Properties

Label 81.2.g.a.7.3
Level $81$
Weight $2$
Character 81.7
Analytic conductor $0.647$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,2,Mod(4,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.646788256372\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 7.3
Character \(\chi\) \(=\) 81.7
Dual form 81.2.g.a.58.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.886934 - 1.19136i) q^{2} +(-0.340526 - 1.69825i) q^{3} +(-0.0590788 + 0.197337i) q^{4} +(-1.33926 + 0.880846i) q^{5} +(-1.72120 + 1.91192i) q^{6} +(1.30515 - 1.38337i) q^{7} +(-2.50387 + 0.911335i) q^{8} +(-2.76808 + 1.15659i) q^{9} +O(q^{10})\) \(q+(-0.886934 - 1.19136i) q^{2} +(-0.340526 - 1.69825i) q^{3} +(-0.0590788 + 0.197337i) q^{4} +(-1.33926 + 0.880846i) q^{5} +(-1.72120 + 1.91192i) q^{6} +(1.30515 - 1.38337i) q^{7} +(-2.50387 + 0.911335i) q^{8} +(-2.76808 + 1.15659i) q^{9} +(2.23724 + 0.814290i) q^{10} +(3.62327 - 1.81967i) q^{11} +(0.355245 + 0.0331322i) q^{12} +(-0.669348 - 1.55172i) q^{13} +(-2.80567 - 0.327936i) q^{14} +(1.95195 + 1.97445i) q^{15} +(3.65071 + 2.40111i) q^{16} +(4.14727 - 3.47997i) q^{17} +(3.83303 + 2.27196i) q^{18} +(3.70167 + 3.10607i) q^{19} +(-0.0947016 - 0.316325i) q^{20} +(-2.79374 - 1.74539i) q^{21} +(-5.38148 - 2.70268i) q^{22} +(-0.459550 - 0.487095i) q^{23} +(2.40030 + 3.94186i) q^{24} +(-0.962667 + 2.23171i) q^{25} +(-1.25499 + 2.17371i) q^{26} +(2.90678 + 4.30704i) q^{27} +(0.195884 + 0.339282i) q^{28} +(4.75422 - 0.555689i) q^{29} +(0.621027 - 4.07668i) q^{30} +(-4.73543 + 1.12232i) q^{31} +(-0.0674931 - 1.15881i) q^{32} +(-4.32407 - 5.53356i) q^{33} +(-7.82425 - 1.85438i) q^{34} +(-0.529392 + 3.00233i) q^{35} +(-0.0647034 - 0.614576i) q^{36} +(-2.07926 - 11.7921i) q^{37} +(0.417308 - 7.16489i) q^{38} +(-2.40728 + 1.66512i) q^{39} +(2.55060 - 3.42604i) q^{40} +(-6.04005 + 8.11319i) q^{41} +(0.398487 + 4.87640i) q^{42} +(-0.497227 + 8.53705i) q^{43} +(0.145031 + 0.822509i) q^{44} +(2.68841 - 3.98724i) q^{45} +(-0.172714 + 0.979511i) q^{46} +(-0.196235 - 0.0465086i) q^{47} +(2.83451 - 7.01744i) q^{48} +(0.196697 + 3.37715i) q^{49} +(3.51259 - 0.832500i) q^{50} +(-7.32210 - 5.85806i) q^{51} +(0.345757 - 0.0404132i) q^{52} +(2.48138 + 4.29788i) q^{53} +(2.55311 - 7.28309i) q^{54} +(-3.24965 + 5.62856i) q^{55} +(-2.00720 + 4.65322i) q^{56} +(4.01436 - 7.34404i) q^{57} +(-4.87871 - 5.17113i) q^{58} +(-1.69552 - 0.851522i) q^{59} +(-0.504950 + 0.268544i) q^{60} +(0.0518355 + 0.173143i) q^{61} +(5.53710 + 4.64618i) q^{62} +(-2.01275 + 5.33882i) q^{63} +(5.37384 - 4.50919i) q^{64} +(2.26326 + 1.48857i) q^{65} +(-2.75729 + 10.0594i) q^{66} +(13.2368 + 1.54716i) q^{67} +(0.441711 + 1.02400i) q^{68} +(-0.670719 + 0.946298i) q^{69} +(4.04639 - 2.03218i) q^{70} +(9.41216 + 3.42575i) q^{71} +(5.87689 - 5.41861i) q^{72} +(-10.9327 + 3.97917i) q^{73} +(-12.2045 + 12.9360i) q^{74} +(4.11781 + 0.874891i) q^{75} +(-0.831632 + 0.546973i) q^{76} +(2.21160 - 7.38727i) q^{77} +(4.11886 + 1.39108i) q^{78} +(-2.19201 - 2.94438i) q^{79} -7.00426 q^{80} +(6.32459 - 6.40309i) q^{81} +15.0229 q^{82} +(-3.27719 - 4.40202i) q^{83} +(0.509481 - 0.448194i) q^{84} +(-2.48896 + 8.31370i) q^{85} +(10.6117 - 6.97943i) q^{86} +(-2.56263 - 7.88461i) q^{87} +(-7.41387 + 7.85824i) q^{88} +(-6.65218 + 2.42120i) q^{89} +(-7.13468 + 0.333556i) q^{90} +(-3.02021 - 1.09927i) q^{91} +(0.123272 - 0.0619093i) q^{92} +(3.51851 + 7.65975i) q^{93} +(0.118639 + 0.275037i) q^{94} +(-7.69347 - 0.899238i) q^{95} +(-1.94497 + 0.509225i) q^{96} +(1.11799 + 0.735313i) q^{97} +(3.84894 - 3.22965i) q^{98} +(-7.92489 + 9.22765i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9} - 18 q^{10} - 18 q^{11} - 18 q^{12} - 18 q^{13} - 18 q^{14} - 18 q^{15} - 18 q^{16} - 18 q^{17} - 9 q^{18} - 18 q^{19} + 18 q^{20} + 9 q^{21} - 18 q^{22} + 9 q^{23} + 36 q^{24} - 18 q^{25} + 45 q^{26} + 9 q^{27} - 9 q^{28} + 9 q^{29} + 36 q^{30} - 18 q^{31} + 36 q^{32} + 9 q^{33} - 18 q^{34} + 9 q^{35} + 18 q^{36} - 18 q^{37} - 9 q^{38} - 18 q^{39} - 18 q^{40} + 27 q^{42} - 18 q^{43} + 54 q^{44} + 36 q^{45} - 18 q^{46} + 36 q^{47} + 81 q^{48} - 18 q^{49} + 99 q^{50} + 45 q^{51} + 45 q^{53} + 108 q^{54} - 9 q^{55} + 126 q^{56} + 36 q^{57} - 18 q^{58} + 45 q^{59} + 99 q^{60} - 18 q^{61} + 81 q^{62} + 36 q^{63} - 18 q^{64} - 18 q^{66} + 9 q^{67} - 99 q^{68} - 72 q^{69} + 36 q^{70} - 90 q^{71} - 234 q^{72} - 18 q^{73} - 162 q^{74} - 108 q^{75} + 63 q^{76} - 162 q^{77} - 135 q^{78} + 36 q^{79} - 288 q^{80} - 90 q^{81} - 36 q^{82} - 90 q^{83} - 243 q^{84} + 36 q^{85} - 162 q^{86} - 162 q^{87} + 63 q^{88} - 81 q^{89} - 99 q^{90} - 18 q^{91} - 144 q^{92} + 36 q^{94} + 18 q^{95} - 27 q^{96} + 9 q^{97} + 81 q^{98} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.886934 1.19136i −0.627157 0.842419i 0.369052 0.929409i \(-0.379683\pi\)
−0.996209 + 0.0869903i \(0.972275\pi\)
\(3\) −0.340526 1.69825i −0.196602 0.980483i
\(4\) −0.0590788 + 0.197337i −0.0295394 + 0.0986686i
\(5\) −1.33926 + 0.880846i −0.598936 + 0.393927i −0.812465 0.583010i \(-0.801875\pi\)
0.213529 + 0.976937i \(0.431504\pi\)
\(6\) −1.72120 + 1.91192i −0.702677 + 0.780539i
\(7\) 1.30515 1.38337i 0.493299 0.522866i −0.432118 0.901817i \(-0.642234\pi\)
0.925417 + 0.378951i \(0.123715\pi\)
\(8\) −2.50387 + 0.911335i −0.885253 + 0.322206i
\(9\) −2.76808 + 1.15659i −0.922695 + 0.385531i
\(10\) 2.23724 + 0.814290i 0.707478 + 0.257501i
\(11\) 3.62327 1.81967i 1.09246 0.548652i 0.191029 0.981584i \(-0.438817\pi\)
0.901426 + 0.432932i \(0.142521\pi\)
\(12\) 0.355245 + 0.0331322i 0.102550 + 0.00956443i
\(13\) −0.669348 1.55172i −0.185644 0.430371i 0.799824 0.600235i \(-0.204926\pi\)
−0.985467 + 0.169864i \(0.945667\pi\)
\(14\) −2.80567 0.327936i −0.749848 0.0876447i
\(15\) 1.95195 + 1.97445i 0.503991 + 0.509800i
\(16\) 3.65071 + 2.40111i 0.912676 + 0.600277i
\(17\) 4.14727 3.47997i 1.00586 0.844017i 0.0180743 0.999837i \(-0.494246\pi\)
0.987785 + 0.155820i \(0.0498020\pi\)
\(18\) 3.83303 + 2.27196i 0.903453 + 0.535507i
\(19\) 3.70167 + 3.10607i 0.849220 + 0.712581i 0.959618 0.281307i \(-0.0907679\pi\)
−0.110397 + 0.993888i \(0.535212\pi\)
\(20\) −0.0947016 0.316325i −0.0211759 0.0707325i
\(21\) −2.79374 1.74539i −0.609645 0.380874i
\(22\) −5.38148 2.70268i −1.14734 0.576214i
\(23\) −0.459550 0.487095i −0.0958228 0.101566i 0.677687 0.735350i \(-0.262982\pi\)
−0.773510 + 0.633784i \(0.781501\pi\)
\(24\) 2.40030 + 3.94186i 0.489960 + 0.804629i
