) 70613.4 0.920297 0.460148 0.887842i \(-0.347796\pi\)
0.460148 + 0.887842i \(0.347796\pi\)
\(278\) − 22780.6i − 0.294765i
\(279\) 0 0
\(280\) −44977.8 −0.573697
\(281\) − 149254.i − 1.89023i −0.326740 0.945114i \(-0.605950\pi\)
0.326740 0.945114i \(-0.394050\pi\)
\(282\) 0 0
\(283\) −83926.7 −1.04792 −0.523959 0.851743i \(-0.675546\pi\)
−0.523959 + 0.851743i \(0.675546\pi\)
\(284\) 51827.7i 0.642577i
\(285\) 0 0
\(286\) −61096.5 −0.746938
\(287\) 67104.2i 0.814678i
\(288\) 0 0
\(289\) 83461.6 0.999288
\(290\) 41742.8i 0.496347i
\(291\) 0 0
\(292\) −25576.5 −0.299968
\(293\) 35903.0i 0.418211i 0.977893 + 0.209106i \(0.0670553\pi\)
−0.977893 + 0.209106i \(0.932945\pi\)
\(294\) 0 0
\(295\) 39275.0 0.451307
\(296\) − 123180.i − 1.40590i
\(297\) 0 0
\(298\) −58389.0 −0.657504
\(299\) 29840.7i 0.333785i
\(300\) 0 0
\(301\) 138924. 1.53336
\(302\) 64970.2i 0.712361i
\(303\) 0 0
\(304\) −2086.44 −0.0225766
\(305\) 176.944i 0.00190211i
\(306\) 0 0
\(307\) 7054.30 0.0748475 0.0374238 0.999299i \(-0.488085\pi\)
0.0374238 + 0.999299i \(0.488085\pi\)
\(308\) 179324.i 1.89032i
\(309\) 0 0
\(310\) 118296. 1.23096
\(311\) − 85661.4i − 0.885655i −0.896607 0.442827i \(-0.853975\pi\)
0.896607 0.442827i \(-0.146025\pi\)
\(312\) 0 0
\(313\) 73442.5 0.749650 0.374825 0.927096i \(-0.377703\pi\)
0.374825 + 0.927096i \(0.377703\pi\)
\(314\) − 37001.5i − 0.375284i
\(315\) 0 0
\(316\) 6410.07 0.0641931
\(317\) 49239.6i 0.490000i 0.969523 + 0.245000i \(0.0787880\pi\)
−0.969523 + 0.245000i \(0.921212\pi\)
\(318\) 0 0
\(319\) 67566.1 0.663968
\(320\) − 76282.4i − 0.744945i
\(321\) 0 0
\(322\) 139612. 1.34652
\(323\) 417.341i 0.00400024i
\(324\) 0 0
\(325\) −36272.7 −0.343410
\(326\) 14111.2i 0.132779i
\(327\) 0 0
\(328\) 90256.9 0.838944
\(329\) 42620.1i 0.393752i
\(330\) 0 0
\(331\) −82011.1 −0.748543 −0.374271 0.927319i \(-0.622107\pi\)
−0.374271 + 0.927319i \(0.622107\pi\)
\(332\) 354627.i 3.21733i
\(333\) 0 0
\(334\) 242575. 2.17447
\(335\) − 61064.1i − 0.544122i
\(336\) 0 0
\(337\) −46982.9 −0.413694 −0.206847 0.978373i \(-0.566320\pi\)
−0.206847 + 0.978373i \(0.566320\pi\)
\(338\) 150670.i 1.31884i
\(339\) 0 0
\(340\) 2446.95 0.0211674
\(341\) − 191477.i − 1.64667i
\(342\) 0 0
\(343\) 104628. 0.889324
\(344\) − 186857.i − 1.57904i
\(345\) 0 0
\(346\) −318356. −2.65926
\(347\) − 44319.7i − 0.368076i −0.982919 0.184038i \(-0.941083\pi\)
0.982919 0.184038i \(-0.0589170\pi\)
\(348\) 0 0
\(349\) −186463. −1.53088 −0.765442 0.643504i \(-0.777480\pi\)
−0.765442 + 0.643504i \(0.777480\pi\)
\(350\) 169704.i 1.38534i
\(351\) 0 0
\(352\) −111711. −0.901591
\(353\) − 169694.i − 1.36181i −0.732370 0.680907i \(-0.761586\pi\)
0.732370 0.680907i \(-0.238414\pi\)
\(354\) 0 0
\(355\) −22672.3 −0.179903
\(356\) 15512.7i 0.122402i
\(357\) 0 0
\(358\) 312672. 2.43962
\(359\) − 69656.7i − 0.540473i −0.962794 0.270236i \(-0.912898\pi\)
0.962794 0.270236i \(-0.0871019\pi\)
\(360\) 0 0
\(361\) −127391. −0.977516
\(362\) 299890.i 2.28847i
\(363\) 0 0
\(364\) −107060. −0.808023
\(365\) − 11188.6i − 0.0839827i
\(366\) 0 0
\(367\) −176168. −1.30796 −0.653982 0.756510i \(-0.726903\pi\)
−0.653982 + 0.756510i \(0.726903\pi\)
