Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [81,4,Mod(28,81)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(81, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("81.28");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.c (of order \(3\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.77915471046\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - x + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{25}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 9) |
Sato-Tate group: | $\mathrm{U}(1)[D_{3}]$ |
Embedding invariants
Embedding label | 28.1 | ||
Root | \(0.500000 - 0.866025i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 81.28 |
Dual form | 81.4.c.b.55.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(e\left(\frac{1}{3}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 4.00000 | − | 6.92820i | 0.500000 | − | 0.866025i | ||||
\(5\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −10.0000 | − | 17.3205i | −0.539949 | − | 0.935220i | −0.998906 | − | 0.0467610i | \(-0.985110\pi\) |
0.458957 | − | 0.888459i | \(-0.348223\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 35.0000 | − | 60.6218i | 0.746712 | − | 1.29334i | −0.202679 | − | 0.979245i | \(-0.564965\pi\) |
0.949391 | − | 0.314098i | \(-0.101702\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | −32.0000 | − | 55.4256i | −0.500000 | − | 0.866025i | ||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 56.0000 | 0.676173 | 0.338086 | − | 0.941115i | \(-0.390220\pi\) | ||||
0.338086 | + | 0.941115i | \(0.390220\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 62.5000 | + | 108.253i | 0.500000 | + | 0.866025i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | −160.000 | −1.07990 | ||||||||
\(29\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −154.000 | + | 266.736i | −0.892233 | + | 1.54539i | −0.0550403 | + | 0.998484i | \(0.517529\pi\) |
−0.837192 | + | 0.546908i | \(0.815805\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 110.000 | 0.488754 | 0.244377 | − | 0.969680i | \(-0.421417\pi\) | ||||
0.244377 | + | 0.969680i | \(0.421417\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 260.000 | + | 450.333i | 0.922084 | + | 1.59710i | 0.796184 | + | 0.605054i | \(0.206849\pi\) |
0.125900 | + | 0.992043i | \(0.459818\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −28.5000 | + | 49.3634i | −0.0830904 | + | 0.143917i | ||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | −280.000 | − | 484.974i | −0.746712 | − | 1.29334i | ||||
\(53\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −91.0000 | − | 157.617i | −0.191006 | − | 0.330832i | 0.754578 | − | 0.656210i | \(-0.227842\pi\) |
−0.945584 | + | 0.325379i | \(0.894508\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | −512.000 | −1.00000 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 440.000 | − | 762.102i | 0.802307 | − | 1.38964i | −0.115787 | − | 0.993274i | \(-0.536939\pi\) |
0.918094 | − | 0.396362i | \(-0.129728\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 1190.00 | 1.90793 | 0.953966 | − | 0.299916i | \(-0.0969588\pi\) | ||||
0.953966 | + | 0.299916i | \(0.0969588\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 224.000 | − | 387.979i | 0.338086 | − | 0.585583i | ||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −442.000 | − | 765.566i | −0.629480 | − | 1.09029i | −0.987656 | − | 0.156637i | \(-0.949935\pi\) |
0.358177 | − | 0.933654i | \(-0.383399\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −1400.00 | −1.61275 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 665.000 | + | 1151.81i | 0.696088 | + | 1.20566i | 0.969813 | + | 0.243851i | \(0.0784109\pi\) |
−0.273725 | + | 0.961808i | \(0.588256\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 1000.00 | 1.00000 | ||||||||
\(101\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −910.000 | + | 1576.17i | −0.870534 | + | 1.50781i | −0.00908799 | + | 0.999959i | \(0.502893\pi\) |
−0.861446 | + | 0.507850i | \(0.830440\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −646.000 | −0.567666 | −0.283833 | − | 0.958874i | \(-0.591606\pi\) | ||||
