Properties

Label 81.3.d.a.53.1
Level $81$
Weight $3$
Character 81.53
Analytic conductor $2.207$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,3,Mod(26,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.20709014132\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 53.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 81.53
Dual form 81.3.d.a.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 + 3.46410i) q^{4} +(6.50000 + 11.2583i) q^{7} +(0.500000 - 0.866025i) q^{13} +(-8.00000 - 13.8564i) q^{16} +11.0000 q^{19} +(-12.5000 - 21.6506i) q^{25} -52.0000 q^{28} +(23.0000 - 39.8372i) q^{31} +47.0000 q^{37} +(11.0000 + 19.0526i) q^{43} +(-60.0000 + 103.923i) q^{49} +(2.00000 + 3.46410i) q^{52} +(60.5000 + 104.789i) q^{61} +64.0000 q^{64} +(54.5000 - 94.3968i) q^{67} -97.0000 q^{73} +(-22.0000 + 38.1051i) q^{76} +(-65.5000 - 113.449i) q^{79} +13.0000 q^{91} +(-83.5000 - 144.626i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} + 13 q^{7} + q^{13} - 16 q^{16} + 22 q^{19} - 25 q^{25} - 104 q^{28} + 46 q^{31} + 94 q^{37} + 22 q^{43} - 120 q^{49} + 4 q^{52} + 121 q^{61} + 128 q^{64} + 109 q^{67} - 194 q^{73} - 44 q^{76}+ \cdots - 167 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(5\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0 0
\(7\) 6.50000 + 11.2583i 0.928571 + 1.60833i 0.785714 + 0.618590i \(0.212296\pi\)
0.142857 + 0.989743i \(0.454371\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.0384615 0.0666173i −0.846154 0.532939i \(-0.821088\pi\)
0.884615 + 0.466321i \(0.154421\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.500000 0.866025i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 11.0000 0.578947 0.289474 0.957186i \(-0.406520\pi\)
0.289474 + 0.957186i \(0.406520\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.500000 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) −52.0000 −1.85714
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 0 0
\(31\) 23.0000 39.8372i 0.741935 1.28507i −0.209677 0.977771i \(-0.567241\pi\)
0.951613 0.307299i \(-0.0994253\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 47.0000 1.27027 0.635135 0.772401i \(-0.280944\pi\)
0.635135 + 0.772401i \(0.280944\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(42\) 0 0
\(43\) 11.0000 + 19.0526i 0.255814 + 0.443083i 0.965116 0.261822i \(-0.0843232\pi\)
−0.709302 + 0.704904i \(0.750990\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0 0
\(49\) −60.0000 + 103.923i −1.22449 + 2.12088i
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.0384615 + 0.0666173i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 60.5000 + 104.789i 0.991803 + 1.71785i 0.606557 + 0.795040i \(0.292550\pi\)
0.385246 + 0.922814i \(0.374117\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 64.0000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 54.5000 94.3968i 0.813433 1.40891i −0.0970149 0.995283i \(-0.530929\pi\)
0.910448 0.413624i \(-0.135737\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −97.0000 −1.32877 −0.664384 0.747392i \(-0.731306\pi\)
−0.664384 + 0.747392i \(0.731306\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −22.0000 + 38.1051i −0.289474 + 0.501383i
\(77\) 0 0
\(78\) 0 0
\(79\) −65.5000 113.449i −0.829114 1.43607i −0.898734 0.438494i \(-0.855512\pi\)
0.0696203 0.997574i \(-0.477821\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 13.0000 0.142857
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −83.5000 144.626i −0.860825 1.49099i −0.871134 0.491045i \(-0.836615\pi\)
0.0103093 0.999947i \(-0.496718\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 100.000 1.00000
\(101\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) 0 0
