Properties

 Label 81.4.a.d Level $81$ Weight $4$ Character orbit 81.a Self dual yes Analytic conductor $4.779$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [81,4,Mod(1,81)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(81, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("81.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$81 = 3^{4}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 81.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.77915471046$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{33})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 8$$ x^2 - x - 8 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 9) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{33})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta + 1) q^{2} + (3 \beta + 1) q^{4} + ( - \beta + 8) q^{5} + (3 \beta + 2) q^{7} + ( - \beta + 17) q^{8}+O(q^{10})$$ q + (b + 1) * q^2 + (3*b + 1) * q^4 + (-b + 8) * q^5 + (3*b + 2) * q^7 + (-b + 17) * q^8 $$q + (\beta + 1) q^{2} + (3 \beta + 1) q^{4} + ( - \beta + 8) q^{5} + (3 \beta + 2) q^{7} + ( - \beta + 17) q^{8} + 6 \beta q^{10} + ( - 8 \beta + 37) q^{11} + ( - 15 \beta + 2) q^{13} + (8 \beta + 26) q^{14} + ( - 9 \beta + 1) q^{16} + (9 \beta + 45) q^{17} + ( - 27 \beta - 25) q^{19} + (20 \beta - 16) q^{20} + (21 \beta - 27) q^{22} + ( - 19 \beta + 26) q^{23} + ( - 15 \beta - 53) q^{25} + ( - 28 \beta - 118) q^{26} + (18 \beta + 74) q^{28} + (\beta - 26) q^{29} + (3 \beta + 20) q^{31} + ( - 9 \beta - 207) q^{32} + (63 \beta + 117) q^{34} + (19 \beta - 8) q^{35} + (54 \beta - 52) q^{37} + ( - 79 \beta - 241) q^{38} + ( - 24 \beta + 144) q^{40} + (98 \beta + 17) q^{41} + ( - 6 \beta + 47) q^{43} + (79 \beta - 155) q^{44} + ( - 12 \beta - 126) q^{46} + (91 \beta + 154) q^{47} + (21 \beta - 267) q^{49} + ( - 83 \beta - 173) q^{50} + ( - 54 \beta - 358) q^{52} + ( - 162 \beta + 108) q^{53} + ( - 93 \beta + 360) q^{55} + (46 \beta + 10) q^{56} + ( - 24 \beta - 18) q^{58} + ( - 136 \beta + 467) q^{59} + ( - 105 \beta + 272) q^{61} + (26 \beta + 44) q^{62} + ( - 153 \beta - 287) q^{64} + ( - 107 \beta + 136) q^{65} + (66 \beta + 461) q^{67} + (171 \beta + 261) q^{68} + (30 \beta + 144) q^{70} + (144 \beta + 612) q^{71} + (243 \beta - 349) q^{73} + (56 \beta + 380) q^{74} + ( - 183 \beta - 673) q^{76} + (71 \beta - 118) q^{77} + (309 \beta - 556) q^{79} + ( - 64 \beta + 80) q^{80} + (213 \beta + 801) q^{82} + ( - 107 \beta + 460) q^{83} + (18 \beta + 288) q^{85} + (35 \beta - 1) q^{86} + ( - 165 \beta + 693) q^{88} + (72 \beta - 234) q^{89} + ( - 69 \beta - 