Properties

Label 81.4.c.g
Level $81$
Weight $4$
Character orbit 81.c
Analytic conductor $4.779$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,4,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.77915471046\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_1 + 1) q^{2} + (3 \beta_{3} - 3 \beta_{2} + 7 \beta_1) q^{4} + ( - 2 \beta_{3} + 2 \beta_{2} + 7 \beta_1) q^{5} + (6 \beta_{3} - 8 \beta_1 - 8) q^{7} + ( - 5 \beta_{2} - 41) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} + \beta_1 + 1) q^{2} + (3 \beta_{3} - 3 \beta_{2} + 7 \beta_1) q^{4} + ( - 2 \beta_{3} + 2 \beta_{2} + 7 \beta_1) q^{5} + (6 \beta_{3} - 8 \beta_1 - 8) q^{7} + ( - 5 \beta_{2} - 41) q^{8} + ( - 3 \beta_{2} + 21) q^{10} + ( - 2 \beta_{3} - 20 \beta_1 - 20) q^{11} + ( - 6 \beta_{3} + 6 \beta_{2} + 35 \beta_1) q^{13} + (4 \beta_{3} - 4 \beta_{2} + 76 \beta_1) q^{14} + ( - 27 \beta_{3} - 55 \beta_1 - 55) q^{16} + (24 \beta_{2} - 21) q^{17} + (18 \beta_{2} + 56) q^{19} + ( - \beta_{3} + 35 \beta_1 + 35) q^{20} + ( - 24 \beta_{3} + 24 \beta_{2} - 48 \beta_1) q^{22} + (22 \beta_{3} - 22 \beta_{2} - 68 \beta_1) q^{23} + (24 \beta_{3} + 20 \beta_1 + 20) q^{25} + ( - 23 \beta_{2} + 49) q^{26} + ( - 36 \beta_{2} - 196) q^{28} + ( - 26 \beta_{3} - 107 \beta_1 - 107) q^{29} + (48 \beta_{3} - 48 \beta_{2} - 28 \beta_1) q^{31} + ( - 69 \beta_{3} + 69 \beta_{2} - 105 \beta_1) q^{32} + (27 \beta_{3} + 315 \beta_1 + 315) q^{34} + ( - 46 \beta_{2} + 224) q^{35} + (18 \beta_{2} + 83) q^{37} + (92 \beta_{3} + 308 \beta_1 + 308) q^{38} + (57 \beta_{3} - 57 \beta_{2} - 147 \beta_1) q^{40} + (28 \beta_{3} - 28 \beta_{2} - 350 \beta_1) q^{41} + (6 \beta_{3} - 188 \beta_1 - 188) q^{43} + (80 \beta_{2} + 224) q^{44} + (24 \beta_{2} - 240) q^{46} + (4 \beta_{3} - 140 \beta_1 - 140) q^{47} + ( - 60 \beta_{3} + 60 \beta_{2} + 225 \beta_1) q^{49} + (68 \beta_{3} - 68 \beta_{2} + 356 \beta_1) q^{50} + ( - 45 \beta_{3} + 7 \beta_1 + 7) q^{52} - 162 q^{53} + ( - 30 \beta_{2} + 84) q^{55} + ( - 236 \beta_{3} - 92 \beta_1 - 92) q^{56} + ( - 159 \beta_{3} + 159 \beta_{2} - 471 \beta_1) q^{58} + ( - 92 \beta_{3} + 92 \beta_{2} - 56 \beta_1) q^{59} + ( - 138 \beta_{3} - 35 \beta_1 - 35) q^{61} + ( - 68 \beta_{2} - 644) q^{62} + (27 \beta_{2} + 631) q^{64} + (100 \beta_{3} - 413 \beta_1 - 413) q^{65} + ( - 78 \beta_{3} + 78 \beta_{2} + 440 \beta_1) q^{67} + (177 \beta_{3} - 177 \beta_{2} + 861 \beta_1) q^{68} + (132 \beta_{3} - 420 \beta_1 - 420) q^{70} + (114 \beta_{2} - 120) q^{71} + ( - 108 \beta_{2} - 133) q^{73} + (119 \beta_{3} + 335 \beta_1 + 335) q^{74} + (348 \beta_{3} - 348 \beta_{2} + 1148 \beta_1) q^{76} + ( - 116 \beta_{3} + 116 \beta_{2} - 8 \beta_1) q^{77} + (6 \beta_{3} - 692 \beta_1 - 692) q^{79} + (25 \beta_{2} - 371) q^{80} + (294 \beta_{2} - 42) q^{82} + (100 \beta_{3} + 532 \beta_1 + 532) q^{83} + (162 \beta_{3} - 162 \beta_{2} - 819 \beta_1) q^{85} + ( - 176 \beta_{3} + 176 \beta_{2} - 104 \beta_1) q^{86} + (192 \beta_{3} + 960 \beta_1 + 960) q^{88} + ( - 240 \beta_{2} - 357) q^{89} + ( - 222 \beta_{2} + 784) q^{91} + ( - 16 \beta_{3} - 448 \beta_1 - 448) q^{92} + ( - 132 \beta_{3} + 132 \beta_{2} - 84 \beta_1) q^{94} + ( - 22 \beta_{3} + 22 \beta_{2} - 112 \beta_1) q^{95} + (60 \beta_{3} + 406 \beta_1 + 406) q^{97} + ( - 105 \beta_{2} + 615) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - 17 q^{4} - 12 q^{5} - 10 q^{7} - 174 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{2} - 17 q^{4} - 12 q^{5} - 10 q^{7} - 174 q^{8} + 78 q^{10} - 42 q^{11} - 64 q^{13} - 156 q^{14} - 137 q^{16} - 36 q^{17} + 260 q^{19} + 69 q^{20} + 120 q^{22} + 114 q^{23} + 64 q^{25} + 150 q^{26} - 856 q^{28} - 240 q^{29} + 8 q^{31} + 279 q^{32} + 657 q^{34} + 804 q^{35} + 368 q^{37} + 708 q^{38} + 237 q^{40} + 672 q^{41} - 370 q^{43} + 1056 q^{44} - 912 q^{46} - 276 q^{47} - 390 q^{49} - 780 q^{50} - 