Properties

Label 81.2.g.a.7.8
Level $81$
Weight $2$
Character 81.7
Analytic conductor $0.647$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,2,Mod(4,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.646788256372\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 7.8
Character \(\chi\) \(=\) 81.7
Dual form 81.2.g.a.58.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.55705 + 2.09149i) q^{2} +(-1.63477 - 0.572310i) q^{3} +(-1.37629 + 4.59713i) q^{4} +(-0.270787 + 0.178099i) q^{5} +(-1.34844 - 4.31021i) q^{6} +(2.64546 - 2.80403i) q^{7} +(-6.85740 + 2.49589i) q^{8} +(2.34492 + 1.87119i) q^{9} +O(q^{10})\) \(q+(1.55705 + 2.09149i) q^{2} +(-1.63477 - 0.572310i) q^{3} +(-1.37629 + 4.59713i) q^{4} +(-0.270787 + 0.178099i) q^{5} +(-1.34844 - 4.31021i) q^{6} +(2.64546 - 2.80403i) q^{7} +(-6.85740 + 2.49589i) q^{8} +(2.34492 + 1.87119i) q^{9} +(-0.794122 - 0.289037i) q^{10} +(1.12552 - 0.565257i) q^{11} +(4.88089 - 6.72756i) q^{12} +(-1.55767 - 3.61109i) q^{13} +(9.98370 + 1.16693i) q^{14} +(0.544602 - 0.136177i) q^{15} +(-7.87890 - 5.18204i) q^{16} +(-3.68665 + 3.09347i) q^{17} +(-0.262390 + 7.81791i) q^{18} +(-3.47862 - 2.91891i) q^{19} +(-0.446064 - 1.48996i) q^{20} +(-5.92948 + 3.06990i) q^{21} +(2.93472 + 1.47387i) q^{22} +(0.385450 + 0.408553i) q^{23} +(12.6387 - 0.155637i) q^{24} +(-1.93879 + 4.49463i) q^{25} +(5.12716 - 8.88050i) q^{26} +(-2.76250 - 4.40098i) q^{27} +(9.24954 + 16.0207i) q^{28} +(2.11898 - 0.247673i) q^{29} +(1.13279 + 0.926991i) q^{30} +(3.69897 - 0.876672i) q^{31} +(-0.581095 - 9.97701i) q^{32} +(-2.16346 + 0.279917i) q^{33} +(-12.2103 - 2.89389i) q^{34} +(-0.216961 + 1.23045i) q^{35} +(-11.8294 + 8.20461i) q^{36} +(-0.248079 - 1.40693i) q^{37} +(0.688459 - 11.8204i) q^{38} +(0.479767 + 6.79475i) q^{39} +(1.41238 - 1.89715i) q^{40} +(-5.63875 + 7.57416i) q^{41} +(-15.6532 - 7.62143i) q^{42} +(0.210389 - 3.61224i) q^{43} +(1.04952 + 5.95211i) q^{44} +(-0.968232 - 0.0890637i) q^{45} +(-0.254317 + 1.44230i) q^{46} +(3.70075 + 0.877094i) q^{47} +(9.91443 + 12.9806i) q^{48} +(-0.457078 - 7.84773i) q^{49} +(-12.4192 + 2.94342i) q^{50} +(7.79724 - 2.94719i) q^{51} +(18.7444 - 2.19091i) q^{52} +(-3.57369 - 6.18982i) q^{53} +(4.90321 - 12.6303i) q^{54} +(-0.204104 + 0.353518i) q^{55} +(-11.1425 + 25.8311i) q^{56} +(4.01621 + 6.76258i) q^{57} +(3.81736 + 4.04617i) q^{58} +(5.22384 + 2.62351i) q^{59} +(-0.123507 + 2.69102i) q^{60} +(2.64794 + 8.84474i) q^{61} +(7.59304 + 6.37131i) q^{62} +(11.4503 - 1.62507i) q^{63} +(5.51392 - 4.62673i) q^{64} +(1.06493 + 0.700415i) q^{65} +(-3.95407 - 4.08900i) q^{66} +(-0.214231 - 0.0250400i) q^{67} +(-9.14717 - 21.2055i) q^{68} +(-0.396301 - 0.888485i) q^{69} +(-2.91129 + 1.46210i) q^{70} +(-11.2063 - 4.07874i) q^{71} +(-20.7503 - 6.97881i) q^{72} +(7.37938 - 2.68588i) q^{73} +(2.55629 - 2.70951i) q^{74} +(5.74179 - 6.23807i) q^{75} +(18.2062 - 11.9744i) q^{76} +(1.39252 - 4.65135i) q^{77} +(-13.4641 + 11.5832i) q^{78} +(4.98085 + 6.69044i) q^{79} +3.05642 q^{80} +(1.99732 + 8.77557i) q^{81} -24.6211 q^{82} +(0.396004 + 0.531925i) q^{83} +(-5.95205 - 31.4837i) q^{84} +(0.447353 - 1.49426i) q^{85} +(7.88253 - 5.18442i) q^{86} +(-3.60578 - 0.807824i) q^{87} +(-6.30731 + 6.68536i) q^{88} +(1.56940 - 0.571214i) q^{89} +(-1.32131 - 2.16372i) q^{90} +(-14.2463 - 5.18524i) q^{91} +(-2.40866 + 1.20967i) q^{92} +(-6.54868 - 0.683804i) q^{93} +(3.92784 + 9.10575i) q^{94} +(1.46182 + 0.170862i) q^{95} +(-4.75999 + 16.6427i) q^{96} +(13.4681 + 8.85812i) q^{97} +(15.7017 - 13.1753i) q^{98} +(3.69695 + 0.780572i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9} - 18 q^{10} - 18 q^{11} - 18 q^{12} - 18 q^{13} - 18 q^{14} - 18 q^{15} - 18 q^{16} - 18 q^{17} - 9 q^{18} - 18 q^{19} + 18 q^{20} + 9 q^{21} - 18 q^{22} + 9 q^{23} + 36 q^{24} - 18 q^{25} + 45 q^{26} + 9 q^{27} - 9 q^{28} + 9 q^{29} + 36 q^{30} - 18 q^{31} + 36 q^{32} + 9 q^{33} - 18 q^{34} + 9 q^{35} + 18 q^{36} - 18 q^{37} - 9 q^{38} - 18 q^{39} - 18 q^{40} + 27 q^{42} - 18 q^{43} + 54 q^{44} + 36 q^{45} - 18 q^{46} + 36 q^{47} + 81 q^{48} - 18 q^{49} + 99 q^{50} + 45 q^{51} + 45 q^{53} + 108 q^{54} - 9 q^{55} + 126 q^{56} + 36 q^{57} - 18 q^{58} + 45 q^{59} + 99 q^{60} - 18 q^{61} + 81 q^{62} + 36 q^{63} - 18 q^{64} - 18 q^{66} + 9 q^{67} - 99 q^{68} - 72 q^{69} + 36 q^{70} - 90 q^{71} - 234 q^{72} - 18 q^{73} - 162 q^{74} - 108 q^{75} + 63 q^{76} - 162 q^{77} - 135 q^{78} + 36 q^{79} - 288 q^{80} - 90 q^{81} - 36 q^{82} - 90 q^{83} - 243 q^{84} + 36 q^{85} - 162 q^{86} - 162 q^{87} + 63 q^{88} - 81 q^{89} - 99 q^{90} - 18 q^{91} - 144 q^{92} + 36 q^{94} + 18 q^{95} - 27 q^{96} + 9 q^{97} + 81 q^{98} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55705 + 2.09149i 1.10100 + 1.47890i 0.861327 + 0.508050i \(0.169634\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(3\) −1.63477 0.572310i −0.943833 0.330423i
\(4\) −1.37629 + 4.59713i −0.688145 + 2.29856i
\(5\) −0.270787 + 0.178099i −0.121100 + 0.0796485i −0.608614 0.793467i \(-0.708274\pi\)
0.487514 + 0.873115i \(0.337904\pi\)
\(6\) −1.34844 4.31021i −0.550498 1.75963i
\(7\) 2.64546 2.80403i 0.999891 1.05982i 0.00168159 0.999999i \(-0.499465\pi\)
0.998209 0.0598235i \(-0.0190538\pi\)
\(8\) −6.85740 + 2.49589i −2.42446 + 0.882430i
\(9\) 2.34492 + 1.87119i 0.781641 + 0.623729i
\(10\) −0.794122 0.289037i −0.251123 0.0914014i
\(11\) 1.12552 0.565257i 0.339357 0.170431i −0.270956 0.962592i \(-0.587340\pi\)
0.610313 + 0.792160i \(0.291044\pi\)
\(12\) 4.88089 6.72756i 1.40899 1.94208i
\(13\) −1.55767 3.61109i −0.432020 1.00154i −0.985655 0.168775i \(-0.946019\pi\)
0.553634 0.832760i \(-0.313241\pi\)
\(14\) 9.98370 + 1.16693i 2.66826 + 0.311874i
\(15\) 0.544602 0.136177i 0.140616 0.0351607i
\(16\) −7.87890 5.18204i −1.96973 1.29551i
\(17\) −3.68665 + 3.09347i −0.894145 + 0.750277i −0.969037 0.246915i \(-0.920583\pi\)
0.0748921 + 0.997192i \(0.476139\pi\)
\(18\) −0.262390 + 7.81791i −0.0618459 + 1.84270i
\(19\) −3.47862 2.91891i −0.798050 0.669644i 0.149673 0.988735i \(-0.452178\pi\)
−0.947724 + 0.319092i \(0.896622\pi\)
\(20\) −0.446064 1.48996i −0.0997430 0.333165i
\(21\) −5.92948 + 3.06990i −1.29392 + 0.669908i
\(22\) 2.93472 + 1.47387i 0.625684 + 0.314230i
\(23\) 0.385450 + 0.408553i 0.0803718 + 0.0851892i 0.766311 0.642469i \(-0.222090\pi\)
−0.685939 + 0.727659i \(0.740609\pi\)
\(24\) 12.6387 0.155637i 2.57986 0.0317694i
