Properties

Label 81.3.d.b.26.1
Level $81$
Weight $3$
Character 81.26
Analytic conductor $2.207$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,3,Mod(26,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.20709014132\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 81.26
Dual form 81.3.d.b.53.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.59808 - 1.50000i) q^{2} +(2.50000 + 4.33013i) q^{4} +(-2.59808 + 1.50000i) q^{5} +(-2.50000 + 4.33013i) q^{7} -3.00000i q^{8} +9.00000 q^{10} +(12.9904 + 7.50000i) q^{11} +(5.00000 + 8.66025i) q^{13} +(12.9904 - 7.50000i) q^{14} +(5.50000 - 9.52628i) q^{16} +18.0000i q^{17} -16.0000 q^{19} +(-12.9904 - 7.50000i) q^{20} +(-22.5000 - 38.9711i) q^{22} +(-10.3923 + 6.00000i) q^{23} +(-8.00000 + 13.8564i) q^{25} -30.0000i q^{26} -25.0000 q^{28} +(-25.9808 - 15.0000i) q^{29} +(0.500000 + 0.866025i) q^{31} +(-38.9711 + 22.5000i) q^{32} +(27.0000 - 46.7654i) q^{34} -15.0000i q^{35} +20.0000 q^{37} +(41.5692 + 24.0000i) q^{38} +(4.50000 + 7.79423i) q^{40} +(51.9615 - 30.0000i) q^{41} +(-25.0000 + 43.3013i) q^{43} +75.0000i q^{44} +36.0000 q^{46} +(5.19615 + 3.00000i) q^{47} +(12.0000 + 20.7846i) q^{49} +(41.5692 - 24.0000i) q^{50} +(-25.0000 + 43.3013i) q^{52} -27.0000i q^{53} -45.0000 q^{55} +(12.9904 + 7.50000i) q^{56} +(45.0000 + 77.9423i) q^{58} +(-25.9808 + 15.0000i) q^{59} +(38.0000 - 65.8179i) q^{61} -3.00000i q^{62} +91.0000 q^{64} +(-25.9808 - 15.0000i) q^{65} +(5.00000 + 8.66025i) q^{67} +(-77.9423 + 45.0000i) q^{68} +(-22.5000 + 38.9711i) q^{70} -90.0000i q^{71} +65.0000 q^{73} +(-51.9615 - 30.0000i) q^{74} +(-40.0000 - 69.2820i) q^{76} +(-64.9519 + 37.5000i) q^{77} +(-7.00000 + 12.1244i) q^{79} +33.0000i q^{80} -180.000 q^{82} +(-2.59808 - 1.50000i) q^{83} +(-27.0000 - 46.7654i) q^{85} +(129.904 - 75.0000i) q^{86} +(22.5000 - 38.9711i) q^{88} +90.0000i q^{89} -50.0000 q^{91} +(-51.9615 - 30.0000i) q^{92} +(-9.00000 - 15.5885i) q^{94} +(41.5692 - 24.0000i) q^{95} +(42.5000 - 73.6122i) q^{97} -72.0000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{4} - 10 q^{7} + 36 q^{10} + 20 q^{13} + 22 q^{16} - 64 q^{19} - 90 q^{22} - 32 q^{25} - 100 q^{28} + 2 q^{31} + 108 q^{34} + 80 q^{37} + 18 q^{40} - 100 q^{43} + 144 q^{46} + 48 q^{49} - 100 q^{52}+ \cdots + 170 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.59808 1.50000i −1.29904 0.750000i −0.318800 0.947822i \(-0.603280\pi\)
−0.980238 + 0.197822i \(0.936613\pi\)
\(3\) 0 0
\(4\) 2.50000 + 4.33013i 0.625000 + 1.08253i
\(5\) −2.59808 + 1.50000i −0.519615 + 0.300000i −0.736777 0.676136i \(-0.763653\pi\)
0.217162 + 0.976136i \(0.430320\pi\)
\(6\) 0 0
\(7\) −2.50000 + 4.33013i −0.357143 + 0.618590i −0.987482 0.157730i \(-0.949582\pi\)
0.630339 + 0.776320i \(0.282916\pi\)
\(8\) 3.00000i 0.375000i
\(9\) 0 0
\(10\) 9.00000 0.900000
\(11\) 12.9904 + 7.50000i 1.18094 + 0.681818i 0.956233 0.292607i \(-0.0945229\pi\)
0.224711 + 0.974425i \(0.427856\pi\)
\(12\) 0 0
\(13\) 5.00000 + 8.66025i 0.384615 + 0.666173i 0.991716 0.128452i \(-0.0410008\pi\)
−0.607100 + 0.794625i \(0.707667\pi\)
\(14\) 12.9904 7.50000i 0.927884 0.535714i
\(15\) 0 0
\(16\) 5.50000 9.52628i 0.343750 0.595392i
\(17\) 18.0000i 1.05882i 0.848365 + 0.529412i \(0.177587\pi\)
−0.848365 + 0.529412i \(0.822413\pi\)
\(18\) 0 0
\(19\) −16.0000 −0.842105 −0.421053 0.907036i \(-0.638339\pi\)
−0.421053 + 0.907036i \(0.638339\pi\)
\(20\) −12.9904 7.50000i −0.649519 0.375000i
\(21\) 0 0
\(22\) −22.5000 38.9711i −1.02273 1.77142i
\(23\) −10.3923 + 6.00000i −0.451839 + 0.260870i −0.708607 0.705604i \(-0.750676\pi\)
0.256767 + 0.966473i \(0.417343\pi\)
\(24\) 0 0
\(25\) −8.00000 + 13.8564i −0.320000 + 0.554256i
\(26\) 30.0000i 1.15385i
\(27\) 0 0
\(28\) −25.0000 −0.892857
\(29\) −25.9808 15.0000i −0.895888 0.517241i −0.0200244 0.999799i \(-0.506374\pi\)
−0.875864 + 0.482558i \(0.839708\pi\)
\(30\) 0 0
\(31\) 0.500000 + 0.866025i 0.0161290 + 0.0279363i 0.873977 0.485967i \(-0.161532\pi\)
−0.857848 + 0.513903i \(0.828199\pi\)
\(32\) −38.9711 + 22.5000i −1.21785 + 0.703125i
\(33\) 0 0
\(34\) 27.0000 46.7654i 0.794118 1.37545i
\(35\) 15.0000i 0.428571i
\(36\) 0 0
\(37\) 20.0000 0.540541 0.270270 0.962784i \(-0.412887\pi\)
0.270270 + 0.962784i \(0.412887\pi\)
\(38\) 41.5692 + 24.0000i 1.09393 + 0.631579i
\(39\) 0 0
\(40\) 4.50000 + 7.79423i 0.112500 + 0.194856i
\(41\) 51.9615 30.0000i 1.26735 0.731707i 0.292868 0.956153i \(-0.405390\pi\)
0.974487 + 0.224446i \(0.0720571\pi\)
\(42\) 0 0
\(43\) −25.0000 + 43.3013i −0.581395 + 1.00701i 0.413919 + 0.910314i \(0.364160\pi\)
−0.995314 + 0.0966925i \(0.969174\pi\)
\(44\) 75.0000i 1.70455i
\(45\) 0 0
\(46\) 36.0000 0.782609
\(47\) 5.19615 + 3.00000i 0.110556 + 0.0638298i 0.554259 0.832345i \(-0.313002\pi\)
−0.443702 + 0.896174i \(0.646335\pi\)
\(48\) 0 0
\(49\) 12.0000 + 20.7846i 0.244898 + 0.424176i
\(50\) 41.5692 24.0000i 0.831384 0.480000i
\(51\) 0 0
\(52\) −25.0000 + 43.3013i −0.480769 + 0.832717i
\(53\) 27.0000i 0.509434i −0.967016 0.254717i \(-0.918018\pi\)
0.967016 0.254717i \(-0.0819823\pi\)
\(54\) 0 0
\(55\) −45.0000 −0.818182
\(56\) 12.9904 + 7.50000i 0.231971 + 0.133929i
\(57\) 0 0
\(58\) 45.0000 + 77.9423i 0.775862 + 1.34383i
\(59\) −25.9808 + 15.0000i −0.440352 + 0.254237i −0.703747 0.710451i \(-0.748491\pi\)
0.263395 + 0.964688i \(0.415158\pi\)
\(60\) 0 0
\(61\) 38.0000 65.8179i 0.622951 1.07898i −0.365982 0.930622i \(-0.619267\pi\)
0.988933 0.148361i \(-0.0473997\pi\)
\(62\) 3.00000i 0.0483871i
\(63\) 0 0
\(64\) 91.0000 1.42188
\(65\) −25.9808 15.0000i −0.399704 0.230769i
\(66\) 0 0
\(67\) 5.00000 + 8.66025i 0.0746269 + 0.129258i 0.900924 0.433977i \(-0.142890\pi\)
−0.826297 + 0.563235i \(0.809557\pi\)
\(68\) −77.9423 + 45.0000i −1.14621 + 0.661765i
\(69\) 0 0
\(70\) −22.5000 + 38.9711i −0.321429 + 0.556731i
\(71\) 90.0000i 1.26761i −0.773495 0.633803i \(-0.781493\pi\)
0.773495 0.633803i \(-0.218507\pi\)
\(72\) 0 0
