Properties

Label 81.2.g.a.43.8
Level $81$
Weight $2$
Character 81.43
Analytic conductor $0.647$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,2,Mod(4,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.646788256372\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 43.8
Character \(\chi\) \(=\) 81.43
Dual form 81.2.g.a.49.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.761699 + 2.54425i) q^{2} +(1.50768 - 0.852593i) q^{3} +(-4.22205 + 2.77689i) q^{4} +(-1.12810 - 2.61524i) q^{5} +(3.31761 + 3.18649i) q^{6} +(-0.111224 + 1.90965i) q^{7} +(-6.21207 - 5.21255i) q^{8} +(1.54617 - 2.57087i) q^{9} +O(q^{10})\) \(q+(0.761699 + 2.54425i) q^{2} +(1.50768 - 0.852593i) q^{3} +(-4.22205 + 2.77689i) q^{4} +(-1.12810 - 2.61524i) q^{5} +(3.31761 + 3.18649i) q^{6} +(-0.111224 + 1.90965i) q^{7} +(-6.21207 - 5.21255i) q^{8} +(1.54617 - 2.57087i) q^{9} +(5.79455 - 4.86220i) q^{10} +(-1.10623 - 1.48593i) q^{11} +(-3.99793 + 7.78634i) q^{12} +(0.0925649 + 0.0981130i) q^{13} +(-4.94334 + 1.17159i) q^{14} +(-3.93055 - 2.98112i) q^{15} +(4.52721 - 10.4952i) q^{16} +(0.193799 + 1.09909i) q^{17} +(7.71865 + 1.97562i) q^{18} +(-1.05411 + 5.97816i) q^{19} +(12.0251 + 7.90906i) q^{20} +(1.46046 + 2.97396i) q^{21} +(2.93796 - 3.94636i) q^{22} +(-0.0271279 - 0.465768i) q^{23} +(-13.8100 - 2.56246i) q^{24} +(-2.13565 + 2.26366i) q^{25} +(-0.179118 + 0.310241i) q^{26} +(0.139217 - 5.19429i) q^{27} +(-4.83328 - 8.37149i) q^{28} +(0.426645 + 0.101117i) q^{29} +(4.59082 - 12.2710i) q^{30} +(2.52937 + 1.27030i) q^{31} +(14.0420 + 1.64127i) q^{32} +(-2.93473 - 1.29713i) q^{33} +(-2.64874 + 1.33025i) q^{34} +(5.11966 - 1.86340i) q^{35} +(0.611003 + 15.1479i) q^{36} +(-7.77306 - 2.82916i) q^{37} +(-16.0129 + 1.87164i) q^{38} +(0.223208 + 0.0690024i) q^{39} +(-6.62420 + 22.1264i) q^{40} +(-1.59594 + 5.33081i) q^{41} +(-6.45406 + 5.98105i) q^{42} +(7.45009 - 0.870791i) q^{43} +(8.79682 + 3.20178i) q^{44} +(-8.46767 - 1.14340i) q^{45} +(1.16437 - 0.423795i) q^{46} +(-7.62373 + 3.82878i) q^{47} +(-2.12262 - 19.6833i) q^{48} +(3.31828 + 0.387852i) q^{49} +(-7.38603 - 3.70941i) q^{50} +(1.22926 + 1.49184i) q^{51} +(-0.663263 - 0.157196i) q^{52} +(-2.94278 - 5.09704i) q^{53} +(13.3216 - 3.60228i) q^{54} +(-2.63811 + 4.56934i) q^{55} +(10.6451 - 11.2831i) q^{56} +(3.50768 + 9.91186i) q^{57} +(0.0677086 + 1.16251i) q^{58} +(8.41775 - 11.3070i) q^{59} +(24.8732 + 1.67174i) q^{60} +(-6.41720 - 4.22066i) q^{61} +(-1.30534 + 7.40295i) q^{62} +(4.73748 + 3.23858i) q^{63} +(2.55035 + 14.4637i) q^{64} +(0.152166 - 0.352761i) q^{65} +(1.06484 - 8.45471i) q^{66} +(10.9967 - 2.60626i) q^{67} +(-3.87027 - 4.10225i) q^{68} +(-0.438010 - 0.679097i) q^{69} +(8.64061 + 11.6063i) q^{70} +(0.604067 - 0.506872i) q^{71} +(-23.0057 + 7.91094i) q^{72} +(-2.76505 - 2.32015i) q^{73} +(1.27737 - 21.9316i) q^{74} +(-1.28989 + 5.23370i) q^{75} +(-12.1502 - 28.1673i) q^{76} +(2.96064 - 1.94724i) q^{77} +(-0.00554195 + 0.620457i) q^{78} +(3.66523 + 12.2427i) q^{79} -32.5547 q^{80} +(-4.21872 - 7.94999i) q^{81} -14.7786 q^{82} +(4.79462 + 16.0151i) q^{83} +(-14.4245 - 8.50067i) q^{84} +(2.65575 - 1.74672i) q^{85} +(7.89024 + 18.2916i) q^{86} +(0.729453 - 0.211303i) q^{87} +(-0.873475 + 14.9970i) q^{88} +(8.34578 + 7.00294i) q^{89} +(-3.54073 - 22.4148i) q^{90} +(-0.197657 + 0.165854i) q^{91} +(1.40792 + 1.89116i) q^{92} +(4.89652 - 0.241328i) q^{93} +(-15.5484 - 16.4803i) q^{94} +(16.8235 - 3.98724i) q^{95} +(22.5701 - 9.49760i) q^{96} +(0.911663 - 2.11347i) q^{97} +(1.54074 + 8.73797i) q^{98} +(-5.53054 + 0.546481i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9} - 18 q^{10} - 18 q^{11} - 18 q^{12} - 18 q^{13} - 18 q^{14} - 18 q^{15} - 18 q^{16} - 18 q^{17} - 9 q^{18} - 18 q^{19} + 18 q^{20} + 9 q^{21} - 18 q^{22} + 9 q^{23} + 36 q^{24} - 18 q^{25} + 45 q^{26} + 9 q^{27} - 9 q^{28} + 9 q^{29} + 36 q^{30} - 18 q^{31} + 36 q^{32} + 9 q^{33} - 18 q^{34} + 9 q^{35} + 18 q^{36} - 18 q^{37} - 9 q^{38} - 18 q^{39} - 18 q^{40} + 27 q^{42} - 18 q^{43} + 54 q^{44} + 36 q^{45} - 18 q^{46} + 36 q^{47} + 81 q^{48} - 18 q^{49} + 99 q^{50} + 45 q^{51} + 45 q^{53} + 108 q^{54} - 9 q^{55} + 126 q^{56} + 36 q^{57} - 18 q^{58} + 45 q^{59} + 99 q^{60} - 18 q^{61} + 81 q^{62} + 36 q^{63} - 18 q^{64} - 18 q^{66} + 9 q^{67} - 99 q^{68} - 72 q^{69} + 36 q^{70} - 90 q^{71} - 234 q^{72} - 18 q^{73} - 162 q^{74} - 108 q^{75} + 63 q^{76} - 162 q^{77} - 135 q^{78} + 36 q^{79} - 288 q^{80} - 90 q^{81} - 36 q^{82} - 90 q^{83} - 243 q^{84} + 36 q^{85} - 162 q^{86} - 162 q^{87} + 63 q^{88} - 81 q^{89} - 99 q^{90} - 18 q^{91} - 144 q^{92} + 36 q^{94} + 18 q^{95} - 27 q^{96} + 9 q^{97} + 81 q^{98} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.761699 + 2.54425i 0.538602 + 1.79906i 0.598835 + 0.800873i \(0.295631\pi\)
−0.0602322 + 0.998184i \(0.519184\pi\)
\(3\) 1.50768 0.852593i 0.870457 0.492245i
\(4\) −4.22205 + 2.77689i −2.11103 + 1.38844i
\(5\) −1.12810 2.61524i −0.504504 1.16957i −0.960169 0.279420i \(-0.909858\pi\)
0.455666 0.890151i \(-0.349401\pi\)
\(6\) 3.31761 + 3.18649i 1.35441 + 1.30088i
\(7\) −0.111224 + 1.90965i −0.0420389 + 0.721779i 0.909775 + 0.415102i \(0.136254\pi\)
−0.951814 + 0.306677i \(0.900783\pi\)
\(8\) −6.21207 5.21255i −2.19630 1.84291i
\(9\) 1.54617 2.57087i 0.515390 0.856956i
\(10\) 5.79455 4.86220i 1.83240 1.53756i
\(11\) −1.10623 1.48593i −0.333541 0.448024i 0.603437 0.797411i \(-0.293797\pi\)
−0.936979 + 0.349387i \(0.886390\pi\)
\(12\) −3.99793 + 7.78634i −1.15410 + 2.24772i
\(13\) 0.0925649 + 0.0981130i 0.0256729 + 0.0272117i 0.740083 0.672516i \(-0.234786\pi\)
−0.714410 + 0.699727i \(0.753305\pi\)
\(14\) −4.94334 + 1.17159i −1.32116 + 0.313122i
\(15\) −3.93055 2.98112i −1.01486 0.769721i
\(16\) 4.52721 10.4952i 1.13180 2.62381i
\(17\) 0.193799 + 1.09909i 0.0470031 + 0.266568i 0.999248 0.0387665i \(-0.0123428\pi\)