\(103\) 18.5000 32.0429i 0.179612 0.311097i −0.762136 0.647417i \(-0.775849\pi\)
0.941748 + 0.336321i \(0.109183\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −214.000 −1.96330 −0.981651 0.190684i \(-0.938929\pi\)
−0.981651 + 0.190684i \(0.938929\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 104.000 180.133i 0.928571 1.60833i
\(113\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −60.5000 + 104.789i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 92.0000 + 159.349i 0.741935 + 1.28507i
\(125\) 0 0
\(126\) 0 0
\(127\) 146.000 1.14961 0.574803 0.818292i \(-0.305079\pi\)
0.574803 + 0.818292i \(0.305079\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 71.5000 + 123.842i 0.537594 + 0.931140i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) −125.500 + 217.372i −0.902878 + 1.56383i −0.0791367 + 0.996864i \(0.525216\pi\)
−0.823741 + 0.566966i \(0.808117\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −94.0000 + 162.813i −0.635135 + 1.10009i
\(149\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 0 0
\(151\) −29.5000 51.0955i −0.195364 0.338381i 0.751656 0.659556i \(-0.229256\pi\)
−0.947020 + 0.321175i \(0.895922\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 59.0000 102.191i 0.375796 0.650898i −0.614650 0.788800i \(-0.710703\pi\)
0.990446 + 0.137902i \(0.0440359\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 299.000 1.83436 0.917178 0.398478i \(-0.130461\pi\)
0.917178 + 0.398478i \(0.130461\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0 0
\(169\) 84.0000 + 145.492i 0.497041 + 0.860901i
\(170\) 0 0
\(171\) 0 0
\(172\) −88.0000 −0.511628
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 162.500 281.458i 0.928571 1.60833i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −313.000 −1.72928 −0.864641 0.502390i \(-0.832454\pi\)
−0.864641 + 0.502390i \(0.832454\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) −71.5000 + 123.842i −0.370466 + 0.641666i −0.989637 0.143590i \(-0.954135\pi\)
0.619171 + 0.785256i \(0.287469\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −240.000 415.692i −1.22449 2.12088i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −277.000 −1.39196 −0.695980 0.718061i \(-0.745030\pi\)
−0.695980 + 0.718061i \(0.745030\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −16.0000 −0.0769231
\(209\) 0 0
\(210\) 0 0
\(211\) 126.500 219.104i 0.599526 1.03841i −0.393365 0.919382i \(-0.628689\pi\)
0.992891 0.119027i \(-0.0379776\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 598.000 2.75576
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −169.000 292.717i −0.757848 1.31263i −0.943946 0.330099i \(-0.892918\pi\)
0.186099 0.982531i \(-0.440416\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0 0
\(229\) −13.0000 + 22.5167i −0.0567686 + 0.0983260i −0.893013 0.450031i \(-0.851413\pi\)
0.836245 + 0.548357i \(0.184746\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0 0
\(241\) 96.5000 + 167.143i 0.400415 + 0.693539i 0.993776 0.111397i \(-0.0355327\pi\)
−0.593361 + 0.804936i \(0.702199\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −484.000 −1.98361
\(245\) 0 0
\(246\) 0 0
\(247\) 5.50000 9.52628i 0.0222672 0.0385679i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.500000 + 0.866025i
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) 305.500 + 529.142i 1.17954 + 2.04302i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 218.000 + 377.587i 0.813433 + 1.40891i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 299.000 1.10332 0.551661 0.834069i \(-0.313994\pi\)
0.551661 + 0.834069i \(0.313994\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −61.0000 105.655i −0.220217 0.381426i 0.734657 0.678439i \(-0.237343\pi\)
