Properties

Label 81.4.a
Level $81$
Weight $4$
Character orbit 81.a
Rep. character $\chi_{81}(1,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $5$
Sturm bound $36$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(36\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(81))\).

Total New Old
Modular forms 33 14 19
Cusp forms 21 10 11
Eisenstein series 12 4 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(6\)
\(-\)\(4\)

Trace form

\( 10 q + 34 q^{4} - 10 q^{7} + O(q^{10}) \) \( 10 q + 34 q^{4} - 10 q^{7} + 48 q^{10} + 8 q^{13} + 262 q^{16} - 34 q^{19} - 102 q^{22} - 326 q^{25} - 304 q^{28} - 154 q^{31} - 594 q^{34} + 830 q^{37} + 600 q^{40} + 1016 q^{43} - 1356 q^{46} + 36 q^{49} - 988 q^{52} + 102 q^{55} - 3288 q^{58} - 64 q^{61} + 1738 q^{64} + 3032 q^{67} + 2976 q^{70} - 2680 q^{73} + 2930 q^{76} + 98 q^{79} + 3882 q^{82} - 2646 q^{85} - 4434 q^{88} + 3286 q^{91} + 2760 q^{94} + 3284 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(81))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
81.4.a.a 81.a 1.a $2$ $4.779$ \(\Q(\sqrt{33}) \) None 9.4.c.a \(-3\) \(0\) \(-15\) \(7\) $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+(1+3\beta )q^{4}+(-8+\beta )q^{5}+\cdots\)
81.4.a.b 81.a 1.a $2$ $4.779$ \(\Q(\sqrt{57}) \) None 81.4.a.b \(-3\) \(0\) \(12\) \(10\) $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+(7+3\beta )q^{4}+(7-2\beta )q^{5}+\cdots\)
81.4.a.c 81.a 1.a $2$ $4.779$ \(\Q(\sqrt{3}) \) None 81.4.a.c \(0\) \(0\) \(0\) \(-44\) $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-5q^{4}-7\beta q^{5}-22q^{7}-13\beta q^{8}+\cdots\)
81.4.a.d 81.a 1.a $2$ $4.779$ \(\Q(\sqrt{33}) \) None 9.4.c.a \(3\) \(0\) \(15\) \(7\) $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(1+3\beta )q^{4}+(8-\beta )q^{5}+\cdots\)
81.4.a.e 81.a 1.a $2$ $4.779$ \(\Q(\sqrt{57}) \) None 81.4.a.b \(3\) \(0\) \(-12\) \(10\) $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(7+3\beta )q^{4}+(-7+2\beta )q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(81))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(81)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)