Properties

Label 81.4.c.a
Level $81$
Weight $4$
Character orbit 81.c
Analytic conductor $4.779$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,4,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.77915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \zeta_{6} - 3) q^{2} - \zeta_{6} q^{4} - 15 \zeta_{6} q^{5} + ( - 25 \zeta_{6} + 25) q^{7} - 21 q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + (3 \zeta_{6} - 3) q^{2} - \zeta_{6} q^{4} - 15 \zeta_{6} q^{5} + ( - 25 \zeta_{6} + 25) q^{7} - 21 q^{8} + 45 q^{10} + ( - 15 \zeta_{6} + 15) q^{11} - 20 \zeta_{6} q^{13} + 75 \zeta_{6} q^{14} + ( - 71 \zeta_{6} + 71) q^{16} + 72 q^{17} + 2 q^{19} + (15 \zeta_{6} - 15) q^{20} + 45 \zeta_{6} q^{22} - 114 \zeta_{6} q^{23} + (100 \zeta_{6} - 100) q^{25} + 60 q^{26} - 25 q^{28} + (30 \zeta_{6} - 30) q^{29} - 101 \zeta_{6} q^{31} + 45 \zeta_{6} q^{32} + (216 \zeta_{6} - 216) q^{34} - 375 q^{35} - 430 q^{37} + (6 \zeta_{6} - 6) q^{38} + 315 \zeta_{6} q^{40} + 30 \zeta_{6} q^{41} + (110 \zeta_{6} - 110) q^{43} - 15 q^{44} + 342 q^{46} + ( - 330 \zeta_{6} + 330) q^{47} - 282 \zeta_{6} q^{49} - 300 \zeta_{6} q^{50} + (20 \zeta_{6} - 20) q^{52} + 621 q^{53} - 225 q^{55} + (525 \zeta_{6} - 525) q^{56} - 90 \zeta_{6} q^{58} + 660 \zeta_{6} q^{59} + ( - 376 \zeta_{6} + 376) q^{61} + 303 q^{62} + 433 q^{64} + (300 \zeta_{6} - 300) q^{65} + 250 \zeta_{6} q^{67} - 72 \zeta_{6} q^{68} + ( - 1125 \zeta_{6} + 1125) q^{70} - 360 q^{71} + 785 q^{73} + ( - 1290 \zeta_{6} + 1290) q^{74} - 2 \zeta_{6} q^{76} - 375 \zeta_{6} q^{77} + (488 \zeta_{6} - 488) q^{79} - 1065 q^{80} - 90 q^{82} + (489 \zeta_{6} - 489) q^{83} - 1080 \zeta_{6} q^{85} - 330 \zeta_{6} q^{86} + (315 \zeta_{6} - 315) q^{88} - 450 q^{89} - 500 q^{91} + (114 \zeta_{6} - 114) q^{92} + 990 \zeta_{6} q^{94} - 30 \zeta_{6} q^{95} + ( - 1105 \zeta_{6} + 1105) q^{97} + 846 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - q^{4} - 15 q^{5} + 25 q^{7} - 42 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} - q^{4} - 15 q^{5} + 25 q^{7} - 42 q^{8} + 90 q^{10} + 15 q^{11} - 20 q^{13} + 75 q^{14} + 71 q^{16} + 144 q^{17} + 4 q^{19} - 15 q^{20} + 45 q^{22} - 114 q^{23} - 100 q^{25} + 120 q^{26} - 50 q^{28} - 30 q^{29} - 101 q^{31} + 45 q^{32} - 216 q^{34} - 750 q^{35} - 860 q^{37} - 6 q^{38} + 315 q^{40} + 30 q^{41} - 110 q^{43} - 30 q^{44} + 684 q^{46} + 330 q^{47} - 282 q^{49} - 300 q^{50} - 20 q^{52} + 1242 q^{53} - 450 q^{55} - 525 q^{56} - 90 q^{58} + 660 q^{59} + 376 q^{61} + 606 q^{62} + 866 q^{64} - 300 q^{65} + 250 q^{67} - 72 q^{68} + 1125 q^{70} - 720 q^{71} + 1570 q^{73} + 1290 q^{74} - 2 q^{76} - 375 q^{77} - 488 q^{79} - 2130 q^{80} - 180 q^{82} - 489 q^{83} - 1080 q^{85} - 330 q^{86} - 315 q^{88} - 900 q^{89} - 1000 q^{91} - 114 q^{92} + 990 q^{94} - 30 q^{95} + 1105 q^{97} + 1692 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.50000 2.59808i 0 −0.500000 + 0.866025i −7.50000 + 12.9904i 0 12.5000 + 21.6506i −21.0000 0 45.0000