−0.954874 + 0.297012i \(0.904010\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(282\) 0 0
\(283\) −229.000 + 396.640i −0.809187 + 1.40155i 0.104240 + 0.994552i \(0.466759\pi\)
−0.913428 + 0.407001i \(0.866574\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 194.000 336.018i 0.664384 1.15075i
\(293\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −143.000 + 247.683i −0.475083 + 0.822868i
\(302\) 0 0
\(303\) 0 0
\(304\) −88.0000 152.420i −0.289474 0.501383i
\(305\) 0 0
\(306\) 0 0
\(307\) −358.000 −1.16612 −0.583062 0.812428i \(-0.698145\pi\)
−0.583062 + 0.812428i \(0.698145\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) −299.500 518.749i −0.956869 1.65735i −0.730032 0.683413i \(-0.760495\pi\)
−0.226837 0.973933i \(-0.572838\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 524.000 1.65823
\(317\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −25.0000 −0.0769231
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 330.500 + 572.443i 0.998489 + 1.72943i 0.546828 + 0.837245i \(0.315835\pi\)
0.451662 + 0.892189i \(0.350831\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 324.500 562.050i 0.962908 1.66781i 0.247774 0.968818i \(-0.420301\pi\)
0.715134 0.698988i \(-0.246366\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −923.000 −2.69096
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) −335.500 581.103i −0.961318 1.66505i −0.719198 0.694805i \(-0.755490\pi\)
−0.242120 0.970246i \(-0.577843\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −240.000 −0.664820
\(362\) 0 0
\(363\) 0 0
\(364\) −26.0000 + 45.0333i −0.0714286 + 0.123718i
\(365\) 0 0
\(366\) 0 0
\(367\) −245.500 425.218i −0.668937 1.15863i −0.978202 0.207657i \(-0.933416\pi\)
0.309264 0.950976i \(-0.399917\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 288.500 499.697i 0.773458 1.33967i −0.162198 0.986758i \(-0.551858\pi\)
0.935657 0.352911i \(-0.114808\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 83.0000 0.218997 0.109499 0.993987i \(-0.465075\pi\)
0.109499 + 0.993987i \(0.465075\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 668.000 1.72165
\(389\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 362.000 0.911839 0.455919 0.890021i \(-0.349311\pi\)
0.455919 + 0.890021i \(0.349311\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −200.000 + 346.410i −0.500000 + 0.866025i
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) −23.0000 39.8372i −0.0570720 0.0988515i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −71.5000 + 123.842i −0.174817 + 0.302791i −0.940098 0.340905i \(-0.889267\pi\)
0.765281 + 0.643696i \(0.222600\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 74.0000 + 128.172i 0.179612 + 0.311097i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 240.500 + 416.558i 0.571259 + 0.989449i 0.996437 + 0.0843398i \(0.0268781\pi\)
−0.425178 + 0.905110i \(0.639789\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −786.500 + 1362.26i −1.84192 + 3.19030i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −862.000 −1.99076 −0.995381 0.0960028i \(-0.969394\pi\)
−0.995381 + 0.0960028i \(0.969394\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 428.000 741.318i 0.981651 1.70027i
\(437\) 0 0
\(438\) 0 0
\(439\) 47.0000 + 81.4064i 0.107062 + 0.185436i 0.914579 0.404408i \(-0.132522\pi\)
−0.807517 + 0.589844i \(0.799189\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 416.000 + 720.533i 0.928571 + 1.60833i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 407.000 + 704.945i 0.890591 + 1.54255i 0.839168 + 0.543872i \(0.183042\pi\)
0.0514223 + 0.998677i \(0.483625\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 0 0
\(463\) 198.500 343.812i 0.428726 0.742575i −0.568035 0.823005i \(-0.692296\pi\)
