Properties

Label 81.4.a.c
Level $81$
Weight $4$
Character orbit 81.a
Self dual yes
Analytic conductor $4.779$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,4,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.77915471046\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 5 q^{4} - 7 \beta q^{5} - 22 q^{7} - 13 \beta q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} - 5 q^{4} - 7 \beta q^{5} - 22 q^{7} - 13 \beta q^{8} - 21 q^{10} + 34 \beta q^{11} - 49 q^{13} - 22 \beta q^{14} + q^{16} + 21 \beta q^{17} - 70 q^{19} + 35 \beta q^{20} + 102 q^{22} + 14 \beta q^{23} + 22 q^{25} - 49 \beta q^{26} + 110 q^{28} - 161 \beta q^{29} - 112 q^{31} + 105 \beta q^{32} + 63 q^{34} + 154 \beta q^{35} + 281 q^{37} - 70 \beta q^{38} + 273 q^{40} - 28 \beta q^{41} + 50 q^{43} - 170 \beta q^{44} + 42 q^{46} - 140 \beta q^{47} + 141 q^{49} + 22 \beta q^{50} + 245 q^{52} + 216 \beta q^{53} - 714 q^{55} + 286 \beta q^{56} - 483 q^{58} + 56 \beta q^{59} - 679 q^{61} - 112 \beta q^{62} + 307 q^{64} + 343 \beta q^{65} - 274 q^{67} - 105 \beta q^{68} + 462 q^{70} - 258 \beta q^{71} - 511 q^{73} + 281 \beta q^{74} + 350 q^{76} - 748 \beta q^{77} - 526 q^{79} - 7 \beta q^{80} - 84 q^{82} - 224 \beta q^{83} - 441 q^{85} + 50 \beta q^{86} - 1326 q^{88} - 21 \beta q^{89} + 1078 q^{91} - 70 \beta q^{92} - 420 q^{94} + 490 \beta q^{95} + 1778 q^{97} + 141 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{4} - 44 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 10 q^{4} - 44 q^{7} - 42 q^{10} - 98 q^{13} + 2 q^{16} - 140 q^{19} + 204 q^{22} + 44 q^{25} + 220 q^{28} - 224 q^{31} + 126 q^{34} + 562 q^{37} + 546 q^{40} + 100 q^{43} + 84 q^{46} + 282 q^{49} + 490 q^{52} - 1428 q^{55} - 966 q^{58} - 1358 q^{61} + 614 q^{64} - 548 q^{67} + 924 q^{70} - 1022 q^{73} + 700 q^{76} - 1052 q^{79} - 168 q^{82} - 882 q^{85} - 2652 q^{88} + 2156 q^{91} - 840 q^{94} + 3556 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−1.73205 0 −5.00000 12.1244 0 −22.0000 22.5167 0 −21.0000
1.2 1.73205 0 −5.00000 −12.1244 0 −22.0000 −22.5167 0 −21.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.4.a.c 2
3.b odd 2 1 inner 81.4.a.c 2
4.b odd 2 1 1296.4.a.o 2
5.b even 2 1 2025.4.a.k 2
9.c even 3 2 81.4.c.f 4
9.d odd 6 2 81.4.c.f 4
12.b even 2 1 1296.4.a.o 2
15.d odd 2 1 2025.4.a.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.4.a.c 2 1.a even 1 1 trivial
81.4.a.c 2 3.b odd 2 1 inner
81.4.c.f 4 9.c even 3 2
81.4.c.f 4 9.d odd 6 2
1296.4.a.o 2 4.b odd 2 1
1296.4.a.o 2 12.b even 2 1
2025.4.a.k 2 5.b even 2 1
2025.4.a.k 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 3 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(81))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 147 \) Copy content Toggle raw display
$7$ \( (T + 22)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 3468 \) Copy content Toggle raw display
$13$ \( (T + 49)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 1323 \) Copy content Toggle raw display
$19$ \( (T + 70)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 588 \) Copy content Toggle raw display
$29$ \( T^{2} - 77763 \) Copy content Toggle raw display
$31$ \( (T + 112)^{2} \) Copy content Toggle raw display
$37$ \( (T - 281)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 2352 \) Copy content Toggle raw display
$43$ \( (T - 50)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 58800 \) Copy content Toggle raw display
$53$ \( T^{2} - 139968 \) Copy content Toggle raw display
$59$ \( T^{2} - 9408 \) Copy content Toggle raw display
$61$ \( (T + 679)^{2} \) Copy content Toggle raw display
$67$ \( (T + 274)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 199692 \) Copy content Toggle raw display
$73$ \( (T + 511)^{2} \) Copy content Toggle raw display
$79$ \( (T + 526)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 150528 \) Copy content Toggle raw display
$89$ \( T^{2} - 1323 \) Copy content Toggle raw display
$97$ \( (T - 1778)^{2} \) Copy content Toggle raw display
show more
show less