\(25\) −0.962667 + 2.23171i −0.192533 + 0.446342i
\(26\) −1.25499 + 2.17371i −0.246124 + 0.426300i
\(27\) 2.90678 + 4.30704i 0.559411 + 0.828891i
\(28\) 0.195884 + 0.339282i 0.0370187 + 0.0641182i
\(29\) 4.75422 0.555689i 0.882837 0.103189i 0.337420 0.941354i \(-0.390446\pi\)
0.545416 + 0.838165i \(0.316372\pi\)
\(30\) 0.621027 4.07668i 0.113383 0.744296i
\(31\) −4.73543 + 1.12232i −0.850508 + 0.201574i −0.632680 0.774413i \(-0.718045\pi\)
−0.217828 + 0.975987i \(0.569897\pi\)
\(32\) −0.0674931 1.15881i −0.0119312 0.204851i
\(33\) −4.32407 5.53356i −0.752724 0.963268i
\(34\) −7.82425 1.85438i −1.34185 0.318024i
\(35\) −0.529392 + 3.00233i −0.0894836 + 0.507487i
\(36\) −0.0647034 0.614576i −0.0107839 0.102429i
\(37\) −2.07926 11.7921i −0.341829 1.93861i −0.344973 0.938613i \(-0.612112\pi\)
0.00314382 0.999995i \(-0.498999\pi\)
\(38\) 0.417308 7.16489i 0.0676962 1.16230i
\(39\) −2.40728 + 1.66512i −0.385473 + 0.266633i
\(40\) 2.55060 3.42604i 0.403285 0.541705i
\(41\) −6.04005 + 8.11319i −0.943297 + 1.26707i 0.0203240 + 0.999793i \(0.493530\pi\)
−0.963621 + 0.267274i \(0.913877\pi\)
\(42\) 0.398487 + 4.87640i 0.0614879 + 0.752445i
\(43\) −0.497227 + 8.53705i −0.0758264 + 1.30189i 0.718982 + 0.695028i \(0.244608\pi\)
−0.794809 + 0.606860i \(0.792429\pi\)
\(44\) 0.145031 + 0.822509i 0.0218642 + 0.123998i
\(45\) 2.68841 3.98724i 0.400765 0.594382i
\(46\) −0.172714 + 0.979511i −0.0254653 + 0.144421i
\(47\) −0.196235 0.0465086i −0.0286238 0.00678397i 0.216279 0.976332i \(-0.430608\pi\)
−0.244903 + 0.969548i \(0.578756\pi\)
\(48\) 2.83451 7.01744i 0.409127 1.01288i
\(49\) 0.196697 + 3.37715i 0.0280995 + 0.482450i
\(50\) 3.51259 0.832500i 0.496756 0.117733i
\(51\) −7.32210 5.85806i −1.02530 0.820293i
\(52\) 0.345757 0.0404132i 0.0479479 0.00560430i
\(53\) 2.48138 + 4.29788i 0.340844 + 0.590359i 0.984590 0.174880i \(-0.0559538\pi\)
−0.643746 + 0.765240i \(0.722621\pi\)
\(54\) 2.55311 7.28309i 0.347434 0.991103i
\(55\) −3.24965 + 5.62856i −0.438183 + 0.758955i
\(56\) −2.00720 + 4.65322i −0.268224 + 0.621812i
\(57\) 4.01436 7.34404i 0.531715 0.972742i
\(58\) −4.87871 5.17113i −0.640606 0.679002i
\(59\) −1.69552 0.851522i −0.220738 0.110859i 0.334994 0.942220i \(-0.391266\pi\)
−0.555732 + 0.831362i \(0.687562\pi\)
\(60\) −0.504950 + 0.268544i −0.0651888 + 0.0346688i
\(61\) 0.0518355 + 0.173143i 0.00663685 + 0.0221686i 0.961244 0.275700i \(-0.0889095\pi\)
−0.954607 + 0.297868i \(0.903724\pi\)
\(62\) 5.53710 + 4.64618i 0.703212 + 0.590065i
\(63\) −2.01275 + 5.33882i −0.253583 + 0.672628i
\(64\) 5.37384 4.50919i 0.671730 0.563648i
\(65\) 2.26326 + 1.48857i 0.280723 + 0.184635i
\(66\) −2.75729 + 10.0594i −0.339399 + 1.23823i
\(67\) 13.2368 + 1.54716i 1.61713 + 0.189015i 0.875987 0.482335i \(-0.160211\pi\)
0.741141 + 0.671350i \(0.234285\pi\)
\(68\) 0.441711 + 1.02400i 0.0535654 + 0.124178i
\(69\) −0.670719 + 0.946298i −0.0807450 + 0.113921i
\(70\) 4.04639 2.03218i 0.483637 0.242891i
\(71\) 9.41216 + 3.42575i 1.11702 + 0.406561i 0.833563 0.552424i \(-0.186297\pi\)
0.283455 + 0.958985i \(0.408519\pi\)
\(72\) 5.87689 5.41861i 0.692598 0.638590i
\(73\) −10.9327 + 3.97917i −1.27957 + 0.465726i −0.890291 0.455392i \(-0.849499\pi\)
−0.389282 + 0.921119i \(0.627277\pi\)
\(74\) −12.2045 + 12.9360i −1.41874 + 1.50378i
\(75\) 4.11781 + 0.874891i 0.475484 + 0.101024i
\(76\) −0.831632 + 0.546973i −0.0953948 + 0.0627421i
\(77\) 2.21160 7.38727i 0.252036 0.841857i
\(78\) 4.11886 + 1.39108i 0.466369 + 0.157509i
\(79\) −2.19201 2.94438i −0.246620 0.331269i 0.661525 0.749923i \(-0.269909\pi\)
−0.908146 + 0.418654i \(0.862502\pi\)
\(80\) −7.00426 −0.783100
\(81\) 6.32459 6.40309i 0.702732 0.711455i
\(82\) 15.0229 1.65900
\(83\) −3.27719 4.40202i −0.359718 0.483185i 0.585017 0.811021i \(-0.301088\pi\)
−0.944735 + 0.327836i \(0.893681\pi\)
\(84\) 0.509481 0.448194i 0.0555889 0.0489020i
\(85\) −2.48896 + 8.31370i −0.269965 + 0.901747i
\(86\) 10.6117 6.97943i 1.14429 0.752611i
\(87\) −2.56263 7.88461i −0.274743 0.845319i
\(88\) −7.41387 + 7.85824i −0.790321 + 0.837691i
\(89\) −6.65218 + 2.42120i −0.705130 + 0.256646i −0.669600 0.742722i \(-0.733534\pi\)
−0.0355305 + 0.999369i \(0.511312\pi\)
\(90\) −7.13468 + 0.333556i −0.752061 + 0.0351598i
\(91\) −3.02021 1.09927i −0.316604 0.115234i
\(92\) 0.123272 0.0619093i 0.0128519 0.00645449i
\(93\) 3.51851 + 7.65975i 0.364852 + 0.794279i
\(94\) 0.118639 + 0.275037i 0.0122367 + 0.0283679i
\(95\) −7.69347 0.899238i −0.789333 0.0922598i
\(96\) −1.94497 + 0.509225i −0.198507 + 0.0519725i
\(97\) 1.11799 + 0.735313i 0.113515 + 0.0746597i 0.604997 0.796228i \(-0.293174\pi\)
−0.491482 + 0.870888i \(0.663545\pi\)
\(98\) 3.84894 3.22965i 0.388802 0.326244i
\(99\) −7.92489 + 9.22765i −0.796481 + 0.927414i
\(100\) −0.383526 0.321817i −0.0383526 0.0321817i
\(101\) −1.42152 4.74821i −0.141447 0.472465i 0.857683 0.514179i \(-0.171903\pi\)
−0.999130 + 0.0417141i \(0.986718\pi\)
\(102\) −0.484841 + 13.9190i −0.0480064 + 1.37818i
\(103\) −2.03699 1.02302i −0.200711 0.100801i 0.345605 0.938380i \(-0.387674\pi\)
−0.546316 + 0.837579i \(0.683970\pi\)
\(104\) 3.09010 + 3.27532i 0.303010 + 0.321171i
\(105\) 5.27897 0.123332i 0.515175 0.0120360i
\(106\) 2.91950 6.76816i 0.283567 0.657382i
\(107\) 2.21467 3.83593i 0.214101 0.370833i −0.738893 0.673822i \(-0.764651\pi\)
0.952994 + 0.302989i \(0.0979846\pi\)
\(108\) −1.02167 + 0.319161i −0.0983101 + 0.0307113i
\(109\) −9.21824 15.9665i −0.882947 1.52931i −0.848049 0.529918i \(-0.822223\pi\)
−0.0348978 0.999391i \(-0.511111\pi\)
\(110\) 9.58787 1.12066i 0.914167 0.106851i
\(111\) −19.3178 + 7.54661i −1.83357 + 0.716293i
\(112\) 8.08633 1.91650i 0.764086 0.181092i
\(113\) −0.524386 9.00337i −0.0493301 0.846965i −0.928701 0.370829i \(-0.879074\pi\)
0.879371 0.476137i \(-0.157963\pi\)
\(114\) −12.3099 + 1.73114i −1.15292 + 0.162136i
\(115\) 1.04451 + 0.247554i 0.0974014 + 0.0230846i
\(116\) −0.171216 + 0.971014i −0.0158970 + 0.0901563i
\(117\) 3.64753 + 3.52114i 0.337214 + 0.325530i
\(118\) 0.489346 + 2.77522i 0.0450479 + 0.255479i
\(119\) 0.598688 10.2791i 0.0548817 0.942282i
\(120\) −6.68681 3.16489i −0.610420 0.288913i
\(121\) 3.24810 4.36296i 0.295282 0.396633i
\(122\) 0.160300 0.215321i 0.0145129 0.0194942i
\(123\) 15.8350 + 7.49474i 1.42779 + 0.675778i
\(124\) 0.0582888 1.00078i 0.00523449 0.0898728i
\(125\) −2.06830 11.7299i −0.184994 1.04915i
\(126\) 8.14563 2.33727i 0.725671 0.208220i