\(25\) −1.93879 + 4.49463i −0.387759 + 0.898925i
\(26\) 5.12716 8.88050i 1.00552 1.74161i
\(27\) −2.76250 4.40098i −0.531644 0.846968i
\(28\) 9.24954 + 16.0207i 1.74800 + 3.02762i
\(29\) 2.11898 0.247673i 0.393484 0.0459917i 0.0829493 0.996554i \(-0.473566\pi\)
0.310535 + 0.950562i \(0.399492\pi\)
\(30\) 1.13279 + 0.926991i 0.206817 + 0.169245i
\(31\) 3.69897 0.876672i 0.664354 0.157455i 0.115415 0.993317i \(-0.463180\pi\)
0.548939 + 0.835862i \(0.315032\pi\)
\(32\) −0.581095 9.97701i −0.102724 1.76370i
\(33\) −2.16346 + 0.279917i −0.376610 + 0.0487273i
\(34\) −12.2103 2.89389i −2.09404 0.496297i
\(35\) −0.216961 + 1.23045i −0.0366732 + 0.207984i
\(36\) −11.8294 + 8.20461i −1.97156 + 1.36744i
\(37\) −0.248079 1.40693i −0.0407839 0.231297i 0.957602 0.288095i \(-0.0930220\pi\)
−0.998386 + 0.0567981i \(0.981911\pi\)
\(38\) 0.688459 11.8204i 0.111683 1.91752i
\(39\) 0.479767 + 6.79475i 0.0768242 + 1.08803i
\(40\) 1.41238 1.89715i 0.223317 0.299966i
\(41\) −5.63875 + 7.57416i −0.880625 + 1.18289i 0.101533 + 0.994832i \(0.467625\pi\)
−0.982159 + 0.188053i \(0.939782\pi\)
\(42\) −15.6532 7.62143i −2.41534 1.17601i
\(43\) 0.210389 3.61224i 0.0320840 0.550861i −0.943519 0.331319i \(-0.892506\pi\)
0.975603 0.219543i \(-0.0704565\pi\)
\(44\) 1.04952 + 5.95211i 0.158221 + 0.897314i
\(45\) −0.968232 0.0890637i −0.144335 0.0132768i
\(46\) −0.254317 + 1.44230i −0.0374969 + 0.212656i
\(47\) 3.70075 + 0.877094i 0.539810 + 0.127937i 0.491471 0.870894i \(-0.336459\pi\)
0.0483385 + 0.998831i \(0.484607\pi\)
\(48\) 9.91443 + 12.9806i 1.43103 + 1.87359i
\(49\) −0.457078 7.84773i −0.0652969 1.12110i
\(50\) −12.4192 + 2.94342i −1.75635 + 0.416262i
\(51\) 7.79724 2.94719i 1.09183 0.412689i
\(52\) 18.7444 2.19091i 2.59939 0.303825i
\(53\) −3.57369 6.18982i −0.490884 0.850237i 0.509061 0.860731i \(-0.329993\pi\)
−0.999945 + 0.0104941i \(0.996660\pi\)
\(54\) 4.90321 12.6303i 0.667243 1.71876i
\(55\) −0.204104 + 0.353518i −0.0275214 + 0.0476684i
\(56\) −11.1425 + 25.8311i −1.48897 + 3.45183i
\(57\) 4.01621 + 6.76258i 0.531960 + 0.895726i
\(58\) 3.81736 + 4.04617i 0.501244 + 0.531288i
\(59\) 5.22384 + 2.62351i 0.680086 + 0.341552i 0.755081 0.655632i \(-0.227598\pi\)
−0.0749947 + 0.997184i \(0.523894\pi\)
\(60\) −0.123507 + 2.69102i −0.0159447 + 0.347409i
\(61\) 2.64794 + 8.84474i 0.339034 + 1.13245i 0.942260 + 0.334883i \(0.108697\pi\)
−0.603225 + 0.797571i \(0.706118\pi\)
\(62\) 7.59304 + 6.37131i 0.964317 + 0.809158i
\(63\) 11.4503 1.62507i 1.44260 0.204740i
\(64\) 5.51392 4.62673i 0.689240 0.578341i
\(65\) 1.06493 + 0.700415i 0.132088 + 0.0868758i
\(66\) −3.95407 4.08900i −0.486712 0.503321i
\(67\) −0.214231 0.0250400i −0.0261725 0.00305913i 0.102997 0.994682i \(-0.467157\pi\)
−0.129169 + 0.991623i \(0.541231\pi\)
\(68\) −9.14717 21.2055i −1.10926 2.57155i
\(69\) −0.396301 0.888485i −0.0477091 0.106961i
\(70\) −2.91129 + 1.46210i −0.347965 + 0.174755i
\(71\) −11.2063 4.07874i −1.32994 0.484058i −0.423308 0.905986i \(-0.639131\pi\)
−0.906629 + 0.421928i \(0.861354\pi\)
\(72\) −20.7503 6.97881i −2.44545 0.822460i
\(73\) 7.37938 2.68588i 0.863691 0.314358i 0.128082 0.991764i \(-0.459118\pi\)
0.735610 + 0.677406i \(0.236896\pi\)
\(74\) 2.55629 2.70951i 0.297163 0.314974i
\(75\) 5.74179 6.23807i 0.663005 0.720311i
\(76\) 18.2062 11.9744i 2.08839 1.37356i
\(77\) 1.39252 4.65135i 0.158693 0.530070i
\(78\) −13.4641 + 11.5832i −1.52451 + 1.31154i
\(79\) 4.98085 + 6.69044i 0.560389 + 0.752733i 0.988538 0.150975i \(-0.0482414\pi\)
−0.428149 + 0.903708i \(0.640834\pi\)
\(80\) 3.05642 0.341718
\(81\) 1.99732 + 8.77557i 0.221925 + 0.975064i
\(82\) −24.6211 −2.71894
\(83\) 0.396004 + 0.531925i 0.0434670 + 0.0583864i 0.823325 0.567570i \(-0.192116\pi\)
−0.779858 + 0.625956i \(0.784709\pi\)
\(84\) −5.95205 31.4837i −0.649421 3.43515i
\(85\) 0.447353 1.49426i 0.0485222 0.162076i
\(86\) 7.88253 5.18442i 0.849995 0.559051i
\(87\) −3.60578 0.807824i −0.386580 0.0866078i
\(88\) −6.30731 + 6.68536i −0.672362 + 0.712662i
\(89\) 1.56940 0.571214i 0.166356 0.0605486i −0.257500 0.966278i \(-0.582899\pi\)
0.423856 + 0.905730i \(0.360676\pi\)
\(90\) −1.32131 2.16372i −0.139279 0.228076i
\(91\) −14.2463 5.18524i −1.49342 0.543561i
\(92\) −2.40866 + 1.20967i −0.251120 + 0.126117i
\(93\) −6.54868 0.683804i −0.679066 0.0709071i
\(94\) 3.92784 + 9.10575i 0.405125 + 0.939186i
\(95\) 1.46182 + 0.170862i 0.149980 + 0.0175301i
\(96\) −4.75999 + 16.6427i −0.485815 + 1.69858i
\(97\) 13.4681 + 8.85812i 1.36748 + 0.899405i 0.999537 0.0304429i \(-0.00969178\pi\)
0.367943 + 0.929848i \(0.380062\pi\)
\(98\) 15.7017 13.1753i 1.58611 1.33091i
\(99\) 3.69695 + 0.780572i 0.371558 + 0.0784504i
\(100\) −17.9940 15.0988i −1.79940 1.50988i
\(101\) −0.991482 3.31178i −0.0986562 0.329535i 0.894386 0.447297i \(-0.147613\pi\)
−0.993042 + 0.117762i \(0.962428\pi\)
\(102\) 18.3047 + 11.7189i 1.81244 + 1.16034i
\(103\) −5.55153 2.78808i −0.547009 0.274718i 0.153758 0.988109i \(-0.450862\pi\)
−0.700767 + 0.713390i \(0.747159\pi\)
\(104\) 19.6944 + 20.8749i 1.93120 + 2.04695i
\(105\) 1.05888 1.88733i 0.103336 0.184184i
\(106\) 7.38148 17.1122i 0.716953 1.66208i
\(107\) −0.773565 + 1.33985i −0.0747833 + 0.129529i −0.900992 0.433836i \(-0.857160\pi\)
0.826209 + 0.563364i \(0.190493\pi\)
\(108\) 24.0338 6.64255i 2.31266 0.639180i
\(109\) 6.28071 + 10.8785i 0.601583 + 1.04197i 0.992581 + 0.121581i \(0.0387965\pi\)
−0.390998 + 0.920391i \(0.627870\pi\)
\(110\) −1.05718 + 0.123566i −0.100798 + 0.0117816i
\(111\) −0.399647 + 2.44197i −0.0379328 + 0.231782i
\(112\) −35.3739 + 8.38377i −3.34252 + 0.792192i
\(113\) −1.13750 19.5301i −0.107007 1.83724i −0.444350 0.895853i \(-0.646565\pi\)
0.337343 0.941382i \(-0.390472\pi\)
\(114\) −7.89039 + 18.9295i −0.739003 + 1.77291i
\(115\) −0.177138 0.0419824i −0.0165182 0.00391488i
\(116\) −1.77774 + 10.0821i −0.165059 + 0.936097i
\(117\) 3.10440 11.3824i 0.287002 1.05230i
\(118\) 2.64676 + 15.0105i 0.243654 + 1.38183i
\(119\) −1.07873 + 18.5211i −0.0988873 + 1.69783i
\(120\) −3.39467 + 2.29308i −0.309889 + 0.209329i
\(121\) −5.62147 + 7.55094i −0.511043 + 0.686449i
\(122\) −14.3757 + 19.3099i −1.30151 + 1.74823i
\(123\) 13.5528 9.15487i 1.22202 0.825467i
\(124\) −1.06068 + 18.2112i −0.0952519 + 1.63541i
\(125\) −0.556893 3.15830i −0.0498100 0.282487i
\(126\) 21.2275 + 21.4177i 1.89109 + 1.90804i