0.996760 + 0.0804300i \(0.0256293\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 1417.00 3.02132
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −137.500 238.157i −0.289474 0.501383i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 0 0
\(481\) 23.5000 40.7032i 0.0488565 0.0846220i
\(482\) 0 0
\(483\) 0 0
\(484\) −242.000 419.156i −0.500000 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −349.000 −0.716632 −0.358316 0.933600i \(-0.616649\pi\)
−0.358316 + 0.933600i \(0.616649\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −736.000 −1.48387
\(497\) 0 0
\(498\) 0 0
\(499\) −13.0000 + 22.5167i −0.0260521 + 0.0451236i −0.878758 0.477269i \(-0.841627\pi\)
0.852705 + 0.522392i \(0.174960\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −292.000 + 505.759i −0.574803 + 0.995588i
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) −630.500 1092.06i −1.23386 2.13710i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 803.000 1.53537 0.767686 0.640826i \(-0.221408\pi\)
0.767686 + 0.640826i \(0.221408\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −264.500 458.127i −0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) −572.000 −1.07519
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −241.000 −0.445471 −0.222736 0.974879i \(-0.571499\pi\)
−0.222736 + 0.974879i \(0.571499\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 546.500 + 946.566i 0.999086 + 1.73047i 0.536563 + 0.843860i \(0.319722\pi\)
0.462523 + 0.886607i \(0.346944\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 851.500 1474.84i 1.53978 2.66698i
\(554\) 0 0
\(555\) 0 0
\(556\) −502.000 869.490i −0.902878 1.56383i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 22.0000 0.0393560
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 90.5000 156.751i 0.158494 0.274519i −0.775832 0.630940i \(-0.782670\pi\)
0.934326 + 0.356420i \(0.116003\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1033.00 −1.79029 −0.895147 0.445770i \(-0.852930\pi\)
−0.895147 + 0.445770i \(0.852930\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 253.000 438.209i 0.429542 0.743988i
\(590\) 0 0
\(591\) 0 0
\(592\) −376.000 651.251i −0.635135 1.10009i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) 263.000 + 455.529i 0.437604 + 0.757952i 0.997504 0.0706077i \(-0.0224939\pi\)
−0.559900 + 0.828560i \(0.689161\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 236.000 0.390728
\(605\) 0 0
\(606\) 0 0
\(607\) −593.500 + 1027.97i −0.977759 + 1.69353i −0.307249 + 0.951629i \(0.599408\pi\)
−0.670511 + 0.741900i \(0.733925\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 983.000 1.60359 0.801794 0.597600i \(-0.203879\pi\)
0.801794 + 0.597600i \(0.203879\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0 0
\(619\) 474.500 + 821.858i 0.766559 + 1.32772i 0.939418 + 0.342773i \(0.111366\pi\)
−0.172859 + 0.984947i \(0.555301\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 236.000 + 408.764i 0.375796 + 0.650898i
\(629\) 0 0
\(630\) 0 0
\(631\) 587.000 0.930269 0.465135 0.885240i \(-0.346006\pi\)
0.465135 + 0.885240i \(0.346006\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 60.0000 + 103.923i 0.0941915 + 0.163145i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) 0 0
\(643\) −157.000 + 271.932i −0.244168 + 0.422911i −0.961897 0.273411i \(-0.911848\pi\)
0.717729 + 0.696322i \(0.245181\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −598.000 + 1035.77i −0.917178 + 1.58860i
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −539.500 + 934.441i −0.816188 + 1.41368i 0.0922844 + 0.995733i \(0.470583\pi\)