\(127\) −0.304561 + 1.72725i −0.0270254 + 0.153269i −0.995334 0.0964872i \(-0.969239\pi\)
0.968309 + 0.249756i \(0.0803504\pi\)
\(128\) −12.3973 2.93821i −1.09577 0.259703i
\(129\) 14.6673 2.06267i 1.29139 0.181608i
\(130\) −0.233942 4.01663i −0.0205181 0.352281i
\(131\) 6.97041 1.65202i 0.609008 0.144338i 0.0854711 0.996341i \(-0.472760\pi\)
0.523537 + 0.852003i \(0.324612\pi\)
\(132\) 1.34744 0.526383i 0.117279 0.0458158i
\(133\) 9.12806 1.06692i 0.791504 0.0925135i
\(134\) −9.89692 17.1420i −0.854964 1.48084i
\(135\) −7.68679 3.20783i −0.661573 0.276086i
\(136\) −7.21281 + 12.4930i −0.618493 + 1.07126i
\(137\) −6.92074 + 16.0441i −0.591279 + 1.37074i 0.315417 + 0.948953i \(0.397856\pi\)
−0.906696 + 0.421785i \(0.861404\pi\)
\(138\) 1.72226 0.0402371i 0.146609 0.00342521i
\(139\) 13.0385 + 13.8200i 1.10591 + 1.17220i 0.983723 + 0.179691i \(0.0575097\pi\)
0.122188 + 0.992507i \(0.461009\pi\)
\(140\) −0.561196 0.281843i −0.0474297 0.0238201i
\(141\) −0.0121600 + 0.349093i −0.00102406 + 0.0293989i
\(142\) −4.26668 14.2517i −0.358051 1.19598i
\(143\) −5.24886 4.40431i −0.438931 0.368307i
\(144\) −12.8826 2.42409i −1.07355 0.202007i
\(145\) −5.87767 + 4.93195i −0.488114 + 0.409576i
\(146\) 14.4372 + 9.49549i 1.19483 + 0.785852i
\(147\) 5.66825 1.48404i 0.467510 0.122402i
\(148\) 2.44986 + 0.286347i 0.201377 + 0.0235376i
\(149\) 2.92032 + 6.77006i 0.239242 + 0.554625i 0.994960 0.100272i \(-0.0319714\pi\)
−0.755718 + 0.654897i \(0.772712\pi\)
\(150\) −2.60992 5.68176i −0.213099 0.463914i
\(151\) −2.38668 + 1.19863i −0.194225 + 0.0975434i −0.543254 0.839569i \(-0.682808\pi\)
0.349029 + 0.937112i \(0.386512\pi\)
\(152\) −12.0992 4.40374i −0.981372 0.357190i
\(153\) −7.45508 + 14.4295i −0.602707 + 1.16656i
\(154\) −10.7624 + 3.91721i −0.867262 + 0.315658i
\(155\) 5.35339 5.67426i 0.429995 0.455768i
\(156\) −0.186371 0.573419i −0.0149216 0.0459103i
\(157\) 4.77413 3.14000i 0.381017 0.250599i −0.344524 0.938777i \(-0.611960\pi\)
0.725542 + 0.688178i \(0.241589\pi\)
\(158\) −1.56365 + 5.22294i −0.124397 + 0.415515i
\(159\) 6.45389 5.67754i 0.511827 0.450258i
\(160\) 1.11113 + 1.49250i 0.0878422 + 0.117993i
\(161\) −1.27361 −0.100375
\(162\) −13.2379 1.85573i −1.04007 0.145800i
\(163\) 16.0381 1.25620 0.628100 0.778132i \(-0.283833\pi\)
0.628100 + 0.778132i \(0.283833\pi\)
\(164\) −1.24419 1.67124i −0.0971553 0.130502i
\(165\) 10.6653 + 3.60204i 0.830290 + 0.280418i
\(166\) −2.33775 + 7.80862i −0.181444 + 0.606066i
\(167\) −15.9980 + 10.5220i −1.23796 + 0.814220i −0.988063 0.154052i \(-0.950768\pi\)
−0.249898 + 0.968272i \(0.580397\pi\)
\(168\) 8.58581 + 1.82419i 0.662410 + 0.140739i
\(169\) 6.96132 7.37857i 0.535486 0.567582i
\(170\) 12.1121 4.40846i 0.928959 0.338113i
\(171\) −13.8390 4.31654i −1.05829 0.330094i
\(172\) −1.65530 0.602480i −0.126216 0.0459387i
\(173\) −21.1226 + 10.6082i −1.60592 + 0.806526i −0.605986 + 0.795476i \(0.707221\pi\)
−0.999939 + 0.0110500i \(0.996483\pi\)
\(174\) −7.12053 + 10.0462i −0.539806 + 0.761597i
\(175\) 1.83087 + 4.24444i 0.138401 + 0.320849i
\(176\) 17.5967 + 2.05676i 1.32640 + 0.155034i
\(177\) −0.868726 + 3.16937i −0.0652975 + 0.238225i
\(178\) 8.78457 + 5.77770i 0.658431 + 0.433057i
\(179\) −3.43489 + 2.88222i −0.256736 + 0.215427i −0.762066 0.647499i \(-0.775815\pi\)
0.505331 + 0.862926i \(0.331371\pi\)
\(180\) 0.628002 + 0.766085i 0.0468085 + 0.0571006i
\(181\) 2.92076 + 2.45081i 0.217098 + 0.182167i 0.744851 0.667231i \(-0.232521\pi\)
−0.527752 + 0.849398i \(0.676965\pi\)
\(182\) 1.36911 + 4.57314i 0.101485 + 0.338983i
\(183\) 0.276388 0.146989i 0.0204312 0.0108657i
\(184\) 1.59456 + 0.800819i 0.117553 + 0.0590372i
\(185\) 13.1717 + 13.9612i 0.968403 + 1.02645i
\(186\) 6.00483 10.9855i 0.440296 0.805496i
\(187\) 8.69424 20.1555i 0.635786 1.47392i
\(188\) 0.0207712 0.0359768i 0.00151490 0.00262388i
\(189\) 9.75202 + 1.60015i 0.709355 + 0.116394i
\(190\) 5.75229 + 9.96325i 0.417315 + 0.722810i
\(191\) 18.2731 2.13582i 1.32220 0.154543i 0.574457 0.818535i \(-0.305213\pi\)
0.747739 + 0.663993i \(0.231139\pi\)
\(192\) −9.48764 7.59061i −0.684711 0.547805i
\(193\) −15.9799 + 3.78730i −1.15026 + 0.272616i −0.761149 0.648577i \(-0.775365\pi\)
−0.389107 + 0.921193i \(0.627216\pi\)
\(194\) −0.115561 1.98410i −0.00829677 0.142450i
\(195\) 1.75726 4.35048i 0.125840 0.311544i
\(196\) −0.678058 0.160703i −0.0484327 0.0114788i
\(197\) −3.25113 + 18.4381i −0.231633 + 1.31366i 0.617956 + 0.786213i \(0.287961\pi\)
−0.849589 + 0.527445i \(0.823150\pi\)
\(198\) 18.0223 + 1.25707i 1.28079 + 0.0893361i
\(199\) 0.155470 + 0.881713i 0.0110210 + 0.0625029i 0.989822 0.142309i \(-0.0454527\pi\)
−0.978801 + 0.204812i \(0.934342\pi\)
\(200\) 0.376557 6.46524i 0.0266266 0.457161i
\(201\) −1.88000 23.0061i −0.132605 1.62273i
\(202\) −4.39603 + 5.90490i −0.309304 + 0.415467i
\(203\) 5.43622 7.30212i 0.381548 0.512508i
\(204\) 1.58859 1.09883i 0.111224 0.0769338i
\(205\) 0.942729 16.1860i 0.0658431 1.13048i
\(206\) 0.587899 + 3.33414i 0.0409609 + 0.232301i
\(207\) 1.83544 + 0.816807i 0.127572 + 0.0567720i
\(208\) 1.28226 7.27206i 0.0889088 0.504227i
\(209\) 19.0641 + 4.51829i 1.31869 + 0.312536i
\(210\) −4.82904 6.17977i −0.333235 0.426445i
\(211\) −0.869893 14.9355i −0.0598859 1.02820i −0.885700 0.464258i \(-0.846321\pi\)
0.825814 0.563943i \(-0.190716\pi\)
\(212\) −0.994728 + 0.235755i −0.0683182 + 0.0161917i
\(213\) 2.61268 17.1507i 0.179018 1.17515i
\(214\) −6.53424 + 0.763743i −0.446672 + 0.0522084i
\(215\) −6.85392 11.8713i −0.467433 0.809618i
\(216\) −11.2034 8.13523i −0.762293 0.553532i
\(217\) −4.62784 + 8.01565i −0.314158 + 0.544138i
\(218\) −10.8458 + 25.1434i −0.734571 + 1.70293i
\(219\) 10.4805 + 17.2114i 0.708204 + 1.16304i
\(220\) −0.918738 0.973805i −0.0619413 0.0656539i
\(221\) −8.17592 4.10610i −0.549972 0.276206i
\(222\) 26.1244 + 16.3211i 1.75335 + 1.09540i
\(223\) 1.77843 + 5.94037i 0.119093 + 0.397797i 0.996661 0.0816552i \(-0.0260206\pi\)
−0.877568 + 0.479452i \(0.840835\pi\)
\(224\) −1.69116 1.41905i −0.112995 0.0948142i
\(225\) 0.0835609 7.29098i 0.00557072 0.486065i
\(226\) −10.2612 + 8.61013i −0.682562 + 0.572737i
\(227\) −11.9336 7.84886i −0.792061 0.520947i 0.0878224 0.996136i \(-0.472009\pi\)
−0.879884 + 0.475189i \(0.842380\pi\)
\(228\) 1.21209 + 1.22606i 0.0802725 + 0.0811977i
\(229\) −19.4011 2.26766i −1.28206 0.149851i −0.552351 0.833611i \(-0.686269\pi\)
−0.729707 + 0.683760i \(0.760343\pi\)