−0.283833 | + | 0.958874i | \(0.591606\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | −640.000 | + | 1108.51i | −0.539949 | + | 0.935220i | ||||
\(113\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 665.500 | − | 1152.68i | 0.500000 | − | 0.866025i | ||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 1232.00 | + | 2133.89i | 0.892233 | + | 1.54539i | ||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 380.000 | 0.265508 | 0.132754 | − | 0.991149i | \(-0.457618\pi\) | ||||
0.132754 | + | 0.991149i | \(0.457618\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −560.000 | − | 969.948i | −0.365099 | − | 0.632370i | ||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −1288.00 | + | 2230.88i | −0.785948 | + | 1.36130i | 0.142484 | + | 0.989797i | \(0.454491\pi\) |
−0.928431 | + | 0.371504i | \(0.878842\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 440.000 | − | 762.102i | 0.244377 | − | 0.423273i | ||||
\(149\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −874.000 | − | 1513.81i | −0.471027 | − | 0.815843i | 0.528424 | − | 0.848981i | \(-0.322783\pi\) |
−0.999451 | + | 0.0331378i | \(0.989450\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 1925.00 | − | 3334.20i | 0.978546 | − | 1.69489i | 0.310847 | − | 0.950460i | \(-0.399387\pi\) |
0.667699 | − | 0.744432i | \(-0.267279\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −3400.00 | −1.63379 | −0.816897 | − | 0.576783i | \(-0.804308\pi\) | ||||
−0.816897 | + | 0.576783i | \(0.804308\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −1351.50 | − | 2340.87i | −0.615157 | − | 1.06548i | ||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 4160.00 | 1.84417 | ||||||||
\(173\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 1250.00 | − | 2165.06i | 0.539949 | − | 0.935220i | ||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 3458.00 | 1.42006 | 0.710031 | − | 0.704171i | \(-0.248681\pi\) | ||||
0.710031 | + | 0.704171i | \(0.248681\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 575.000 | − | 995.929i | 0.214453 | − | 0.371443i | −0.738650 | − | 0.674089i | \(-0.764536\pi\) |
0.953103 | + | 0.302646i | \(0.0978698\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 228.000 | + | 394.908i | 0.0830904 | + | 0.143917i | ||||
\(197\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −5236.00 | −1.86518 | −0.932588 | − | 0.360942i | \(-0.882455\pi\) | ||||
−0.932588 | + | 0.360942i | \(0.882455\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | −4480.00 | −1.49342 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −3016.00 | + | 5223.87i | −0.984028 | + | 1.70439i | −0.337852 | + | 0.941199i | \(0.609700\pi\) |
−0.646177 | + | 0.763188i | \(0.723633\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 6160.00 | 1.92704 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 1610.00 | + | 2788.60i | 0.483469 | + | 0.837393i | 0.999820 | − | 0.0189844i | \(-0.00604328\pi\) |
−0.516351 | + | 0.856377i | \(0.672710\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −2233.00 | + | 3867.67i | −0.644370 | + | 1.11608i | 0.340076 | + | 0.940398i | \(0.389547\pi\) |
−0.984447 | + | 0.175684i | \(0.943786\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 3689.00 | + | 6389.54i | 0.986014 | + | 1.70783i | 0.637341 | + | 0.770582i | \(0.280034\pi\) |
0.348673 | + | 0.937244i | \(0.386632\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | −1456.00 | −0.382012 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 1960.00 | − | 3394.82i | 0.504906 | − | 0.874523i | ||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | −2048.00 | + | 3547.24i | −0.500000 | + | 0.866025i | ||||
\(257\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −1100.00 | − | 1905.26i | −0.263902 | − | 0.457092i | ||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | −3520.00 | − | 6096.82i | −0.802307 | − | 1.38964i | ||||
\(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 812.000 | 0.182013 | 0.0910064 | − | 0.995850i | \(-0.470992\pi\) | ||||