\(368\) − 15416.0i − 0.113835i
\(369\) 0 0
\(370\) 132729. 0.969531
\(371\) 225334.i 1.63712i
\(372\) 0 0
\(373\) 67187.1 0.482912 0.241456 0.970412i \(-0.422375\pi\)
0.241456 + 0.970412i \(0.422375\pi\)
\(374\) − 6313.43i − 0.0451359i
\(375\) 0 0
\(376\) 57325.1 0.405480
\(377\) 40338.3i 0.283815i
\(378\) 0 0
\(379\) 43976.9 0.306158 0.153079 0.988214i \(-0.451081\pi\)
0.153079 + 0.988214i \(0.451081\pi\)
\(380\) − 17179.9i − 0.118974i
\(381\) 0 0
\(382\) 306129. 2.09787
\(383\) 185140.i 1.26212i 0.775733 + 0.631062i \(0.217381\pi\)
−0.775733 + 0.631062i \(0.782619\pi\)
\(384\) 0 0
\(385\) −78446.2 −0.529237
\(386\) 178279.i 1.19654i
\(387\) 0 0
\(388\) −407353. −2.70587
\(389\) − 30442.6i − 0.201179i −0.994928 0.100589i \(-0.967927\pi\)
0.994928 0.100589i \(-0.0320728\pi\)
\(390\) 0 0
\(391\) −3083.60 −0.0201699
\(392\) 31312.2i 0.203771i
\(393\) 0 0
\(394\) −423719. −2.72952
\(395\) 2804.12i 0.0179723i
\(396\) 0 0
\(397\) −235724. −1.49563 −0.747813 0.663910i \(-0.768896\pi\)
−0.747813 + 0.663910i \(0.768896\pi\)
\(398\) 169325.i 1.06895i
\(399\) 0 0
\(400\) 18738.8 0.117118
\(401\) − 234208.i − 1.45651i −0.685308 0.728254i \(-0.740332\pi\)
0.685308 0.728254i \(-0.259668\pi\)
\(402\) 0 0
\(403\) 114316. 0.703874
\(404\) − 297925.i − 1.82534i
\(405\) 0 0
\(406\) 188726. 1.14493
\(407\) − 214839.i − 1.29695i
\(408\) 0 0
\(409\) −297786. −1.78015 −0.890076 0.455812i \(-0.849349\pi\)
−0.890076 + 0.455812i \(0.849349\pi\)
\(410\) 97253.9i 0.578548i
\(411\) 0 0
\(412\) 95968.2 0.565370
\(413\) − 177569.i − 1.04104i
\(414\) 0 0
\(415\) −155134. −0.900763
\(416\) − 66693.6i − 0.385387i
\(417\) 0 0
\(418\) −44326.2 −0.253693
\(419\) 36874.2i 0.210036i 0.994470 + 0.105018i \(0.0334901\pi\)
−0.994470 + 0.105018i \(0.966510\pi\)
\(420\) 0 0
\(421\) 240610. 1.35753 0.678764 0.734356i \(-0.262516\pi\)
0.678764 + 0.734356i \(0.262516\pi\)
\(422\) − 301799.i − 1.69470i
\(423\) 0 0
\(424\) 303080. 1.68588
\(425\) − 3748.25i − 0.0207515i
\(426\) 0 0
\(427\) 799.990 0.00438762
\(428\) − 307943.i − 1.68106i
\(429\) 0 0
\(430\) 201342. 1.08893
\(431\) 162758.i 0.876169i 0.898934 + 0.438084i \(0.144343\pi\)
−0.898934 + 0.438084i \(0.855657\pi\)
\(432\) 0 0
\(433\) 266637. 1.42215 0.711073 0.703118i \(-0.248209\pi\)
0.711073 + 0.703118i \(0.248209\pi\)
\(434\) − 534834.i − 2.83948i
\(435\) 0 0
\(436\) 128762. 0.677354
\(437\) 21649.8i 0.113368i
\(438\) 0 0
\(439\) −36817.5 −0.191040 −0.0955201 0.995428i \(-0.530451\pi\)
−0.0955201 + 0.995428i \(0.530451\pi\)
\(440\) 105512.i 0.545001i
\(441\) 0 0
\(442\) 3769.25 0.0192935
\(443\) − 137544.i − 0.700865i −0.936588 0.350432i \(-0.886035\pi\)
0.936588 0.350432i \(-0.113965\pi\)
\(444\) 0 0
\(445\) −6786.12 −0.0342690
\(446\) − 143572.i − 0.721774i
\(447\) 0 0
\(448\) −344885. −1.71838
\(449\) 174405.i 0.865101i 0.901610 + 0.432550i \(0.142386\pi\)
−0.901610 + 0.432550i \(0.857614\pi\)
\(450\) 0 0
\(451\) 157418. 0.773929
\(452\) 120977.i 0.592141i
\(453\) 0 0
\(454\) 326221. 1.58270
\(455\) − 46834.0i − 0.226224i
\(456\) 0 0
\(457\) 115309. 0.552119 0.276059 0.961141i \(-0.410971\pi\)
0.276059 + 0.961141i \(0.410971\pi\)
\(458\) − 186884.i − 0.890923i
\(459\) 0 0