\(230\) −0.631489 1.46396i −0.0416392 0.0965304i
\(231\) −13.2985 1.24029i −0.874978 0.0816054i
\(232\) −11.3975 + 5.72406i −0.748286 + 0.375803i
\(233\) 8.91628 + 3.24526i 0.584125 + 0.212604i 0.617143 0.786851i \(-0.288290\pi\)
−0.0330187 + 0.999455i \(0.510512\pi\)
\(234\) 0.959828 7.46854i 0.0627459 0.488234i
\(235\) 0.303777 0.110566i 0.0198162 0.00721252i
\(236\) 0.268206 0.284282i 0.0174587 0.0185052i
\(237\) −4.25385 + 4.72521i −0.276317 + 0.306935i
\(238\) −12.7771 + 8.40362i −0.828215 + 0.544726i
\(239\) −3.15591 + 10.5415i −0.204139 + 0.681871i 0.793200 + 0.608961i \(0.208414\pi\)
−0.997339 + 0.0729094i \(0.976772\pi\)
\(240\) 2.38513 + 11.8950i 0.153959 + 0.767816i
\(241\) −1.30807 1.75705i −0.0842605 0.113181i 0.757994 0.652261i \(-0.226180\pi\)
−0.842255 + 0.539080i \(0.818772\pi\)
\(242\) −8.07871 −0.519319
\(243\) −13.0277 8.56029i −0.835728 0.549143i
\(244\) −0.0372298 −0.00238340
\(245\) −3.23818 4.34963i −0.206880 0.277888i
\(246\) −5.11566 25.5125i −0.326163 1.62662i
\(247\) 2.34205 7.82301i 0.149021 0.497766i
\(248\) 10.8341 7.12570i 0.687966 0.452483i
\(249\) −6.35976 + 7.06447i −0.403033 + 0.447693i
\(250\) −12.1401 + 12.8677i −0.767806 + 0.813827i
\(251\) 6.59388 2.39998i 0.416202 0.151485i −0.125427 0.992103i \(-0.540030\pi\)
0.541629 + 0.840618i \(0.317808\pi\)
\(252\) −0.934635 0.712602i −0.0588765 0.0448897i
\(253\) −2.55143 0.928643i −0.160407 0.0583833i
\(254\) 2.32790 1.16912i 0.146066 0.0733570i
\(255\) 14.9663 + 1.39584i 0.937224 + 0.0874108i
\(256\) 1.93807 + 4.49296i 0.121130 + 0.280810i
\(257\) 0.464504 + 0.0542928i 0.0289750 + 0.00338669i 0.130568 0.991439i \(-0.458320\pi\)
−0.101593 + 0.994826i \(0.532394\pi\)
\(258\) −15.4664 15.6446i −0.962893 0.973992i
\(259\) −19.0266 12.5140i −1.18226 0.777582i
\(260\) −0.427461 + 0.358683i −0.0265100 + 0.0222446i
\(261\) −12.5174 + 7.03689i −0.774806 + 0.435573i
\(262\) −8.15045 6.83904i −0.503536 0.422517i
\(263\) −5.47384 18.2839i −0.337532 1.12743i −0.943341 0.331824i \(-0.892336\pi\)
0.605810 0.795610i \(-0.292849\pi\)
\(264\) 15.8698 + 9.91464i 0.976721 + 0.610204i
\(265\) −7.10899 3.57027i −0.436702 0.219320i
\(266\) −9.36708 9.92852i −0.574332 0.608757i
\(267\) 6.37703 + 10.4726i 0.390268 + 0.640911i
\(268\) −1.08732 + 2.52070i −0.0664189 + 0.153976i
\(269\) −2.12061 + 3.67300i −0.129296 + 0.223947i −0.923404 0.383830i \(-0.874605\pi\)
0.794108 + 0.607776i \(0.207938\pi\)
\(270\) 2.99600 + 12.0029i 0.182331 + 0.730471i
\(271\) −3.83162 6.63656i −0.232754 0.403142i 0.725863 0.687839i \(-0.241440\pi\)
−0.958618 + 0.284697i \(0.908107\pi\)
\(272\) 23.4962 2.74631i 1.42467 0.166520i
\(273\) −0.838368 + 5.50339i −0.0507403 + 0.333080i
\(274\) 25.2525 5.98496i 1.52556 0.361564i
\(275\) 0.572988 + 9.83782i 0.0345525 + 0.593243i
\(276\) −0.147114 0.188264i −0.00885525 0.0113322i
\(277\) 14.4352 + 3.42121i 0.867329 + 0.205561i 0.640110 0.768283i \(-0.278889\pi\)
0.227219 + 0.973844i \(0.427037\pi\)
\(278\) 4.90030 27.7910i 0.293901 1.66679i
\(279\) 11.8100 8.58363i 0.707046 0.513888i
\(280\) −1.41060 7.99991i −0.0842995 0.478086i
\(281\) −0.0647163 + 1.11114i −0.00386065 + 0.0662848i −0.999688 0.0249704i \(-0.992051\pi\)
0.995828 + 0.0912552i \(0.0290879\pi\)
\(282\) 0.426681 0.295136i 0.0254085 0.0175751i
\(283\) −3.94683 + 5.30152i −0.234615 + 0.315142i −0.903802 0.427952i \(-0.859235\pi\)
0.669187 + 0.743094i \(0.266643\pi\)
\(284\) −1.23209 + 1.65498i −0.0731109 + 0.0982050i
\(285\) 1.09270 + 13.3716i 0.0647257 + 0.792067i
\(286\) −0.591730 + 10.1596i −0.0349897 + 0.600751i
\(287\) 3.34043 + 18.9445i 0.197179 + 1.11826i
\(288\) 1.52710 + 3.12963i 0.0899852 + 0.184415i
\(289\) 2.13761 12.1230i 0.125742 0.713117i
\(290\) 11.0888 + 2.62810i 0.651159 + 0.154328i
\(291\) 0.868039 2.14901i 0.0508853 0.125977i
\(292\) −0.139348 2.39251i −0.00815470 0.140011i
\(293\) 3.02889 0.717859i 0.176949 0.0419378i −0.141186 0.989983i \(-0.545092\pi\)
0.318135 + 0.948045i \(0.396943\pi\)
\(294\) −6.79540 5.43668i −0.396316 0.317074i
\(295\) 3.02080 0.353081i 0.175878 0.0205572i
\(296\) 15.9528 + 27.6310i 0.927235 + 1.60602i
\(297\) 18.3695 + 10.3162i 1.06590 + 0.598605i
\(298\) 5.47544 9.48374i 0.317184 0.549379i
\(299\) −0.448237 + 1.03913i −0.0259222 + 0.0600945i
\(300\) −0.415924 + 0.760909i −0.0240134 + 0.0439311i
\(301\) 11.1610 + 11.8299i 0.643308 + 0.681867i
\(302\) 3.54483 + 1.78028i 0.203982 + 0.102444i
\(303\) −7.57957 + 4.03098i −0.435435 + 0.231574i
\(304\) 6.05570 + 20.2274i 0.347318 + 1.16012i
\(305\) −0.221933 0.186224i −0.0127079 0.0106632i
\(306\) 23.8029 3.91639i 1.36072 0.223885i
\(307\) −5.76257 + 4.83537i −0.328887 + 0.275969i −0.792246 0.610202i \(-0.791088\pi\)
0.463359 + 0.886171i \(0.346644\pi\)
\(308\) 1.32712 + 0.872863i 0.0756199 + 0.0497360i
\(309\) −1.04369 + 3.80768i −0.0593732 + 0.216611i
\(310\) −11.5082 1.34511i −0.653621 0.0763974i
\(311\) −6.09456 14.1288i −0.345591 0.801169i −0.999023 0.0441844i \(-0.985931\pi\)
0.653433 0.756984i \(-0.273328\pi\)
\(312\) 4.51004 6.36309i 0.255331 0.360239i
\(313\) −3.54777 + 1.78176i −0.200532 + 0.100711i −0.546231 0.837635i \(-0.683938\pi\)
0.345699 + 0.938345i \(0.387642\pi\)
\(314\) −7.97521 2.90274i −0.450067 0.163811i
\(315\) −2.00707 8.92300i −0.113086 0.502754i
\(316\) 0.710537 0.258614i 0.0399708 0.0145482i
\(317\) −5.88460 + 6.23731i −0.330512 + 0.350323i −0.871224 0.490885i \(-0.836673\pi\)
0.540712 + 0.841208i \(0.318155\pi\)
\(318\) −12.4882 2.65330i −0.700302 0.148790i
\(319\) 16.2146 10.6645i 0.907845 0.597099i
\(320\) −3.22508 + 10.7725i −0.180287 + 0.602202i
\(321\) −7.26851 2.45483i −0.405689 0.137015i
\(322\) 1.12961 + 1.51733i 0.0629508 + 0.0845576i
\(323\) 26.1608 1.45563
\(324\) 0.889919 + 1.62636i 0.0494399 + 0.0903535i
\(325\) 4.10736 0.227835
\(326\) −14.2247 19.1071i −0.787836 1.05825i
\(327\) −23.9759 + 21.0918i −1.32587 + 1.16638i
\(328\) 7.72967 25.8189i 0.426800 1.42561i
\(329\) −0.320454 + 0.210766i −0.0176672 + 0.0116199i
\(330\) −5.16807 15.9010i −0.284493 0.875318i
\(331\) 6.40317 6.78697i 0.351950 0.373045i −0.527077 0.849818i \(-0.676712\pi\)
0.879027 + 0.476772i \(0.158193\pi\)
\(332\) 1.06230 0.386644i 0.0583010 0.0212198i
\(333\) 19.3942 + 30.2366i 1.06280 + 1.65696i
\(334\) 26.7247 + 9.72699i 1.46231 + 0.532237i
\(335\) −19.0903 + 9.58751i −1.04301 + 0.523822i
\(336\) −6.00828 13.0800i −0.327779 0.713571i