\(73\) 65.0000 0.890411 0.445205 0.895428i \(-0.353131\pi\)
0.445205 + 0.895428i \(0.353131\pi\)
\(74\) −51.9615 30.0000i −0.702183 0.405405i
\(75\) 0 0
\(76\) −40.0000 69.2820i −0.526316 0.911606i
\(77\) −64.9519 + 37.5000i −0.843531 + 0.487013i
\(78\) 0 0
\(79\) −7.00000 + 12.1244i −0.0886076 + 0.153473i −0.906923 0.421297i \(-0.861575\pi\)
0.818315 + 0.574770i \(0.194908\pi\)
\(80\) 33.0000i 0.412500i
\(81\) 0 0
\(82\) −180.000 −2.19512
\(83\) −2.59808 1.50000i −0.0313021 0.0180723i 0.484267 0.874920i \(-0.339086\pi\)
−0.515569 + 0.856848i \(0.672420\pi\)
\(84\) 0 0
\(85\) −27.0000 46.7654i −0.317647 0.550181i
\(86\) 129.904 75.0000i 1.51051 0.872093i
\(87\) 0 0
\(88\) 22.5000 38.9711i 0.255682 0.442854i
\(89\) 90.0000i 1.01124i 0.862757 + 0.505618i \(0.168735\pi\)
−0.862757 + 0.505618i \(0.831265\pi\)
\(90\) 0 0
\(91\) −50.0000 −0.549451
\(92\) −51.9615 30.0000i −0.564799 0.326087i
\(93\) 0 0
\(94\) −9.00000 15.5885i −0.0957447 0.165835i
\(95\) 41.5692 24.0000i 0.437571 0.252632i
\(96\) 0 0
\(97\) 42.5000 73.6122i 0.438144 0.758888i −0.559402 0.828896i \(-0.688969\pi\)
0.997546 + 0.0700082i \(0.0223025\pi\)
\(98\) 72.0000i 0.734694i
\(99\) 0 0
\(100\) −80.0000 −0.800000
\(101\) 168.875 + 97.5000i 1.67203 + 0.965347i 0.966500 + 0.256665i \(0.0826238\pi\)
0.705529 + 0.708681i \(0.250709\pi\)
\(102\) 0 0
\(103\) −85.0000 147.224i −0.825243 1.42936i −0.901734 0.432292i \(-0.857705\pi\)
0.0764909 0.997070i \(-0.475628\pi\)
\(104\) 25.9808 15.0000i 0.249815 0.144231i
\(105\) 0 0
\(106\) −40.5000 + 70.1481i −0.382075 + 0.661774i
\(107\) 189.000i 1.76636i 0.469039 + 0.883178i \(0.344600\pi\)
−0.469039 + 0.883178i \(0.655400\pi\)
\(108\) 0 0
\(109\) 164.000 1.50459 0.752294 0.658828i \(-0.228948\pi\)
0.752294 + 0.658828i \(0.228948\pi\)
\(110\) 116.913 + 67.5000i 1.06285 + 0.613636i
\(111\) 0 0
\(112\) 27.5000 + 47.6314i 0.245536 + 0.425280i
\(113\) 20.7846 12.0000i 0.183935 0.106195i −0.405205 0.914226i \(-0.632800\pi\)
0.589140 + 0.808031i \(0.299467\pi\)
\(114\) 0 0
\(115\) 18.0000 31.1769i 0.156522 0.271104i
\(116\) 150.000i 1.29310i
\(117\) 0 0
\(118\) 90.0000 0.762712
\(119\) −77.9423 45.0000i −0.654977 0.378151i
\(120\) 0 0
\(121\) 52.0000 + 90.0666i 0.429752 + 0.744352i
\(122\) −197.454 + 114.000i −1.61847 + 0.934426i
\(123\) 0 0
\(124\) −2.50000 + 4.33013i −0.0201613 + 0.0349204i
\(125\) 123.000i 0.984000i
\(126\) 0 0
\(127\) −205.000 −1.61417 −0.807087 0.590433i \(-0.798957\pi\)
−0.807087 + 0.590433i \(0.798957\pi\)
\(128\) −80.5404 46.5000i −0.629222 0.363281i
\(129\) 0 0
\(130\) 45.0000 + 77.9423i 0.346154 + 0.599556i
\(131\) 12.9904 7.50000i 0.0991632 0.0572519i −0.449598 0.893231i \(-0.648433\pi\)
0.548761 + 0.835979i \(0.315100\pi\)
\(132\) 0 0
\(133\) 40.0000 69.2820i 0.300752 0.520918i
\(134\) 30.0000i 0.223881i
\(135\) 0 0
\(136\) 54.0000 0.397059
\(137\) −119.512 69.0000i −0.872347 0.503650i −0.00421937 0.999991i \(-0.501343\pi\)
−0.868127 + 0.496341i \(0.834676\pi\)
\(138\) 0 0
\(139\) 14.0000 + 24.2487i 0.100719 + 0.174451i 0.911981 0.410232i \(-0.134552\pi\)
−0.811262 + 0.584683i \(0.801219\pi\)
\(140\) 64.9519 37.5000i 0.463942 0.267857i
\(141\) 0 0
\(142\) −135.000 + 233.827i −0.950704 + 1.64667i
\(143\) 150.000i 1.04895i
\(144\) 0 0
\(145\) 90.0000 0.620690
\(146\) −168.875 97.5000i −1.15668 0.667808i
\(147\) 0 0
\(148\) 50.0000 + 86.6025i 0.337838 + 0.585152i
\(149\) −64.9519 + 37.5000i −0.435919 + 0.251678i −0.701865 0.712310i \(-0.747649\pi\)
0.265946 + 0.963988i \(0.414316\pi\)
\(150\) 0 0
\(151\) −38.5000 + 66.6840i −0.254967 + 0.441616i −0.964887 0.262667i \(-0.915398\pi\)
0.709920 + 0.704283i \(0.248731\pi\)
\(152\) 48.0000i 0.315789i
\(153\) 0 0
\(154\) 225.000 1.46104
\(155\) −2.59808 1.50000i −0.0167618 0.00967742i
\(156\) 0 0
\(157\) 50.0000 + 86.6025i 0.318471 + 0.551609i 0.980169 0.198162i \(-0.0634972\pi\)
−0.661698 + 0.749771i \(0.730164\pi\)
\(158\) 36.3731 21.0000i 0.230209 0.132911i
\(159\) 0 0
\(160\) 67.5000 116.913i 0.421875 0.730709i
\(161\) 60.0000i 0.372671i
\(162\) 0 0
\(163\) 110.000 0.674847 0.337423 0.941353i \(-0.390445\pi\)
0.337423 + 0.941353i \(0.390445\pi\)
\(164\) 259.808 + 150.000i 1.58419 + 0.914634i
\(165\) 0 0
\(166\) 4.50000 + 7.79423i 0.0271084 + 0.0469532i
\(167\) 67.5500 39.0000i 0.404491 0.233533i −0.283929 0.958845i \(-0.591638\pi\)
0.688420 + 0.725312i \(0.258305\pi\)
\(168\) 0 0
\(169\) 34.5000 59.7558i 0.204142 0.353584i
\(170\) 162.000i 0.952941i
\(171\) 0 0
\(172\) −250.000 −1.45349
\(173\) 153.286 + 88.5000i 0.886049 + 0.511561i 0.872648 0.488350i \(-0.162401\pi\)
0.0134010 + 0.999910i \(0.495734\pi\)
\(174\) 0 0
\(175\) −40.0000 69.2820i −0.228571 0.395897i
\(176\) 142.894 82.5000i 0.811899 0.468750i
\(177\) 0 0
\(178\) 135.000 233.827i 0.758427 1.31363i
\(179\) 225.000i 1.25698i −0.777816 0.628492i \(-0.783673\pi\)
0.777816 0.628492i \(-0.216327\pi\)
\(180\) 0 0
\(181\) −16.0000 −0.0883978 −0.0441989 0.999023i \(-0.514074\pi\)
−0.0441989 + 0.999023i \(0.514074\pi\)
\(182\) 129.904 + 75.0000i 0.713757 + 0.412088i
\(183\) 0 0
\(184\) 18.0000 + 31.1769i 0.0978261 + 0.169440i
\(185\) −51.9615 + 30.0000i −0.280873 + 0.162162i
\(186\) 0 0
\(187\) −135.000 + 233.827i −0.721925 + 1.25041i
\(188\) 30.0000i 0.159574i
\(189\) 0 0
\(190\) −144.000 −0.757895
\(191\) −25.9808 15.0000i −0.136025 0.0785340i 0.430443 0.902618i \(-0.358357\pi\)
−0.566468 + 0.824084i \(0.691691\pi\)
\(192\) 0 0
\(193\) −107.500 186.195i −0.556995 0.964743i −0.997745 0.0671137i \(-0.978621\pi\)
0.440751 0.897630i \(-0.354712\pi\)
\(194\) −220.836 + 127.500i −1.13833 + 0.657216i
\(195\) 0 0
\(196\) −60.0000 + 103.923i −0.306122 + 0.530220i
\(197\) 207.000i 1.05076i −0.850867 0.525381i \(-0.823923\pi\)
0.850867 0.525381i \(-0.176077\pi\)
\(198\) 0 0
\(199\) −223.000 −1.12060 −0.560302 0.828289i \(-0.689315\pi\)
−0.560302 + 0.828289i \(0.689315\pi\)
\(200\) 41.5692 + 24.0000i 0.207846 + 0.120000i
\(201\) 0 0