\(460\) 126937. 0.599890
\(461\) 405463.i 1.90787i 0.300011 + 0.953936i \(0.403010\pi\)
−0.300011 + 0.953936i \(0.596990\pi\)
\(462\) 0 0
\(463\) 72586.7 0.338606 0.169303 0.985564i \(-0.445848\pi\)
0.169303 + 0.985564i \(0.445848\pi\)
\(464\) − 20839.2i − 0.0967932i
\(465\) 0 0
\(466\) 288639. 1.32918
\(467\) 358806.i 1.64523i 0.568602 + 0.822613i \(0.307485\pi\)
−0.568602 + 0.822613i \(0.692515\pi\)
\(468\) 0 0
\(469\) −276081. −1.25514
\(470\) 61769.1i 0.279625i
\(471\) 0 0
\(472\) −238834. −1.07204
\(473\) − 325899.i − 1.45667i
\(474\) 0 0
\(475\) −26316.2 −0.116637
\(476\) − 11063.1i − 0.0488271i
\(477\) 0 0
\(478\) −134819. −0.590058
\(479\) − 25599.5i − 0.111573i −0.998443 0.0557867i \(-0.982233\pi\)
0.998443 0.0557867i \(-0.0177667\pi\)
\(480\) 0 0
\(481\) 128263. 0.554385
\(482\) 379505.i 1.63351i
\(483\) 0 0
\(484\) 26310.7 0.112316
\(485\) − 178199.i − 0.757569i
\(486\) 0 0
\(487\) 247261. 1.04255 0.521277 0.853388i \(-0.325456\pi\)
0.521277 + 0.853388i \(0.325456\pi\)
\(488\) − 1076.01i − 0.00451831i
\(489\) 0 0
\(490\) −33739.6 −0.140523
\(491\) 342256.i 1.41967i 0.704366 + 0.709837i \(0.251231\pi\)
−0.704366 + 0.709837i \(0.748769\pi\)
\(492\) 0 0
\(493\) −4168.37 −0.0171503
\(494\) − 26463.7i − 0.108442i
\(495\) 0 0
\(496\) −59056.5 −0.240052
\(497\) 102505.i 0.414986i
\(498\) 0 0
\(499\) −197838. −0.794527 −0.397264 0.917704i \(-0.630040\pi\)
−0.397264 + 0.917704i \(0.630040\pi\)
\(500\) 352658.i 1.41063i
\(501\) 0 0
\(502\) −354755. −1.40773
\(503\) − 187051.i − 0.739305i −0.929170 0.369652i \(-0.879477\pi\)
0.929170 0.369652i \(-0.120523\pi\)
\(504\) 0 0
\(505\) 130329. 0.511044
\(506\) − 327512.i − 1.27916i
\(507\) 0 0
\(508\) −364200. −1.41128
\(509\) 28880.8i 0.111474i 0.998445 + 0.0557370i \(0.0177508\pi\)
−0.998445 + 0.0557370i \(0.982249\pi\)
\(510\) 0 0
\(511\) −50585.4 −0.193724
\(512\) 78644.0i 0.300003i
\(513\) 0 0
\(514\) −745440. −2.82154
\(515\) 41981.9i 0.158288i
\(516\) 0 0
\(517\) 99981.2 0.374057
\(518\) − 600088.i − 2.23643i
\(519\) 0 0
\(520\) −62992.9 −0.232962
\(521\) − 269661.i − 0.993443i −0.867910 0.496721i \(-0.834537\pi\)
0.867910 0.496721i \(-0.165463\pi\)
\(522\) 0 0
\(523\) −187282. −0.684689 −0.342344 0.939575i \(-0.611221\pi\)
−0.342344 + 0.939575i \(0.611221\pi\)
\(524\) 91498.3i 0.333235i
\(525\) 0 0
\(526\) 290693. 1.05066
\(527\) 11812.8i 0.0425336i
\(528\) 0 0
\(529\) 119878. 0.428378
\(530\) 326576.i 1.16261i
\(531\) 0 0
\(532\) −77673.1 −0.274440
\(533\) 93981.7i 0.330818i
\(534\) 0 0
\(535\) 134711. 0.470649
\(536\) 371336.i 1.29252i
\(537\) 0 0
\(538\) −29026.1 −0.100282
\(539\) 54611.9i 0.187979i
\(540\) 0 0
\(541\) −25587.9 −0.0874259 −0.0437129 0.999044i \(-0.513919\pi\)
−0.0437129 + 0.999044i \(0.513919\pi\)
\(542\) 564248.i 1.92075i
\(543\) 0 0
\(544\) 6891.80 0.0232881
\(545\) 56327.8i 0.189640i
\(546\) 0 0
\(547\) −276849. −0.925269 −0.462634 0.886549i \(-0.653096\pi\)
−0.462634 + 0.886549i \(0.653096\pi\)
\(548\) − 102979.i − 0.342915i
\(549\) 0 0
\(550\) 398105. 1.31605
\(551\) 29265.9i 0.0963959i
\(552\) 0 0
\(553\) 12677.9 0.0414569
\(554\) − 462695.i − 1.50756i
\(555\) 0 0
\(556\) −93643.9 −0.302921