0.0910064 | + | 0.995850i | \(0.470992\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 2015.00 | + | 3490.08i | 0.437074 | + | 0.757035i | 0.997462 | − | 0.0711951i | \(-0.0226813\pi\) |
−0.560388 | + | 0.828230i | \(0.689348\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −2800.00 | + | 4849.74i | −0.588137 | + | 1.01868i | 0.406340 | + | 0.913722i | \(0.366805\pi\) |
−0.994476 | + | 0.104961i | \(0.966528\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −4913.00 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 4760.00 | − | 8244.56i | 0.953966 | − | 1.65232i | ||||
\(293\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 5200.00 | − | 9006.66i | 0.995758 | − | 1.72470i | ||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | −1792.00 | − | 3103.84i | −0.338086 | − | 0.585583i | ||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 10640.0 | 1.97804 | 0.989018 | − | 0.147797i | \(-0.0472182\pi\) | ||||
0.989018 | + | 0.147797i | \(0.0472182\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −5005.00 | − | 8668.91i | −0.903832 | − | 1.56548i | −0.822478 | − | 0.568797i | \(-0.807409\pi\) |
−0.0813539 | − | 0.996685i | \(-0.525924\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | −7072.00 | −1.25896 | ||||||||
\(317\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 8750.00 | 1.49342 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −496.000 | − | 859.097i | −0.0823644 | − | 0.142659i | 0.821901 | − | 0.569631i | \(-0.192914\pi\) |
−0.904265 | + | 0.426971i | \(0.859580\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 2465.00 | − | 4269.51i | 0.398448 | − | 0.690133i | −0.595086 | − | 0.803662i | \(-0.702882\pi\) |
0.993535 | + | 0.113529i | \(0.0362155\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −5720.00 | −0.900440 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 5957.00 | + | 10317.8i | 0.913670 | + | 1.58252i | 0.808837 | + | 0.588033i | \(0.200098\pi\) |
0.104834 | + | 0.994490i | \(0.466569\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3723.00 | −0.542790 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | −5600.00 | + | 9699.48i | −0.806373 | + | 1.39668i | ||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −2170.00 | − | 3758.55i | −0.308646 | − | 0.534591i | 0.669420 | − | 0.742884i | \(-0.266543\pi\) |
−0.978066 | + | 0.208293i | \(0.933209\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −6175.00 | + | 10695.4i | −0.857183 | + | 1.48469i | 0.0174213 | + | 0.999848i | \(0.494454\pi\) |
−0.874605 | + | 0.484837i | \(0.838879\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −8584.00 | −1.16340 | −0.581702 | − | 0.813402i | \(-0.697613\pi\) | ||||
−0.581702 | + | 0.813402i | \(0.697613\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 10640.0 | 1.39218 | ||||||||
\(389\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 1190.00 | 0.150439 | 0.0752196 | − | 0.997167i | \(-0.476034\pi\) | ||||
0.0752196 | + | 0.997167i | \(0.476034\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 4000.00 | − | 6928.20i | 0.500000 | − | 0.866025i | ||||
\(401\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 10780.0 | + | 18671.5i | 1.33248 | + | 2.30793i | ||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −4123.00 | + | 7141.25i | −0.498458 | + | 0.863354i | −0.999998 | − | 0.00177990i | \(-0.999433\pi\) |
0.501541 | + | 0.865134i | \(0.332767\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 7280.00 | + | 12609.3i | 0.870534 | + | 1.50781i | ||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −8569.00 | − | 14841.9i | −0.991989 | − | 1.71818i | −0.605392 | − | 0.795927i | \(-0.706984\pi\) |
−0.386597 | − | 0.922249i | \(-0.626350\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −1820.00 | + | 3152.33i | −0.206267 | + | 0.357265i | ||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −2590.00 | −0.287454 | −0.143727 | − | 0.989617i | \(-0.545909\pi\) | ||||
−0.143727 | + | 0.989617i | \(0.545909\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | −2584.00 | + | 4475.62i | −0.283833 | + | 0.491613i | ||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −7462.00 | − | 12924.6i | −0.811257 | − | 1.40514i | −0.911985 | − | 0.410224i | \(-0.865450\pi\) |