−0.952245 + 0.305334i \(0.901232\pi\)
\(18\) 7.71865 + 1.97562i 1.81930 + 0.465657i
\(19\) −1.05411 + 5.97816i −0.241830 + 1.37148i 0.585912 + 0.810375i \(0.300737\pi\)
−0.827741 + 0.561110i \(0.810375\pi\)
\(20\) 12.0251 + 7.90906i 2.68890 + 1.76852i
\(21\) 1.46046 + 2.97396i 0.318699 + 0.648971i
\(22\) 2.93796 3.94636i 0.626375 0.841367i
\(23\) −0.0271279 0.465768i −0.00565655 0.0971192i 0.994298 0.106636i \(-0.0340078\pi\)
−0.999955 + 0.00951638i \(0.996971\pi\)
\(24\) −13.8100 2.56246i −2.81895 0.523060i
\(25\) −2.13565 + 2.26366i −0.427130 + 0.452731i
\(26\) −0.179118 + 0.310241i −0.0351279 + 0.0608432i
\(27\) 0.139217 5.19429i 0.0267922 0.999641i
\(28\) −4.83328 8.37149i −0.913405 1.58206i
\(29\) 0.426645 + 0.101117i 0.0792259 + 0.0187769i 0.270038 0.962850i \(-0.412964\pi\)
−0.190812 + 0.981627i \(0.561112\pi\)
\(30\) 4.59082 12.2710i 0.838165 2.24037i
\(31\) 2.52937 + 1.27030i 0.454289 + 0.228152i 0.661204 0.750207i \(-0.270046\pi\)
−0.206915 + 0.978359i \(0.566342\pi\)
\(32\) 14.0420 + 1.64127i 2.48230 + 0.290139i
\(33\) −2.93473 1.29713i −0.510871 0.225801i
\(34\) −2.64874 + 1.33025i −0.454255 + 0.228135i
\(35\) 5.11966 1.86340i 0.865381 0.314973i
\(36\) 0.611003 + 15.1479i 0.101834 + 2.52465i
\(37\) −7.77306 2.82916i −1.27788 0.465112i −0.388152 0.921595i \(-0.626886\pi\)
−0.889732 + 0.456484i \(0.849109\pi\)
\(38\) −16.0129 + 1.87164i −2.59763 + 0.303619i
\(39\) 0.223208 + 0.0690024i 0.0357419 + 0.0110492i
\(40\) −6.62420 + 22.1264i −1.04738 + 3.49848i
\(41\) −1.59594 + 5.33081i −0.249244 + 0.832533i 0.738202 + 0.674579i \(0.235675\pi\)
−0.987446 + 0.157954i \(0.949510\pi\)
\(42\) −6.45406 + 5.98105i −0.995884 + 0.922895i
\(43\) 7.45009 0.870791i 1.13613 0.132794i 0.472833 0.881152i \(-0.343231\pi\)
0.663295 + 0.748358i \(0.269157\pi\)
\(44\) 8.79682 + 3.20178i 1.32617 + 0.482687i
\(45\) −8.46767 1.14340i −1.26229 0.170447i
\(46\) 1.16437 0.423795i 0.171676 0.0624851i
\(47\) −7.62373 + 3.82878i −1.11204 + 0.558485i −0.907364 0.420345i \(-0.861909\pi\)
−0.204671 + 0.978831i \(0.565613\pi\)
\(48\) −2.12262 19.6833i −0.306374 2.84104i
\(49\) 3.31828 + 0.387852i 0.474040 + 0.0554074i
\(50\) −7.38603 3.70941i −1.04454 0.524589i
\(51\) 1.22926 + 1.49184i 0.172131 + 0.208899i
\(52\) −0.663263 0.157196i −0.0919780 0.0217992i
\(53\) −2.94278 5.09704i −0.404222 0.700133i 0.590009 0.807397i \(-0.299124\pi\)
−0.994231 + 0.107264i \(0.965791\pi\)
\(54\) 13.3216 3.60228i 1.81284 0.490208i
\(55\) −2.63811 + 4.56934i −0.355723 + 0.616130i
\(56\) 10.6451 11.2831i 1.42251 1.50777i
\(57\) 3.50768 + 9.91186i 0.464604 + 1.31286i
\(58\) 0.0677086 + 1.16251i 0.00889057 + 0.152645i
\(59\) 8.41775 11.3070i 1.09590 1.47205i 0.229089 0.973405i \(-0.426425\pi\)
0.866809 0.498641i \(-0.166167\pi\)
\(60\) 24.8732 + 1.67174i 3.21112 + 0.215821i
\(61\) −6.41720 4.22066i −0.821638 0.540400i 0.0676704 0.997708i \(-0.478443\pi\)