\(202\) −292.500 506.625i −1.44802 2.50804i
\(203\) 129.904 75.0000i 0.639920 0.369458i
\(204\) 0 0
\(205\) −90.0000 + 155.885i −0.439024 + 0.760413i
\(206\) 510.000i 2.47573i
\(207\) 0 0
\(208\) 110.000 0.528846
\(209\) −207.846 120.000i −0.994479 0.574163i
\(210\) 0 0
\(211\) 158.000 + 273.664i 0.748815 + 1.29699i 0.948391 + 0.317104i \(0.102710\pi\)
−0.199576 + 0.979882i \(0.563956\pi\)
\(212\) 116.913 67.5000i 0.551478 0.318396i
\(213\) 0 0
\(214\) 283.500 491.036i 1.32477 2.29456i
\(215\) 150.000i 0.697674i
\(216\) 0 0
\(217\) −5.00000 −0.0230415
\(218\) −426.084 246.000i −1.95452 1.12844i
\(219\) 0 0
\(220\) −112.500 194.856i −0.511364 0.885708i
\(221\) −155.885 + 90.0000i −0.705360 + 0.407240i
\(222\) 0 0
\(223\) 65.0000 112.583i 0.291480 0.504858i −0.682680 0.730717i \(-0.739186\pi\)
0.974160 + 0.225860i \(0.0725190\pi\)
\(224\) 225.000i 1.00446i
\(225\) 0 0
\(226\) −72.0000 −0.318584
\(227\) 36.3731 + 21.0000i 0.160234 + 0.0925110i 0.577973 0.816056i \(-0.303844\pi\)
−0.417739 + 0.908567i \(0.637177\pi\)
\(228\) 0 0
\(229\) 113.000 + 195.722i 0.493450 + 0.854680i 0.999972 0.00754710i \(-0.00240234\pi\)
−0.506522 + 0.862227i \(0.669069\pi\)
\(230\) −93.5307 + 54.0000i −0.406655 + 0.234783i
\(231\) 0 0
\(232\) −45.0000 + 77.9423i −0.193966 + 0.335958i
\(233\) 234.000i 1.00429i 0.864783 + 0.502146i \(0.167456\pi\)
−0.864783 + 0.502146i \(0.832544\pi\)
\(234\) 0 0
\(235\) −18.0000 −0.0765957
\(236\) −129.904 75.0000i −0.550440 0.317797i
\(237\) 0 0
\(238\) 135.000 + 233.827i 0.567227 + 0.982466i
\(239\) −103.923 + 60.0000i −0.434824 + 0.251046i −0.701400 0.712768i \(-0.747441\pi\)
0.266575 + 0.963814i \(0.414108\pi\)
\(240\) 0 0
\(241\) −7.00000 + 12.1244i −0.0290456 + 0.0503085i −0.880183 0.474635i \(-0.842580\pi\)
0.851137 + 0.524943i \(0.175913\pi\)
\(242\) 312.000i 1.28926i
\(243\) 0 0
\(244\) 380.000 1.55738
\(245\) −62.3538 36.0000i −0.254505 0.146939i
\(246\) 0 0
\(247\) −80.0000 138.564i −0.323887 0.560988i
\(248\) 2.59808 1.50000i 0.0104761 0.00604839i
\(249\) 0 0
\(250\) −184.500 + 319.563i −0.738000 + 1.27825i
\(251\) 90.0000i 0.358566i 0.983798 + 0.179283i \(0.0573777\pi\)
−0.983798 + 0.179283i \(0.942622\pi\)
\(252\) 0 0
\(253\) −180.000 −0.711462
\(254\) 532.606 + 307.500i 2.09687 + 1.21063i
\(255\) 0 0
\(256\) −42.5000 73.6122i −0.166016 0.287547i
\(257\) 379.319 219.000i 1.47595 0.852140i 0.476318 0.879273i \(-0.341971\pi\)
0.999632 + 0.0271330i \(0.00863775\pi\)
\(258\) 0 0
\(259\) −50.0000 + 86.6025i −0.193050 + 0.334373i
\(260\) 150.000i 0.576923i
\(261\) 0 0
\(262\) −45.0000 −0.171756
\(263\) 239.023 + 138.000i 0.908833 + 0.524715i 0.880055 0.474871i \(-0.157505\pi\)
0.0287773 + 0.999586i \(0.490839\pi\)
\(264\) 0 0
\(265\) 40.5000 + 70.1481i 0.152830 + 0.264710i
\(266\) −207.846 + 120.000i −0.781376 + 0.451128i
\(267\) 0 0
\(268\) −25.0000 + 43.3013i −0.0932836 + 0.161572i
\(269\) 270.000i 1.00372i 0.864950 + 0.501859i \(0.167350\pi\)
−0.864950 + 0.501859i \(0.832650\pi\)
\(270\) 0 0
\(271\) 299.000 1.10332 0.551661 0.834069i \(-0.313994\pi\)
0.551661 + 0.834069i \(0.313994\pi\)
\(272\) 171.473 + 99.0000i 0.630416 + 0.363971i
\(273\) 0 0
\(274\) 207.000 + 358.535i 0.755474 + 1.30852i
\(275\) −207.846 + 120.000i −0.755804 + 0.436364i
\(276\) 0 0
\(277\) −70.0000 + 121.244i −0.252708 + 0.437702i −0.964270 0.264920i \(-0.914654\pi\)
0.711563 + 0.702623i \(0.247988\pi\)
\(278\) 84.0000i 0.302158i
\(279\) 0 0
\(280\) −45.0000 −0.160714
\(281\) 129.904 + 75.0000i 0.462291 + 0.266904i 0.713007 0.701157i \(-0.247333\pi\)
−0.250716 + 0.968061i \(0.580666\pi\)
\(282\) 0 0
\(283\) 140.000 + 242.487i 0.494700 + 0.856845i 0.999981 0.00610955i \(-0.00194474\pi\)
−0.505282 + 0.862954i \(0.668611\pi\)
\(284\) 389.711 225.000i 1.37222 0.792254i
\(285\) 0 0
\(286\) 225.000 389.711i 0.786713 1.36263i
\(287\) 300.000i 1.04530i
\(288\) 0 0
\(289\) −35.0000 −0.121107
\(290\) −233.827 135.000i −0.806300 0.465517i
\(291\) 0 0
\(292\) 162.500 + 281.458i 0.556507 + 0.963898i
\(293\) 223.435 129.000i 0.762575 0.440273i −0.0676443 0.997709i \(-0.521548\pi\)
0.830220 + 0.557436i \(0.188215\pi\)
\(294\) 0 0
\(295\) 45.0000 77.9423i 0.152542 0.264211i
\(296\) 60.0000i 0.202703i
\(297\) 0 0
\(298\) 225.000 0.755034
\(299\) −103.923 60.0000i −0.347569 0.200669i
\(300\) 0 0
\(301\) −125.000 216.506i −0.415282 0.719290i
\(302\) 200.052 115.500i 0.662423 0.382450i
\(303\) 0 0
\(304\) −88.0000 + 152.420i −0.289474 + 0.501383i
\(305\) 228.000i 0.747541i
\(306\) 0 0
\(307\) 290.000 0.944625 0.472313 0.881431i \(-0.343419\pi\)
0.472313 + 0.881431i \(0.343419\pi\)
\(308\) −324.760 187.500i −1.05441 0.608766i
\(309\) 0 0
\(310\) 4.50000 + 7.79423i 0.0145161 + 0.0251427i
\(311\) −415.692 + 240.000i −1.33663 + 0.771704i −0.986306 0.164924i \(-0.947262\pi\)
−0.350325 + 0.936628i \(0.613929\pi\)
\(312\) 0 0
\(313\) −92.5000 + 160.215i −0.295527 + 0.511868i −0.975107 0.221733i \(-0.928829\pi\)
0.679580 + 0.733601i \(0.262162\pi\)
\(314\) 300.000i 0.955414i
\(315\) 0 0
\(316\) −70.0000 −0.221519
\(317\) −158.483 91.5000i −0.499945 0.288644i 0.228746 0.973486i \(-0.426538\pi\)
−0.728691 + 0.684843i \(0.759871\pi\)
\(318\) 0 0
\(319\) −225.000 389.711i −0.705329 1.22167i
\(320\) −236.425 + 136.500i −0.738828 + 0.426563i
\(321\) 0 0
\(322\) −90.0000 + 155.885i −0.279503 + 0.484114i
\(323\) 288.000i 0.891641i
\(324\) 0 0
\(325\) −160.000 −0.492308
\(326\) −285.788 165.000i −0.876651 0.506135i
\(327\) 0 0
\(328\) −90.0000 155.885i −0.274390 0.475258i
\(329\) −25.9808 + 15.0000i −0.0789689 + 0.0455927i
\(330\) 0 0
\(331\) 119.000 206.114i 0.359517 0.622701i −0.628363 0.777920i \(-0.716275\pi\)
0.987880 + 0.155219i \(0.0496083\pi\)
\(332\) 15.0000i 0.0451807i
\(333\) 0 0
\(334\) −234.000 −0.700599
\(335\) −25.9808 15.0000i −0.0775545 0.0447761i
\(336\) 0 0
\(337\) 5.00000 + 8.66025i 0.0148368 + 0.0256981i 0.873348 0.487096i \(-0.161944\pi\)
−0.858512 + 0.512794i \(0.828610\pi\)