\(337\) 1.74575 + 4.04710i 0.0950970 + 0.220460i 0.959124 0.282986i \(-0.0913249\pi\)
−0.864027 + 0.503445i \(0.832066\pi\)
\(338\) −14.9648 1.74913i −0.813976 0.0951401i
\(339\) −15.1114 + 3.95641i −0.820737 + 0.214883i
\(340\) −1.49356 0.982327i −0.0809994 0.0532742i
\(341\) −15.1155 + 12.6834i −0.818548 + 0.686844i
\(342\) 7.13172 + 20.3157i 0.385639 + 1.09855i
\(343\) 15.1270 + 12.6931i 0.816782 + 0.685362i
\(344\) −6.53512 21.8288i −0.352350 1.17693i
\(345\) 0.0647248 1.85814i 0.00348466 0.100039i
\(346\) 31.3726 + 15.7559i 1.68660 + 0.847042i
\(347\) −13.7512 14.5754i −0.738201 0.782448i 0.244101 0.969750i \(-0.421507\pi\)
−0.982302 + 0.187302i \(0.940026\pi\)
\(348\) 1.70732 0.0398880i 0.0915222 0.00213822i
\(349\) −13.3272 + 30.8958i −0.713387 + 1.65382i 0.0424857 + 0.999097i \(0.486472\pi\)
−0.755872 + 0.654719i \(0.772787\pi\)
\(350\) 3.43279 5.94576i 0.183490 0.317814i
\(351\) 4.73769 7.39344i 0.252879 0.394633i
\(352\) −2.35320 4.07587i −0.125426 0.217244i
\(353\) −8.01065 + 0.936311i −0.426364 + 0.0498348i −0.326569 0.945173i \(-0.605893\pi\)
−0.0997947 + 0.995008i \(0.531819\pi\)
\(354\) 4.54637 1.77606i 0.241637 0.0943966i
\(355\) −15.6229 + 3.70270i −0.829178 + 0.196519i
\(356\) −0.0847886 1.45576i −0.00449379 0.0771554i
\(357\) −17.6603 + 2.48357i −0.934682 + 0.131444i
\(358\) 6.48028 + 1.53585i 0.342493 + 0.0811724i
\(359\) −2.83469 + 16.0764i −0.149609 + 0.848477i 0.813940 + 0.580948i \(0.197318\pi\)
−0.963550 + 0.267529i \(0.913793\pi\)
\(360\) −3.09773 + 12.4336i −0.163265 + 0.655307i
\(361\) 0.755367 + 4.28390i 0.0397562 + 0.225468i
\(362\) 0.329272 5.65339i 0.0173062 0.297135i
\(363\) −8.51545 4.03038i −0.446945 0.211540i
\(364\) 0.395357 0.531056i 0.0207223 0.0278349i
\(365\) 11.1367 14.9592i 0.582920 0.782998i
\(366\) −0.420254 0.198907i −0.0219670 0.0103971i
\(367\) −0.765272 + 13.1392i −0.0399469 + 0.685861i 0.917586 + 0.397537i \(0.130135\pi\)
−0.957533 + 0.288324i \(0.906902\pi\)
\(368\) −0.508116 2.88167i −0.0264874 0.150217i
\(369\) 7.33570 29.4439i 0.381881 1.53279i
\(370\) 4.95036 28.0749i 0.257357 1.45954i
\(371\) 9.18414 + 2.17668i 0.476817 + 0.113008i
\(372\) −1.71942 + 0.241803i −0.0891479 + 0.0125369i
\(373\) −0.0126555 0.217287i −0.000655279 0.0112507i 0.997965 0.0637693i \(-0.0203122\pi\)
−0.998620 + 0.0525186i \(0.983275\pi\)
\(374\) −31.7237 + 7.51866i −1.64039 + 0.388780i
\(375\) −19.2160 + 7.50681i −0.992307 + 0.387650i
\(376\) 0.533733 0.0623844i 0.0275252 0.00321723i
\(377\) −4.04451 7.00529i −0.208303 0.360791i
\(378\) −6.74305 13.0374i −0.346825 0.670571i
\(379\) 12.0931 20.9458i 0.621180 1.07592i −0.368086 0.929792i \(-0.619987\pi\)
0.989266 0.146124i \(-0.0466797\pi\)
\(380\) 0.631974 1.46508i 0.0324196 0.0751571i
\(381\) 3.03701 0.0709534i 0.155591 0.00363505i
\(382\) −18.7516 19.8755i −0.959414 1.01692i
\(383\) −7.55923 3.79639i −0.386258 0.193986i 0.245064 0.969507i \(-0.421191\pi\)
−0.631322 + 0.775521i \(0.717487\pi\)
\(384\) −0.768215 + 22.0542i −0.0392028 + 1.12545i
\(385\) 3.54513 + 11.8416i 0.180677 + 0.603502i
\(386\) 18.6851 + 15.6787i 0.951048 + 0.798024i
\(387\) −8.49753 24.2064i −0.431954 1.23048i
\(388\) −0.211154 + 0.177179i −0.0107197 + 0.00899491i
\(389\) 20.9831 + 13.8008i 1.06389 + 0.699729i 0.955682 0.294399i \(-0.0951196\pi\)
0.108204 + 0.994129i \(0.465490\pi\)
\(390\) −6.74156 + 1.76506i −0.341372 + 0.0893770i
\(391\) −3.60095 0.420891i −0.182108 0.0212854i
\(392\) −3.57022 8.27670i −0.180323 0.418036i
\(393\) −5.17914 11.2749i −0.261253 0.568745i
\(394\) 24.8499 12.4801i 1.25192 0.628738i
\(395\) 5.52922 + 2.01247i 0.278205 + 0.101258i
\(396\) −1.35276 2.10903i −0.0679790 0.105983i
\(397\) 23.8173 8.66880i 1.19536 0.435074i 0.333756 0.942660i \(-0.391684\pi\)
0.861602 + 0.507585i \(0.169462\pi\)
\(398\) 0.912545 0.967242i 0.0457418 0.0484834i
\(399\) −4.92023 15.1384i −0.246319 0.757868i
\(400\) −8.87299 + 5.83586i −0.443650 + 0.291793i
\(401\) 6.80813 22.7407i 0.339982 1.13562i −0.601590 0.798805i \(-0.705466\pi\)
0.941572 0.336813i \(-0.109349\pi\)
\(402\) −25.7411 + 22.6447i −1.28385 + 1.12941i
\(403\) 4.91118 + 6.59686i 0.244643 + 0.328613i
\(404\) 1.02098 0.0507957
\(405\) −2.83014 + 14.1464i −0.140631 + 0.702941i
\(406\) −13.5210 −0.671037
\(407\) −28.9915 38.9423i −1.43705 1.93030i
\(408\) 23.6723 + 7.99496i 1.17195 + 0.395810i
\(409\) −2.69238 + 8.99318i −0.133130 + 0.444684i −0.998395 0.0566295i \(-0.981965\pi\)
0.865266 + 0.501314i \(0.167150\pi\)
\(410\) −20.1195 + 13.2328i −0.993633 + 0.653523i
\(411\) 29.6035 + 6.28971i 1.46023 + 0.310248i
\(412\) 0.322222 0.341536i 0.0158748 0.0168263i
\(413\) −3.39087 + 1.23418i −0.166854 + 0.0607298i
\(414\) −0.654808 2.91113i −0.0321820 0.143074i
\(415\) 8.26652 + 3.00877i 0.405787 + 0.147695i
\(416\) −1.75298 + 0.880379i −0.0859469 + 0.0431642i
\(417\) 19.0298 26.8487i 0.931895 1.31478i
\(418\) −11.5257 26.7197i −0.563743 1.30690i
\(419\) 11.6606 + 1.36293i 0.569659 + 0.0665836i 0.396047 0.918230i \(-0.370382\pi\)
0.173613 + 0.984814i \(0.444456\pi\)
\(420\) −0.287538 + 1.04902i −0.0140304 + 0.0511871i
\(421\) −5.65294 3.71800i −0.275507 0.181204i 0.404235 0.914655i \(-0.367538\pi\)
−0.679742 + 0.733451i \(0.737908\pi\)
\(422\) −17.0220 + 14.2831i −0.828618 + 0.695293i
\(423\) 0.596987 0.0982244i 0.0290265 0.00477584i
\(424\) −10.1299 8.49998i −0.491950 0.412795i
\(425\) 3.77386 + 12.6056i 0.183059 + 0.611459i
\(426\) −22.7500 + 12.0989i −1.10224 + 0.586195i
\(427\) 0.307174 + 0.154268i 0.0148652 + 0.00746557i
\(428\) 0.626131 + 0.663660i 0.0302652 + 0.0320792i
\(429\) −5.69224 + 10.4136i −0.274824 + 0.502775i
\(430\) −8.06405 + 18.6946i −0.388883 + 0.901532i
\(431\) 3.90563 6.76475i 0.188128 0.325846i −0.756498 0.653996i \(-0.773092\pi\)
0.944626 + 0.328149i \(0.106425\pi\)
\(432\) 0.270143 + 22.7032i 0.0129972 + 1.09231i
\(433\) −2.20878 3.82573i −0.106147 0.183853i 0.808059 0.589102i \(-0.200518\pi\)
−0.914206 + 0.405249i \(0.867185\pi\)
\(434\) 13.6541 1.59594i 0.655419 0.0766074i
\(435\) 10.3772 + 8.30228i 0.497547 + 0.398064i
\(436\) 3.69538 0.875820i 0.176976 0.0419442i
\(437\) −0.188153 3.23046i −0.00900056 0.154534i
\(438\) 11.2094 27.7514i 0.535608 1.32601i
\(439\) −14.6281 3.46693i −0.698162 0.165468i −0.133817 0.991006i \(-0.542723\pi\)
−0.564346 + 0.825539i \(0.690871\pi\)
\(440\) 3.00721 17.0547i 0.143363 0.813052i
\(441\) −4.45046 9.12074i −0.211927 0.434321i
\(442\) 2.35966 + 13.3823i 0.112238 + 0.636531i