−0.889308 + 0.457308i \(0.848814\pi\)
\(62\) −1.30534 + 7.40295i −0.165778 + 0.940175i
\(63\) 4.73748 + 3.23858i 0.596867 + 0.408023i
\(64\) 2.55035 + 14.4637i 0.318793 + 1.80797i
\(65\) 0.152166 0.352761i 0.0188739 0.0437546i
\(66\) 1.06484 8.45471i 0.131073 1.04070i
\(67\) 10.9967 2.60626i 1.34346 0.318405i 0.504880 0.863189i \(-0.331537\pi\)
0.838576 + 0.544784i \(0.183388\pi\)
\(68\) −3.87027 4.10225i −0.469340 0.497471i
\(69\) −0.438010 0.679097i −0.0527302 0.0817537i
\(70\) 8.64061 + 11.6063i 1.03275 + 1.38722i
\(71\) 0.604067 0.506872i 0.0716895 0.0601547i −0.606239 0.795283i \(-0.707322\pi\)
0.677928 + 0.735128i \(0.262878\pi\)
\(72\) −23.0057 + 7.91094i −2.71125 + 0.932313i
\(73\) −2.76505 2.32015i −0.323625 0.271553i 0.466472 0.884536i \(-0.345525\pi\)
−0.790096 + 0.612983i \(0.789969\pi\)
\(74\) 1.27737 21.9316i 0.148491 2.54950i
\(75\) −1.28989 + 5.23370i −0.148943 + 0.604336i
\(76\) −12.1502 28.1673i −1.39372 3.23101i
\(77\) 2.96064 1.94724i 0.337396 0.221909i
\(78\) −0.00554195 + 0.620457i −0.000627503 + 0.0702529i
\(79\) 3.66523 + 12.2427i 0.412370 + 1.37741i 0.872088 + 0.489348i \(0.162765\pi\)
−0.459718 + 0.888065i \(0.652050\pi\)
\(80\) −32.5547 −3.63973
\(81\) −4.21872 7.94999i −0.468747 0.883333i
\(82\) −14.7786 −1.63202
\(83\) 4.79462 + 16.0151i 0.526278 + 1.75789i 0.644189 + 0.764866i \(0.277195\pi\)
−0.117912 + 0.993024i \(0.537620\pi\)
\(84\) −14.4245 8.50067i −1.57384 0.927499i
\(85\) 2.65575 1.74672i 0.288057 0.189458i
\(86\) 7.89024 + 18.2916i 0.850826 + 1.97244i
\(87\) 0.729453 0.211303i 0.0782055 0.0226541i
\(88\) −0.873475 + 14.9970i −0.0931127 + 1.59868i
\(89\) 8.34578 + 7.00294i 0.884651 + 0.742311i 0.967130 0.254282i \(-0.0818392\pi\)
−0.0824788 + 0.996593i \(0.526284\pi\)
\(90\) −3.54073 22.4148i −0.373226 2.36273i
\(91\) −0.197657 + 0.165854i −0.0207201 + 0.0173862i
\(92\) 1.40792 + 1.89116i 0.146786 + 0.197167i
\(93\) 4.89652 0.241328i 0.507746 0.0250246i
\(94\) −15.5484 16.4803i −1.60369 1.69981i
\(95\) 16.8235 3.98724i 1.72605 0.409082i
\(96\) 22.5701 9.49760i 2.30355 0.969345i
\(97\) 0.911663 2.11347i 0.0925653 0.214591i −0.865643 0.500662i \(-0.833090\pi\)
0.958208 + 0.286071i \(0.0923494\pi\)
\(98\) 1.54074 + 8.73797i 0.155638 + 0.882668i
\(99\) −5.53054 + 0.546481i −0.555841 + 0.0549234i
\(100\) 2.73091 15.4877i 0.273091 1.54877i
\(101\) 7.19469 + 4.73202i 0.715899 + 0.470854i 0.854472 0.519498i \(-0.173881\pi\)
−0.138573 + 0.990352i \(0.544251\pi\)
\(102\) −2.85928 + 4.26388i −0.283111 + 0.422187i
\(103\) −4.79750 + 6.44415i −0.472711 + 0.634961i −0.972975 0.230912i \(-0.925829\pi\)
0.500263 + 0.865873i \(0.333237\pi\)
\(104\) −0.0636009 1.09198i −0.00623658 0.107078i
\(105\) 6.13006 7.17440i 0.598233 0.700149i
\(106\) 10.7266 11.3696i 1.04186 1.10431i
\(107\) 2.09736 3.63274i 0.202760 0.351190i −0.746657 0.665209i \(-0.768342\pi\)
0.949417 + 0.314019i \(0.101676\pi\)