\(338\) −179.267 + 103.500i −0.530377 + 0.306213i
\(339\) 0 0
\(340\) 135.000 233.827i 0.397059 0.687726i
\(341\) 15.0000i 0.0439883i
\(342\) 0 0
\(343\) −365.000 −1.06414
\(344\) 129.904 + 75.0000i 0.377627 + 0.218023i
\(345\) 0 0
\(346\) −265.500 459.859i −0.767341 1.32907i
\(347\) 59.7558 34.5000i 0.172207 0.0994236i −0.411419 0.911446i \(-0.634967\pi\)
0.583626 + 0.812023i \(0.301633\pi\)
\(348\) 0 0
\(349\) 128.000 221.703i 0.366762 0.635251i −0.622295 0.782783i \(-0.713800\pi\)
0.989057 + 0.147532i \(0.0471329\pi\)
\(350\) 240.000i 0.685714i
\(351\) 0 0
\(352\) −675.000 −1.91761
\(353\) 394.908 + 228.000i 1.11872 + 0.645892i 0.941073 0.338202i \(-0.109819\pi\)
0.177645 + 0.984095i \(0.443152\pi\)
\(354\) 0 0
\(355\) 135.000 + 233.827i 0.380282 + 0.658667i
\(356\) −389.711 + 225.000i −1.09470 + 0.632022i
\(357\) 0 0
\(358\) −337.500 + 584.567i −0.942737 + 1.63287i
\(359\) 450.000i 1.25348i −0.779228 0.626741i \(-0.784388\pi\)
0.779228 0.626741i \(-0.215612\pi\)
\(360\) 0 0
\(361\) −105.000 −0.290859
\(362\) 41.5692 + 24.0000i 0.114832 + 0.0662983i
\(363\) 0 0
\(364\) −125.000 216.506i −0.343407 0.594798i
\(365\) −168.875 + 97.5000i −0.462671 + 0.267123i
\(366\) 0 0
\(367\) 312.500 541.266i 0.851499 1.47484i −0.0283570 0.999598i \(-0.509028\pi\)
0.879856 0.475241i \(-0.157639\pi\)
\(368\) 132.000i 0.358696i
\(369\) 0 0
\(370\) 180.000 0.486486
\(371\) 116.913 + 67.5000i 0.315131 + 0.181941i
\(372\) 0 0
\(373\) −85.0000 147.224i −0.227882 0.394703i 0.729298 0.684196i \(-0.239847\pi\)
−0.957180 + 0.289493i \(0.906513\pi\)
\(374\) 701.481 405.000i 1.87562 1.08289i
\(375\) 0 0
\(376\) 9.00000 15.5885i 0.0239362 0.0414587i
\(377\) 300.000i 0.795756i
\(378\) 0 0
\(379\) 704.000 1.85752 0.928760 0.370682i \(-0.120876\pi\)
0.928760 + 0.370682i \(0.120876\pi\)
\(380\) 207.846 + 120.000i 0.546963 + 0.315789i
\(381\) 0 0
\(382\) 45.0000 + 77.9423i 0.117801 + 0.204037i
\(383\) 535.204 309.000i 1.39740 0.806789i 0.403279 0.915077i \(-0.367870\pi\)
0.994120 + 0.108288i \(0.0345370\pi\)
\(384\) 0 0
\(385\) 112.500 194.856i 0.292208 0.506119i
\(386\) 645.000i 1.67098i
\(387\) 0 0
\(388\) 425.000 1.09536
\(389\) −454.663 262.500i −1.16880 0.674807i −0.215403 0.976525i \(-0.569107\pi\)
−0.953397 + 0.301718i \(0.902440\pi\)
\(390\) 0 0
\(391\) −108.000 187.061i −0.276215 0.478418i
\(392\) 62.3538 36.0000i 0.159066 0.0918367i
\(393\) 0 0
\(394\) −310.500 + 537.802i −0.788071 + 1.36498i
\(395\) 42.0000i 0.106329i
\(396\) 0 0
\(397\) −70.0000 −0.176322 −0.0881612 0.996106i \(-0.528099\pi\)
−0.0881612 + 0.996106i \(0.528099\pi\)
\(398\) 579.371 + 334.500i 1.45571 + 0.840452i
\(399\) 0 0
\(400\) 88.0000 + 152.420i 0.220000 + 0.381051i
\(401\) −103.923 + 60.0000i −0.259160 + 0.149626i −0.623951 0.781463i \(-0.714474\pi\)
0.364791 + 0.931089i \(0.381140\pi\)
\(402\) 0 0
\(403\) −5.00000 + 8.66025i −0.0124069 + 0.0214895i
\(404\) 975.000i 2.41337i
\(405\) 0 0
\(406\) −450.000 −1.10837
\(407\) 259.808 + 150.000i 0.638348 + 0.368550i
\(408\) 0 0
\(409\) −134.500 232.961i −0.328851 0.569586i 0.653433 0.756984i \(-0.273328\pi\)
−0.982284 + 0.187398i \(0.939995\pi\)
\(410\) 467.654 270.000i 1.14062 0.658537i
\(411\) 0 0
\(412\) 425.000 736.122i 1.03155 1.78670i
\(413\) 150.000i 0.363196i
\(414\) 0 0
\(415\) 9.00000 0.0216867
\(416\) −389.711 225.000i −0.936806 0.540865i
\(417\) 0 0
\(418\) 360.000 + 623.538i 0.861244 + 1.49172i
\(419\) −181.865 + 105.000i −0.434046 + 0.250597i −0.701069 0.713094i \(-0.747293\pi\)
0.267023 + 0.963690i \(0.413960\pi\)
\(420\) 0 0
\(421\) −322.000 + 557.720i −0.764846 + 1.32475i 0.175483 + 0.984483i \(0.443851\pi\)
−0.940328 + 0.340269i \(0.889482\pi\)
\(422\) 948.000i 2.24645i
\(423\) 0 0
\(424\) −81.0000 −0.191038
\(425\) −249.415 144.000i −0.586860 0.338824i
\(426\) 0 0
\(427\) 190.000 + 329.090i 0.444965 + 0.770702i
\(428\) −818.394 + 472.500i −1.91214 + 1.10397i
\(429\) 0 0
\(430\) −225.000 + 389.711i −0.523256 + 0.906306i
\(431\) 270.000i 0.626450i 0.949679 + 0.313225i \(0.101409\pi\)
−0.949679 + 0.313225i \(0.898591\pi\)
\(432\) 0 0
\(433\) −565.000 −1.30485 −0.652425 0.757853i \(-0.726248\pi\)
−0.652425 + 0.757853i \(0.726248\pi\)
\(434\) 12.9904 + 7.50000i 0.0299318 + 0.0172811i
\(435\) 0 0
\(436\) 410.000 + 710.141i 0.940367 + 1.62876i
\(437\) 166.277 96.0000i 0.380496 0.219680i
\(438\) 0 0
\(439\) 105.500 182.731i 0.240319 0.416245i −0.720486 0.693469i \(-0.756081\pi\)
0.960805 + 0.277225i \(0.0894146\pi\)
\(440\) 135.000i 0.306818i
\(441\) 0 0
\(442\) 540.000 1.22172
\(443\) −431.281 249.000i −0.973545 0.562077i −0.0732302 0.997315i \(-0.523331\pi\)
−0.900315 + 0.435238i \(0.856664\pi\)
\(444\) 0 0
\(445\) −135.000 233.827i −0.303371 0.525454i
\(446\) −337.750 + 195.000i −0.757287 + 0.437220i
\(447\) 0 0
\(448\) −227.500 + 394.042i −0.507812 + 0.879557i
\(449\) 360.000i 0.801782i −0.916126 0.400891i \(-0.868701\pi\)
0.916126 0.400891i \(-0.131299\pi\)
\(450\) 0 0
\(451\) 900.000 1.99557
\(452\) 103.923 + 60.0000i 0.229918 + 0.132743i
\(453\) 0 0
\(454\) −63.0000 109.119i −0.138767 0.240351i
\(455\) 129.904 75.0000i 0.285503 0.164835i
\(456\) 0 0
\(457\) −182.500 + 316.099i −0.399344 + 0.691683i −0.993645 0.112559i \(-0.964095\pi\)
0.594301 + 0.804242i \(0.297429\pi\)
\(458\) 678.000i 1.48035i
\(459\) 0 0
\(460\) 180.000 0.391304
\(461\) 90.9327 + 52.5000i 0.197251 + 0.113883i 0.595373 0.803450i \(-0.297004\pi\)
−0.398122 + 0.917333i \(0.630338\pi\)
\(462\) 0 0
\(463\) −107.500 186.195i −0.232181 0.402150i 0.726268 0.687411i \(-0.241253\pi\)
−0.958450 + 0.285261i \(0.907920\pi\)
\(464\) −285.788 + 165.000i −0.615923 + 0.355603i
\(465\) 0 0
\(466\) 351.000 607.950i 0.753219 1.30461i
\(467\) 63.0000i 0.134904i 0.997723 + 0.0674518i \(0.0214869\pi\)
−0.997723 + 0.0674518i \(0.978513\pi\)
\(468\) 0 0
\(469\) −50.0000 −0.106610
\(470\) 46.7654 + 27.0000i 0.0995008 + 0.0574468i
\(471\) 0 0
\(472\) 45.0000 + 77.9423i 0.0953390 + 0.165132i