\(557\) 461786.i 1.48844i 0.667936 + 0.744219i \(0.267178\pi\)
−0.667936 + 0.744219i \(0.732822\pi\)
\(558\) 0 0
\(559\) 194568. 0.622656
\(560\) 24194.9i 0.0771521i
\(561\) 0 0
\(562\) −977989. −3.09643
\(563\) 177944.i 0.561393i 0.959797 + 0.280697i \(0.0905654\pi\)
−0.959797 + 0.280697i \(0.909435\pi\)
\(564\) 0 0
\(565\) −52922.0 −0.165783
\(566\) 549930.i 1.71662i
\(567\) 0 0
\(568\) 137872. 0.427347
\(569\) − 5902.63i − 0.0182314i −0.999958 0.00911572i \(-0.997098\pi\)
0.999958 0.00911572i \(-0.00290166\pi\)
\(570\) 0 0
\(571\) 476692. 1.46206 0.731031 0.682344i \(-0.239039\pi\)
0.731031 + 0.682344i \(0.239039\pi\)
\(572\) 251149.i 0.767607i
\(573\) 0 0
\(574\) 439700. 1.33454
\(575\) − 194442.i − 0.588105i
\(576\) 0 0
\(577\) 209901. 0.630468 0.315234 0.949014i \(-0.397917\pi\)
0.315234 + 0.949014i \(0.397917\pi\)
\(578\) − 546882.i − 1.63696i
\(579\) 0 0
\(580\) 171591. 0.510082
\(581\) 701385.i 2.07780i
\(582\) 0 0
\(583\) 528605. 1.55523
\(584\) 68038.7i 0.199494i
\(585\) 0 0
\(586\) 235255. 0.685083
\(587\) − 180770.i − 0.524627i −0.964983 0.262313i \(-0.915515\pi\)
0.964983 0.262313i \(-0.0844854\pi\)
\(588\) 0 0
\(589\) 82937.2 0.239066
\(590\) − 257349.i − 0.739297i
\(591\) 0 0
\(592\) −66261.9 −0.189069
\(593\) 468097.i 1.33115i 0.746332 + 0.665574i \(0.231813\pi\)
−0.746332 + 0.665574i \(0.768187\pi\)
\(594\) 0 0
\(595\) 4839.60 0.0136702
\(596\) 240019.i 0.675698i
\(597\) 0 0
\(598\) 195532. 0.546782
\(599\) − 644967.i − 1.79756i −0.438399 0.898780i \(-0.644454\pi\)
0.438399 0.898780i \(-0.355546\pi\)
\(600\) 0 0
\(601\) 255033. 0.706070 0.353035 0.935610i \(-0.385150\pi\)
0.353035 + 0.935610i \(0.385150\pi\)
\(602\) − 910302.i − 2.51184i
\(603\) 0 0
\(604\) 267072. 0.732073
\(605\) 11509.8i 0.0314453i
\(606\) 0 0
\(607\) −352702. −0.957261 −0.478631 0.878016i \(-0.658867\pi\)
−0.478631 + 0.878016i \(0.658867\pi\)
\(608\) − 48386.9i − 0.130894i
\(609\) 0 0
\(610\) 1159.42 0.00311589
\(611\) 59690.9i 0.159892i
\(612\) 0 0
\(613\) −37013.8 −0.0985015 −0.0492508 0.998786i \(-0.515683\pi\)
−0.0492508 + 0.998786i \(0.515683\pi\)
\(614\) − 46223.3i − 0.122610i
\(615\) 0 0
\(616\) 477038. 1.25716
\(617\) 570187.i 1.49778i 0.662696 + 0.748888i \(0.269412\pi\)
−0.662696 + 0.748888i \(0.730588\pi\)
\(618\) 0 0
\(619\) −440814. −1.15047 −0.575233 0.817990i \(-0.695089\pi\)
−0.575233 + 0.817990i \(0.695089\pi\)
\(620\) − 486276.i − 1.26503i
\(621\) 0 0
\(622\) −561296. −1.45081
\(623\) 30681.2i 0.0790489i
\(624\) 0 0
\(625\) 149578. 0.382920
\(626\) − 481232.i − 1.22802i
\(627\) 0 0
\(628\) −152102. −0.385669
\(629\) 13254.1i 0.0335003i
\(630\) 0 0
\(631\) −80926.3 −0.203250 −0.101625 0.994823i \(-0.532404\pi\)
−0.101625 + 0.994823i \(0.532404\pi\)
\(632\) − 17052.1i − 0.0426917i
\(633\) 0 0
\(634\) 322643. 0.802682
\(635\) − 159321.i − 0.395118i
\(636\) 0 0
\(637\) −32604.4 −0.0803522
\(638\) − 442727.i − 1.08766i
\(639\) 0 0
\(640\) −331317. −0.808879
\(641\) − 152324.i − 0.370726i −0.982670 0.185363i \(-0.940654\pi\)
0.982670 0.185363i \(-0.0593461\pi\)
\(642\) 0 0
\(643\) 116874. 0.282681 0.141340 0.989961i \(-0.454859\pi\)
0.141340 + 0.989961i \(0.454859\pi\)
\(644\) − 573902.i − 1.38378i