\(108\) 13.8362 + 22.3171i 1.33139 + 2.14747i
\(109\) −5.69325 9.86099i −0.545314 0.944512i −0.998587 0.0531401i \(-0.983077\pi\)
0.453273 0.891372i \(-0.350256\pi\)
\(110\) −13.6350 3.23155i −1.30005 0.308117i
\(111\) −14.1314 + 2.36180i −1.34129 + 0.224172i
\(112\) 19.5387 + 9.81270i 1.84623 + 0.927213i
\(113\) −13.9539 1.63097i −1.31267 0.153429i −0.569199 0.822200i \(-0.692747\pi\)
−0.743469 + 0.668771i \(0.766821\pi\)
\(114\) −22.5465 + 16.4743i −2.11167 + 1.54296i
\(115\) −1.18749 + 0.596380i −0.110734 + 0.0556127i
\(116\) −2.08211 + 0.757824i −0.193319 + 0.0703622i
\(117\) 0.395357 0.0862727i 0.0365507 0.00797591i
\(118\) 35.1796 + 12.8043i 3.23855 + 1.17874i
\(119\) −2.12043 + 0.247842i −0.194379 + 0.0227197i
\(120\) 8.87765 + 39.0071i 0.810415 + 3.56085i
\(121\) 2.17060 7.25032i 0.197328 0.659120i
\(122\) 5.85044 19.5418i 0.529674 1.76923i
\(123\) 2.13886 + 9.39782i 0.192854 + 0.847373i
\(124\) −14.2066 + 1.66052i −1.27579 + 0.149119i
\(125\) −5.05280 1.83907i −0.451936 0.164491i
\(126\) −4.63123 + 14.5202i −0.412583 + 1.29356i
\(127\) 6.95520 2.53149i 0.617174 0.224633i −0.0144652 0.999895i \(-0.504605\pi\)
0.631639 + 0.775262i \(0.282382\pi\)
\(128\) −9.58917 + 4.81586i −0.847571 + 0.425666i
\(129\) 10.4899 7.66477i 0.923583 0.674845i
\(130\) 1.01342 + 0.118452i 0.0888826 + 0.0103889i
\(131\) −6.43242 3.23048i −0.562003 0.282248i 0.145032 0.989427i \(-0.453671\pi\)
−0.707035 + 0.707179i \(0.749968\pi\)
\(132\) 15.9926 2.67287i 1.39197 0.232643i
\(133\) −11.2989 2.67790i −0.979743 0.232203i
\(134\) 15.0071 + 25.9931i 1.29642 + 2.24546i
\(135\) −13.7414 + 5.49561i −1.18267 + 0.472987i
\(136\) 4.52516 7.83780i 0.388029 0.672086i
\(137\) −9.72528 + 10.3082i −0.830887 + 0.880688i −0.994382 0.105856i \(-0.966242\pi\)
0.163495 + 0.986544i \(0.447723\pi\)
\(138\) 1.39416 1.63168i 0.118679 0.138897i
\(139\) −0.798311 13.7065i −0.0677118 1.16257i −0.845477 0.534012i \(-0.820684\pi\)
0.777765 0.628555i \(-0.216353\pi\)
\(140\) −16.4410 + 22.0841i −1.38952 + 1.86645i
\(141\) −8.22972 + 12.2725i −0.693067 + 1.03353i
\(142\) 1.74973 + 1.15081i 0.146834 + 0.0965741i
\(143\) 0.0433906 0.246080i 0.00362851 0.0205783i
\(144\) −19.9821 27.8663i −1.66517 2.32219i
\(145\) −0.216855 1.22985i −0.0180089 0.102133i
\(146\) 3.79691 8.80224i 0.314235 0.728478i
\(147\) 5.33357 2.24439i 0.439906 0.185114i
\(148\) 40.6745 9.64004i 3.34343 0.792407i
\(149\) −1.40654 1.49085i −0.115228 0.122135i 0.667191 0.744886i \(-0.267496\pi\)
−0.782420 + 0.622751i \(0.786015\pi\)
\(150\) −14.2984 + 0.704704i −1.16746 + 0.0575388i
\(151\) −7.32467 9.83873i −0.596073 0.800665i 0.397043 0.917800i \(-0.370036\pi\)
−0.993116 + 0.117135i \(0.962629\pi\)
\(152\) 37.7097 31.6422i 3.05866 2.56652i
\(153\) 3.12526 + 1.20114i 0.252662 + 0.0971068i
\(154\) 7.20939 + 6.04940i 0.580949 + 0.487474i
\(155\) 0.468740 8.04795i 0.0376501 0.646427i
\(156\) −1.13401 + 0.328493i −0.0907934 + 0.0263005i