\(127\) 0.0822160 0.466270i 0.00729549 0.0413748i −0.980943 0.194297i \(-0.937757\pi\)
0.988238 + 0.152922i \(0.0488685\pi\)
\(128\) −1.18687 0.281293i −0.104905 0.0248630i
\(129\) −2.41126 + 5.78476i −0.212299 + 0.509320i
\(130\) 0.193244 + 3.31787i 0.0169486 + 0.290996i
\(131\) −6.81702 + 1.61566i −0.595606 + 0.141161i −0.517353 0.855772i \(-0.673082\pi\)
−0.0782533 + 0.996934i \(0.524934\pi\)
\(132\) 1.69074 10.3310i 0.147160 0.899194i
\(133\) −17.3873 + 2.03228i −1.50767 + 0.176221i
\(134\) −0.281198 0.487050i −0.0242918 0.0420747i
\(135\) 1.53186 + 0.699727i 0.131842 + 0.0602229i
\(136\) 17.5599 30.4146i 1.50575 2.60803i
\(137\) 7.86676 18.2372i 0.672103 1.55811i −0.149947 0.988694i \(-0.547910\pi\)
0.822050 0.569416i \(-0.192830\pi\)
\(138\) 1.24119 2.21228i 0.105657 0.188322i
\(139\) −10.6118 11.2479i −0.900085 0.954035i 0.0990721 0.995080i \(-0.468413\pi\)
−0.999157 + 0.0410457i \(0.986931\pi\)
\(140\) −5.35793 2.69085i −0.452828 0.227419i
\(141\) −5.54789 3.55182i −0.467217 0.299117i
\(142\) −8.91810 29.7885i −0.748390 2.49980i
\(143\) −3.79438 3.18386i −0.317302 0.266248i
\(144\) −8.77886 26.8944i −0.731572 2.24120i
\(145\) −0.529681 + 0.444455i −0.0439876 + 0.0369100i
\(146\) 17.1076 + 11.2518i 1.41583 + 0.931207i
\(147\) −3.74412 + 13.0908i −0.308810 + 1.07971i
\(148\) 6.80924 + 0.795887i 0.559716 + 0.0654215i
\(149\) 3.42553 + 7.94126i 0.280630 + 0.650574i 0.998982 0.0451060i \(-0.0143626\pi\)
−0.718352 + 0.695680i \(0.755103\pi\)
\(150\) 21.9871 + 2.29586i 1.79524 + 0.187456i
\(151\) −2.70768 + 1.35985i −0.220348 + 0.110663i −0.555549 0.831484i \(-0.687492\pi\)
0.335201 + 0.942147i \(0.391196\pi\)
\(152\) 31.1396 + 11.3339i 2.52575 + 0.919299i
\(153\) −14.4334 + 0.355530i −1.16687 + 0.0287429i
\(154\) 11.8965 4.32995i 0.958643 0.348918i
\(155\) −0.845498 + 0.896175i −0.0679120 + 0.0719825i
\(156\) −31.8966 7.14600i −2.55378 0.572138i
\(157\) −7.77296 + 5.11236i −0.620350 + 0.408011i −0.820412 0.571773i \(-0.806256\pi\)
0.200062 + 0.979783i \(0.435886\pi\)
\(158\) −6.23751 + 20.8347i −0.496230 + 1.65752i
\(159\) 2.29966 + 12.1642i 0.182375 + 0.964681i
\(160\) 1.93425 + 2.59815i 0.152916 + 0.205402i
\(161\) 2.16529 0.170648
\(162\) −15.2440 + 17.8414i −1.19769 + 1.40175i
\(163\) 2.41567 0.189210 0.0946048 0.995515i \(-0.469841\pi\)
0.0946048 + 0.995515i \(0.469841\pi\)
\(164\) −27.0588 36.3463i −2.11294 2.83817i
\(165\) 0.535984 0.461109i 0.0417263 0.0358973i
\(166\) −0.495915 + 1.65647i −0.0384905 + 0.128567i
\(167\) −0.420792 + 0.276759i −0.0325619 + 0.0214163i −0.565686 0.824621i \(-0.691388\pi\)
0.533124 + 0.846037i \(0.321018\pi\)
\(168\) 32.9987 35.8509i 2.54591 2.76596i
\(169\) −1.69247 + 1.79391i −0.130190 + 0.137993i
\(170\) 3.82178 1.39101i 0.293117 0.106686i
\(171\) −2.69527 13.3538i −0.206113 1.02119i
\(172\) 16.3164 + 5.93867i 1.24411 + 0.452820i
\(173\) −4.77024 + 2.39570i −0.362674 + 0.182142i −0.620799 0.783970i \(-0.713192\pi\)
0.258125 + 0.966112i \(0.416895\pi\)
\(174\) −3.92483 8.79925i −0.297541 0.667069i
\(175\) 7.47405 + 17.3268i 0.564985 + 1.30978i
\(176\) −11.7970 1.37887i −0.889234 0.103937i
\(177\) −7.03830 7.27848i −0.529031 0.547084i
\(178\) 3.63832 + 2.39296i 0.272704 + 0.179360i
\(179\) −13.8827 + 11.6490i −1.03764 + 0.870683i −0.991740 0.128263i \(-0.959060\pi\)
−0.0458999 + 0.998946i \(0.514616\pi\)
\(180\) 1.74200 4.32851i 0.129841 0.322628i
\(181\) 8.98433 + 7.53875i 0.667800 + 0.560351i 0.912413 0.409270i \(-0.134217\pi\)
−0.244613 + 0.969621i \(0.578661\pi\)
\(182\) −11.3374 37.8697i −0.840387 2.80709i
\(183\) 0.733168 15.9745i 0.0541974 1.18087i
\(184\) −3.66289 1.83957i −0.270032 0.135615i
\(185\) 0.317749 + 0.336794i 0.0233614 + 0.0247616i
\(186\) −8.76647 14.7612i −0.642789 1.08234i
\(187\) −2.40079 + 5.56566i −0.175563 + 0.407002i
\(188\) −9.12542 + 15.8057i −0.665539 + 1.15275i
\(189\) −19.6485 3.89649i −1.42922 0.283428i
\(190\) 1.91878 + 3.32342i 0.139203 + 0.241106i
\(191\) 19.7542 2.30893i 1.42936 0.167069i 0.634061 0.773283i \(-0.281387\pi\)
0.795301 + 0.606214i \(0.207313\pi\)
\(192\) −11.6619 + 4.40795i −0.841625 + 0.318116i
\(193\) 15.5278 3.68015i 1.11771 0.264903i 0.370071 0.929004i \(-0.379333\pi\)
0.747643 + 0.664100i \(0.231185\pi\)
\(194\) 2.44394 + 41.9609i 0.175465 + 3.01262i
\(195\) −1.34006 1.75448i −0.0959634 0.125641i
\(196\) 36.7061 + 8.69950i 2.62186 + 0.621393i
\(197\) −1.15341 + 6.54129i −0.0821768 + 0.466048i 0.915753 + 0.401741i \(0.131595\pi\)
−0.997930 + 0.0643070i \(0.979516\pi\)
\(198\) 4.12380 + 8.94751i 0.293066 + 0.635872i
\(199\) −0.983166 5.57581i −0.0696948 0.395259i −0.999621 0.0275137i \(-0.991241\pi\)
0.929927 0.367745i \(-0.119870\pi\)
\(200\) 2.07699 35.6605i 0.146865 2.52158i
\(201\) 0.335887 + 0.163541i 0.0236917 + 0.0115353i
\(202\) 5.38275 7.23029i 0.378729 0.508721i
\(203\) 4.91119 6.59687i 0.344698 0.463009i
\(204\) 2.81735 + 39.9011i 0.197254 + 2.79364i
\(205\) 0.177948 3.05524i 0.0124284 0.213387i
\(206\) −2.81279 15.9521i −0.195977 1.11144i
\(207\) 0.139371 + 1.67927i 0.00968697 + 0.116718i
\(208\) −6.44004 + 36.5233i −0.446537 + 2.53244i
\(209\) −5.56518 1.31897i −0.384952 0.0912353i
\(210\) 5.59605 0.724038i 0.386164 0.0499634i
\(211\) −0.888331 15.2520i −0.0611552 1.04999i −0.879693 0.475542i \(-0.842252\pi\)
0.818538 0.574453i \(-0.194785\pi\)
\(212\) 33.3738 7.90974i 2.29212 0.543243i
\(213\) 15.9853 + 13.0812i 1.09529 + 0.896312i
\(214\) −4.00676 + 0.468324i −0.273897 + 0.0320139i
\(215\) 0.586367 + 1.01562i 0.0399899 + 0.0692645i
\(216\) 29.9279 + 23.2844i 2.03634 + 1.58430i
\(217\) 7.32727 12.6912i 0.497408 0.861535i
\(218\) −12.9728 + 30.0744i −0.878632 + 2.03690i
\(219\) −13.6007 + 0.167485i −0.919051 + 0.0113176i
\(220\) −1.34426 1.42483i −0.0906301 0.0960623i
\(221\) 16.9134 + 8.49422i 1.13772 + 0.571383i
\(222\) −5.72962 + 2.96643i −0.384547 + 0.199094i
\(223\) −5.82713 19.4640i −0.390214 1.30340i −0.897266 0.441489i \(-0.854450\pi\)
0.507053 0.861915i \(-0.330735\pi\)
\(224\) −29.5131 24.7644i −1.97192 1.65464i
\(225\) −12.9566 + 6.91171i −0.863774 + 0.460781i
\(226\) 39.0757 32.7884i 2.59928 2.18105i
\(227\) 0.842376 + 0.554040i 0.0559105 + 0.0367729i 0.577157 0.816634i \(-0.304162\pi\)
−0.521246 + 0.853406i \(0.674533\pi\)
\(228\) −36.6159 + 9.15576i −2.42495 + 0.606355i
\(229\) 10.0678 + 1.17676i 0.665299 + 0.0777623i 0.442038 0.896996i \(-0.354256\pi\)