\(645\) 0 0
\(646\) 2734.63 0.00655290
\(647\) − 481407.i − 1.15002i −0.818148 0.575008i \(-0.804999\pi\)
0.818148 0.575008i \(-0.195001\pi\)
\(648\) 0 0
\(649\) −416553. −0.988965
\(650\) 237677.i 0.562548i
\(651\) 0 0
\(652\) 58006.6 0.136453
\(653\) − 460831.i − 1.08073i −0.841432 0.540363i \(-0.818287\pi\)
0.841432 0.540363i \(-0.181713\pi\)
\(654\) 0 0
\(655\) −40026.5 −0.0932964
\(656\) − 48551.9i − 0.112823i
\(657\) 0 0
\(658\) 279268. 0.645015
\(659\) 165076.i 0.380114i 0.981773 + 0.190057i \(0.0608674\pi\)
−0.981773 + 0.190057i \(0.939133\pi\)
\(660\) 0 0
\(661\) −281756. −0.644868 −0.322434 0.946592i \(-0.604501\pi\)
−0.322434 + 0.946592i \(0.604501\pi\)
\(662\) 537378.i 1.22621i
\(663\) 0 0
\(664\) 943382. 2.13969
\(665\) − 33978.6i − 0.0768355i
\(666\) 0 0
\(667\) −216236. −0.486046
\(668\) − 997148.i − 2.23464i
\(669\) 0 0
\(670\) −400123. −0.891341
\(671\) − 1876.67i − 0.00416816i
\(672\) 0 0
\(673\) −756775. −1.67085 −0.835423 0.549608i \(-0.814777\pi\)
−0.835423 + 0.549608i \(0.814777\pi\)
\(674\) 307855.i 0.677683i
\(675\) 0 0
\(676\) 619357. 1.35534
\(677\) − 68188.8i − 0.148777i −0.997229 0.0743885i \(-0.976300\pi\)
0.997229 0.0743885i \(-0.0237005\pi\)
\(678\) 0 0
\(679\) −805667. −1.74749
\(680\) − 6509.39i − 0.0140774i
\(681\) 0 0
\(682\) −1.25465e6 −2.69746
\(683\) − 31351.1i − 0.0672066i −0.999435 0.0336033i \(-0.989302\pi\)
0.999435 0.0336033i \(-0.0106983\pi\)
\(684\) 0 0
\(685\) 45048.7 0.0960065
\(686\) − 685576.i − 1.45682i
\(687\) 0 0
\(688\) −100516. −0.212353
\(689\) 315588.i 0.664786i
\(690\) 0 0
\(691\) 374884. 0.785129 0.392565 0.919724i \(-0.371588\pi\)
0.392565 + 0.919724i \(0.371588\pi\)
\(692\) 1.30866e6i 2.73285i
\(693\) 0 0
\(694\) −290405. −0.602955
\(695\) − 40965.1i − 0.0848095i
\(696\) 0 0
\(697\) −9711.63 −0.0199906
\(698\) 1.22180e6i 2.50778i
\(699\) 0 0
\(700\) 697601. 1.42368
\(701\) − 97448.5i − 0.198308i −0.995072 0.0991538i \(-0.968386\pi\)
0.995072 0.0991538i \(-0.0316136\pi\)
\(702\) 0 0
\(703\) 93056.2 0.188293
\(704\) 809056.i 1.63242i
\(705\) 0 0
\(706\) −1.11192e6 −2.23082
\(707\) − 589238.i − 1.17883i
\(708\) 0 0
\(709\) −292525. −0.581931 −0.290965 0.956734i \(-0.593976\pi\)
−0.290965 + 0.956734i \(0.593976\pi\)
\(710\) 148561.i 0.294704i
\(711\) 0 0
\(712\) 41267.0 0.0814034
\(713\) 612796.i 1.20542i
\(714\) 0 0
\(715\) −109867. −0.214908
\(716\) − 1.28530e6i − 2.50713i
\(717\) 0 0
\(718\) −456426. −0.885362
\(719\) − 655579.i − 1.26814i −0.773276 0.634070i \(-0.781383\pi\)
0.773276 0.634070i \(-0.218617\pi\)
\(720\) 0 0
\(721\) 189807. 0.365125
\(722\) 834729.i 1.60129i
\(723\) 0 0
\(724\) 1.23275e6 2.35179
\(725\) − 262844.i − 0.500061i
\(726\) 0 0
\(727\) 259261. 0.490533 0.245266 0.969456i \(-0.421125\pi\)
0.245266 + 0.969456i \(0.421125\pi\)
\(728\) 284801.i 0.537377i
\(729\) 0 0
\(730\) −73313.3 −0.137574
\(731\) 20105.8i 0.0376258i
\(732\) 0 0
\(733\) 82508.9 0.153565 0.0767826 0.997048i \(-0.475535\pi\)
0.0767826 + 0.997048i \(0.475535\pi\)
\(734\) 1.15434e6i 2.14261i
\(735\) 0 0
\(736\) 357516. 0.659993
\(737\) 647650.i 1.19235i
\(738\) 0 0
\(739\) −730583. −1.33777 −0.668884 0.743367i \(-0.733228\pi\)