\(473\) −649.519 + 375.000i −1.37319 + 0.792812i
\(474\) 0 0
\(475\) 128.000 221.703i 0.269474 0.466742i
\(476\) 450.000i 0.945378i
\(477\) 0 0
\(478\) 360.000 0.753138
\(479\) −649.519 375.000i −1.35599 0.782881i −0.366909 0.930257i \(-0.619584\pi\)
−0.989081 + 0.147376i \(0.952917\pi\)
\(480\) 0 0
\(481\) 100.000 + 173.205i 0.207900 + 0.360094i
\(482\) 36.3731 21.0000i 0.0754628 0.0435685i
\(483\) 0 0
\(484\) −260.000 + 450.333i −0.537190 + 0.930441i
\(485\) 255.000i 0.525773i
\(486\) 0 0
\(487\) 110.000 0.225873 0.112936 0.993602i \(-0.463974\pi\)
0.112936 + 0.993602i \(0.463974\pi\)
\(488\) −197.454 114.000i −0.404618 0.233607i
\(489\) 0 0
\(490\) 108.000 + 187.061i 0.220408 + 0.381758i
\(491\) 558.586 322.500i 1.13765 0.656823i 0.191803 0.981433i \(-0.438567\pi\)
0.945848 + 0.324611i \(0.105233\pi\)
\(492\) 0 0
\(493\) 270.000 467.654i 0.547667 0.948588i
\(494\) 480.000i 0.971660i
\(495\) 0 0
\(496\) 11.0000 0.0221774
\(497\) 389.711 + 225.000i 0.784128 + 0.452716i
\(498\) 0 0
\(499\) 383.000 + 663.375i 0.767535 + 1.32941i 0.938896 + 0.344201i \(0.111850\pi\)
−0.171361 + 0.985208i \(0.554816\pi\)
\(500\) 532.606 307.500i 1.06521 0.615000i
\(501\) 0 0
\(502\) 135.000 233.827i 0.268924 0.465791i
\(503\) 828.000i 1.64612i 0.567952 + 0.823062i \(0.307736\pi\)
−0.567952 + 0.823062i \(0.692264\pi\)
\(504\) 0 0
\(505\) −585.000 −1.15842
\(506\) 467.654 + 270.000i 0.924217 + 0.533597i
\(507\) 0 0
\(508\) −512.500 887.676i −1.00886 1.74739i
\(509\) 480.644 277.500i 0.944291 0.545187i 0.0529881 0.998595i \(-0.483125\pi\)
0.891303 + 0.453409i \(0.149792\pi\)
\(510\) 0 0
\(511\) −162.500 + 281.458i −0.318004 + 0.550799i
\(512\) 627.000i 1.22461i
\(513\) 0 0
\(514\) −1314.00 −2.55642
\(515\) 441.673 + 255.000i 0.857617 + 0.495146i
\(516\) 0 0
\(517\) 45.0000 + 77.9423i 0.0870406 + 0.150759i
\(518\) 259.808 150.000i 0.501559 0.289575i
\(519\) 0 0
\(520\) −45.0000 + 77.9423i −0.0865385 + 0.149889i
\(521\) 450.000i 0.863724i −0.901940 0.431862i \(-0.857857\pi\)
0.901940 0.431862i \(-0.142143\pi\)
\(522\) 0 0
\(523\) −250.000 −0.478011 −0.239006 0.971018i \(-0.576821\pi\)
−0.239006 + 0.971018i \(0.576821\pi\)
\(524\) 64.9519 + 37.5000i 0.123954 + 0.0715649i
\(525\) 0 0
\(526\) −414.000 717.069i −0.787072 1.36325i
\(527\) −15.5885 + 9.00000i −0.0295796 + 0.0170778i
\(528\) 0 0
\(529\) −192.500 + 333.420i −0.363894 + 0.630283i
\(530\) 243.000i 0.458491i
\(531\) 0 0
\(532\) 400.000 0.751880
\(533\) 519.615 + 300.000i 0.974888 + 0.562852i
\(534\) 0 0
\(535\) −283.500 491.036i −0.529907 0.917825i
\(536\) 25.9808 15.0000i 0.0484716 0.0279851i
\(537\) 0 0
\(538\) 405.000 701.481i 0.752788 1.30387i
\(539\) 360.000i 0.667904i
\(540\) 0 0
\(541\) −268.000 −0.495379 −0.247689 0.968839i \(-0.579671\pi\)
−0.247689 + 0.968839i \(0.579671\pi\)
\(542\) −776.825 448.500i −1.43326 0.827491i
\(543\) 0 0
\(544\) −405.000 701.481i −0.744485 1.28949i
\(545\) −426.084 + 246.000i −0.781806 + 0.451376i
\(546\) 0 0
\(547\) −205.000 + 355.070i −0.374771 + 0.649123i −0.990293 0.138997i \(-0.955612\pi\)
0.615521 + 0.788120i \(0.288945\pi\)
\(548\) 690.000i 1.25912i
\(549\) 0 0
\(550\) 720.000 1.30909
\(551\) 415.692 + 240.000i 0.754432 + 0.435572i
\(552\) 0 0
\(553\) −35.0000 60.6218i −0.0632911 0.109623i
\(554\) 363.731 210.000i 0.656554 0.379061i
\(555\) 0 0
\(556\) −70.0000 + 121.244i −0.125899 + 0.218064i
\(557\) 639.000i 1.14722i 0.819130 + 0.573609i \(0.194457\pi\)
−0.819130 + 0.573609i \(0.805543\pi\)
\(558\) 0 0
\(559\) −500.000 −0.894454
\(560\) −142.894 82.5000i −0.255168 0.147321i
\(561\) 0 0
\(562\) −225.000 389.711i −0.400356 0.693437i
\(563\) −174.071 + 100.500i −0.309185 + 0.178508i −0.646562 0.762862i \(-0.723794\pi\)
0.337377 + 0.941370i \(0.390460\pi\)
\(564\) 0 0
\(565\) −36.0000 + 62.3538i −0.0637168 + 0.110361i
\(566\) 840.000i 1.48410i
\(567\) 0 0
\(568\) −270.000 −0.475352
\(569\) 207.846 + 120.000i 0.365283 + 0.210896i 0.671396 0.741099i \(-0.265695\pi\)
−0.306113 + 0.951995i \(0.599028\pi\)
\(570\) 0 0
\(571\) 473.000 + 819.260i 0.828371 + 1.43478i 0.899315 + 0.437301i \(0.144066\pi\)
−0.0709440 + 0.997480i \(0.522601\pi\)
\(572\) −649.519 + 375.000i −1.13552 + 0.655594i
\(573\) 0 0
\(574\) 450.000 779.423i 0.783972 1.35788i
\(575\) 192.000i 0.333913i
\(576\) 0 0
\(577\) 830.000 1.43847 0.719237 0.694764i \(-0.244491\pi\)
0.719237 + 0.694764i \(0.244491\pi\)
\(578\) 90.9327 + 52.5000i 0.157323 + 0.0908304i
\(579\) 0 0
\(580\) 225.000 + 389.711i 0.387931 + 0.671916i
\(581\) 12.9904 7.50000i 0.0223587 0.0129088i
\(582\) 0 0
\(583\) 202.500 350.740i 0.347341 0.601613i
\(584\) 195.000i 0.333904i
\(585\) 0 0
\(586\) −774.000 −1.32082
\(587\) −392.310 226.500i −0.668330 0.385860i 0.127114 0.991888i \(-0.459429\pi\)
−0.795443 + 0.606028i \(0.792762\pi\)
\(588\) 0 0
\(589\) −8.00000 13.8564i −0.0135823 0.0235253i
\(590\) −233.827 + 135.000i −0.396317 + 0.228814i
\(591\) 0 0
\(592\) 110.000 190.526i 0.185811 0.321834i
\(593\) 702.000i 1.18381i −0.806007 0.591906i \(-0.798376\pi\)
0.806007 0.591906i \(-0.201624\pi\)
\(594\) 0 0
\(595\) 270.000 0.453782
\(596\) −324.760 187.500i −0.544899 0.314597i
\(597\) 0 0
\(598\) 180.000 + 311.769i 0.301003 + 0.521353i
\(599\) −961.288 + 555.000i −1.60482 + 0.926544i −0.614318 + 0.789059i \(0.710569\pi\)
−0.990504 + 0.137486i \(0.956098\pi\)
\(600\) 0 0
\(601\) −434.500 + 752.576i −0.722962 + 1.25221i 0.236846 + 0.971547i \(0.423886\pi\)
−0.959807 + 0.280659i \(0.909447\pi\)
\(602\) 750.000i 1.24585i
\(603\) 0 0
\(604\) −385.000 −0.637417
\(605\) −270.200 156.000i −0.446611 0.257851i
\(606\) 0 0
\(607\) −265.000 458.993i −0.436573 0.756167i 0.560849 0.827918i \(-0.310475\pi\)
−0.997423 + 0.0717508i \(0.977141\pi\)
\(608\) 623.538 360.000i 1.02556 0.592105i
\(609\) 0 0
\(610\) 342.000 592.361i 0.560656 0.971084i
\(611\) 60.0000i 0.0981997i
\(612\) 0 0
\(613\) −70.0000 −0.114192 −0.0570962 0.998369i \(-0.518184\pi\)