0.223261 + 0.974759i \(0.428330\pi\)
\(230\) −0.188007 0.435850i −0.0123968 0.0287391i
\(231\) −4.93846 + 6.80691i −0.324927 + 0.447862i
\(232\) −13.9125 + 6.98712i −0.913400 + 0.458727i
\(233\) 18.4171 + 6.70328i 1.20654 + 0.439146i 0.865504 0.500902i \(-0.166998\pi\)
0.341040 + 0.940049i \(0.389221\pi\)
\(234\) 28.6399 11.2302i 1.87225 0.734142i
\(235\) −1.15832 + 0.421596i −0.0755608 + 0.0275019i
\(236\) −19.2501 + 20.4039i −1.25308 + 1.32818i
\(237\) −4.31352 13.7879i −0.280193 0.895620i
\(238\) −40.4163 + 26.5822i −2.61980 + 1.72307i
\(239\) 8.18779 27.3491i 0.529624 1.76907i −0.103078 0.994673i \(-0.532869\pi\)
0.632702 0.774395i \(-0.281946\pi\)
\(240\) −4.99654 1.74922i −0.322525 0.112912i
\(241\) −7.26635 9.76041i −0.468067 0.628723i 0.503922 0.863749i \(-0.331890\pi\)
−0.971989 + 0.235026i \(0.924482\pi\)
\(242\) −24.5456 −1.57785
\(243\) 1.75719 15.4891i 0.112724 0.993626i
\(244\) −44.3047 −2.83632
\(245\) 1.52145 + 2.04366i 0.0972017 + 0.130564i
\(246\) 40.2497 + 14.0909i 2.56623 + 0.898403i
\(247\) −5.12189 + 17.1083i −0.325898 + 1.08858i
\(248\) −23.1772 + 15.2439i −1.47176 + 0.967989i
\(249\) −0.342947 1.09621i −0.0217334 0.0694695i
\(250\) 5.73842 6.08237i 0.362929 0.384683i
\(251\) 4.11036 1.49605i 0.259444 0.0944298i −0.209024 0.977911i \(-0.567029\pi\)
0.468467 + 0.883481i \(0.344806\pi\)
\(252\) −8.28821 + 54.8749i −0.522108 + 3.45679i
\(253\) 0.664768 + 0.241956i 0.0417936 + 0.0152116i
\(254\) 1.10321 0.554054i 0.0692216 0.0347644i
\(255\) −1.58650 + 2.18675i −0.0993504 + 0.136939i
\(256\) −6.96159 16.1388i −0.435099 1.00867i
\(257\) −25.7692 3.01199i −1.60744 0.187883i −0.735511 0.677513i \(-0.763058\pi\)
−0.871930 + 0.489630i \(0.837132\pi\)
\(258\) −15.8532 + 3.96407i −0.986977 + 0.246792i
\(259\) −4.60134 3.02635i −0.285913 0.188048i
\(260\) −4.68555 + 3.93164i −0.290585 + 0.243830i
\(261\) 5.43227 + 3.38422i 0.336249 + 0.209478i
\(262\) −13.9936 11.7420i −0.864528 0.725425i
\(263\) 8.16665 + 27.2785i 0.503577 + 1.68207i 0.710491 + 0.703706i \(0.248473\pi\)
−0.206914 + 0.978359i \(0.566342\pi\)
\(264\) 14.1371 7.31926i 0.870077 0.450470i
\(265\) 2.07011 + 1.03965i 0.127166 + 0.0638651i
\(266\) −31.3234 33.2008i −1.92056 2.03567i
\(267\) −2.89251 + 0.0356195i −0.177019 + 0.00217988i
\(268\) 0.409956 0.950385i 0.0250421 0.0580540i
\(269\) 14.0246 24.2913i 0.855093 1.48106i −0.0214661 0.999770i \(-0.506833\pi\)
0.876559 0.481295i \(-0.159833\pi\)
\(270\) 0.921720 + 4.29338i 0.0560941 + 0.261287i
\(271\) 5.55847 + 9.62755i 0.337653 + 0.584832i 0.983991 0.178219i \(-0.0570337\pi\)
−0.646338 + 0.763051i \(0.723700\pi\)
\(272\) 45.0773 5.26878i 2.73321 0.319466i
\(273\) 20.3219 + 16.6300i 1.22994 + 1.00649i
\(274\) 50.3918 11.9431i 3.04428 0.721508i
\(275\) 0.358470 + 6.15470i 0.0216166 + 0.371142i
\(276\) 4.62991 0.599035i 0.278688 0.0360577i
\(277\) 10.6239 + 2.51790i 0.638326 + 0.151286i 0.537021 0.843569i \(-0.319550\pi\)
0.101306 + 0.994855i \(0.467698\pi\)
\(278\) 7.00161 39.7081i 0.419929 2.38153i
\(279\) 10.3142 + 4.86573i 0.617496 + 0.291304i
\(280\) −1.58327 8.97919i −0.0946187 0.536609i
\(281\) 0.272736 4.68269i 0.0162701 0.279346i −0.980354 0.197246i \(-0.936800\pi\)
0.996624 0.0821001i \(-0.0261627\pi\)
\(282\) −1.20978 17.1337i −0.0720416 1.02030i
\(283\) −19.3162 + 25.9462i −1.14823 + 1.54234i −0.353435 + 0.935459i \(0.614987\pi\)
−0.794794 + 0.606880i \(0.792421\pi\)
\(284\) 34.1735 45.9030i 2.02783 2.72384i
\(285\) −2.29195 1.11594i −0.135763 0.0661023i
\(286\) 0.750951 12.8933i 0.0444046 0.762398i
\(287\) 6.32103 + 35.8484i 0.373119 + 2.11606i
\(288\) 17.3062 24.4827i 1.01978 1.44265i
\(289\) 1.06984 6.06738i 0.0629319 0.356905i
\(290\) −1.75431 0.415779i −0.103017 0.0244154i
\(291\) −16.9476 22.1889i −0.993487 1.30074i
\(292\) 2.19114 + 37.6205i 0.128227 + 2.20157i
\(293\) 19.4786 4.61650i 1.13795 0.269699i 0.381894 0.924206i \(-0.375272\pi\)
0.756056 + 0.654507i \(0.227124\pi\)
\(294\) −33.2090 + 12.5523i −1.93679 + 0.732065i
\(295\) −1.88179 + 0.219950i −0.109562 + 0.0128060i
\(296\) 5.21271 + 9.02868i 0.302983 + 0.524781i
\(297\) −5.59693 3.39186i −0.324767 0.196815i
\(298\) −11.2753 + 19.5294i −0.653161 + 1.13131i
\(299\) 0.874916 2.02828i 0.0505977 0.117299i
\(300\) 20.7748 + 34.9811i 1.19944 + 2.01964i
\(301\) −9.57224 10.1460i −0.551735 0.584804i
\(302\) −7.06011 3.54572i −0.406264 0.204033i
\(303\) −0.274524 + 5.98143i −0.0157710 + 0.343624i
\(304\) 12.2818 + 41.0241i 0.704411 + 2.35290i
\(305\) −2.29227 1.92344i −0.131255 0.110136i
\(306\) −23.2171 29.6336i −1.32723 1.69404i
\(307\) −4.16550 + 3.49527i −0.237738 + 0.199486i −0.753871 0.657023i \(-0.771816\pi\)
0.516133 + 0.856509i \(0.327371\pi\)
\(308\) 19.4663 + 12.8032i 1.10920 + 0.729530i
\(309\) 7.47981 + 7.73506i 0.425511 + 0.440032i
\(310\) −3.19082 0.372954i −0.181227 0.0211823i
\(311\) 4.35270 + 10.0907i 0.246819 + 0.572191i 0.995918 0.0902679i \(-0.0287723\pi\)
−0.749099 + 0.662459i \(0.769513\pi\)
\(312\) −20.2489 45.3969i −1.14637 2.57009i
\(313\) 22.1598 11.1291i 1.25255 0.629053i 0.306127 0.951991i \(-0.400967\pi\)
0.946420 + 0.322938i \(0.104670\pi\)
\(314\) −22.7953 8.29683i −1.28642 0.468217i
\(315\) −2.81116 + 2.47933i −0.158391 + 0.139695i
\(316\) −37.6119 + 13.6896i −2.11583 + 0.770100i
\(317\) −16.0462 + 17.0080i −0.901246 + 0.955265i −0.999203 0.0399254i \(-0.987288\pi\)
0.0979563 + 0.995191i \(0.468769\pi\)
\(318\) −21.8605 + 23.7499i −1.22587 + 1.33183i
\(319\) 2.24495 1.47652i 0.125693 0.0826695i
\(320\) −0.669080 + 2.23488i −0.0374027 + 0.124934i
\(321\) 2.03141 1.74763i 0.113382 0.0975431i
\(322\) 3.37146 + 4.52866i 0.187884 + 0.252372i
\(323\) 21.8540 1.21599
\(324\) −43.0913 2.89579i −2.39396 0.160877i
\(325\) 19.2505 1.06783
\(326\) 3.76132 + 5.05233i 0.208320 + 0.279823i
\(327\) −4.04162 21.3783i −0.223502 1.18223i
\(328\) 19.7629 66.0128i 1.09123 3.64495i
\(329\) 12.2496 8.05668i 0.675342 0.444179i
\(330\) 1.79896 + 0.403032i 0.0990294 + 0.0221862i
\(331\) 10.7575 11.4023i 0.591288 0.626728i −0.360767 0.932656i \(-0.617485\pi\)
0.952055 + 0.305928i \(0.0989666\pi\)
\(332\) −2.99034 + 1.08840i −0.164116 + 0.0597335i
\(333\) 2.05089 3.76333i 0.112388 0.206229i
\(334\) −1.23403 0.449151i −0.0675233 0.0245765i
\(335\) 0.0624706 0.0313739i 0.00341313 0.00171414i
\(336\) 62.6262 + 6.53933i 3.41654 + 0.356750i
\(337\) −3.81544 8.84517i −0.207840 0.481827i 0.782128 0.623118i \(-0.214134\pi\)
