Defining parameters
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(81))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 33 | 14 | 19 |
Cusp forms | 21 | 10 | 11 |
Eisenstein series | 12 | 4 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(6\) |
\(-\) | \(4\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(81))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
81.4.a.a | $2$ | $4.779$ | \(\Q(\sqrt{33}) \) | None | \(-3\) | \(0\) | \(-15\) | \(7\) | $-$ | \(q+(-1-\beta )q^{2}+(1+3\beta )q^{4}+(-8+\beta )q^{5}+\cdots\) | |
81.4.a.b | $2$ | $4.779$ | \(\Q(\sqrt{57}) \) | None | \(-3\) | \(0\) | \(12\) | \(10\) | $+$ | \(q+(-1-\beta )q^{2}+(7+3\beta )q^{4}+(7-2\beta )q^{5}+\cdots\) | |
81.4.a.c | $2$ | $4.779$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(0\) | \(-44\) | $-$ | \(q+\beta q^{2}-5q^{4}-7\beta q^{5}-22q^{7}-13\beta q^{8}+\cdots\) | |
81.4.a.d | $2$ | $4.779$ | \(\Q(\sqrt{33}) \) | None | \(3\) | \(0\) | \(15\) | \(7\) | $+$ | \(q+(1+\beta )q^{2}+(1+3\beta )q^{4}+(8-\beta )q^{5}+\cdots\) | |
81.4.a.e | $2$ | $4.779$ | \(\Q(\sqrt{57}) \) | None | \(3\) | \(0\) | \(-12\) | \(10\) | $+$ | \(q+(1+\beta )q^{2}+(7+3\beta )q^{4}+(-7+2\beta )q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(81))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(81)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)