Properties

Label 81.5.b.a
Level $81$
Weight $5$
Character orbit 81.b
Analytic conductor $8.373$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,5,Mod(80,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.80");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.39400128.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} - 5) q^{4} + \beta_{4} q^{5} + (\beta_{3} + \beta_{2} - 4) q^{7} + ( - \beta_{5} - \beta_{4} - 3 \beta_1) q^{8} + (\beta_{3} + 2 \beta_{2} - 6) q^{10} + ( - 2 \beta_{5} - \beta_{4} - 5 \beta_1) q^{11}+ \cdots + ( - 91 \beta_{5} - 151 \beta_{4} + 1267 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 30 q^{4} - 24 q^{7} - 36 q^{10} + 12 q^{13} - 30 q^{16} - 258 q^{19} + 738 q^{22} + 546 q^{25} + 1308 q^{28} - 2580 q^{31} - 1026 q^{34} + 12 q^{37} + 2628 q^{40} + 570 q^{43} - 5760 q^{46} + 3726 q^{49}+ \cdots + 57918 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 11\nu^{4} - 121\nu^{3} + 98\nu^{2} - 2176\nu - 220 ) / 1098 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{5} + 55\nu^{4} - 56\nu^{3} + 490\nu^{2} + 100\nu + 3841 ) / 183 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 13\nu^{5} - 143\nu^{4} + 475\nu^{3} - 1274\nu^{2} - 260\nu - 5924 ) / 122 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -1168\nu^{5} + 1319\nu^{4} - 12862\nu^{3} - 15649\nu^{2} - 110596\nu - 11557 ) / 549 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2971\nu^{5} - 3035\nu^{4} + 33385\nu^{3} + 34948\nu^{2} + 298528\nu + 31054 ) / 1098 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} - 3\beta_{2} - 27\beta _1 + 9 ) / 54 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -7\beta_{5} - 9\beta_{4} + 9\beta_{2} - 43\beta _1 - 189 ) / 54 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 10\beta_{3} + 39\beta_{2} - 333 ) / 27 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 79\beta_{5} + 99\beta_{4} + 12\beta_{3} + 135\beta_{2} + 799\beta _1 - 2241 ) / 54 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 183\beta_{5} + 207\beta_{4} - 112\beta_{3} - 543\beta_{2} + 4035\beta _1 + 5949 ) / 54 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
80.1
1.89154 + 3.27625i
−1.28901 + 2.23263i
−0.102534 + 0.177594i
−0.102534 0.177594i
−1.28901 2.23263i
1.89154 3.27625i
6.55250i 0 −26.9353 11.7830i 0 −53.2728 71.6534i 0 −77.2081
80.2 4.46526i 0 −3.93857 16.0226i 0 72.4837 53.8574i 0 71.5451
80.3 0.355188i 0 15.8738 34.7338i 0 −31.2109 11.3212i 0 −12.3370
80.4 0.355188i 0 15.8738 34.7338i 0 −31.2109 11.3212i 0 −12.3370
80.5 4.46526i 0 −3.93857 16.0226i 0 72.4837 53.8574i 0 71.5451
80.6 6.55250i 0 −26.9353 11.7830i 0 −53.2728 71.6534i 0 −77.2081
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 80.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.5.b.a 6
3.b odd 2 1 inner 81.5.b.a 6
4.b odd 2 1 1296.5.e.c 6
9.c even 3 1 9.5.d.a 6
9.c even 3 1 27.5.d.a 6
9.d odd 6 1 9.5.d.a 6
9.d odd 6 1 27.5.d.a 6
12.b even 2 1 1296.5.e.c 6
36.f odd 6 1 144.5.q.a 6
36.f odd 6 1 432.5.q.a 6
36.h even 6 1 144.5.q.a 6
36.h even 6 1 432.5.q.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.5.d.a 6 9.c even 3 1
9.5.d.a 6 9.d odd 6 1
27.5.d.a 6 9.c even 3 1
27.5.d.a 6 9.d odd 6 1
81.5.b.a 6 1.a even 1 1 trivial
81.5.b.a 6 3.b odd 2 1 inner
144.5.q.a 6 36.f odd 6 1
144.5.q.a 6 36.h even 6 1
432.5.q.a 6 36.f odd 6 1
432.5.q.a 6 36.h even 6 1
1296.5.e.c 6 4.b odd 2 1
1296.5.e.c 6 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 63T_{2}^{4} + 864T_{2}^{2} + 108 \) acting on \(S_{5}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 63 T^{4} + \cdots + 108 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 1602 T^{4} + \cdots + 43001388 \) Copy content Toggle raw display
$7$ \( (T^{3} + 12 T^{2} + \cdots - 120518)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 481294471563 \) Copy content Toggle raw display
$13$ \( (T^{3} - 6 T^{2} + \cdots - 841652)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 47166451632 \) Copy content Toggle raw display
$19$ \( (T^{3} + 129 T^{2} + \cdots - 1195028)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 10049071819968 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 92\!\cdots\!28 \) Copy content Toggle raw display
$31$ \( (T^{3} + 1290 T^{2} + \cdots - 252529712)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - 6 T^{2} + \cdots + 1276743376)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 32\!\cdots\!63 \) Copy content Toggle raw display
$43$ \( (T^{3} - 285 T^{2} + \cdots + 4656095011)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 65\!\cdots\!28 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 34\!\cdots\!52 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 74\!\cdots\!87 \) Copy content Toggle raw display
$61$ \( (T^{3} + 3630 T^{2} + \cdots + 48924712)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} - 5055 T^{2} + \cdots + 108250248169)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 26\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( (T^{3} + 7311 T^{2} + \cdots - 15741832472)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 4764 T^{2} + \cdots - 1639793258)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 11\!\cdots\!28 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 53\!\cdots\!92 \) Copy content Toggle raw display
$97$ \( (T^{3} - 28959 T^{2} + \cdots - 722818034117)^{2} \) Copy content Toggle raw display
show more
show less