−0.908472 + 0.417946i \(0.862750\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −11.5000 19.9186i −0.0170877 0.0295967i 0.857355 0.514725i \(-0.172106\pi\)
−0.874443 + 0.485129i \(0.838773\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −672.000 −0.994083
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) 1085.50 1880.14i 1.59867 2.76899i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 176.000 304.841i 0.255814 0.443083i
\(689\) 0 0
\(690\) 0 0
\(691\) 659.000 + 1141.42i 0.953690 + 1.65184i 0.737337 + 0.675525i \(0.236083\pi\)
0.216353 + 0.976315i \(0.430584\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 650.000 + 1125.83i 0.928571 + 1.60833i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 517.000 0.735420
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −695.500 1204.64i −0.980959 1.69907i −0.658674 0.752428i \(-0.728882\pi\)
−0.322285 0.946643i \(-0.604451\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 481.000 0.667129
\(722\) 0 0
\(723\) 0 0
\(724\) 626.000 1084.26i 0.864641 1.49760i
\(725\) 0 0
\(726\) 0 0
\(727\) −241.000 417.424i −0.331499 0.574174i 0.651307 0.758815i \(-0.274221\pi\)
−0.982806 + 0.184641i \(0.940888\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −517.000 + 895.470i −0.705321 + 1.22165i 0.261255 + 0.965270i \(0.415864\pi\)
−0.966576 + 0.256381i \(0.917470\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1222.00 −1.65359 −0.826793 0.562506i \(-0.809837\pi\)
−0.826793 + 0.562506i \(0.809837\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −89.5000 + 155.019i −0.119174 + 0.206416i −0.919441 0.393229i \(-0.871358\pi\)
0.800266 + 0.599645i \(0.204691\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −673.000 −0.889036 −0.444518 0.895770i \(-0.646625\pi\)
−0.444518 + 0.895770i \(0.646625\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) −1391.00 2409.28i −1.82307 3.15764i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −431.500 + 747.380i −0.561118 + 0.971885i 0.436281 + 0.899811i \(0.356295\pi\)
−0.997399 + 0.0720749i \(0.977038\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −286.000 495.367i −0.370466 0.641666i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −1150.00 −1.48387
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1920.00 2.44898
\(785\) 0 0
\(786\) 0 0
\(787\) 306.500 530.874i 0.389454 0.674553i −0.602922 0.797800i \(-0.705997\pi\)
0.992376 + 0.123246i \(0.0393305\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 121.000 0.152585
\(794\) 0 0
\(795\) 0 0
\(796\) 554.000 959.556i 0.695980 1.20547i
\(797\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 1514.00 1.86683 0.933416 0.358797i \(-0.116813\pi\)
0.933416 + 0.358797i \(0.116813\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 121.000 + 209.578i 0.148103 + 0.256522i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0 0
\(823\) 810.500 1403.83i 0.984812 1.70574i 0.342041 0.939685i \(-0.388882\pi\)
0.642770 0.766059i \(-0.277785\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −1609.00 −1.94089 −0.970446 0.241317i \(-0.922421\pi\)
−0.970446 + 0.241317i \(0.922421\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 32.0000 55.4256i 0.0384615 0.0666173i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(840\) 0 0
\(841\) −420.500 + 728.327i −0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 506.000 + 876.418i 0.599526 + 1.03841i
\(845\) 0 0
\(846\) 0 0
\(847\) −1573.00 −1.85714
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 240.500 + 416.558i 0.281946 + 0.488345i 0.971864 0.235543i \(-0.0756867\pi\)
−0.689918 + 0.723888i \(0.742353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(858\) 0 0
\(859\) 774.500 1341.47i 0.901630 1.56167i 0.0762515 0.997089i \(-0.475705\pi\)