−0.668884 + 0.743367i \(0.733228\pi\)
\(740\) − 545606.i − 0.996359i
\(741\) 0 0
\(742\) 1.47650e6 2.68180
\(743\) − 451784.i − 0.818377i −0.912450 0.409189i \(-0.865812\pi\)
0.912450 0.409189i \(-0.134188\pi\)
\(744\) 0 0
\(745\) −104998. −0.189176
\(746\) − 440244.i − 0.791071i
\(747\) 0 0
\(748\) −25952.5 −0.0463849
\(749\) − 609052.i − 1.08565i
\(750\) 0 0
\(751\) 580162. 1.02865 0.514327 0.857594i \(-0.328042\pi\)
0.514327 + 0.857594i \(0.328042\pi\)
\(752\) − 30836.9i − 0.0545299i
\(753\) 0 0
\(754\) 264317. 0.464924
\(755\) 116832.i 0.204960i
\(756\) 0 0
\(757\) 1.00242e6 1.74928 0.874641 0.484771i \(-0.161097\pi\)
0.874641 + 0.484771i \(0.161097\pi\)
\(758\) − 288159.i − 0.501526i
\(759\) 0 0
\(760\) −45702.1 −0.0791241
\(761\) 84717.1i 0.146286i 0.997321 + 0.0731429i \(0.0233029\pi\)
−0.997321 + 0.0731429i \(0.976697\pi\)
\(762\) 0 0
\(763\) 254667. 0.437445
\(764\) − 1.25840e6i − 2.15592i
\(765\) 0 0
\(766\) 1.21313e6 2.06752
\(767\) − 248691.i − 0.422736i
\(768\) 0 0
\(769\) −683525. −1.15585 −0.577926 0.816089i \(-0.696138\pi\)
−0.577926 + 0.816089i \(0.696138\pi\)
\(770\) 514019.i 0.866957i
\(771\) 0 0
\(772\) 732849. 1.22965
\(773\) 235888.i 0.394772i 0.980326 + 0.197386i \(0.0632453\pi\)
−0.980326 + 0.197386i \(0.936755\pi\)
\(774\) 0 0
\(775\) −744879. −1.24017
\(776\) 1.08364e6i 1.79955i
\(777\) 0 0
\(778\) −199475. −0.329556
\(779\) 68184.8i 0.112360i
\(780\) 0 0
\(781\) 240464. 0.394229
\(782\) 20205.3i 0.0330409i
\(783\) 0 0
\(784\) 16843.8 0.0274036
\(785\) − 66537.8i − 0.107977i
\(786\) 0 0
\(787\) −457456. −0.738585 −0.369292 0.929313i \(-0.620400\pi\)
−0.369292 + 0.929313i \(0.620400\pi\)
\(788\) 1.74178e6i 2.80504i
\(789\) 0 0
\(790\) 18374.0 0.0294408
\(791\) 239269.i 0.382414i
\(792\) 0 0
\(793\) 1120.41 0.00178169
\(794\) 1.54458e6i 2.45002i
\(795\) 0 0
\(796\) 696043. 1.09853
\(797\) 170922.i 0.269080i 0.990908 + 0.134540i \(0.0429556\pi\)
−0.990908 + 0.134540i \(0.957044\pi\)
\(798\) 0 0
\(799\) −6168.17 −0.00966191
\(800\) 434575.i 0.679023i
\(801\) 0 0
\(802\) −1.53465e6 −2.38594
\(803\) 118667.i 0.184034i
\(804\) 0 0
\(805\) 251057. 0.387418
\(806\) − 749053.i − 1.15303i
\(807\) 0 0
\(808\) −792541. −1.21395
\(809\) − 252280.i − 0.385465i −0.981251 0.192733i \(-0.938265\pi\)
0.981251 0.192733i \(-0.0617350\pi\)
\(810\) 0 0
\(811\) 166784. 0.253579 0.126789 0.991930i \(-0.459533\pi\)
0.126789 + 0.991930i \(0.459533\pi\)
\(812\) − 775793.i − 1.17661i
\(813\) 0 0
\(814\) −1.40773e6 −2.12457
\(815\) 25375.3i 0.0382029i
\(816\) 0 0
\(817\) 141161. 0.211481
\(818\) 1.95124e6i 2.91611i
\(819\) 0 0
\(820\) 399780. 0.594557
\(821\) − 272312.i − 0.403999i −0.979386 0.201999i \(-0.935256\pi\)
0.979386 0.201999i \(-0.0647439\pi\)
\(822\) 0 0
\(823\) 964628. 1.42416 0.712082 0.702096i \(-0.247752\pi\)
0.712082 + 0.702096i \(0.247752\pi\)
\(824\) − 255295.i − 0.376000i
\(825\) 0 0
\(826\) −1.16352e6 −1.70535
\(827\) − 430905.i − 0.630043i −0.949085 0.315021i \(-0.897988\pi\)
0.949085 0.315021i \(-0.102012\pi\)
\(828\) 0 0
\(829\) 462870. 0.673520 0.336760 0.941591i \(-0.390669\pi\)
0.336760 + 0.941591i \(0.390669\pi\)
\(830\) 1.01651e6i 1.47556i
\(831\) 0 0