0.100728 | − | 0.994914i | \(-0.467883\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 5120.00 | + | 8868.10i | 0.539949 | + | 0.935220i | ||||
\(449\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −6355.00 | − | 11007.2i | −0.650491 | − | 1.12668i | −0.983004 | − | 0.183585i | \(-0.941230\pi\) |
0.332513 | − | 0.943099i | \(-0.392103\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 9890.00 | − | 17130.0i | 0.992716 | − | 1.71943i | 0.392017 | − | 0.919958i | \(-0.371777\pi\) |
0.600698 | − | 0.799476i | \(-0.294889\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −17600.0 | −1.73282 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 3500.00 | + | 6062.18i | 0.338086 | + | 0.585583i | ||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 3850.00 | − | 6668.40i | 0.364958 | − | 0.632126i | ||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | −5324.00 | − | 9221.44i | −0.500000 | − | 0.866025i | ||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 20900.0 | 1.94470 | 0.972351 | − | 0.233526i | \(-0.0750265\pi\) | ||||
0.972351 | + | 0.233526i | \(0.0750265\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 19712.0 | 1.78447 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 7568.00 | − | 13108.2i | 0.678938 | − | 1.17596i | −0.296363 | − | 0.955075i | \(-0.595774\pi\) |
0.975301 | − | 0.220880i | \(-0.0708930\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 1520.00 | − | 2632.72i | 0.132754 | − | 0.229937i | ||||
\(509\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −11900.0 | − | 20611.4i | −1.03019 | − | 1.78433i | ||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −12040.0 | −1.00664 | −0.503320 | − | 0.864100i | \(-0.667888\pi\) | ||||
−0.503320 | + | 0.864100i | \(0.667888\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 6083.50 | + | 10536.9i | 0.500000 | + | 0.866025i | ||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | −8960.00 | −0.730198 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −22678.0 | −1.80222 | −0.901112 | − | 0.433586i | \(-0.857248\pi\) | ||||
−0.901112 | + | 0.433586i | \(0.857248\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −820.000 | − | 1420.28i | −0.0640963 | − | 0.111018i | 0.832196 | − | 0.554481i | \(-0.187083\pi\) |
−0.896293 | + | 0.443463i | \(0.853750\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −8840.00 | + | 15311.3i | −0.679774 | + | 1.17740i | ||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 10304.0 | + | 17847.1i | 0.785948 | + | 1.36130i | ||||
\(557\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 36400.0 | 2.75413 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −11656.0 | + | 20188.8i | −0.854270 | + | 1.47964i | 0.0230498 | + | 0.999734i | \(0.492662\pi\) |
−0.877320 | + | 0.479905i | \(0.840671\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −17710.0 | −1.27778 | −0.638888 | − | 0.769300i | \(-0.720605\pi\) | ||||
−0.638888 | + | 0.769300i | \(0.720605\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −8624.00 | + | 14937.2i | −0.603303 | + | 1.04495i | ||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | −3520.00 | − | 6096.82i | −0.244377 | − | 0.423273i | ||||
\(593\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 14651.0 | + | 25376.3i | 0.994387 | + | 1.72233i | 0.588820 | + | 0.808264i | \(0.299593\pi\) |
0.405567 | + | 0.914065i | \(0.367074\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | −13984.0 | −0.942054 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 14210.0 | − | 24612.4i | 0.950191 | − | 1.64578i | 0.205184 | − | 0.978723i | \(-0.434221\pi\) |
0.745007 | − | 0.667056i | \(-0.232446\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 17390.0 | 1.14580 | 0.572900 | − | 0.819625i | \(-0.305818\pi\) | ||||
0.572900 | + | 0.819625i | \(0.305818\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 13328.0 | + | 23084.8i | 0.865424 | + | 1.49896i | 0.866625 | + | 0.498959i | \(0.166284\pi\) |