\(443\) −0.660317 + 11.3372i −0.0313726 + 0.538647i 0.945607 + 0.325312i \(0.105469\pi\)
−0.976979 + 0.213334i \(0.931568\pi\)
\(444\) −0.347951 4.25797i −0.0165130 0.202074i
\(445\) 6.77632 9.10217i 0.321228 0.431484i
\(446\) 5.49977 7.38748i 0.260422 0.349807i
\(447\) 10.5028 7.26480i 0.496765 0.343613i
\(448\) 0.775753 13.3192i 0.0366509 0.629272i
\(449\) −1.16004 6.57891i −0.0547457 0.310478i 0.945122 0.326716i \(-0.105942\pi\)
−0.999868 + 0.0162381i \(0.994831\pi\)
\(450\) −8.76029 + 6.36707i −0.412964 + 0.300147i
\(451\) −7.12134 + 40.3871i −0.335331 + 1.90176i
\(452\) 1.80768 + 0.428428i 0.0850260 + 0.0201515i
\(453\) 2.84830 + 3.64500i 0.133825 + 0.171257i
\(454\) 1.23352 + 21.1786i 0.0578917 + 0.993963i
\(455\) 5.01314 1.18814i 0.235020 0.0557007i
\(456\) −3.35856 + 22.0470i −0.157279 + 1.03244i
\(457\) −11.9315 + 1.39459i −0.558133 + 0.0652364i −0.390483 0.920610i \(-0.627692\pi\)
−0.167650 + 0.985847i \(0.553618\pi\)
\(458\) 14.5059 + 25.1249i 0.677815 + 1.17401i
\(459\) 27.0436 + 7.74693i 1.26229 + 0.361596i
\(460\) −0.110560 + 0.191496i −0.00515490 + 0.00892855i
\(461\) 2.77206 6.42636i 0.129108 0.299305i −0.841385 0.540436i \(-0.818259\pi\)
0.970493 + 0.241131i \(0.0775184\pi\)
\(462\) 10.3173 + 16.9434i 0.480003 + 0.788277i
\(463\) −19.2377 20.3908i −0.894052 0.947639i 0.104850 0.994488i \(-0.466564\pi\)
−0.998902 + 0.0468486i \(0.985082\pi\)
\(464\) 18.6905 + 9.38674i 0.867686 + 0.435768i
\(465\) −11.4593 7.15915i −0.531411 0.331997i
\(466\) −4.04188 13.5008i −0.187237 0.625414i
\(467\) −10.9662 9.20178i −0.507458 0.425807i 0.352776 0.935708i \(-0.385238\pi\)
−0.860233 + 0.509900i \(0.829682\pi\)
\(468\) −0.910343 + 0.511767i −0.0420806 + 0.0236565i
\(469\) 19.4162 16.2921i 0.896557 0.752300i
\(470\) −0.401154 0.263843i −0.0185039 0.0121702i
\(471\) −6.95820 7.03841i −0.320617 0.324313i
\(472\) 5.02139 + 0.586916i 0.231128 + 0.0270150i
\(473\) 13.7331 + 31.8368i 0.631447 + 1.46386i
\(474\) 9.40231 + 0.876913i 0.431862 + 0.0402779i
\(475\) −10.4953 + 5.27095i −0.481558 + 0.241848i
\(476\) 1.99307 + 0.725420i 0.0913524 + 0.0332496i
\(477\) −11.8396 9.02695i −0.542097 0.413316i
\(478\) 15.3578 5.58977i 0.702448 0.255670i
\(479\) 15.4383 16.3636i 0.705392 0.747672i −0.271258 0.962507i \(-0.587440\pi\)
0.976650 + 0.214835i \(0.0689212\pi\)
\(480\) 2.15627 2.39520i 0.0984198 0.109325i
\(481\) −16.9063 + 11.1195i −0.770862 + 0.507004i
\(482\) −0.933101 + 3.11677i −0.0425016 + 0.141965i
\(483\) 0.433698 + 2.16291i 0.0197339 + 0.0984158i
\(484\) 0.669080 + 0.898730i 0.0304127 + 0.0408514i
\(485\) −2.14498 −0.0973984
\(486\) 1.35634 + 23.1131i 0.0615249 + 1.04843i
\(487\) −41.7203 −1.89053 −0.945264 0.326307i \(-0.894196\pi\)
−0.945264 + 0.326307i \(0.894196\pi\)
\(488\) −0.287580 0.386288i −0.0130182 0.0174864i
\(489\) −5.46138 27.2367i −0.246972 1.23168i
\(490\) −2.30992 + 7.71567i −0.104352 + 0.348559i
\(491\) 9.24805 6.08254i 0.417359 0.274501i −0.323413 0.946258i \(-0.604830\pi\)
0.740772 + 0.671757i \(0.234460\pi\)
\(492\) −2.41450 + 2.68205i −0.108854 + 0.120916i
\(493\) 17.7832 18.8491i 0.800917 0.848922i
\(494\) −11.3973 + 4.14826i −0.512787 + 0.186639i
\(495\) 2.48536 19.3389i 0.111708 0.869217i
\(496\) −19.9825 7.27302i −0.897239 0.326568i
\(497\) 17.0233 8.54944i 0.763601 0.383495i
\(498\) 14.0570 + 1.31104i 0.629910 + 0.0587490i
\(499\) 3.09519 + 7.17545i 0.138560 + 0.321217i 0.973340 0.229365i \(-0.0736650\pi\)
−0.834781 + 0.550582i \(0.814406\pi\)
\(500\) 2.43694 + 0.284837i 0.108983 + 0.0127383i
\(501\) 23.3167 + 23.5855i 1.04171 + 1.05372i
\(502\) −8.70757 5.72706i −0.388638 0.255611i
\(503\) 18.1547 15.2336i 0.809478 0.679233i −0.141005 0.990009i \(-0.545033\pi\)
0.950483 + 0.310776i \(0.100589\pi\)
\(504\) 0.174228 15.2020i 0.00776073 0.677152i
\(505\) 6.08624 + 5.10696i 0.270834 + 0.227257i
\(506\) 1.15660 + 3.86331i 0.0514171 + 0.171745i
\(507\) −14.9011 9.30945i −0.661783 0.413447i
\(508\) −0.322858 0.162145i −0.0143245 0.00719403i
\(509\) −8.55338 9.06605i −0.379122 0.401846i 0.509512 0.860464i \(-0.329826\pi\)
−0.888634 + 0.458618i \(0.848345\pi\)
\(510\) −11.6111 19.0682i −0.514150 0.844355i
\(511\) −8.76405 + 20.3174i −0.387699 + 0.898787i
\(512\) −9.10692 + 15.7736i −0.402473 + 0.697103i
\(513\) −2.61802 + 24.9719i −0.115588 + 1.10254i
\(514\) −0.347303 0.601546i −0.0153189 0.0265331i
\(515\) 3.62919 0.424191i 0.159921 0.0186921i
\(516\) −0.459488 + 3.01627i −0.0202278 + 0.132784i
\(517\) −0.795643 + 0.188571i −0.0349923 + 0.00829333i
\(518\) 1.96668 + 33.7666i 0.0864111 + 1.48362i
\(519\) 25.2081 + 32.2591i 1.10651 + 1.41602i
\(520\) −7.02351 1.66460i −0.308001 0.0729977i
\(521\) 3.66734 20.7985i 0.160669 0.911200i −0.792749 0.609548i \(-0.791351\pi\)
0.953418 0.301652i \(-0.0975380\pi\)
\(522\) 19.4856 + 8.67144i 0.852860 + 0.379539i
\(523\) 7.23247 + 41.0174i 0.316254 + 1.79356i 0.565102 + 0.825021i \(0.308837\pi\)
−0.248848 + 0.968543i \(0.580052\pi\)
\(524\) −0.0857995 + 1.47312i −0.00374817 + 0.0643536i
\(525\) 6.58464 4.55461i 0.287377 0.198779i
\(526\) −16.9278 + 22.7379i −0.738086 + 0.991421i
\(527\) −15.7335 + 21.1337i −0.685360 + 0.920598i
\(528\) −2.49924 30.5839i −0.108765 1.33099i
\(529\) 1.31126 22.5134i 0.0570111 0.978843i
\(530\) 2.05173 + 11.6360i 0.0891217 + 0.505434i
\(531\) 5.67820 + 0.396059i 0.246413 + 0.0171875i
\(532\) −0.328733 + 1.86434i −0.0142524 + 0.0808293i
\(533\) 16.6323 + 3.94193i 0.720426 + 0.170744i
\(534\) 6.82059 16.8858i 0.295156 0.730721i
\(535\) 0.412835 + 7.08810i 0.0178484 + 0.306445i
\(536\) −34.5531 + 8.18925i −1.49247 + 0.353722i
\(537\) 6.06438 + 4.85183i 0.261697 + 0.209372i
\(538\) 6.25670 0.731303i 0.269746 0.0315287i
\(539\) 6.85799 + 11.8784i 0.295395 + 0.511638i
\(540\) 1.08715 1.32737i 0.0467835 0.0571211i
\(541\) −4.87647 + 8.44629i −0.209656 + 0.363134i −0.951606 0.307320i \(-0.900568\pi\)
0.741950 + 0.670455i \(0.233901\pi\)
\(542\) −4.50813 + 10.4510i −0.193641 + 0.448910i
\(543\) 3.16749 5.79474i 0.135930 0.248676i
\(544\) −4.31254 4.57103i −0.184899 0.195981i
\(545\) 26.4096 + 13.2634i 1.13126 + 0.568142i
\(546\) 7.30010 3.88235i 0.312415 0.166149i
\(547\) −0.198805 0.664056i −0.00850030 0.0283930i 0.953634 0.300968i \(-0.0973098\pi\)
−0.962134 + 0.272575i \(0.912125\pi\)
\(548\) −2.75722 2.31358i −0.117783 0.0988314i
\(549\) −0.343740 0.419321i −0.0146705 0.0178962i
\(550\) 11.2122 9.40814i 0.478089 0.401164i
\(551\) 19.3245 + 12.7100i 0.823253 + 0.541462i