\(832\) −483023. −0.697784
\(833\) − 3369.19i − 0.00485551i
\(834\) 0 0
\(835\) 436209. 0.625635
\(836\) 182211.i 0.260713i
\(837\) 0 0
\(838\) 241618. 0.344066
\(839\) − 804698.i − 1.14317i −0.820545 0.571583i \(-0.806330\pi\)
0.820545 0.571583i \(-0.193670\pi\)
\(840\) 0 0
\(841\) 414975. 0.586719
\(842\) − 1.57659e6i − 2.22380i
\(843\) 0 0
\(844\) −1.24060e6 −1.74160
\(845\) 270942.i 0.379457i
\(846\) 0 0
\(847\) 52037.6 0.0725354
\(848\) − 163036.i − 0.226721i
\(849\) 0 0
\(850\) −24560.4 −0.0339936
\(851\) 687563.i 0.949409i
\(852\) 0 0
\(853\) 211580. 0.290788 0.145394 0.989374i \(-0.453555\pi\)
0.145394 + 0.989374i \(0.453555\pi\)
\(854\) − 5241.94i − 0.00718747i
\(855\) 0 0
\(856\) −819191. −1.11799
\(857\) − 283303.i − 0.385736i −0.981225 0.192868i \(-0.938221\pi\)
0.981225 0.192868i \(-0.0617788\pi\)
\(858\) 0 0
\(859\) −30997.2 −0.0420083 −0.0210042 0.999779i \(-0.506686\pi\)
−0.0210042 + 0.999779i \(0.506686\pi\)
\(860\) − 827655.i − 1.11906i
\(861\) 0 0
\(862\) 1.06647e6 1.43527
\(863\) − 1.35611e6i − 1.82085i −0.413677 0.910424i \(-0.635756\pi\)
0.413677 0.910424i \(-0.364244\pi\)
\(864\) 0 0
\(865\) −572482. −0.765120
\(866\) − 1.74714e6i − 2.32965i
\(867\) 0 0
\(868\) −2.19853e6 −2.91806
\(869\) − 29740.7i − 0.0393833i
\(870\) 0 0
\(871\) −386661. −0.509675
\(872\) − 342534.i − 0.450475i
\(873\) 0 0
\(874\) 141860. 0.185711
\(875\) 697491.i 0.911009i
\(876\) 0 0
\(877\) −452930. −0.588887 −0.294443 0.955669i \(-0.595134\pi\)
−0.294443 + 0.955669i \(0.595134\pi\)
\(878\) 241246.i 0.312948i
\(879\) 0 0
\(880\) 56758.1 0.0732930
\(881\) − 1.13788e6i − 1.46603i −0.680211 0.733016i \(-0.738112\pi\)
0.680211 0.733016i \(-0.261888\pi\)
\(882\) 0 0
\(883\) 970367. 1.24456 0.622279 0.782796i \(-0.286207\pi\)
0.622279 + 0.782796i \(0.286207\pi\)
\(884\) − 15494.2i − 0.0198273i
\(885\) 0 0
\(886\) −901257. −1.14810
\(887\) − 1.29729e6i − 1.64889i −0.565944 0.824444i \(-0.691488\pi\)
0.565944 0.824444i \(-0.308512\pi\)
\(888\) 0 0
\(889\) −720318. −0.911425
\(890\) 44466.1i 0.0561369i
\(891\) 0 0
\(892\) −590181. −0.741747
\(893\) 43306.4i 0.0543061i
\(894\) 0 0
\(895\) 562261. 0.701926
\(896\) 1.49794e6i 1.86585i
\(897\) 0 0
\(898\) 1.14279e6 1.41714
\(899\) 828370.i 1.02496i
\(900\) 0 0
\(901\) −32611.4 −0.0401716
\(902\) − 1.03148e6i − 1.26779i
\(903\) 0 0
\(904\) 321823. 0.393804
\(905\) 539275.i 0.658436i
\(906\) 0 0
\(907\) 153968. 0.187161 0.0935807 0.995612i \(-0.470169\pi\)
0.0935807 + 0.995612i \(0.470169\pi\)
\(908\) − 1.34099e6i − 1.62650i
\(909\) 0 0
\(910\) −306880. −0.370583
\(911\) − 1.07095e6i − 1.29042i −0.764006 0.645209i \(-0.776770\pi\)
0.764006 0.645209i \(-0.223230\pi\)
\(912\) 0 0
\(913\) 1.64536e6 1.97387
\(914\) − 755565.i − 0.904440i
\(915\) 0 0
\(916\) −768220. −0.915576
\(917\) 180966.i 0.215208i
\(918\) 0 0
\(919\) 747688. 0.885298 0.442649 0.896695i \(-0.354039\pi\)
0.442649 + 0.896695i \(0.354039\pi\)
\(920\) − 337678.i − 0.398958i
\(921\) 0 0
\(922\) 2.65679e6 3.12533
\(923\) 143562.i 0.168514i
\(924\) 0 0
\(925\) −835761. −0.976784
\(926\) − 475625.i − 0.554680i
\(927\) 0 0
\(928\) 483285. 0.561187
\(929\) 1.48404e6i 1.71955i 0.510675 + 0.859774i \(0.329396\pi\)