\(157\) 9.01711 + 20.9040i 0.719644 + 1.66832i 0.743614 + 0.668610i \(0.233110\pi\)
−0.0239696 + 0.999713i \(0.507630\pi\)
\(158\) −28.3567 + 18.6505i −2.25594 + 1.48376i
\(159\) −8.78246 5.17569i −0.696494 0.410459i
\(160\) −11.5485 38.5747i −0.912990 3.04960i
\(161\) 0.892470 0.0703365
\(162\) 17.0134 16.7890i 1.33670 1.31907i
\(163\) −11.4061 −0.893393 −0.446697 0.894685i \(-0.647400\pi\)
−0.446697 + 0.894685i \(0.647400\pi\)
\(164\) −8.06492 26.9387i −0.629765 2.10356i
\(165\) −0.0816240 + 9.13832i −0.00635442 + 0.711417i
\(166\) −37.0945 + 24.3974i −2.87909 + 1.89361i
\(167\) −2.12661 4.93003i −0.164562 0.381497i 0.815904 0.578188i \(-0.196240\pi\)
−0.980466 + 0.196691i \(0.936981\pi\)
\(168\) 6.42940 26.0872i 0.496039 2.01267i
\(169\) 0.754825 12.9598i 0.0580635 0.996911i
\(170\) 6.46697 + 5.42643i 0.495994 + 0.416188i
\(171\) 13.7392 + 11.9532i 1.05067 + 0.914087i
\(172\) −29.0366 + 24.3646i −2.21402 + 1.85778i
\(173\) −2.03602 2.73485i −0.154796 0.207927i 0.717959 0.696085i \(-0.245076\pi\)
−0.872755 + 0.488158i \(0.837669\pi\)
\(174\) 1.09323 + 1.69496i 0.0828777 + 0.128495i
\(175\) −4.08525 4.33011i −0.308816 0.327326i
\(176\) −20.6033 + 4.88308i −1.55303 + 0.368076i
\(177\) 3.05096 24.2242i 0.229324 1.82080i
\(178\) −11.4603 + 26.5679i −0.858984 + 1.99135i
\(179\) −1.16699 6.61830i −0.0872246 0.494675i −0.996854 0.0792553i \(-0.974746\pi\)
0.909630 0.415420i \(-0.136365\pi\)
\(180\) 38.9261 18.6863i 2.90138 1.39279i
\(181\) 0.341126 1.93462i 0.0253557 0.143799i −0.969502 0.245084i \(-0.921184\pi\)
0.994857 + 0.101285i \(0.0322954\pi\)
\(182\) −0.572529 0.376558i −0.0424387 0.0279123i
\(183\) −13.2736 0.892121i −0.981209 0.0659475i
\(184\) −2.25932 + 3.03479i −0.166559 + 0.223728i
\(185\) 1.36988 + 23.5200i 0.100716 + 1.72923i
\(186\) 4.34368 + 12.2742i 0.318494 + 0.899985i
\(187\) 1.41878 1.50382i 0.103751 0.109970i
\(188\) 21.5557 37.3356i 1.57211 2.72298i
\(189\) 9.90378 + 0.843586i 0.720394 + 0.0613618i
\(190\) 22.9590 + 39.7661i 1.66562 + 2.88493i
\(191\) 4.57095 + 1.08333i 0.330742 + 0.0783873i 0.392632 0.919696i \(-0.371565\pi\)
−0.0618899 + 0.998083i \(0.519713\pi\)
\(192\) 16.1768 + 19.6322i 1.16746 + 1.41683i
\(193\) −5.63834 2.83168i −0.405857 0.203829i 0.234146 0.972201i \(-0.424771\pi\)
−0.640003 + 0.768373i \(0.721067\pi\)
\(194\) 6.07162 + 0.709670i 0.435917 + 0.0509513i
\(195\) −0.0713444 0.661585i −0.00510908 0.0473771i
\(196\) −15.0870 + 7.57697i −1.07764 + 0.541212i
\(197\) −10.1410 + 3.69101i −0.722514 + 0.262973i −0.676992 0.735990i \(-0.736717\pi\)
−0.0455211 + 0.998963i \(0.514495\pi\)
\(198\) −5.60299 13.6548i −0.398187 0.970407i
\(199\) −2.20899 0.804005i −0.156591 0.0569944i 0.262535 0.964922i \(-0.415441\pi\)
−0.419126 + 0.907928i \(0.637664\pi\)
\(200\) 25.0662 2.92982i 1.77245 0.207170i
\(201\) 14.3573 13.3051i 1.01269 0.938467i
\(202\) −6.55927 + 21.9095i −0.461509 + 1.54155i