356) q^{91} + (2 \beta - 430) q^{92} + (336 \beta + 882) q^{94} + ( - 164 \beta + 16) q^{95} + (102 \beta + 317) q^{97} + ( - 225 \beta - 99) q^{98}+O(q^{100})$$ q + (b + 1) * q^2 + (3*b + 1) * q^4 + (-b + 8) * q^5 + (3*b + 2) * q^7 + (-b + 17) * q^8 + 6*b * q^10 + (-8*b + 37) * q^11 + (-15*b + 2) * q^13 + (8*b + 26) * q^14 + (-9*b + 1) * q^16 + (9*b + 45) * q^17 + (-27*b - 25) * q^19 + (20*b - 16) * q^20 + (21*b - 27) * q^22 + (-19*b + 26) * q^23 + (-15*b - 53) * q^25 + (-28*b - 118) * q^26 + (18*b + 74) * q^28 + (b - 26) * q^29 + (3*b + 20) * q^31 + (-9*b - 207) * q^32 + (63*b + 117) * q^34 + (19*b - 8) * q^35 + (54*b - 52) * q^37 + (-79*b - 241) * q^38 + (-24*b + 144) * q^40 + (98*b + 17) * q^41 + (-6*b + 47) * q^43 + (79*b - 155) * q^44 + (-12*b - 126) * q^46 + (91*b + 154) * q^47 + (21*b - 267) * q^49 + (-83*b - 173) * q^50 + (-54*b - 358) * q^52 + (-162*b + 108) * q^53 + (-93*b + 360) * q^55 + (46*b + 10) * q^56 + (-24*b - 18) * q^58 + (-136*b + 467) * q^59 + (-105*b + 272) * q^61 + (26*b + 44) * q^62 + (-153*b - 287) * q^64 + (-107*b + 136) * q^65 + (66*b + 461) * q^67 + (171*b + 261) * q^68 + (30*b + 144) * q^70 + (144*b + 612) * q^71 + (243*b - 349) * q^73 + (56*b + 380) * q^74 + (-183*b - 673) * q^76 + (71*b - 118) * q^77 + (309*b - 556) * q^79 + (-64*b + 80) * q^80 + (213*b + 801) * q^82 + (-107*b + 460) * q^83 + (18*b + 288) * q^85 + (35*b - 1) * q^86 + (-165*b + 693) * q^88 + (72*b - 234) * q^89 + (-69*b - 356) * q^91 + (2*b - 430) * q^92 + (336*b + 882) * q^94 + (-164*b + 16) * q^95 + (102*b + 317) * q^97 + (-225*b - 99) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 3 q^{2} + 5 q^{4} + 15 q^{5} + 7 q^{7} + 33 q^{8}+O(q^{10})$$ 2 * q + 3 * q^2 + 5 * q^4 + 15 * q^5 + 7 * q^7 + 33 * q^8 $$2 q + 3 q^{2} + 5 q^{4} + 15 q^{5} + 7 q^{7} + 33 q^{8} + 6 q^{10} + 66 q^{11} - 11 q^{13} + 60 q^{14} - 7 q^{16} + 99 q^{17} - 77 q^{19} - 12 q^{20} - 33 q^{22} + 33 q^{23} - 121 q^{25} - 264 q^{26} + 166 q^{28} - 51 q^{29} + 43 q^{31} - 423 q^{32} + 297 q^{34} + 3 q^{35} - 50 q^{37} - 561 q^{38} + 264 q^{40} + 132 q^{41} + 88 q^{43} - 231 q^{44} - 264 q^{46} + 399 q^{47} - 513 q^{49} - 429 q^{50} - 770 q^{52} + 54 q^{53} + 627 q^{55} + 66 q^{56} - 60 q^{58} + 798 q^{59} + 439 q^{61} + 114 q^{62} - 727 q^{64} + 165 q^{65} + 988 q^{67} + 693 q^{68} + 318 q^{70} + 1368 q^{71} - 455 q^{73} + 816 q^{74} - 1529 q^{76} - 165 q^{77} - 803 q^{79} + 96 q^{80} + 1815 q^{82} + 813 q^{83} + 594 q^{85} + 33 q^{86} + 1221 q^{88} - 396 q^{89} - 781 q^{91} - 858 q^{92} + 2100 q^{94} - 132 q^{95} + 736 q^{97} - 423 q^{98}+O(q^{100})$$ 