−0.510675 + 0.859774i \(0.670604\pi\)
\(930\) 0 0
\(931\) −23654.9 −0.0272911
\(932\) − 1.18651e6i − 1.36596i
\(933\) 0 0
\(934\) 2.35107e6 2.69509
\(935\) − 11353.1i − 0.0129865i
\(936\) 0 0
\(937\) −650560. −0.740983 −0.370491 0.928836i \(-0.620811\pi\)
−0.370491 + 0.928836i \(0.620811\pi\)
\(938\) 1.80902e6i 2.05607i
\(939\) 0 0
\(940\) 253913. 0.287362
\(941\) 406958.i 0.459590i 0.973239 + 0.229795i \(0.0738056\pi\)
−0.973239 + 0.229795i \(0.926194\pi\)
\(942\) 0 0
\(943\) −503795. −0.566540
\(944\) 128476.i 0.144171i
\(945\) 0 0
\(946\) −2.13545e6 −2.38620
\(947\) 830009.i 0.925514i 0.886485 + 0.462757i \(0.153140\pi\)
−0.886485 + 0.462757i \(0.846860\pi\)
\(948\) 0 0
\(949\) −70846.6 −0.0786659
\(950\) 172437.i 0.191066i
\(951\) 0 0
\(952\) −29430.0 −0.0324726
\(953\) 927863.i 1.02164i 0.859688 + 0.510820i \(0.170658\pi\)
−0.859688 + 0.510820i \(0.829342\pi\)
\(954\) 0 0
\(955\) 550496. 0.603597
\(956\) 554198.i 0.606386i
\(957\) 0 0
\(958\) −167741. −0.182771
\(959\) − 203672.i − 0.221460i
\(960\) 0 0
\(961\) 1.42401e6 1.54194
\(962\) − 840444.i − 0.908152i
\(963\) 0 0
\(964\) 1.56002e6 1.67872
\(965\) 320589.i 0.344266i
\(966\) 0 0
\(967\) −1.11248e6 −1.18970 −0.594851 0.803836i \(-0.702789\pi\)
−0.594851 + 0.803836i \(0.702789\pi\)
\(968\) − 69991.9i − 0.0746959i
\(969\) 0 0
\(970\) −1.16765e6 −1.24099
\(971\) − 68160.6i − 0.0722927i −0.999347 0.0361464i \(-0.988492\pi\)
0.999347 0.0361464i \(-0.0115083\pi\)
\(972\) 0 0
\(973\) −185210. −0.195631
\(974\) − 1.62018e6i − 1.70783i
\(975\) 0 0
\(976\) −578.817 −0.000607633 0
\(977\) 791113.i 0.828799i 0.910095 + 0.414399i \(0.136008\pi\)
−0.910095 + 0.414399i \(0.863992\pi\)
\(978\) 0 0
\(979\) 71974.0 0.0750949
\(980\) 138693.i 0.144412i
\(981\) 0 0
\(982\) 2.24263e6 2.32560
\(983\) − 1.09523e6i − 1.13344i −0.823912 0.566718i \(-0.808213\pi\)
0.823912 0.566718i \(-0.191787\pi\)
\(984\) 0 0
\(985\) −761950. −0.785334
\(986\) 27313.3i 0.0280944i
\(987\) 0 0
\(988\) −108784. −0.111442
\(989\) 1.04300e6i 1.06633i
\(990\) 0 0
\(991\) 278492. 0.283573 0.141787 0.989897i \(-0.454715\pi\)
0.141787 + 0.989897i \(0.454715\pi\)
\(992\) − 1.36959e6i − 1.39177i
\(993\) 0 0
\(994\) 671666. 0.679799
\(995\) 304488.i 0.307556i
\(996\) 0 0
\(997\) 1.33145e6 1.33947 0.669736 0.742599i \(-0.266407\pi\)
0.669736 + 0.742599i \(0.266407\pi\)
\(998\) 1.29633e6i 1.30154i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.b.a.80.1 6
3.2 odd 2 inner 81.5.b.a.80.6 6
4.3 odd 2 1296.5.e.c.161.3 6
9.2 odd 6 27.5.d.a.17.3 6
9.4 even 3 27.5.d.a.8.3 6
9.5 odd 6 9.5.d.a.2.1 6
9.7 even 3 9.5.d.a.5.1 yes 6
12.11 even 2 1296.5.e.c.161.4 6
36.7 odd 6 144.5.q.a.113.2 6
36.11 even 6 432.5.q.a.17.2 6
36.23 even 6 144.5.q.a.65.2 6
36.31 odd 6 432.5.q.a.305.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.5.d.a.2.1 6 9.5 odd 6
9.5.d.a.5.1 yes 6 9.7 even 3
27.5.d.a.8.3 6 9.4 even 3
27.5.d.a.17.3 6 9.2 odd 6
81.5.b.a.80.1 6 1.1 even 1 trivial
81.5.b.a.80.6 6 3.2 odd 2 inner
144.5.q.a.65.2 6 36.23 even 6
144.5.q.a.113.2 6 36.7 odd 6
432.5.q.a.17.2 6 36.11 even 6
432.5.q.a.305.2 6 36.31 odd 6
1296.5.e.c.161.3 6 4.3 odd 2
1296.5.e.c.161.4 6 12.11 even 2