−0.989968 + 0.141290i \(0.954875\pi\)
\(338\) −6.38721 0.746558i −0.347418 0.0406074i
\(339\) −9.31772 + 32.5781i −0.506069 + 1.76940i
\(340\) 6.25363 + 4.11308i 0.339151 + 0.223063i
\(341\) 3.66771 3.07758i 0.198618 0.166660i
\(342\) 23.7325 26.4296i 1.28331 1.42915i
\(343\) −2.54270 2.13358i −0.137293 0.115203i
\(344\) 7.57303 + 25.2957i 0.408310 + 1.36385i
\(345\) 0.265552 + 0.170009i 0.0142968 + 0.00915299i
\(346\) −12.4381 6.24664i −0.668676 0.335822i
\(347\) −14.6868 15.5671i −0.788427 0.835683i 0.201170 0.979556i \(-0.435526\pi\)
−0.989596 + 0.143873i \(0.954044\pi\)
\(348\) 8.67626 15.4644i 0.465096 0.828979i
\(349\) −12.2198 + 28.3286i −0.654108 + 1.51639i 0.190882 + 0.981613i \(0.438865\pi\)
−0.844991 + 0.534781i \(0.820394\pi\)
\(350\) −24.6012 + 42.6106i −1.31499 + 2.27763i
\(351\) −11.5892 + 16.8309i −0.618588 + 0.898367i
\(352\) −6.29361 10.9008i −0.335450 0.581017i
\(353\) −19.9661 + 2.33371i −1.06269 + 0.124211i −0.629429 0.777058i \(-0.716711\pi\)
−0.433261 + 0.901268i \(0.642637\pi\)
\(354\) 4.26384 26.0535i 0.226620 1.38473i
\(355\) 3.76093 0.891357i 0.199609 0.0473083i
\(356\) 0.465998 + 8.00088i 0.0246978 + 0.424046i
\(357\) 12.3633 29.6604i 0.654336 1.56979i
\(358\) −45.9797 10.8974i −2.43010 0.575945i
\(359\) −2.90565 + 16.4788i −0.153354 + 0.869715i 0.806921 + 0.590660i \(0.201132\pi\)
−0.960275 + 0.279056i \(0.909979\pi\)
\(360\) 6.86185 1.80585i 0.361651 0.0951769i
\(361\) 0.281455 + 1.59621i 0.0148134 + 0.0840111i
\(362\) −1.77810 + 30.5288i −0.0934550 + 1.60456i
\(363\) 13.5113 9.12680i 0.709158 0.479033i
\(364\) 43.4443 58.3558i 2.27710 3.05868i
\(365\) −1.51989 + 2.04156i −0.0795546 + 0.106860i
\(366\) 34.5521 23.3398i 1.80607 1.21999i
\(367\) −1.41904 + 24.3640i −0.0740733 + 1.27179i 0.732546 + 0.680718i \(0.238332\pi\)
−0.806619 + 0.591072i \(0.798705\pi\)
\(368\) −0.919785 5.21636i −0.0479471 0.271922i
\(369\) −27.3951 + 7.20966i −1.42613 + 0.375320i
\(370\) −0.209648 + 1.18897i −0.0108991 + 0.0618118i
\(371\) −26.8105 6.35420i −1.39193 0.329893i
\(372\) 12.1564 29.1640i 0.630280 1.51208i
\(373\) −0.753460 12.9364i −0.0390127 0.669822i −0.959960 0.280136i \(-0.909621\pi\)
0.920948 0.389686i \(-0.127416\pi\)
\(374\) −15.3787 + 3.64481i −0.795212 + 0.188469i
\(375\) −0.897135 + 5.48179i −0.0463279 + 0.283079i
\(376\) −27.5667 + 3.22208i −1.42164 + 0.166166i
\(377\) −4.19503 7.26601i −0.216055 0.374219i
\(378\) −22.4444 47.1617i −1.15441 2.42573i
\(379\) 5.56867 9.64522i 0.286043 0.495442i −0.686818 0.726829i \(-0.740993\pi\)
0.972862 + 0.231387i \(0.0743265\pi\)
\(380\) −2.79737 + 6.48502i −0.143502 + 0.332675i
\(381\) −0.401255 + 0.715190i −0.0205569 + 0.0366403i
\(382\) 35.5874 + 37.7204i 1.82081 + 1.92995i
\(383\) −28.3677 14.2468i −1.44952 0.727977i −0.462209 0.886771i \(-0.652943\pi\)
−0.987312 + 0.158795i \(0.949239\pi\)
\(384\) 1.77926 + 1.13910i 0.0907977 + 0.0581296i
\(385\) 0.451325 + 1.50753i 0.0230017 + 0.0768309i
\(386\) 31.8746 + 26.7459i 1.62237 + 1.36133i
\(387\) 7.25252 8.07674i 0.368666 0.410564i
\(388\) −59.2579 + 49.7233i −3.00836 + 2.52432i
\(389\) −5.73145 3.76963i −0.290596 0.191128i 0.395837 0.918321i \(-0.370454\pi\)
−0.686434 + 0.727193i \(0.740825\pi\)
\(390\) 1.58294 5.53453i 0.0801553 0.280252i
\(391\) −2.68487 0.313816i −0.135780 0.0158704i
\(392\) 22.7214 + 52.6742i 1.14761 + 2.66045i
\(393\) 12.0689 + 1.26022i 0.608795 + 0.0635695i
\(394\) −15.4769 + 7.77281i −0.779717 + 0.391588i
\(395\) −2.54031 0.924598i −0.127817 0.0465216i
\(396\) −8.67647 + 15.9211i −0.436009 + 0.800064i
\(397\) 3.49386 1.27166i 0.175352 0.0638229i −0.252852 0.967505i \(-0.581369\pi\)
0.428204 + 0.903682i \(0.359146\pi\)
\(398\) 10.1309 10.7381i 0.507815 0.538253i
\(399\) 29.5872 + 6.62860i 1.48121 + 0.331845i
\(400\) 38.5669 25.3658i 1.92834 1.26829i
\(401\) −9.50803 + 31.7590i −0.474808 + 1.58597i 0.300107 + 0.953905i \(0.402978\pi\)
−0.774916 + 0.632065i \(0.782208\pi\)
\(402\) 0.180950 + 0.957145i 0.00902497 + 0.0477381i
\(403\) −8.92751 11.9917i −0.444711 0.597351i
\(404\) 16.5892 0.825346
\(405\) −2.10377 2.02059i −0.104537 0.100404i
\(406\) 21.4442 1.06426
\(407\) −1.07449 1.44329i −0.0532606 0.0715413i
\(408\) −46.1130 + 39.6711i −2.28293 + 1.96401i
\(409\) −6.97378 + 23.2940i −0.344831 + 1.15182i 0.593139 + 0.805100i \(0.297888\pi\)
−0.937970 + 0.346716i \(0.887297\pi\)
\(410\) 6.66707 4.38500i 0.329263 0.216560i
\(411\) −23.2977 + 25.3113i −1.14919 + 1.24852i
\(412\) 20.4577 21.6839i 1.00788 1.06829i
\(413\) 21.1759 7.70738i 1.04200 0.379255i
\(414\) −3.29517 + 2.90621i −0.161949 + 0.142832i
\(415\) −0.201968 0.0735104i −0.00991423 0.00360848i
\(416\) −35.1227 + 17.6393i −1.72203 + 0.864837i
\(417\) 10.9106 + 24.4610i 0.534295 + 1.19786i
\(418\) −5.90667 13.6932i −0.288905 0.669757i
\(419\) −5.60280 0.654873i −0.273714 0.0319926i −0.0218717 0.999761i \(-0.506963\pi\)
−0.251843 + 0.967768i \(0.581037\pi\)
\(420\) 7.21896 + 7.46531i 0.352249 + 0.364270i
\(421\) −27.1935 17.8854i −1.32533 0.871683i −0.327998 0.944678i \(-0.606374\pi\)
−0.997332 + 0.0729952i \(0.976744\pi\)
\(422\) 30.5163 25.6062i 1.48551 1.24649i
\(423\) 7.03677 + 8.98151i 0.342139 + 0.436696i
\(424\) 39.9553 + 33.5265i 1.94040 + 1.62819i
\(425\) −6.75634 22.5677i −0.327730 1.09470i
\(426\) −2.46926 + 53.8012i −0.119636 + 2.60668i
\(427\) 31.8059 + 15.9735i 1.53920 + 0.773013i
\(428\) −5.09483 5.40020i −0.246268 0.261029i
\(429\) 4.38077 + 7.37643i 0.211505 + 0.356137i
\(430\) −1.21114 + 2.80775i −0.0584066 + 0.135402i
\(431\) −0.705902 + 1.22266i −0.0340021 + 0.0588934i −0.882526 0.470264i \(-0.844159\pi\)
0.848524 + 0.529158i \(0.177492\pi\)
\(432\) −1.04053 + 48.9902i −0.0500625 + 2.35704i
\(433\) −3.07047 5.31820i −0.147557 0.255576i 0.782767 0.622315i \(-0.213808\pi\)
−0.930324 + 0.366739i \(0.880474\pi\)
\(434\) 37.9524 4.43600i 1.82177 0.212935i
\(435\) 1.12027 0.423438i 0.0537128 0.0203023i
\(436\) −58.6540 + 13.9013i −2.80902 + 0.665749i
\(437\) −0.148305 2.54629i −0.00709438 0.121806i
\(438\) −21.5273 28.1849i −1.02862 1.34673i
\(439\) −12.9504 3.06929i −0.618087 0.146489i −0.0903681 0.995908i \(-0.528804\pi\)
−0.527719 + 0.849419i \(0.676952\pi\)
\(440\) 0.517279 2.93364i 0.0246603 0.139856i
\(441\) 13.6128 19.2576i 0.648226 0.917028i
\(442\) 8.56950 + 48.6000i 0.407610 + 2.31167i