0.825378 0.564580i \(-0.190962\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) −1196.00 + 2071.53i −1.37788 + 2.38656i
\(869\) 0 0
\(870\) 0 0
\(871\) −54.5000 94.3968i −0.0625718 0.108377i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −863.500 + 1495.63i −0.984607 + 1.70539i −0.340935 + 0.940087i \(0.610744\pi\)
−0.643672 + 0.765302i \(0.722590\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 443.000 0.501699 0.250849 0.968026i \(-0.419290\pi\)
0.250849 + 0.968026i \(0.419290\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 949.000 + 1643.72i 1.06749 + 1.84895i
\(890\) 0 0
\(891\) 0 0
\(892\) 1352.00 1.51570
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 726.500 + 1258.33i 0.800992 + 1.38736i 0.918964 + 0.394342i \(0.129028\pi\)
−0.117971 + 0.993017i \(0.537639\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −52.0000 90.0666i −0.0567686 0.0983260i
\(917\) 0 0
\(918\) 0 0
\(919\) 866.000 0.942329 0.471164 0.882045i \(-0.343834\pi\)
0.471164 + 0.882045i \(0.343834\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −587.500 1017.58i −0.635135 1.10009i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(930\) 0 0
\(931\) −660.000 + 1143.15i −0.708915 + 1.22788i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1847.00 1.97118 0.985592 0.169138i \(-0.0540985\pi\)
0.985592 + 0.169138i \(0.0540985\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 0 0
\(949\) −48.5000 + 84.0045i −0.0511064 + 0.0885189i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −577.500 1000.26i −0.600937 1.04085i
\(962\) 0 0
\(963\) 0 0
\(964\) −772.000 −0.800830
\(965\) 0 0
\(966\) 0 0
\(967\) 126.500 219.104i 0.130817 0.226582i −0.793175 0.608994i \(-0.791573\pi\)
0.923992 + 0.382412i \(0.124907\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) −3263.00 −3.35355
\(974\) 0 0
\(975\) 0 0
\(976\) 968.000 1676.63i 0.991803 1.71785i
\(977\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 22.0000 + 38.1051i 0.0222672 + 0.0385679i
\(989\) 0 0
\(990\) 0 0
\(991\) 1739.00 1.75479 0.877397 0.479766i \(-0.159278\pi\)
0.877397 + 0.479766i \(0.159278\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 947.000 + 1640.25i 0.949850 + 1.64519i 0.745737 + 0.666240i \(0.232097\pi\)
0.204112 + 0.978947i \(0.434569\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.3.d.a.53.1 2
3.2 odd 2 CM 81.3.d.a.53.1 2
4.3 odd 2 1296.3.q.a.1025.1 2
9.2 odd 6 inner 81.3.d.a.26.1 2
9.4 even 3 27.3.b.a.26.1 1
9.5 odd 6 27.3.b.a.26.1 1
9.7 even 3 inner 81.3.d.a.26.1 2
12.11 even 2 1296.3.q.a.1025.1 2
36.7 odd 6 1296.3.q.a.593.1 2
36.11 even 6 1296.3.q.a.593.1 2
36.23 even 6 432.3.e.b.161.1 1
36.31 odd 6 432.3.e.b.161.1 1
45.4 even 6 675.3.c.c.26.1 1
45.13 odd 12 675.3.d.c.674.2 2
45.14 odd 6 675.3.c.c.26.1 1
45.22 odd 12 675.3.d.c.674.1 2
45.23 even 12 675.3.d.c.674.2 2
45.32 even 12 675.3.d.c.674.1 2
72.5 odd 6 1728.3.e.a.1025.1 1
72.13 even 6 1728.3.e.a.1025.1 1
72.59 even 6 1728.3.e.d.1025.1 1
72.67 odd 6 1728.3.e.d.1025.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.b.a.26.1 1 9.4 even 3
27.3.b.a.26.1 1 9.5 odd 6
81.3.d.a.26.1 2 9.2 odd 6 inner
81.3.d.a.26.1 2 9.7 even 3 inner
81.3.d.a.53.1 2 1.1 even 1 trivial
81.3.d.a.53.1 2 3.2 odd 2 CM
432.3.e.b.161.1 1 36.23 even 6
432.3.e.b.161.1 1 36.31 odd 6
675.3.c.c.26.1 1 45.4 even 6
675.3.c.c.26.1 1 45.14 odd 6
675.3.d.c.674.1 2 45.22 odd 12
675.3.d.c.674.1 2 45.32 even 12
675.3.d.c.674.2 2 45.13 odd 12
675.3.d.c.674.2 2 45.23 even 12
1296.3.q.a.593.1 2 36.7 odd 6
1296.3.q.a.593.1 2 36.11 even 6
1296.3.q.a.1025.1 2 4.3 odd 2
1296.3.q.a.1025.1 2 12.11 even 2
1728.3.e.a.1025.1 1 72.5 odd 6
1728.3.e.a.1025.1 1 72.13 even 6
1728.3.e.d.1025.1 1 72.59 even 6
1728.3.e.d.1025.1 1 72.67 odd 6