\(552\) 0.817000 2.98066i 0.0347738 0.126865i
\(553\) −6.93407 0.810476i −0.294867 0.0344650i
\(554\) −8.72721 20.2319i −0.370783 0.859573i
\(555\) 19.2242 27.1229i 0.816024 1.15130i
\(556\) −3.49750 + 1.75651i −0.148327 + 0.0744926i
\(557\) −28.7125 10.4505i −1.21659 0.442801i −0.347602 0.937642i \(-0.613004\pi\)
−0.868984 + 0.494841i \(0.835226\pi\)
\(558\) −20.7009 6.45684i −0.876339 0.273340i
\(559\) 13.5800 4.94270i 0.574371 0.209054i
\(560\) −9.14158 + 9.68950i −0.386302 + 0.409456i
\(561\) −37.1897 7.90150i −1.57015 0.333602i
\(562\) 1.38116 0.908405i 0.0582608 0.0383187i
\(563\) 2.79565 9.33813i 0.117823 0.393555i −0.878651 0.477465i \(-0.841556\pi\)
0.996473 + 0.0839099i \(0.0267408\pi\)
\(564\) −0.0681706 0.0230236i −0.00287050 0.000969470i
\(565\) 8.63287 + 11.5960i 0.363188 + 0.487846i
\(566\) 9.81660 0.412622
\(567\) −0.603363 17.1062i −0.0253389 0.718394i
\(568\) −26.6889 −1.11984
\(569\) −11.7532 15.7873i −0.492720 0.661838i 0.484321 0.874891i \(-0.339067\pi\)
−0.977041 + 0.213053i \(0.931659\pi\)
\(570\) 14.9613 13.1615i 0.626658 0.551277i
\(571\) 9.46443 31.6134i 0.396074 1.32298i −0.494910 0.868944i \(-0.664799\pi\)
0.890984 0.454035i \(-0.150016\pi\)
\(572\) 1.17923 0.775592i 0.0493061 0.0324292i
\(573\) −9.84961 30.3049i −0.411473 1.26601i
\(574\) 19.6070 20.7822i 0.818381 0.867433i
\(575\) 1.52945 0.556674i 0.0637824 0.0232149i
\(576\) −9.65995 + 18.6972i −0.402498 + 0.779048i
\(577\) −19.1279 6.96197i −0.796303 0.289831i −0.0883494 0.996090i \(-0.528159\pi\)
−0.707954 + 0.706259i \(0.750381\pi\)
\(578\) −16.3388 + 8.20563i −0.679603 + 0.341309i
\(579\) 11.8733 + 25.8481i 0.493438 + 1.07421i
\(580\) −0.626011 1.45126i −0.0259937 0.0602601i
\(581\) −10.3668 1.21171i −0.430089 0.0502702i
\(582\) −3.33014 + 0.871887i −0.138039 + 0.0361409i
\(583\) 16.8114 + 11.0571i 0.696259 + 0.457937i
\(584\) 23.7477 19.9267i 0.982686 0.824571i
\(585\) −7.98658 1.50282i −0.330204 0.0621339i
\(586\) −3.54165 2.97180i −0.146304 0.122764i
\(587\) 10.0799 + 33.6693i 0.416043 + 1.38968i 0.867522 + 0.497398i \(0.165711\pi\)
−0.451479 + 0.892281i \(0.649104\pi\)
\(588\) −0.0420168 + 1.20623i −0.00173274 + 0.0497442i
\(589\) −21.0150 10.5541i −0.865907 0.434875i
\(590\) −3.09990 3.28570i −0.127621 0.135270i
\(591\) 32.4195 0.757413i 1.33356 0.0311558i
\(592\) 20.7233 48.0420i 0.851722 1.97451i
\(593\) −4.46816 + 7.73909i −0.183485 + 0.317806i −0.943065 0.332608i \(-0.892071\pi\)
0.759580 + 0.650414i \(0.225405\pi\)
\(594\) −4.00224 31.0344i −0.164214 1.27336i
\(595\) 8.25249 + 14.2937i 0.338319 + 0.585986i
\(596\) −1.50851 + 0.176320i −0.0617911 + 0.00722234i
\(597\) 1.44442 0.564272i 0.0591163 0.0230941i
\(598\) 1.63554 0.387629i 0.0668821 0.0158513i
\(599\) 2.30662 + 39.6032i 0.0942460 + 1.61814i 0.631951 + 0.775008i \(0.282254\pi\)
−0.537705 + 0.843133i \(0.680709\pi\)
\(600\) −11.1078 + 1.56209i −0.453474 + 0.0637721i
\(601\) 23.0255 + 5.45715i 0.939231 + 0.222602i 0.671595 0.740918i \(-0.265609\pi\)
0.267636 + 0.963520i \(0.413758\pi\)
\(602\) 4.19466 23.7891i 0.170962 0.969572i
\(603\) −38.4299 + 11.0269i −1.56499 + 0.449049i
\(604\) −0.0955328 0.541794i −0.00388718 0.0220453i
\(605\) −0.506964 + 8.70423i −0.0206110 + 0.353877i
\(606\) 11.5249 + 5.45478i 0.468169 + 0.221585i
\(607\) 10.6054 14.2455i 0.430460 0.578208i −0.532982 0.846127i \(-0.678928\pi\)
0.963441 + 0.267919i \(0.0863359\pi\)
\(608\) 3.34951 4.49917i 0.135841 0.182466i
\(609\) −14.2520 6.74549i −0.577519 0.273341i
\(610\) −0.0250197 + 0.429571i −0.00101302 + 0.0173928i
\(611\) 0.0591812 + 0.335633i 0.00239422 + 0.0135783i
\(612\) −2.40705 2.32364i −0.0972991 0.0939278i
\(613\) −0.410662 + 2.32898i −0.0165865 + 0.0940666i −0.991977 0.126417i \(-0.959652\pi\)
0.975391 + 0.220483i \(0.0707635\pi\)
\(614\) 10.8717 + 2.57664i 0.438745 + 0.103985i
\(615\) −27.8089 + 3.91077i −1.12136 + 0.157698i
\(616\) 1.19470 + 20.5123i 0.0481360 + 0.826464i
\(617\) 32.8897 7.79500i 1.32409 0.313815i 0.493036 0.870009i \(-0.335887\pi\)
0.831053 + 0.556194i \(0.187739\pi\)
\(618\) 5.46200 2.13376i 0.219714 0.0858323i
\(619\) −47.1703 + 5.51342i −1.89594 + 0.221603i −0.982617 0.185643i \(-0.940563\pi\)
−0.913319 + 0.407246i \(0.866489\pi\)
\(620\) 0.803470 + 1.39165i 0.0322681 + 0.0558901i
\(621\) 0.762125 3.39518i 0.0305830 0.136244i
\(622\) −11.4270 + 19.7921i −0.458180 + 0.793591i
\(623\) −5.33265 + 12.3625i −0.213648 + 0.495292i
\(624\) −12.7864 + 0.298727i −0.511866 + 0.0119587i
\(625\) 4.76272 + 5.04819i 0.190509 + 0.201928i
\(626\) 5.26935 + 2.64637i 0.210606 + 0.105770i
\(627\) 1.18134 33.9142i 0.0471780 1.35440i
\(628\) 0.337588 + 1.12762i 0.0134712 + 0.0449970i
\(629\) −49.6594 41.6692i −1.98005 1.66146i
\(630\) −8.85036 + 10.3053i −0.352607 + 0.410572i
\(631\) −14.6874 + 12.3242i −0.584695 + 0.490617i −0.886485 0.462757i \(-0.846860\pi\)
0.301790 + 0.953374i \(0.402416\pi\)
\(632\) 8.17183 + 5.37470i 0.325058 + 0.213794i
\(633\) −25.0679 + 6.56320i −0.996360 + 0.260864i
\(634\) 12.6501 + 1.47859i 0.502401 + 0.0587223i
\(635\) −1.11356 2.58151i −0.0441901 0.102444i
\(636\) 0.739101 + 1.60901i 0.0293072 + 0.0638016i
\(637\) 5.10875 2.56571i 0.202416 0.101657i
\(638\) −27.0866 9.85872i −1.07237 0.390311i
\(639\) −30.0159 + 1.40328i −1.18741 + 0.0555129i
\(640\) 19.1913 6.98507i 0.758603 0.276109i
\(641\) −1.44451 + 1.53109i −0.0570547 + 0.0604744i −0.755272 0.655411i \(-0.772495\pi\)
0.698218 + 0.715886i \(0.253977\pi\)
\(642\) 3.52210 + 10.8367i 0.139006 + 0.427690i
\(643\) 36.6084 24.0777i 1.44369 0.949533i 0.445158 0.895452i \(-0.353148\pi\)
0.998537 0.0540808i \(-0.0172228\pi\)
\(644\) 0.0752436 0.251331i 0.00296501 0.00990384i
\(645\) −17.8265 + 15.6821i −0.701918 + 0.617483i
\(646\) −23.2029 31.1669i −0.912907 1.22625i
\(647\) 2.17952 0.0856859 0.0428430 0.999082i \(-0.486358\pi\)
0.0428430 + 0.999082i \(0.486358\pi\)
\(648\) −10.0006 + 21.7964i −0.392861 + 0.856242i
\(649\) −7.69281 −0.301969
\(650\) −3.64296 4.89334i −0.142889 0.191933i
\(651\) 15.1885 + 5.12968i 0.595282 + 0.201048i
\(652\) −0.947512 + 3.16491i −0.0371075 + 0.123948i
\(653\) 15.6357 10.2838i 0.611873 0.402435i −0.205407 0.978677i \(-0.565852\pi\)
0.817279 + 0.576242i \(0.195481\pi\)
\(654\) 46.3930 + 9.85690i 1.81411 + 0.385435i
\(655\) −7.88003 + 8.35235i −0.307898 + 0.326353i
\(656\) −41.5311 + 15.1161i −1.62152 + 0.590183i
\(657\) 25.6603 23.6593i 1.00110 0.923038i