\(203\) −0.240550 + 0.803494i −0.0168833 + 0.0563943i
\(204\) −9.33267 2.88509i −0.653417 0.201997i
\(205\) 15.7417 1.83995i 1.09945 0.128507i
\(206\) −20.0498 7.29753i −1.39694 0.508443i
\(207\) −1.23937 0.650413i −0.0861422 0.0452069i
\(208\) 1.44878 0.527313i 0.100455 0.0365626i
\(209\) 10.0492 5.04690i 0.695118 0.349102i
\(210\) 22.9227 + 10.1317i 1.58182 + 0.699152i
\(211\) 10.9862 + 1.28410i 0.756321 + 0.0884013i 0.485510 0.874231i \(-0.338634\pi\)
0.270811 + 0.962632i \(0.412708\pi\)
\(212\) 26.5785 + 13.3482i 1.82542 + 0.916759i
\(213\) 0.478581 1.27922i 0.0327918 0.0876508i
\(214\) 10.8402 + 2.56916i 0.741018 + 0.175624i
\(215\) −10.6818 18.5014i −0.728493 1.26179i
\(216\) −27.9403 + 31.5416i −1.90110 + 2.14614i
\(217\) −2.70715 + 4.68893i −0.183774 + 0.318305i
\(218\) 20.7523 21.9962i 1.40552 1.48977i
\(219\) −6.14694 1.14057i −0.415372 0.0770728i
\(220\) −1.55031 26.6177i −0.104522 1.79457i
\(221\) −0.0898959 + 0.120751i −0.00604705 + 0.00812260i
\(222\) −16.7729 34.1548i −1.12572 2.29232i
\(223\) −3.39064 2.23006i −0.227054 0.149336i 0.430885 0.902407i \(-0.358201\pi\)
−0.657939 + 0.753071i \(0.728572\pi\)
\(224\) −4.69607 + 26.6327i −0.313769 + 1.77947i
\(225\) 2.51749 + 8.99047i 0.167832 + 0.599365i
\(226\) −6.47903 36.7444i −0.430979 2.44420i
\(227\) −4.27034 + 9.89977i −0.283433 + 0.657071i −0.999146 0.0413237i \(-0.986843\pi\)
0.715713 + 0.698394i \(0.246102\pi\)
\(228\) −42.3337 32.1079i −2.80362 2.12640i
\(229\) −5.55067 + 1.31553i −0.366798 + 0.0869328i −0.409882 0.912139i \(-0.634430\pi\)
0.0430834 + 0.999071i \(0.486282\pi\)
\(230\) −2.42185 2.56701i −0.159692 0.169264i
\(231\) 2.80348 5.46003i 0.184455 0.359244i
\(232\) −2.12327 2.85205i −0.139400 0.187246i
\(233\) −20.2690 + 17.0077i −1.32787 + 1.11421i −0.343297 + 0.939227i \(0.611544\pi\)
−0.984571 + 0.174987i \(0.944012\pi\)
\(234\) 0.520642 + 0.940173i 0.0340354 + 0.0614610i
\(235\) 18.6135 + 15.6186i 1.21421 + 1.01885i
\(236\) −4.14191 + 71.1139i −0.269616 + 4.62912i
\(237\) 15.9640 + 15.3331i 1.03698 + 0.995991i
\(238\) −2.24570 5.20612i −0.145567 0.337462i
\(239\) 2.99928 1.97266i 0.194007 0.127601i −0.448789 0.893638i \(-0.648145\pi\)
0.642796 + 0.766037i \(0.277774\pi\)
\(240\) −49.0820 + 27.7560i −3.16823 + 1.79164i
\(241\) 2.43378 + 8.12939i 0.156773 + 0.523660i 0.999901 0.0140534i \(-0.00447348\pi\)
−0.843128 + 0.537713i \(0.819288\pi\)
\(242\) 20.1000 1.29208
\(243\) −13.1386 8.38915i −0.842840 0.538165i
\(244\) 38.8140 2.48481
\(245\) −2.72904 9.11564i −0.174352 0.582377i
\(246\) −22.2813 + 12.6001i −1.42060 + 0.803353i
\(247\) −0.684109 + 0.449946i −0.0435288 + 0.0286294i
\(248\) −9.09116 21.0757i −0.577289 1.33831i
\(249\) 20.8831 + 20.0578i 1.32341 + 1.27111i
\(250\) 0.830341 14.2564i 0.0525154 0.901655i
\(251\) −3.14926 2.64255i −0.198780 0.166796i 0.537965 0.842967i \(-0.319193\pi\)
−0.736744 + 0.676171i \(0.763638\pi\)