−0.0570962 + 0.998369i \(0.518184\pi\)
\(614\) −753.442 435.000i −1.22710 0.708469i
\(615\) 0 0
\(616\) 112.500 + 194.856i 0.182630 + 0.316324i
\(617\) −478.046 + 276.000i −0.774791 + 0.447326i −0.834581 0.550885i \(-0.814290\pi\)
0.0597901 + 0.998211i \(0.480957\pi\)
\(618\) 0 0
\(619\) −331.000 + 573.309i −0.534733 + 0.926185i 0.464443 + 0.885603i \(0.346255\pi\)
−0.999176 + 0.0405823i \(0.987079\pi\)
\(620\) 15.0000i 0.0241935i
\(621\) 0 0
\(622\) 1440.00 2.31511
\(623\) −389.711 225.000i −0.625540 0.361156i
\(624\) 0 0
\(625\) −15.5000 26.8468i −0.0248000 0.0429549i
\(626\) 480.644 277.500i 0.767802 0.443291i
\(627\) 0 0
\(628\) −250.000 + 433.013i −0.398089 + 0.689511i
\(629\) 360.000i 0.572337i
\(630\) 0 0
\(631\) −331.000 −0.524564 −0.262282 0.964991i \(-0.584475\pi\)
−0.262282 + 0.964991i \(0.584475\pi\)
\(632\) 36.3731 + 21.0000i 0.0575523 + 0.0332278i
\(633\) 0 0
\(634\) 274.500 + 475.448i 0.432965 + 0.749918i
\(635\) 532.606 307.500i 0.838749 0.484252i
\(636\) 0 0
\(637\) −120.000 + 207.846i −0.188383 + 0.326289i
\(638\) 1350.00i 2.11599i
\(639\) 0 0
\(640\) 279.000 0.435937
\(641\) 51.9615 + 30.0000i 0.0810632 + 0.0468019i 0.539984 0.841675i \(-0.318430\pi\)
−0.458920 + 0.888477i \(0.651764\pi\)
\(642\) 0 0
\(643\) −220.000 381.051i −0.342146 0.592615i 0.642685 0.766131i \(-0.277820\pi\)
−0.984831 + 0.173516i \(0.944487\pi\)
\(644\) 259.808 150.000i 0.403428 0.232919i
\(645\) 0 0
\(646\) −432.000 + 748.246i −0.668731 + 1.15828i
\(647\) 972.000i 1.50232i −0.660121 0.751159i \(-0.729495\pi\)
0.660121 0.751159i \(-0.270505\pi\)
\(648\) 0 0
\(649\) −450.000 −0.693374
\(650\) 415.692 + 240.000i 0.639526 + 0.369231i
\(651\) 0 0
\(652\) 275.000 + 476.314i 0.421779 + 0.730543i
\(653\) 418.290 241.500i 0.640567 0.369832i −0.144266 0.989539i \(-0.546082\pi\)
0.784833 + 0.619707i \(0.212749\pi\)
\(654\) 0 0
\(655\) −22.5000 + 38.9711i −0.0343511 + 0.0594979i
\(656\) 660.000i 1.00610i
\(657\) 0 0
\(658\) 90.0000 0.136778
\(659\) 714.471 + 412.500i 1.08417 + 0.625948i 0.932019 0.362408i \(-0.118045\pi\)
0.152155 + 0.988357i \(0.451379\pi\)
\(660\) 0 0
\(661\) 464.000 + 803.672i 0.701967 + 1.21584i 0.967775 + 0.251816i \(0.0810278\pi\)
−0.265808 + 0.964026i \(0.585639\pi\)
\(662\) −618.342 + 357.000i −0.934052 + 0.539275i
\(663\) 0 0
\(664\) −4.50000 + 7.79423i −0.00677711 + 0.0117383i
\(665\) 240.000i 0.360902i
\(666\) 0 0
\(667\) 360.000 0.539730
\(668\) 337.750 + 195.000i 0.505614 + 0.291916i
\(669\) 0 0
\(670\) 45.0000 + 77.9423i 0.0671642 + 0.116332i
\(671\) 987.269 570.000i 1.47134 0.849478i
\(672\) 0 0
\(673\) 492.500 853.035i 0.731798 1.26751i −0.224316 0.974516i \(-0.572015\pi\)
0.956114 0.292995i \(-0.0946518\pi\)
\(674\) 30.0000i 0.0445104i
\(675\) 0 0
\(676\) 345.000 0.510355
\(677\) −306.573 177.000i −0.452840 0.261448i 0.256189 0.966627i \(-0.417533\pi\)
−0.709029 + 0.705179i \(0.750867\pi\)
\(678\) 0 0
\(679\) 212.500 + 368.061i 0.312960 + 0.542063i
\(680\) −140.296 + 81.0000i −0.206318 + 0.119118i
\(681\) 0 0
\(682\) 22.5000 38.9711i 0.0329912 0.0571424i
\(683\) 198.000i 0.289898i 0.989439 + 0.144949i \(0.0463017\pi\)
−0.989439 + 0.144949i \(0.953698\pi\)
\(684\) 0 0
\(685\) 414.000 0.604380
\(686\) 948.298 + 547.500i 1.38236 + 0.798105i
\(687\) 0 0
\(688\) 275.000 + 476.314i 0.399709 + 0.692317i
\(689\) 233.827 135.000i 0.339371 0.195936i
\(690\) 0 0
\(691\) 218.000 377.587i 0.315485 0.546436i −0.664056 0.747683i \(-0.731166\pi\)
0.979540 + 0.201247i \(0.0644995\pi\)
\(692\) 885.000i 1.27890i
\(693\) 0 0
\(694\) −207.000 −0.298271
\(695\) −72.7461 42.0000i −0.104671 0.0604317i
\(696\) 0 0
\(697\) 540.000 + 935.307i 0.774749 + 1.34190i
\(698\) −665.108 + 384.000i −0.952876 + 0.550143i
\(699\) 0 0
\(700\) 200.000 346.410i 0.285714 0.494872i
\(701\) 135.000i 0.192582i 0.995353 + 0.0962910i \(0.0306979\pi\)
−0.995353 + 0.0962910i \(0.969302\pi\)
\(702\) 0 0
\(703\) −320.000 −0.455192
\(704\) 1182.12 + 682.500i 1.67915 + 0.969460i
\(705\) 0 0
\(706\) −684.000 1184.72i −0.968839 1.67808i
\(707\) −844.375 + 487.500i −1.19431 + 0.689533i
\(708\) 0 0
\(709\) −16.0000 + 27.7128i −0.0225670 + 0.0390872i −0.877088 0.480329i \(-0.840517\pi\)
0.854521 + 0.519416i \(0.173851\pi\)
\(710\) 810.000i 1.14085i
\(711\) 0 0
\(712\) 270.000 0.379213
\(713\) −10.3923 6.00000i −0.0145755 0.00841515i
\(714\) 0 0
\(715\) −225.000 389.711i −0.314685 0.545051i
\(716\) 974.279 562.500i 1.36072 0.785615i
\(717\) 0 0
\(718\) −675.000 + 1169.13i −0.940111 + 1.62832i
\(719\) 900.000i 1.25174i −0.779928 0.625869i \(-0.784744\pi\)
0.779928 0.625869i \(-0.215256\pi\)
\(720\) 0 0
\(721\) 850.000 1.17892
\(722\) 272.798 + 157.500i 0.377837 + 0.218144i
\(723\) 0 0
\(724\) −40.0000 69.2820i −0.0552486 0.0956934i
\(725\) 415.692 240.000i 0.573369 0.331034i
\(726\) 0 0
\(727\) 87.5000 151.554i 0.120358 0.208466i −0.799551 0.600598i \(-0.794929\pi\)
0.919909 + 0.392133i \(0.128263\pi\)
\(728\) 150.000i 0.206044i
\(729\) 0 0
\(730\) 585.000 0.801370
\(731\) −779.423 450.000i −1.06624 0.615595i
\(732\) 0 0
\(733\) −580.000 1004.59i −0.791269 1.37052i −0.925182 0.379525i \(-0.876088\pi\)
0.133913 0.990993i \(-0.457246\pi\)
\(734\) −1623.80 + 937.500i −2.21226 + 1.27725i
\(735\) 0 0
\(736\) 270.000 467.654i 0.366848 0.635399i
\(737\) 150.000i 0.203528i
\(738\) 0 0
\(739\) −1006.00 −1.36130 −0.680650 0.732609i \(-0.738302\pi\)
−0.680650 + 0.732609i \(0.738302\pi\)
\(740\) −259.808 150.000i −0.351091 0.202703i
\(741\) 0 0
\(742\) −202.500 350.740i −0.272911 0.472696i
\(743\) 98.7269 57.0000i 0.132876 0.0767160i −0.432088 0.901831i \(-0.642223\pi\)
0.564965 + 0.825115i \(0.308890\pi\)
\(744\) 0 0
\(745\) 112.500 194.856i 0.151007 0.261551i
\(746\) 510.000i 0.683646i
\(747\) 0 0
\(748\) −1350.00 −1.80481
\(749\) −818.394 472.500i −1.09265 0.630841i
\(750\) 0 0
\(751\) −179.500 310.903i −0.239015 0.413986i 0.721417 0.692501i \(-0.243491\pi\)
−0.960432 + 0.278515i \(0.910158\pi\)