2 * q + 3 * q^2 + 5 * q^4 + 15 * q^5 + 7 * q^7 + 33 * q^8 + 6 * q^10 + 66 * q^11 - 11 * q^13 + 60 * q^14 - 7 * q^16 + 99 * q^17 - 77 * q^19 - 12 * q^20 - 33 * q^22 + 33 * q^23 - 121 * q^25 - 264 * q^26 + 166 * q^28 - 51 * q^29 + 43 * q^31 - 423 * q^32 + 297 * q^34 + 3 * q^35 - 50 * q^37 - 561 * q^38 + 264 * q^40 + 132 * q^41 + 88 * q^43 - 231 * q^44 - 264 * q^46 + 399 * q^47 - 513 * q^49 - 429 * q^50 - 770 * q^52 + 54 * q^53 + 627 * q^55 + 66 * q^56 - 60 * q^58 + 798 * q^59 + 439 * q^61 + 114 * q^62 - 727 * q^64 + 165 * q^65 + 988 * q^67 + 693 * q^68 + 318 * q^70 + 1368 * q^71 - 455 * q^73 + 816 * q^74 - 1529 * q^76 - 165 * q^77 - 803 * q^79 + 96 * q^80 + 1815 * q^82 + 813 * q^83 + 594 * q^85 + 33 * q^86 + 1221 * q^88 - 396 * q^89 - 781 * q^91 - 858 * q^92 + 2100 * q^94 - 132 * q^95 + 736 * q^97 - 423 * q^98

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −2.37228 3.37228
−1.37228 0 −6.11684 10.3723 0 −5.11684 19.3723 0 −14.2337
1.2 4.37228 0 11.1168 4.62772 0 12.1168 13.6277 0 20.2337
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.4.a.d 2
3.b odd 2 1 81.4.a.a 2
4.b odd 2 1 1296.4.a.u 2
5.b even 2 1 2025.4.a.g 2
9.c even 3 2 9.4.c.a 4
9.d odd 6 2 27.4.c.a 4
12.b even 2 1 1296.4.a.i 2
15.d odd 2 1 2025.4.a.n 2
36.f odd 6 2 144.4.i.c 4
36.h even 6 2 432.4.i.c 4
45.j even 6 2 225.4.e.b 4
45.k odd 12 4 225.4.k.b 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.4.c.a 4 9.c even 3 2
27.4.c.a 4 9.d odd 6 2
81.4.a.a 2 3.b odd 2 1
81.4.a.d 2 1.a even 1 1 trivial
144.4.i.c 4 36.f odd 6 2
225.4.e.b 4 45.j even 6 2
225.4.k.b 8 45.k odd 12 4
432.4.i.c 4 36.h even 6 2
1296.4.a.i 2 12.b even 2 1
1296.4.a.u 2 4.b odd 2 1
2025.4.a.g 2 5.b even 2 1
2025.4.a.n 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{2} - 3T_{2} - 6$$ acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(81))$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - 3T - 6$$
$3$ $$T^{2}$$
$5$ $$T^{2} - 15T + 48$$
$7$ $$T^{2} - 7T - 62$$
$11$ $$T^{2} - 66T + 561$$
$13$ $$T^{2} + 11T - 1826$$
$17$ $$T^{2} - 99T + 1782$$
$19$ $$T^{2} + 77T - 4532$$
$23$ $$T^{2} - 33T - 2706$$
$29$ $$T^{2} + 51T + 642$$
$31$ $$T^{2} - 43T + 388$$
$37$ $$T^{2} + 50T - 23432$$
$41$ $$T^{2} - 132T - 74877$$
$43$ $$T^{2} - 88T + 1639$$
$47$ $$T^{2} - 399T - 28518$$
$53$ $$T^{2} - 54T - 215784$$
$59$ $$T^{2} - 798T + 6609$$
$61$ $$T^{2} - 439T - 42776$$
$67$ $$T^{2} - 988T + 208099$$
$71$ $$T^{2} - 1368 T + 296784$$
$73$ $$T^{2} + 455T - 435398$$
$79$ $$T^{2} + 803T - 626516$$
$83$ $$T^{2} - 813T + 70788$$
$89$ $$T^{2} + 396T - 3564$$
$97$ $$T^{2} - 736T + 49591$$