\(443\) 0.254079 4.36237i 0.0120717 0.207263i −0.986879 0.161462i \(-0.948379\pi\)
0.998951 0.0458006i \(-0.0145839\pi\)
\(444\) −10.6760 5.19809i −0.506662 0.246690i
\(445\) −0.323240 + 0.434186i −0.0153230 + 0.0205824i
\(446\) 31.6355 42.4938i 1.49798 2.01214i
\(447\) −1.05507 14.9426i −0.0499032 0.706760i
\(448\) 1.61340 27.7010i 0.0762260 1.30875i
\(449\) −5.92614 33.6088i −0.279672 1.58610i −0.723719 0.690095i \(-0.757569\pi\)
0.444047 0.896003i \(-0.353542\pi\)
\(450\) −34.6299 16.3366i −1.63247 0.770117i
\(451\) −2.06518 + 11.7122i −0.0972454 + 0.551506i
\(452\) 91.3478 + 21.6498i 4.29664 + 1.01832i
\(453\) 5.20468 0.673402i 0.244537 0.0316392i
\(454\) 0.152859 + 2.62449i 0.00717402 + 0.123173i
\(455\) 4.78121 1.13317i 0.224147 0.0531237i
\(456\) −44.4194 36.3497i −2.08013 1.70223i
\(457\) −2.59552 + 0.303373i −0.121413 + 0.0141912i −0.176583 0.984286i \(-0.556504\pi\)
0.0551692 + 0.998477i \(0.482430\pi\)
\(458\) 13.2149 + 22.8889i 0.617493 + 1.06953i
\(459\) 23.7987 + 7.67916i 1.11083 + 0.358432i
\(460\) 0.436791 0.756545i 0.0203655 0.0352741i
\(461\) 2.32730 5.39528i 0.108393 0.251283i −0.855383 0.517996i \(-0.826678\pi\)
0.963776 + 0.266713i \(0.0859375\pi\)
\(462\) −21.9260 + 0.270005i −1.02009 + 0.0125618i
\(463\) −17.4881 18.5363i −0.812742 0.861456i 0.179757 0.983711i \(-0.442469\pi\)
−0.992499 + 0.122255i \(0.960987\pi\)
\(464\) −17.9786 9.02922i −0.834638 0.419171i
\(465\) 1.89508 0.981151i 0.0878823 0.0454998i
\(466\) 14.6566 + 48.9564i 0.678954 + 2.26786i
\(467\) −20.6922 17.3628i −0.957522 0.803456i 0.0230263 0.999735i \(-0.492670\pi\)
−0.980548 + 0.196279i \(0.937114\pi\)
\(468\) 48.0538 + 29.9368i 2.22129 + 1.38383i
\(469\) −0.636953 + 0.534467i −0.0294118 + 0.0246794i
\(470\) −2.68533 1.76617i −0.123865 0.0814675i
\(471\) 15.6328 3.90897i 0.720323 0.180116i
\(472\) −42.3700 4.95234i −1.95024 0.227950i
\(473\) −1.80505 4.18457i −0.0829961 0.192407i
\(474\) 22.1208 30.4901i 1.01604 1.40046i
\(475\) 19.8637 9.97594i 0.911411 0.457728i
\(476\) −83.6593 30.4495i −3.83452 1.39565i
\(477\) 3.20227 21.2017i 0.146622 0.970758i
\(478\) 69.9491 25.4594i 3.19940 1.16449i
\(479\) 17.8649 18.9357i 0.816270 0.865196i −0.176614 0.984280i \(-0.556514\pi\)
0.992884 + 0.119084i \(0.0379959\pi\)
\(480\) −1.67510 5.35437i −0.0764577 0.244392i
\(481\) −4.69411 + 3.08736i −0.214033 + 0.140772i
\(482\) 9.09965 30.3949i 0.414478 1.38445i
\(483\) −3.53974 1.23921i −0.161064 0.0563862i
\(484\) −26.9759 36.2349i −1.22618 1.64704i
\(485\) −5.22461 −0.237238
\(486\) 35.1313 20.4422i 1.59359 0.927277i
\(487\) −7.41759 −0.336123 −0.168061 0.985777i \(-0.553751\pi\)
−0.168061 + 0.985777i \(0.553751\pi\)
\(488\) −40.2335 54.0430i −1.82129 2.44641i
\(489\) −3.94905 1.38251i −0.178582 0.0625193i
\(490\) −1.90531 + 6.36417i −0.0860730 + 0.287504i
\(491\) 14.0070 9.21253i 0.632126 0.415756i −0.192609 0.981276i \(-0.561695\pi\)
0.824735 + 0.565520i \(0.191324\pi\)
\(492\) 23.4335 + 74.9038i 1.05646 + 3.37692i
\(493\) −7.04576 + 7.46807i −0.317325 + 0.336345i
\(494\) −43.7568 + 15.9262i −1.96871 + 0.716553i
\(495\) −1.14011 + 0.447057i −0.0512440 + 0.0200937i
\(496\) −33.6868 12.2610i −1.51258 0.550534i
\(497\) −41.0826 + 20.6325i −1.84281 + 0.925493i
\(498\) 1.75872 2.42413i 0.0788101 0.108628i
\(499\) 7.23169 + 16.7649i 0.323735 + 0.750501i 0.999905 + 0.0137564i \(0.00437895\pi\)
−0.676171 + 0.736745i \(0.736362\pi\)
\(500\) 15.2855 + 1.78662i 0.683590 + 0.0799002i
\(501\) 0.846289 0.211613i 0.0378094 0.00945418i
\(502\) 9.52901 + 6.26733i 0.425301 + 0.279725i
\(503\) −20.5047 + 17.2055i −0.914261 + 0.767156i −0.972925 0.231121i \(-0.925761\pi\)
0.0586635 + 0.998278i \(0.481316\pi\)
\(504\) −74.4630 + 39.7223i −3.31685 + 1.76937i
\(505\) 0.858307 + 0.720205i 0.0381942 + 0.0320487i
\(506\) 0.529032 + 1.76709i 0.0235183 + 0.0785567i
\(507\) 3.79347 1.96401i 0.168474 0.0872248i
\(508\) 2.03035 + 1.01968i 0.0900822 + 0.0452410i
\(509\) 20.1524 + 21.3603i 0.893241 + 0.946780i 0.998865 0.0476263i \(-0.0151657\pi\)
−0.105625 + 0.994406i \(0.533684\pi\)
\(510\) −7.04381 + 0.0867402i −0.311905 + 0.00384092i
\(511\) 11.9906 27.7974i 0.530433 1.22968i
\(512\) 21.6947 37.5763i 0.958780 1.66066i
\(513\) −3.23635 + 23.3728i −0.142888 + 1.03194i
\(514\) −33.8245 58.5858i −1.49194 2.58411i
\(515\) 1.99984 0.233748i 0.0881234 0.0103002i
\(516\) −23.2747 19.0464i −1.02461 0.838469i
\(517\) 4.66105 1.10469i 0.204993 0.0485841i
\(518\) −0.834966 14.3358i −0.0366863 0.629880i
\(519\) 9.16931 1.18636i 0.402488 0.0520754i
\(520\) −9.05081 2.14508i −0.396904 0.0940680i
\(521\) −1.78086 + 10.0998i −0.0780209 + 0.442479i 0.920625 + 0.390449i \(0.127680\pi\)
−0.998646 + 0.0520298i \(0.983431\pi\)
\(522\) 1.38028 + 16.6309i 0.0604134 + 0.727916i
\(523\) −5.81644 32.9867i −0.254335 1.44241i −0.797774 0.602957i \(-0.793989\pi\)
0.543439 0.839449i \(-0.317122\pi\)
\(524\) 1.95478 33.5623i 0.0853951 1.46618i
\(525\) −2.30203 32.6027i −0.100469 1.42290i
\(526\) −44.3367 + 59.5545i −1.93317 + 2.59670i
\(527\) −10.9249 + 14.6746i −0.475894 + 0.639237i
\(528\) 18.4962 + 9.00570i 0.804946 + 0.391923i
\(529\) 1.31899 22.6461i 0.0573473 0.984615i
\(530\) 1.04886 + 5.94840i 0.0455597 + 0.258382i
\(531\) 7.34042 + 15.9267i 0.318547 + 0.691160i
\(532\) 14.5873 82.7284i 0.632438 3.58673i
\(533\) 36.1343 + 8.56398i 1.56515 + 0.370947i
\(534\) −4.57829 5.99418i −0.198122 0.259394i
\(535\) −0.0291558 0.500586i −0.00126052 0.0216422i
\(536\) 1.53157 0.362988i 0.0661536 0.0156787i
\(537\) 29.3617 11.0981i 1.26705 0.478919i
\(538\) 72.6418 8.49061i 3.13181 0.366056i
\(539\) −4.95043 8.57440i −0.213230 0.369325i
\(540\) −5.32502 + 6.07913i −0.229152 + 0.261604i
\(541\) −19.3141 + 33.4530i −0.830377 + 1.43826i 0.0673627 + 0.997729i \(0.478542\pi\)
−0.897740 + 0.440526i \(0.854792\pi\)
\(542\) −11.4810 + 26.6161i −0.493153 + 1.14326i
\(543\) −10.3728 17.4659i −0.445139 0.749534i
\(544\) 33.0059 + 34.9842i 1.41512 + 1.49994i
\(545\) −3.63819 1.82717i −0.155843 0.0782673i
\(546\) −3.13914 + 68.3967i −0.134343 + 2.92711i
\(547\) 3.25227 + 10.8633i 0.139057 + 0.464482i 0.998941 0.0460067i \(-0.0146496\pi\)
−0.859884 + 0.510489i \(0.829464\pi\)
\(548\) 73.0118 + 61.2642i 3.11891 + 2.61708i
\(549\) −10.3409 + 25.6950i −0.441341 + 1.09664i
\(550\) −12.3143 + 10.3329i −0.525084 + 0.440598i
\(551\) −8.09405 5.32354i −0.344818 0.226790i
\(552\) 4.93516 + 5.10358i 0.210054 + 0.217223i