\(752\) 57.1577 33.0000i 0.0760075 0.0438830i
\(753\) 0 0
\(754\) −450.000 + 779.423i −0.596817 + 1.03372i
\(755\) 231.000i 0.305960i
\(756\) 0 0
\(757\) −430.000 −0.568032 −0.284016 0.958820i \(-0.591667\pi\)
−0.284016 + 0.958820i \(0.591667\pi\)
\(758\) −1829.05 1056.00i −2.41299 1.39314i
\(759\) 0 0
\(760\) −72.0000 124.708i −0.0947368 0.164089i
\(761\) 1143.15 660.000i 1.50217 0.867280i 0.502176 0.864765i \(-0.332533\pi\)
0.999997 0.00251446i \(-0.000800378\pi\)
\(762\) 0 0
\(763\) −410.000 + 710.141i −0.537353 + 0.930722i
\(764\) 150.000i 0.196335i
\(765\) 0 0
\(766\) −1854.00 −2.42037
\(767\) −259.808 150.000i −0.338732 0.195567i
\(768\) 0 0
\(769\) −629.500 1090.33i −0.818596 1.41785i −0.906717 0.421739i \(-0.861420\pi\)
0.0881215 0.996110i \(-0.471914\pi\)
\(770\) −584.567 + 337.500i −0.759178 + 0.438312i
\(771\) 0 0
\(772\) 537.500 930.977i 0.696244 1.20593i
\(773\) 522.000i 0.675291i −0.941273 0.337646i \(-0.890369\pi\)
0.941273 0.337646i \(-0.109631\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.0206452
\(776\) −220.836 127.500i −0.284583 0.164304i
\(777\) 0 0
\(778\) 787.500 + 1363.99i 1.01221 + 1.75320i
\(779\) −831.384 + 480.000i −1.06725 + 0.616175i
\(780\) 0 0
\(781\) 675.000 1169.13i 0.864277 1.49697i
\(782\) 648.000i 0.828645i
\(783\) 0 0
\(784\) 264.000 0.336735
\(785\) −259.808 150.000i −0.330965 0.191083i
\(786\) 0 0
\(787\) 230.000 + 398.372i 0.292249 + 0.506190i 0.974341 0.225076i \(-0.0722630\pi\)
−0.682092 + 0.731266i \(0.738930\pi\)
\(788\) 896.336 517.500i 1.13748 0.656726i
\(789\) 0 0
\(790\) −63.0000 + 109.119i −0.0797468 + 0.138126i
\(791\) 120.000i 0.151707i
\(792\) 0 0
\(793\) 760.000 0.958386
\(794\) 181.865 + 105.000i 0.229050 + 0.132242i
\(795\) 0 0
\(796\) −557.500 965.618i −0.700377 1.21309i
\(797\) −205.248 + 118.500i −0.257526 + 0.148683i −0.623205 0.782058i \(-0.714170\pi\)
0.365680 + 0.930741i \(0.380837\pi\)
\(798\) 0 0
\(799\) −54.0000 + 93.5307i −0.0675845 + 0.117060i
\(800\) 720.000i 0.900000i
\(801\) 0 0
\(802\) 360.000 0.448878
\(803\) 844.375 + 487.500i 1.05153 + 0.607098i
\(804\) 0 0
\(805\) 90.0000 + 155.885i 0.111801 + 0.193645i
\(806\) 25.9808 15.0000i 0.0322342 0.0186104i
\(807\) 0 0
\(808\) 292.500 506.625i 0.362005 0.627011i
\(809\) 810.000i 1.00124i 0.865668 + 0.500618i \(0.166894\pi\)
−0.865668 + 0.500618i \(0.833106\pi\)
\(810\) 0 0
\(811\) 272.000 0.335388 0.167694 0.985839i \(-0.446368\pi\)
0.167694 + 0.985839i \(0.446368\pi\)
\(812\) 649.519 + 375.000i 0.799900 + 0.461823i
\(813\) 0 0
\(814\) −450.000 779.423i −0.552826 0.957522i
\(815\) −285.788 + 165.000i −0.350661 + 0.202454i
\(816\) 0 0
\(817\) 400.000 692.820i 0.489596 0.848005i
\(818\) 807.000i 0.986553i
\(819\) 0 0
\(820\) −900.000 −1.09756
\(821\) −337.750 195.000i −0.411388 0.237515i 0.279998 0.960001i \(-0.409666\pi\)
−0.691386 + 0.722485i \(0.743000\pi\)
\(822\) 0 0
\(823\) −602.500 1043.56i −0.732078 1.26800i −0.955994 0.293387i \(-0.905217\pi\)
0.223916 0.974608i \(-0.428116\pi\)
\(824\) −441.673 + 255.000i −0.536011 + 0.309466i
\(825\) 0 0
\(826\) −225.000 + 389.711i −0.272397 + 0.471806i
\(827\) 18.0000i 0.0217654i 0.999941 + 0.0108827i \(0.00346414\pi\)
−0.999941 + 0.0108827i \(0.996536\pi\)
\(828\) 0 0
\(829\) 1442.00 1.73945 0.869723 0.493541i \(-0.164298\pi\)
0.869723 + 0.493541i \(0.164298\pi\)
\(830\) −23.3827 13.5000i −0.0281719 0.0162651i
\(831\) 0 0
\(832\) 455.000 + 788.083i 0.546875 + 0.947215i
\(833\) −374.123 + 216.000i −0.449127 + 0.259304i
\(834\) 0 0
\(835\) −117.000 + 202.650i −0.140120 + 0.242695i
\(836\) 1200.00i 1.43541i
\(837\) 0 0
\(838\) 630.000 0.751790
\(839\) 1376.98 + 795.000i 1.64122 + 0.947557i 0.980402 + 0.197007i \(0.0631222\pi\)
0.660814 + 0.750550i \(0.270211\pi\)
\(840\) 0 0
\(841\) 29.5000 + 51.0955i 0.0350773 + 0.0607556i
\(842\) 1673.16 966.000i 1.98713 1.14727i
\(843\) 0 0
\(844\) −790.000 + 1368.32i −0.936019 + 1.62123i
\(845\) 207.000i 0.244970i
\(846\) 0 0
\(847\) −520.000 −0.613932
\(848\) −257.210 148.500i −0.303313 0.175118i
\(849\) 0 0
\(850\) 432.000 + 748.246i 0.508235 + 0.880289i
\(851\) −207.846 + 120.000i −0.244237 + 0.141011i
\(852\) 0 0
\(853\) −295.000 + 510.955i −0.345838 + 0.599009i −0.985506 0.169642i \(-0.945739\pi\)
0.639667 + 0.768652i \(0.279072\pi\)
\(854\) 1140.00i 1.33489i
\(855\) 0 0
\(856\) 567.000 0.662383
\(857\) 1127.57 + 651.000i 1.31571 + 0.759627i 0.983036 0.183415i \(-0.0587150\pi\)
0.332676 + 0.943041i \(0.392048\pi\)
\(858\) 0 0
\(859\) 158.000 + 273.664i 0.183935 + 0.318584i 0.943217 0.332177i \(-0.107783\pi\)
−0.759282 + 0.650761i \(0.774450\pi\)
\(860\) 649.519 375.000i 0.755255 0.436047i
\(861\) 0 0
\(862\) 405.000 701.481i 0.469838 0.813783i
\(863\) 1188.00i 1.37659i 0.725429 + 0.688297i \(0.241641\pi\)
−0.725429 + 0.688297i \(0.758359\pi\)
\(864\) 0 0
\(865\) −531.000 −0.613873
\(866\) 1467.91 + 847.500i 1.69505 + 0.978637i
\(867\) 0 0
\(868\) −12.5000 21.6506i −0.0144009 0.0249431i
\(869\) −181.865 + 105.000i −0.209281 + 0.120829i
\(870\) 0 0
\(871\) −50.0000 + 86.6025i −0.0574053 + 0.0994289i
\(872\) 492.000i 0.564220i
\(873\) 0 0
\(874\) −576.000 −0.659039
\(875\) 532.606 + 307.500i 0.608692 + 0.351429i
\(876\) 0 0
\(877\) 275.000 + 476.314i 0.313569 + 0.543117i 0.979132 0.203224i \(-0.0651420\pi\)
−0.665563 + 0.746341i \(0.731809\pi\)
\(878\) −548.194 + 316.500i −0.624367 + 0.360478i
\(879\) 0 0
\(880\) −247.500 + 428.683i −0.281250 + 0.487139i
\(881\) 90.0000i 0.102157i −0.998695 0.0510783i \(-0.983734\pi\)
0.998695 0.0510783i \(-0.0162658\pi\)
\(882\) 0 0
\(883\) −880.000 −0.996602 −0.498301 0.867004i \(-0.666043\pi\)
−0.498301 + 0.867004i \(0.666043\pi\)
\(884\) −779.423 450.000i −0.881700 0.509050i
\(885\) 0 0
\(886\) 747.000 + 1293.84i 0.843115 + 1.46032i
\(887\) −244.219 + 141.000i −0.275332 + 0.158963i −0.631308 0.775532i \(-0.717482\pi\)
0.355976 + 0.934495i \(0.384148\pi\)
\(888\) 0 0
\(889\) 512.500 887.676i 0.576490 0.998511i