31 q^{52} - 648 q^{53} + 276 q^{55} - 420 q^{56} + 1101 q^{58} + 204 q^{59} - 208 q^{61} - 2712 q^{62} + 2578 q^{64} - 726 q^{65} - 802 q^{67} - 1899 q^{68} - 708 q^{70} - 252 q^{71} - 748 q^{73} + 789 q^{74} - 2644 q^{76} + 132 q^{77} - 1378 q^{79} - 1434 q^{80} + 420 q^{82} + 1164 q^{83} + 1476 q^{85} + 384 q^{86} + 2112 q^{88} - 1908 q^{89} + 2692 q^{91} - 912 q^{92} + 300 q^{94} + 246 q^{95} + 872 q^{97} + 2250 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu^{2} - 4\nu - 25 ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 9\nu + 5 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{3} + 2\nu^{2} + 8\nu - 25 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 2\beta _1 - 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} + 14\beta _1 + 13 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 8\beta_{3} - 4\beta_{2} - 4\beta _1 + 19 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
−1.63746 1.52274i
2.13746 + 0.656712i
−1.63746 + 1.52274i
2.13746 0.656712i
−1.13746 1.97014i 0 1.41238 2.44631i −6.77492 + 11.7345i 0 −13.8248 23.9452i −24.6254 0 30.8248
28.2 2.63746 + 4.56821i 0 −9.91238 + 17.1687i 0.774917 1.34220i 0 8.82475 + 15.2849i −62.3746 0 8.17525
55.1 −1.13746 + 1.97014i 0 1.41238 + 2.44631i −6.77492 11.7345i 0 −13.8248 + 23.9452i −24.6254 0 30.8248
55.2 2.63746 4.56821i 0 −9.91238 17.1687i 0.774917 + 1.34220i 0 8.82475 15.2849i −62.3746 0 8.17525
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.4.c.g 4
3.b odd 2 1 81.4.c.d 4
9.c even 3 1 81.4.a.b 2
9.c even 3 1 inner 81.4.c.g 4
9.d odd 6 1 81.4.a.e yes 2
9.d odd 6 1 81.4.c.d 4
36.f odd 6 1 1296.4.a.t 2
36.h even 6 1 1296.4.a.k 2
45.h odd 6 1 2025.4.a.h 2
45.j even 6 1 2025.4.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.4.a.b 2 9.c even 3 1
81.4.a.e yes 2 9.d odd 6 1
81.4.c.d 4 3.b odd 2 1
81.4.c.d 4 9.d odd 6 1
81.4.c.g 4 1.a even 1 1 trivial
81.4.c.g 4 9.c even 3 1 inner
1296.4.a.k 2 36.h even 6 1
1296.4.a.t 2 36.f odd 6 1
2025.4.a.h 2 45.h odd 6 1
2025.4.a.o 2 45.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 3T_{2}^{3} + 21T_{2}^{2} + 36T_{2} + 144 \) acting on \(S_{4}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 3 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 12 T^{3} + \cdots + 441 \) Copy content Toggle raw display
$7$ \( T^{4} + 10 T^{3} + \cdots + 238144 \) Copy content Toggle raw display
$11$ \( T^{4} + 42 T^{3} + \cdots + 147456 \) Copy content Toggle raw display
$13$ \( T^{4} + 64 T^{3} + \cdots + 261121 \) Copy content Toggle raw display
$17$ \( (T^{2} + 18 T - 8127)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 130 T - 392)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 114 T^{3} + \cdots + 13307904 \) Copy content Toggle raw display
$29$ \( T^{4} + 240 T^{3} + \cdots + 22724289 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 1076889856 \) Copy content Toggle raw display
$37$ \( (T^{2} - 184 T + 3847)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 10347772176 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 1136498944 \) Copy content Toggle raw display
$47$ \( T^{4} + 276 T^{3} + \cdots + 354041856 \) Copy content Toggle raw display
$53$ \( (T + 162)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 12145803264 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 67892034721 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 5491402816 \) Copy content Toggle raw display
$71$ \( (T^{2} + 126 T - 181224)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 374 T - 131243)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 224873227264 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 38503858176 \) Copy content Toggle raw display
$89$ \( (T^{2} + 954 T - 593271)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 19264329616 \) Copy content Toggle raw display
show more
show less