\(553\) 31.9368 + 3.73288i 1.35809 + 0.158738i
\(554\) 11.2758 + 26.1402i 0.479062 + 1.11059i
\(555\) −0.326695 0.732431i −0.0138674 0.0310900i
\(556\) 66.3130 33.3036i 2.81230 1.41239i
\(557\) 11.1013 + 4.04055i 0.470377 + 0.171203i 0.566323 0.824183i \(-0.308365\pi\)
−0.0959459 + 0.995387i \(0.530588\pi\)
\(558\) 5.88316 + 29.1482i 0.249054 + 1.23394i
\(559\) −13.3718 + 4.86695i −0.565568 + 0.205850i
\(560\) 8.08565 8.57028i 0.341681 0.362161i
\(561\) 7.11002 7.72456i 0.300185 0.326131i
\(562\) 10.2184 6.72078i 0.431039 0.283499i
\(563\) −5.88403 + 19.6540i −0.247982 + 0.828319i 0.739847 + 0.672775i \(0.234898\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(564\) 23.9637 20.6160i 1.00905 0.868092i
\(565\) 3.78631 + 5.08590i 0.159291 + 0.213966i
\(566\) −84.3423 −3.54517
\(567\) 29.8908 + 17.6149i 1.25529 + 0.739756i
\(568\) 87.0259 3.65152
\(569\) −9.72800 13.0670i −0.407819 0.547796i 0.550001 0.835164i \(-0.314627\pi\)
−0.957820 + 0.287368i \(0.907220\pi\)
\(570\) −1.23473 6.53115i −0.0517170 0.273560i
\(571\) −5.80130 + 19.3777i −0.242777 + 0.810931i 0.746564 + 0.665313i \(0.231702\pi\)
−0.989341 + 0.145617i \(0.953483\pi\)
\(572\) 19.8588 13.0613i 0.830337 0.546121i
\(573\) −33.6149 7.53095i −1.40428 0.314610i
\(574\) −65.1341 + 69.0382i −2.71865 + 2.88160i
\(575\) −2.58360 + 0.940353i −0.107744 + 0.0392154i
\(576\) 21.5872 0.531747i 0.899466 0.0221561i
\(577\) 3.36027 + 1.22304i 0.139890 + 0.0509157i 0.411016 0.911628i \(-0.365174\pi\)
−0.271126 + 0.962544i \(0.587396\pi\)
\(578\) 14.3556 7.20967i 0.597116 0.299883i
\(579\) −27.4905 2.87052i −1.14247 0.119295i
\(580\) −1.31422 3.04671i −0.0545701 0.126508i
\(581\) 2.53914 + 0.296783i 0.105341 + 0.0123126i
\(582\) 20.0194 69.9950i 0.829830 2.90139i
\(583\) −7.52109 4.94670i −0.311492 0.204871i
\(584\) −43.8997 + 36.8362i −1.81658 + 1.52429i
\(585\) 1.18657 + 3.63510i 0.0490586 + 0.150293i
\(586\) 39.9845 + 33.5510i 1.65174 + 1.38598i
\(587\) 2.27715 + 7.60620i 0.0939879 + 0.313941i 0.992036 0.125956i \(-0.0401999\pi\)
−0.898048 + 0.439898i \(0.855015\pi\)
\(588\) −55.0270 35.2289i −2.26928 1.45282i
\(589\) −15.4262 7.74735i −0.635627 0.319224i
\(590\) −3.39007 3.59327i −0.139567 0.147933i
\(591\) 5.62920 10.0334i 0.231554 0.412718i
\(592\) −5.33615 + 12.3706i −0.219314 + 0.508428i
\(593\) −13.0180 + 22.5478i −0.534584 + 0.925926i 0.464599 + 0.885521i \(0.346198\pi\)
−0.999183 + 0.0404055i \(0.987135\pi\)
\(594\) −1.62069 16.9872i −0.0664979 0.696993i
\(595\) −3.00650 5.20740i −0.123254 0.213483i
\(596\) −41.2215 + 4.81810i −1.68850 + 0.197357i
\(597\) −1.58385 + 9.67783i −0.0648225 + 0.396087i
\(598\) 5.60442 1.32827i 0.229182 0.0543170i
\(599\) −1.09425 18.7875i −0.0447096 0.767635i −0.943931 0.330142i \(-0.892903\pi\)
0.899222 0.437493i \(-0.144134\pi\)
\(600\) −23.8042 + 57.1079i −0.971804 + 2.33142i
\(601\) 7.82024 + 1.85343i 0.318994 + 0.0756030i 0.386994 0.922082i \(-0.373513\pi\)
−0.0679995 + 0.997685i \(0.521662\pi\)
\(602\) 6.31568 35.8180i 0.257408 1.45983i
\(603\) −0.455501 0.459583i −0.0185494 0.0187157i
\(604\) −2.52485 14.3191i −0.102734 0.582636i
\(605\) 0.177402 3.04588i 0.00721242 0.123833i
\(606\) −12.9375 + 8.73923i −0.525550 + 0.355007i
\(607\) 11.5794 15.5538i 0.469992 0.631309i −0.502407 0.864631i \(-0.667552\pi\)
0.972400 + 0.233322i \(0.0749596\pi\)
\(608\) −27.1006 + 36.4024i −1.09907 + 1.47631i
\(609\) −11.8041 + 7.97362i −0.478326 + 0.323107i
\(610\) 0.453667 7.78916i 0.0183684 0.315374i
\(611\) −2.59729 14.7300i −0.105075 0.595910i
\(612\) 18.2301 66.8414i 0.736908 2.70190i
\(613\) −2.54229 + 14.4180i −0.102682 + 0.582339i 0.889439 + 0.457054i \(0.151095\pi\)
−0.992121 + 0.125284i \(0.960016\pi\)
\(614\) −13.7962 3.26976i −0.556770 0.131957i
\(615\) −2.03945 + 4.89277i −0.0822385 + 0.197295i
\(616\) 2.06017 + 35.3717i 0.0830066 + 1.42517i
\(617\) −20.1538 + 4.77655i −0.811363 + 0.192297i −0.615298 0.788294i \(-0.710964\pi\)
−0.196065 + 0.980591i \(0.562816\pi\)
\(618\) −4.53131 + 27.6878i −0.182276 + 1.11377i
\(619\) 25.7358 3.00809i 1.03441 0.120905i 0.418094 0.908404i \(-0.362698\pi\)
0.616316 + 0.787499i \(0.288624\pi\)
\(620\) −2.95618 5.12026i −0.118723 0.205635i
\(621\) 0.733226 2.82498i 0.0294233 0.113363i
\(622\) −14.3271 + 24.8154i −0.574466 + 0.995005i
\(623\) 2.55008 5.91176i 0.102167 0.236850i
\(624\) 31.4306 56.0214i 1.25823 2.24265i
\(625\) −16.0823 17.0463i −0.643293 0.681851i
\(626\) 57.7803 + 29.0184i 2.30937 + 1.15981i
\(627\) 8.34291 + 5.34122i 0.333184 + 0.213308i
\(628\) −12.8043 42.7694i −0.510948 1.70668i
\(629\) 5.26686 + 4.41942i 0.210004 + 0.176214i
\(630\) −9.56261 2.01904i −0.380983 0.0804405i
\(631\) −13.6194 + 11.4280i −0.542180 + 0.454943i −0.872283 0.489002i \(-0.837361\pi\)
0.330102 + 0.943945i \(0.392917\pi\)
\(632\) −50.8543 33.4474i −2.02287 1.33046i
\(633\) −7.27669 + 25.4419i −0.289222 + 1.01123i
\(634\) −60.5568 7.07808i −2.40502 0.281106i
\(635\) 0.0607794 + 0.140902i 0.00241196 + 0.00559154i
\(636\) −59.0852 6.16959i −2.34288 0.244640i
\(637\) −27.6269 + 13.8747i −1.09462 + 0.549737i
\(638\) 6.58363 + 2.39625i 0.260648 + 0.0948683i
\(639\) −18.6457 30.5333i −0.737613 1.20788i
\(640\) 0.371486 0.135210i 0.0146843 0.00534464i
\(641\) 3.24563 3.44017i 0.128195 0.135878i −0.660096 0.751181i \(-0.729485\pi\)
0.788291 + 0.615302i \(0.210966\pi\)
\(642\) 6.81815 + 1.52751i 0.269091 + 0.0602861i
\(643\) 7.04365 4.63268i 0.277774 0.182695i −0.402976 0.915211i \(-0.632024\pi\)
0.680750 + 0.732515i \(0.261654\pi\)
\(644\) −2.98006 + 9.95409i −0.117431 + 0.392246i
\(645\) −0.377325 1.99588i −0.0148572 0.0785878i
\(646\) 34.0279 + 45.7074i 1.33881 + 1.79833i
\(647\) 23.1964 0.911943 0.455971 0.889994i \(-0.349292\pi\)
0.455971 + 0.889994i \(0.349292\pi\)
\(648\) −35.5993 55.1925i −1.39847 2.16817i
\(649\) 7.36248 0.289003
\(650\) 29.9740 + 40.2621i 1.17568 + 1.57921i
\(651\) −19.2417 + 16.5537i −0.754141 + 0.648790i
\(652\) −3.32466 + 11.1051i −0.130204 + 0.434910i
\(653\) −30.1768 + 19.8476i −1.18091 + 0.776697i −0.979230 0.202755i \(-0.935011\pi\)
−0.201680 + 0.979451i \(0.564640\pi\)
\(654\) 38.4195 41.7402i 1.50232 1.63217i
\(655\) 1.55821 1.65161i 0.0608844 0.0645337i
\(656\) 83.6768 30.4559i 3.26703 1.18910i
\(657\) 22.3299 + 7.51003i 0.871171 + 0.292994i
\(658\) 35.9237 + 13.0752i 1.40045 + 0.509722i
\(659\) 27.0962 13.6082i 1.05552 0.530100i 0.165586 0.986195i \(-0.447049\pi\)