\(890\) 810.000i 0.910112i
\(891\) 0 0
\(892\) 650.000 0.728700
\(893\) −83.1384 48.0000i −0.0931002 0.0537514i
\(894\) 0 0
\(895\) 337.500 + 584.567i 0.377095 + 0.653148i
\(896\) 402.702 232.500i 0.449444 0.259487i
\(897\) 0 0
\(898\) −540.000 + 935.307i −0.601336 + 1.04155i
\(899\) 30.0000i 0.0333704i
\(900\) 0 0
\(901\) 486.000 0.539401
\(902\) −2338.27 1350.00i −2.59232 1.49667i
\(903\) 0 0
\(904\) −36.0000 62.3538i −0.0398230 0.0689755i
\(905\) 41.5692 24.0000i 0.0459328 0.0265193i
\(906\) 0 0
\(907\) 650.000 1125.83i 0.716648 1.24127i −0.245672 0.969353i \(-0.579009\pi\)
0.962320 0.271918i \(-0.0876580\pi\)
\(908\) 210.000i 0.231278i
\(909\) 0 0
\(910\) −450.000 −0.494505
\(911\) −181.865 105.000i −0.199633 0.115258i 0.396851 0.917883i \(-0.370103\pi\)
−0.596484 + 0.802625i \(0.703436\pi\)
\(912\) 0 0
\(913\) −22.5000 38.9711i −0.0246440 0.0426847i
\(914\) 948.298 547.500i 1.03752 0.599015i
\(915\) 0 0
\(916\) −565.000 + 978.609i −0.616812 + 1.06835i
\(917\) 75.0000i 0.0817884i
\(918\) 0 0
\(919\) 137.000 0.149075 0.0745375 0.997218i \(-0.476252\pi\)
0.0745375 + 0.997218i \(0.476252\pi\)
\(920\) −93.5307 54.0000i −0.101664 0.0586957i
\(921\) 0 0
\(922\) −157.500 272.798i −0.170824 0.295876i
\(923\) 779.423 450.000i 0.844445 0.487541i
\(924\) 0 0
\(925\) −160.000 + 277.128i −0.172973 + 0.299598i
\(926\) 645.000i 0.696544i
\(927\) 0 0
\(928\) 1350.00 1.45474
\(929\) −571.577 330.000i −0.615260 0.355221i 0.159761 0.987156i \(-0.448928\pi\)
−0.775021 + 0.631935i \(0.782261\pi\)
\(930\) 0 0
\(931\) −192.000 332.554i −0.206230 0.357201i
\(932\) −1013.25 + 585.000i −1.08718 + 0.627682i
\(933\) 0 0
\(934\) 94.5000 163.679i 0.101178 0.175245i
\(935\) 810.000i 0.866310i
\(936\) 0 0
\(937\) 605.000 0.645678 0.322839 0.946454i \(-0.395363\pi\)
0.322839 + 0.946454i \(0.395363\pi\)
\(938\) 129.904 + 75.0000i 0.138490 + 0.0799574i
\(939\) 0 0
\(940\) −45.0000 77.9423i −0.0478723 0.0829173i
\(941\) −1389.97 + 802.500i −1.47712 + 0.852816i −0.999666 0.0258401i \(-0.991774\pi\)
−0.477455 + 0.878656i \(0.658441\pi\)
\(942\) 0 0
\(943\) −360.000 + 623.538i −0.381760 + 0.661228i
\(944\) 330.000i 0.349576i
\(945\) 0 0
\(946\) 2250.00 2.37844
\(947\) −470.252 271.500i −0.496570 0.286695i 0.230726 0.973019i \(-0.425890\pi\)
−0.727296 + 0.686324i \(0.759223\pi\)
\(948\) 0 0
\(949\) 325.000 + 562.917i 0.342466 + 0.593168i
\(950\) −665.108 + 384.000i −0.700113 + 0.404211i
\(951\) 0 0
\(952\) −135.000 + 233.827i −0.141807 + 0.245616i
\(953\) 144.000i 0.151102i 0.997142 + 0.0755509i \(0.0240715\pi\)
−0.997142 + 0.0755509i \(0.975928\pi\)
\(954\) 0 0
\(955\) 90.0000 0.0942408
\(956\) −519.615 300.000i −0.543531 0.313808i
\(957\) 0 0
\(958\) 1125.00 + 1948.56i 1.17432 + 2.03398i
\(959\) 597.558 345.000i 0.623105 0.359750i
\(960\) 0 0
\(961\) 480.000 831.384i 0.499480 0.865124i
\(962\) 600.000i 0.623701i
\(963\) 0 0
\(964\) −70.0000 −0.0726141
\(965\) 558.586 + 322.500i 0.578846 + 0.334197i
\(966\) 0 0
\(967\) −422.500 731.791i −0.436918 0.756765i 0.560532 0.828133i \(-0.310597\pi\)
−0.997450 + 0.0713682i \(0.977263\pi\)
\(968\) 270.200 156.000i 0.279132 0.161157i
\(969\) 0 0
\(970\) 382.500 662.509i 0.394330 0.682999i
\(971\) 405.000i 0.417096i 0.978012 + 0.208548i \(0.0668737\pi\)
−0.978012 + 0.208548i \(0.933126\pi\)
\(972\) 0 0
\(973\) −140.000 −0.143885
\(974\) −285.788 165.000i −0.293417 0.169405i
\(975\) 0 0
\(976\) −418.000 723.997i −0.428279 0.741800i
\(977\) −213.042 + 123.000i −0.218058 + 0.125896i −0.605051 0.796187i \(-0.706847\pi\)
0.386993 + 0.922083i \(0.373514\pi\)
\(978\) 0 0
\(979\) −675.000 + 1169.13i −0.689479 + 1.19421i
\(980\) 360.000i 0.367347i
\(981\) 0 0
\(982\) −1935.00 −1.97047
\(983\) −898.934 519.000i −0.914481 0.527976i −0.0326105 0.999468i \(-0.510382\pi\)
−0.881870 + 0.471493i \(0.843715\pi\)
\(984\) 0 0
\(985\) 310.500 + 537.802i 0.315228 + 0.545992i
\(986\) −1402.96 + 810.000i −1.42288 + 0.821501i
\(987\) 0 0
\(988\) 400.000 692.820i 0.404858 0.701235i
\(989\) 600.000i 0.606673i
\(990\) 0 0
\(991\) −1501.00 −1.51463 −0.757316 0.653049i \(-0.773490\pi\)
−0.757316 + 0.653049i \(0.773490\pi\)
\(992\) −38.9711 22.5000i −0.0392854 0.0226815i
\(993\) 0 0
\(994\) −675.000 1169.13i −0.679074 1.17619i
\(995\) 579.371 334.500i 0.582282 0.336181i
\(996\) 0 0
\(997\) −385.000 + 666.840i −0.386158 + 0.668846i −0.991929 0.126793i \(-0.959532\pi\)
0.605771 + 0.795639i \(0.292865\pi\)
\(998\) 2298.00i 2.30261i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.3.d.b.26.1 4
3.2 odd 2 inner 81.3.d.b.26.2 4
4.3 odd 2 1296.3.q.j.593.1 4
9.2 odd 6 27.3.b.b.26.1 2
9.4 even 3 inner 81.3.d.b.53.2 4
9.5 odd 6 inner 81.3.d.b.53.1 4
9.7 even 3 27.3.b.b.26.2 yes 2
12.11 even 2 1296.3.q.j.593.2 4
36.7 odd 6 432.3.e.c.161.1 2
36.11 even 6 432.3.e.c.161.2 2
36.23 even 6 1296.3.q.j.1025.1 4
36.31 odd 6 1296.3.q.j.1025.2 4
45.2 even 12 675.3.d.d.674.2 2
45.7 odd 12 675.3.d.a.674.2 2
45.29 odd 6 675.3.c.h.26.2 2
45.34 even 6 675.3.c.h.26.1 2
45.38 even 12 675.3.d.a.674.1 2
45.43 odd 12 675.3.d.d.674.1 2
72.11 even 6 1728.3.e.g.1025.1 2
72.29 odd 6 1728.3.e.m.1025.1 2
72.43 odd 6 1728.3.e.g.1025.2 2
72.61 even 6 1728.3.e.m.1025.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.b.b.26.1 2 9.2 odd 6
27.3.b.b.26.2 yes 2 9.7 even 3
81.3.d.b.26.1 4 1.1 even 1 trivial
81.3.d.b.26.2 4 3.2 odd 2 inner
81.3.d.b.53.1 4 9.5 odd 6 inner
81.3.d.b.53.2 4 9.4 even 3 inner
432.3.e.c.161.1 2 36.7 odd 6
432.3.e.c.161.2 2 36.11 even 6
675.3.c.h.26.1 2 45.34 even 6
675.3.c.h.26.2 2 45.29 odd 6
675.3.d.a.674.1 2 45.38 even 12
675.3.d.a.674.2 2 45.7 odd 12
675.3.d.d.674.1 2 45.43 odd 12
675.3.d.d.674.2 2 45.2 even 12
1296.3.q.j.593.1 4 4.3 odd 2
1296.3.q.j.593.2 4 12.11 even 2
1296.3.q.j.1025.1 4 36.23 even 6
1296.3.q.j.1025.2 4 36.31 odd 6
1728.3.e.g.1025.1 2 72.11 even 6
1728.3.e.g.1025.2 2 72.43 odd 6
1728.3.e.m.1025.1 2 72.29 odd 6
1728.3.e.m.1025.2 2 72.61 even 6