55.1 −1.50000 + 2.59808i 0 −0.500000 0.866025i −7.50000 12.9904i 0 12.5000 21.6506i −21.0000 0 45.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.4.c.a 2
3.b odd 2 1 81.4.c.c 2
9.c even 3 1 27.4.a.b yes 1
9.c even 3 1 inner 81.4.c.a 2
9.d odd 6 1 27.4.a.a 1
9.d odd 6 1 81.4.c.c 2
36.f odd 6 1 432.4.a.n 1
36.h even 6 1 432.4.a.a 1
45.h odd 6 1 675.4.a.j 1
45.j even 6 1 675.4.a.a 1
45.k odd 12 2 675.4.b.a 2
45.l even 12 2 675.4.b.b 2
63.l odd 6 1 1323.4.a.k 1
63.o even 6 1 1323.4.a.d 1
72.j odd 6 1 1728.4.a.bc 1
72.l even 6 1 1728.4.a.bd 1
72.n even 6 1 1728.4.a.c 1
72.p odd 6 1 1728.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.4.a.a 1 9.d odd 6 1
27.4.a.b yes 1 9.c even 3 1
81.4.c.a 2 1.a even 1 1 trivial
81.4.c.a 2 9.c even 3 1 inner
81.4.c.c 2 3.b odd 2 1
81.4.c.c 2 9.d odd 6 1
432.4.a.a 1 36.h even 6 1
432.4.a.n 1 36.f odd 6 1
675.4.a.a 1 45.j even 6 1
675.4.a.j 1 45.h odd 6 1
675.4.b.a 2 45.k odd 12 2
675.4.b.b 2 45.l even 12 2
1323.4.a.d 1 63.o even 6 1
1323.4.a.k 1 63.l odd 6 1
1728.4.a.c 1 72.n even 6 1
1728.4.a.d 1 72.p odd 6 1
1728.4.a.bc 1 72.j odd 6 1
1728.4.a.bd 1 72.l even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 3T_{2} + 9 \) acting on \(S_{4}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 15T + 225 \) Copy content Toggle raw display
$7$ \( T^{2} - 25T + 625 \) Copy content Toggle raw display
$11$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$13$ \( T^{2} + 20T + 400 \) Copy content Toggle raw display
$17$ \( (T - 72)^{2} \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 114T + 12996 \) Copy content Toggle raw display
$29$ \( T^{2} + 30T + 900 \) Copy content Toggle raw display
$31$ \( T^{2} + 101T + 10201 \) Copy content Toggle raw display
$37$ \( (T + 430)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 30T + 900 \) Copy content Toggle raw display
$43$ \( T^{2} + 110T + 12100 \) Copy content Toggle raw display
$47$ \( T^{2} - 330T + 108900 \) Copy content Toggle raw display
$53$ \( (T - 621)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 660T + 435600 \) Copy content Toggle raw display
$61$ \( T^{2} - 376T + 141376 \) Copy content Toggle raw display
$67$ \( T^{2} - 250T + 62500 \) Copy content Toggle raw display
$71$ \( (T + 360)^{2} \) Copy content Toggle raw display
$73$ \( (T - 785)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 488T + 238144 \) Copy content Toggle raw display
$83$ \( T^{2} + 489T + 239121 \) Copy content Toggle raw display
$89$ \( (T + 450)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 1105 T + 1221025 \) Copy content Toggle raw display
show more
show less