0.889931 + 0.456095i \(0.150752\pi\)
\(660\) 1.38211 + 3.09861i 0.0537985 + 0.120613i
\(661\) −5.10606 11.8372i −0.198603 0.460413i 0.789589 0.613636i \(-0.210294\pi\)
−0.988192 + 0.153224i \(0.951035\pi\)
\(662\) 40.5978 + 4.74521i 1.57788 + 0.184428i
\(663\) −22.7881 23.5658i −0.885017 0.915219i
\(664\) −4.04318 2.65924i −0.156906 0.103199i
\(665\) 4.34629 3.64697i 0.168542 0.141424i
\(666\) 11.0643 1.57029i 0.428733 0.0608477i
\(667\) 0.917946 + 0.770248i 0.0355430 + 0.0298241i
\(668\) −0.693166 2.31534i −0.0268194 0.0895830i
\(669\) −1.61343 + 35.1540i −0.0623788 + 1.35913i
\(670\) 0.162888 + 0.0818055i 0.00629292 + 0.00316042i
\(671\) 7.97986 + 8.45815i 0.308059 + 0.326523i
\(672\) 34.0741 + 57.3746i 1.31444 + 2.21327i
\(673\) 2.55712 5.92808i 0.0985698 0.228511i −0.861795 0.507257i \(-0.830660\pi\)
0.960365 + 0.278746i \(0.0899188\pi\)
\(674\) 12.5587 21.7523i 0.483744 0.837869i
\(675\) 25.1367 3.88383i 0.967510 0.149489i
\(676\) −5.91752 10.2494i −0.227597 0.394209i
\(677\) −17.4366 + 2.03804i −0.670142 + 0.0783284i −0.444358 0.895849i \(-0.646568\pi\)
−0.225784 + 0.974177i \(0.572494\pi\)
\(678\) −82.6448 + 31.2380i −3.17396 + 1.19969i
\(679\) 60.4678 14.3311i 2.32054 0.549978i
\(680\) 0.661837 + 11.3633i 0.0253803 + 0.435763i
\(681\) −1.06001 1.38783i −0.0406195 0.0531816i
\(682\) 12.1475 + 2.87902i 0.465153 + 0.110243i
\(683\) 3.16828 17.9682i 0.121231 0.687535i −0.862244 0.506492i \(-0.830942\pi\)
0.983475 0.181042i \(-0.0579471\pi\)
\(684\) 65.0984 + 5.98814i 2.48910 + 0.228962i
\(685\) 1.11782 + 6.33946i 0.0427097 + 0.242218i
\(686\) 0.503230 8.64012i 0.0192134 0.329881i
\(687\) −15.7850 7.68563i −0.602237 0.293225i
\(688\) −20.3764 + 27.3702i −0.776843 + 1.04348i
\(689\) −16.7853 + 22.5466i −0.639470 + 0.858957i
\(690\) 0.0579067 + 0.820111i 0.00220447 + 0.0312211i
\(691\) 2.37017 40.6942i 0.0901653 1.54808i −0.585379 0.810760i \(-0.699054\pi\)
0.675544 0.737319i \(-0.263909\pi\)
\(692\) −4.44812 25.2266i −0.169092 0.958970i
\(693\) 11.9689 8.30138i 0.454661 0.315343i
\(694\) 9.69020 54.9559i 0.367835 2.08610i
\(695\) 4.87679 + 1.15582i 0.184987 + 0.0438428i
\(696\) 26.7425 3.46005i 1.01367 0.131153i
\(697\) −2.64231 45.3666i −0.100084 1.71838i
\(698\) −78.2756 + 18.5517i −2.96277 + 0.702191i
\(699\) −26.2713 21.4986i −0.993672 0.813151i
\(700\) −89.9399 + 10.5125i −3.39941 + 0.397334i
\(701\) 21.5739 + 37.3671i 0.814834 + 1.41133i 0.909447 + 0.415820i \(0.136505\pi\)
−0.0946129 + 0.995514i \(0.530161\pi\)
\(702\) −53.2466 + 1.96789i −2.00967 + 0.0742734i
\(703\) −3.24372 + 5.61828i −0.122339 + 0.211897i
\(704\) 3.59073 8.32425i 0.135331 0.313732i
\(705\) 2.13487 0.0262897i 0.0804040 0.000990126i
\(706\) −35.9692 38.1252i −1.35372 1.43486i
\(707\) −11.9093 5.98105i −0.447893 0.224941i
\(708\) 43.1468 22.3386i 1.62156 0.839537i
\(709\) 2.70162 + 9.02404i 0.101461 + 0.338905i 0.993614 0.112828i \(-0.0359911\pi\)
−0.892153 + 0.451733i \(0.850806\pi\)
\(710\) 7.72023 + 6.47804i 0.289735 + 0.243116i
\(711\) −0.839358 + 25.0086i −0.0314784 + 0.937898i
\(712\) −9.33630 + 7.83409i −0.349893 + 0.293595i
\(713\) 1.78393 + 1.17331i 0.0668088 + 0.0439409i
\(714\) 81.2845 20.3251i 3.04200 0.760647i
\(715\) 1.59451 + 0.186372i 0.0596314 + 0.00696991i
\(716\) −34.4451 79.8528i −1.28727 2.98424i
\(717\) −29.0373 + 40.0235i −1.08442 + 1.49470i
\(718\) −38.9893 + 19.5812i −1.45507 + 0.730763i
\(719\) 20.4128 + 7.42965i 0.761268 + 0.277079i 0.693339 0.720611i \(-0.256139\pi\)
0.0679289 + 0.997690i \(0.478361\pi\)
\(720\) 7.16707 + 5.71913i 0.267101 + 0.213140i
\(721\) −22.5042 + 8.19087i −0.838101 + 0.305044i
\(722\) −2.90021 + 3.07405i −0.107935 + 0.114404i
\(723\) 6.29281 + 20.1146i 0.234032 + 0.748070i
\(724\) −47.0216 + 30.9266i −1.74755 + 1.14938i
\(725\) −2.99506 + 10.0042i −0.111234 + 0.371546i
\(726\) 40.1263 + 14.0477i 1.48923 + 0.521359i
\(727\) 13.4477 + 18.0635i 0.498749 + 0.669937i 0.978208 0.207628i \(-0.0665743\pi\)
−0.479459 + 0.877565i \(0.659167\pi\)
\(728\) 110.635 4.10039
\(729\) −11.7372 + 24.3154i −0.434710 + 0.900571i
\(730\) −6.63645 −0.245626
\(731\) 10.3987 + 13.9679i 0.384611 + 0.516622i
\(732\) 72.4279 + 25.3561i 2.67701 + 0.937187i
\(733\) −7.81755 + 26.1124i −0.288748 + 0.964485i 0.683386 + 0.730058i \(0.260507\pi\)
−0.972134 + 0.234428i \(0.924678\pi\)
\(734\) −53.1664 + 34.9681i −1.96241 + 1.29070i
\(735\) −1.31760 4.21164i −0.0486006 0.155349i
\(736\) 3.85216 4.08305i 0.141992 0.150503i
\(737\) −0.255275 + 0.0929125i −0.00940318 + 0.00342248i
\(738\) −57.7345 46.0706i −2.12524 1.69588i
\(739\) −29.4451 10.7172i −1.08316 0.394237i −0.262075 0.965048i \(-0.584407\pi\)
−0.821082 + 0.570811i \(0.806629\pi\)
\(740\) −1.98560 + 0.997207i −0.0729922 + 0.0366580i
\(741\) 18.1643 25.0368i 0.667284 0.919749i
\(742\) −28.4556 65.9675i −1.04464 2.42174i
\(743\) 43.2335 + 5.05328i 1.58608 + 0.185387i 0.862939 0.505309i \(-0.168621\pi\)
0.723146 + 0.690695i \(0.242695\pi\)
\(744\) 46.6136 11.6557i 1.70894 0.427317i
\(745\) −2.34192 1.54031i −0.0858014 0.0564325i
\(746\) 25.8831 21.7185i 0.947648 0.795171i
\(747\) −0.0667334 + 1.98832i −0.00244165 + 0.0727488i
\(748\) −22.2819 18.6967i −0.814706 0.683620i
\(749\) 1.71055 + 5.71363i 0.0625020 + 0.208771i
\(750\) −12.8620 + 6.65910i −0.469653 + 0.243156i
\(751\) 45.8151 + 23.0092i 1.67182 + 0.839617i 0.994594 + 0.103838i \(0.0331124\pi\)
0.677221 + 0.735779i \(0.263184\pi\)
\(752\) −24.6127 26.0880i −0.897533 0.951330i
\(753\) −7.57568 + 0.0932899i −0.276073 + 0.00339967i
\(754\) 8.66487 20.0874i 0.315556 0.731541i
\(755\) 0.491017 0.850466i 0.0178699 0.0309516i
\(756\) 44.9547 84.9641i 1.63499 3.09012i
\(757\) −6.51051 11.2765i −0.236629 0.409853i 0.723116 0.690727i \(-0.242709\pi\)
−0.959745 + 0.280874i \(0.909376\pi\)
\(758\) 28.8436 3.37133i 1.04764 0.122452i
\(759\) −0.948267 0.775995i −0.0344199 0.0281668i
\(760\) −10.4507 + 2.47687i −0.379088 + 0.0898456i
\(761\) 1.37835 + 23.6653i 0.0499651 + 0.857868i 0.926445 + 0.376430i \(0.122848\pi\)
−0.876480 + 0.481438i \(0.840115\pi\)
\(762\) −2.12058 + 0.274369i −0.0768206 + 0.00993935i
\(763\) 47.1190 + 11.1674i 1.70582 + 0.404288i
\(764\) −16.5730 + 93.9902i −0.599591 + 3.40045i
\(765\) 3.84505 2.66685i 0.139018 0.0964201i
\(766\) −14.3730 81.5136i −0.519319 2.94520i
\(767\) 1.33670 22.9503i 0.0482655 0.828687i
\(768\)