\(658\) 0.535320 + 0.194841i 0.0208689 + 0.00759568i
\(659\) −12.7829 + 6.41983i −0.497953 + 0.250081i −0.680005 0.733208i \(-0.738022\pi\)
0.182052 + 0.983289i \(0.441726\pi\)
\(660\) −1.34091 + 1.89185i −0.0521948 + 0.0736401i
\(661\) 9.89935 + 22.9493i 0.385040 + 0.892623i 0.994971 + 0.100168i \(0.0319381\pi\)
−0.609930 + 0.792455i \(0.708803\pi\)
\(662\) −13.7649 1.60889i −0.534989 0.0625312i
\(663\) −4.18906 + 15.2830i −0.162690 + 0.593541i
\(664\) 12.2174 + 8.03550i 0.474126 + 0.311838i
\(665\) −11.2851 + 9.46931i −0.437617 + 0.367204i
\(666\) 18.8213 49.9234i 0.729311 1.93449i
\(667\) −2.45548 2.06039i −0.0950764 0.0797786i
\(668\) −1.13125 3.77862i −0.0437692 0.146199i
\(669\) 9.48262 5.04306i 0.366619 0.194976i
\(670\) 28.3540 + 14.2399i 1.09541 + 0.550136i
\(671\) 0.502877 + 0.533018i 0.0194133 + 0.0205769i
\(672\) −1.83401 + 3.35523i −0.0707486 + 0.129431i
\(673\) −11.7597 + 27.2621i −0.453304 + 1.05088i 0.526365 + 0.850259i \(0.323554\pi\)
−0.979669 + 0.200619i \(0.935705\pi\)
\(674\) 3.27319 5.66933i 0.126078 0.218374i
\(675\) −12.4103 + 2.34086i −0.477674 + 0.0900997i
\(676\) 1.04480 + 1.80964i 0.0401846 + 0.0696017i
\(677\) −38.5222 + 4.50260i −1.48053 + 0.173049i −0.817666 0.575692i \(-0.804733\pi\)
−0.662862 + 0.748741i \(0.730659\pi\)
\(678\) 18.1163 + 14.4940i 0.695753 + 0.556639i
\(679\) 2.47635 0.586906i 0.0950336 0.0225234i
\(680\) −1.34453 23.0847i −0.0515604 0.885258i
\(681\) −9.26560 + 22.9389i −0.355058 + 0.879022i
\(682\) 28.5169 + 6.75863i 1.09197 + 0.258801i
\(683\) −2.81006 + 15.9367i −0.107524 + 0.609799i 0.882658 + 0.470016i \(0.155752\pi\)
−0.990182 + 0.139784i \(0.955359\pi\)
\(684\) 1.66940 2.47593i 0.0638312 0.0946695i
\(685\) −4.86369 27.5833i −0.185832 1.05391i
\(686\) 1.70535 29.2797i 0.0651104 1.11790i
\(687\) 2.75551 + 33.7200i 0.105129 + 1.28650i
\(688\) −22.3136 + 29.9724i −0.850698 + 1.14269i
\(689\) 5.00822 6.72720i 0.190798 0.256286i
\(690\) −2.27112 + 1.57094i −0.0864601 + 0.0598046i
\(691\) 1.02377 17.5774i 0.0389460 0.668677i −0.921185 0.389125i \(-0.872777\pi\)
0.960131 0.279551i \(-0.0901857\pi\)
\(692\) −0.845488 4.79500i −0.0321406 0.182279i
\(693\) 2.42216 + 23.0065i 0.0920101 + 0.873945i
\(694\) −5.16814 + 29.3100i −0.196180 + 1.11259i
\(695\) −29.6353 7.02369i −1.12413 0.266424i
\(696\) 13.6020 + 17.4067i 0.515584 + 0.659798i
\(697\) 3.18397 + 54.6667i 0.120602 + 2.07065i
\(698\) 48.6284 11.5251i 1.84061 0.436233i
\(699\) 2.47503 16.2471i 0.0936143 0.614523i
\(700\) −0.945751 + 0.110542i −0.0357460 + 0.00417811i
\(701\) −9.33660 16.1715i −0.352639 0.610788i 0.634072 0.773274i \(-0.281382\pi\)
−0.986711 + 0.162486i \(0.948049\pi\)
\(702\) −13.0103 + 0.913202i −0.491041 + 0.0344666i
\(703\) 28.9303 50.1087i 1.09113 1.88989i
\(704\) 11.2656 26.1166i 0.424588 0.984307i
\(705\) −0.291212 0.478238i −0.0109677 0.0180115i
\(706\) 8.22041 + 8.71312i 0.309379 + 0.327923i
\(707\) −8.42384 4.23061i −0.316811 0.159109i
\(708\) −0.574112 0.358675i −0.0215764 0.0134798i
\(709\) −9.44848 31.5601i −0.354845 1.18527i −0.930105 0.367294i \(-0.880284\pi\)
0.575260 0.817971i \(-0.304901\pi\)
\(710\) 18.2677 + 15.3285i 0.685576 + 0.575267i
\(711\) 9.47312 + 5.61503i 0.355270 + 0.210580i
\(712\) 14.4497 12.1247i 0.541526 0.454394i
\(713\) 2.72284 + 1.79084i 0.101971 + 0.0670675i
\(714\) 18.6223 + 18.8370i 0.696924 + 0.704957i
\(715\) 10.9091 + 1.27509i 0.407978 + 0.0476858i
\(716\) −0.365839 0.848110i −0.0136720 0.0316953i
\(717\) 18.9767 + 1.76987i 0.708697 + 0.0660971i
\(718\) 21.6669 10.8815i 0.808602 0.406095i
\(719\) 43.1137 + 15.6921i 1.60787 + 0.585216i 0.981017 0.193922i \(-0.0621209\pi\)
0.626852 + 0.779139i \(0.284343\pi\)
\(720\) 19.3884 8.10107i 0.722562 0.301909i
\(721\) −4.07379 + 1.48274i −0.151716 + 0.0552200i
\(722\) 4.43370 4.69945i 0.165005 0.174895i
\(723\) −2.53847 + 2.81975i −0.0944067 + 0.104868i
\(724\) −0.656191 + 0.431584i −0.0243871 + 0.0160397i
\(725\) −3.33659 + 11.1450i −0.123918 + 0.413915i
\(726\) 2.75101 + 13.7196i 0.102099 + 0.509184i
\(727\) 9.64105 + 12.9502i 0.357567 + 0.480295i 0.944114 0.329620i \(-0.106921\pi\)
−0.586547 + 0.809915i \(0.699513\pi\)
\(728\) 8.56403 0.317404
\(729\) −10.1012 + 25.0393i −0.374119 + 0.927381i
\(730\) −27.6992 −1.02519
\(731\) 27.6465 + 37.1358i 1.02254 + 1.37352i
\(732\) 0.0126777 + 0.0632254i 0.000468582 + 0.00233688i
\(733\) 7.38479 24.6669i 0.272763 0.911093i −0.706364 0.707848i \(-0.749666\pi\)
0.979128 0.203245i \(-0.0651488\pi\)
\(734\) 16.3323 10.7419i 0.602835 0.396491i
\(735\) −6.28406 + 6.98039i −0.231791 + 0.257475i
\(736\) −0.533435 + 0.565408i −0.0196627 + 0.0208412i
\(737\) 50.7756 18.4808i 1.87034 0.680750i
\(738\) −41.5845 + 17.3753i −1.53075 + 0.639594i
\(739\) −16.9934 6.18508i −0.625111 0.227522i 0.00999089 0.999950i \(-0.496820\pi\)
−0.635102 + 0.772428i \(0.719042\pi\)
\(740\) −3.53323 + 1.77445i −0.129884 + 0.0652302i
\(741\) −14.0829 1.31345i −0.517349 0.0482509i
\(742\) −5.55252 12.8722i −0.203839 0.472553i
\(743\) 44.0370 + 5.14719i 1.61556 + 0.188832i 0.875332 0.483523i \(-0.160643\pi\)
0.740229 + 0.672355i \(0.234717\pi\)
\(744\) −15.7905 15.9725i −0.578907 0.585580i
\(745\) −9.87445 6.49453i −0.361772 0.237941i
\(746\) −0.247642 + 0.207797i −0.00906683 + 0.00760798i
\(747\) 14.1629 + 8.39481i 0.518193 + 0.307150i
\(748\) 3.46379 + 2.90646i 0.126649 + 0.106271i
\(749\) −2.41605 8.07017i −0.0882805 0.294878i
\(750\) 25.9866 + 16.2351i 0.948896 + 0.592821i
\(751\) 2.23887 + 1.12440i 0.0816977 + 0.0410301i 0.489179 0.872183i \(-0.337297\pi\)
−0.407481 + 0.913214i \(0.633593\pi\)
\(752\) −0.604725 0.640971i −0.0220520 0.0233738i
\(753\) −6.32113 10.3808i −0.230355 0.378297i
\(754\) −4.75861 + 11.0317i −0.173298 + 0.401751i
\(755\) 2.14057 3.70758i 0.0779034 0.134933i
\(756\) −0.891907 + 1.82990i −0.0324384 + 0.0665529i
\(757\) 21.8769 + 37.8919i 0.795129 + 1.37720i 0.922757 + 0.385381i \(0.125930\pi\)
−0.127629 + 0.991822i \(0.540737\pi\)
\(758\) −35.6798 + 4.17037i −1.29595 + 0.151475i
\(759\) −0.708240 + 4.64918i −0.0257075 + 0.168754i
\(760\) 20.0830 4.75975i 0.728486 0.172654i
\(761\) −2.68708 46.1354i −0.0974065 1.67241i −0.594033 0.804441i \(-0.702465\pi\)
0.496626 0.867964i \(-0.334572\pi\)
\(762\) −2.77816 3.55524i −0.100642 0.128793i
\(763\) −34.1187 8.08628i −1.23518 0.292743i
\(764\) −0.658078 + 3.73214i −0.0238084 + 0.135024i
\(765\) −2.72592 25.8917i −0.0985557 0.936117i
\(766\) 2.18168 + 12.3729i