−0.00120126 | + | 0.999999i | \(0.500382\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −7812.50 | + | 13531.6i | −0.500000 | + | 0.866025i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | −15400.0 | − | 26673.6i | −0.978546 | − | 1.69489i | ||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 1892.00 | 0.119365 | 0.0596825 | − | 0.998217i | \(-0.480991\pi\) | ||||
0.0596825 | + | 0.998217i | \(0.480991\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 1995.00 | + | 3455.44i | 0.124089 | + | 0.214929i | ||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −6580.00 | + | 11396.9i | −0.403561 | + | 0.698989i | −0.994153 | − | 0.107982i | \(-0.965561\pi\) |
0.590592 | + | 0.806971i | \(0.298894\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | −13600.0 | + | 23555.9i | −0.816897 | + | 1.41491i | ||||
\(653\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 10241.0 | − | 17737.9i | 0.602615 | − | 1.04376i | −0.389808 | − | 0.920896i | \(-0.627459\pi\) |
0.992423 | − | 0.122864i | \(-0.0392080\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −12025.0 | − | 20827.9i | −0.688751 | − | 1.19295i | −0.972242 | − | 0.233977i | \(-0.924826\pi\) |
0.283491 | − | 0.958975i | \(-0.408508\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | −21624.0 | −1.23031 | ||||||||
\(677\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 13300.0 | − | 23036.3i | 0.751704 | − | 1.30199i | ||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 16640.0 | − | 28821.3i | 0.922084 | − | 1.59710i | ||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 8036.00 | + | 13918.8i | 0.442408 | + | 0.766273i | 0.997868 | − | 0.0652705i | \(-0.0207910\pi\) |
−0.555460 | + | 0.831543i | \(0.687458\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | −10000.0 | − | 17320.5i | −0.539949 | − | 0.935220i | ||||
\(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 6160.00 | 0.330482 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −18073.0 | − | 31303.4i | −0.957328 | − | 1.65814i | −0.728948 | − | 0.684569i | \(-0.759990\pi\) |
−0.228381 | − | 0.973572i | \(-0.573343\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 36400.0 | 1.88018 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 13832.0 | − | 23957.7i | 0.710031 | − | 1.22981i | ||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 5390.00 | + | 9335.75i | 0.274971 | + | 0.476264i | 0.970128 | − | 0.242594i | \(-0.0779984\pi\) |
−0.695157 | + | 0.718858i | \(0.744665\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −7525.00 | + | 13033.7i | −0.379184 | + | 0.656767i | −0.990944 | − | 0.134277i | \(-0.957129\pi\) |
0.611759 | + | 0.791044i | \(0.290462\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 31376.0 | 1.56182 | 0.780910 | − | 0.624644i | \(-0.214756\pi\) | ||||
0.780910 | + | 0.624644i | \(0.214756\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 11726.0 | − | 20310.0i | 0.569757 | − | 0.986849i | −0.426832 | − | 0.904331i | \(-0.640370\pi\) |
0.996590 | − | 0.0825179i | \(-0.0262962\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −41470.0 | −1.99109 | −0.995543 | − | 0.0943039i | \(-0.969937\pi\) | ||||
−0.995543 | + | 0.0943039i | \(0.969937\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 6460.00 | + | 11189.0i | 0.306511 | + | 0.530892i | ||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 2303.00 | − | 3988.91i | 0.107995 | − | 0.187053i | −0.806963 | − | 0.590602i | \(-0.798890\pi\) |
0.914958 | + | 0.403549i | \(0.132224\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | −4600.00 | − | 7967.43i | −0.214453 | − | 0.371443i | ||||
\(773\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −38500.0 | −1.78447 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 3648.00 | 0.166181 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −21700.0 | + | 37585.5i | −0.982874 | + | 1.70239i | −0.331844 | + | 0.943334i | \(0.607671\pi\) |
−0.651029 | + | 0.759053i | \(0.725662\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −12740.0 | −0.570505 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | −20944.0 | + | 36276.1i | −0.932588 | + | 1.61529i | ||||
\(797\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 |