\(252\) −28.9951 0.518012i −1.82652 0.0326317i
\(253\) −0.662087 + 0.555557i −0.0416251 + 0.0349276i
\(254\) 11.7385 + 15.7675i 0.736539 + 0.989344i
\(255\) 2.51477 4.89776i 0.157481 0.306709i
\(256\) 0.600666 + 0.636669i 0.0375416 + 0.0397918i
\(257\) −5.62151 + 1.33232i −0.350660 + 0.0831080i −0.402171 0.915564i \(-0.631744\pi\)
0.0515110 + 0.998672i \(0.483596\pi\)
\(258\) 27.4912 + 20.8507i 1.71153 + 1.29811i
\(259\) 6.26726 14.5291i 0.389429 0.902797i
\(260\) 0.337124 + 1.91192i 0.0209075 + 0.118573i
\(261\) 0.919622 0.940503i 0.0569232 0.0582157i
\(262\) 3.31959 18.8263i 0.205085 1.16309i
\(263\) −12.0144 7.90201i −0.740841 0.487259i 0.122129 0.992514i \(-0.461028\pi\)
−0.862970 + 0.505256i \(0.831398\pi\)
\(264\) 11.4694 + 23.3553i 0.705893 + 1.43742i
\(265\) −10.0102 + 13.4461i −0.614923 + 0.825985i
\(266\) −1.79315 30.7871i −0.109945 1.88768i
\(267\) 18.5534 + 3.44261i 1.13545 + 0.210684i
\(268\) −39.1912 + 41.5403i −2.39398 + 2.53748i
\(269\) 4.14565 7.18047i 0.252765 0.437801i −0.711521 0.702664i \(-0.751994\pi\)
0.964286 + 0.264863i \(0.0853269\pi\)
\(270\) −24.4490 30.7755i −1.48792 1.87293i
\(271\) 4.28409 + 7.42026i 0.260240 + 0.450748i 0.966306 0.257398i \(-0.0828651\pi\)
−0.706066 + 0.708146i \(0.749532\pi\)
\(272\) 12.4126 + 2.94183i 0.752622 + 0.178375i
\(273\) −0.156597 + 0.418575i −0.00947765 + 0.0253333i
\(274\) −33.6344 16.8918i −2.03193 1.02047i
\(275\) 5.72615 + 0.669291i 0.345300 + 0.0403598i
\(276\) 3.73508 + 1.65088i 0.224825 + 0.0993712i
\(277\) 27.4205 13.7711i 1.64754 0.827425i 0.649807 0.760099i \(-0.274850\pi\)
0.997731 0.0673257i \(-0.0214467\pi\)
\(278\) 34.2646 12.4713i 2.05506 0.747979i
\(279\) 7.17661 4.53859i 0.429653 0.271718i
\(280\) −41.5168 15.1109i −2.48110 0.903048i
\(281\) −3.70311 + 0.432832i −0.220909 + 0.0258206i −0.225827 0.974167i \(-0.572509\pi\)
0.00491823 + 0.999988i \(0.498434\pi\)
\(282\) −37.4929 11.5905i −2.23267 0.690205i
\(283\) −2.04110 + 6.81776i −0.121331 + 0.405274i −0.996979 0.0776769i \(-0.975250\pi\)
0.875648 + 0.482951i \(0.160435\pi\)
\(284\) −1.14287 + 3.81747i −0.0678171 + 0.226525i
\(285\) 21.9648 20.3550i 1.30109 1.20573i
\(286\) 0.659141 0.0770425i 0.0389758 0.00455562i
\(287\) −10.0025 3.64060i −0.590427 0.214898i
\(288\) 25.9308 33.5624i 1.52799 1.97769i
\(289\) 14.8043 5.38834i 0.870843 0.316961i
\(290\) 2.96386 1.48851i 0.174044 0.0874082i
\(291\) −0.427441 3.96371i −0.0250570 0.232357i
\(292\) 18.1170 + 2.11757i 1.06022 + 0.123922i
\(293\) 7.64345 + 3.83868i 0.446535 + 0.224258i 0.657834 0.753163i \(-0.271473\pi\)
−0.211299 + 0.977422i \(0.567769\pi\)
\(294\) 9.77287 + 11.8604i 0.569965 + 0.691712i
\(295\) −39.0666 9.25896i −2.27455 0.539077i
\(296\) 33.5397 + 58.0924i 1.94945 + 3.37655i
\(297\) −7.87234 + 5.53922i −0.456799 + 0.321418i
\(298\) 2.72173 4.71417i 0.157665 0.273085i
\(299\) 0.0431868 0.0457753i 0.00249756 0.00264725i
\(300\) −9.08742 25.6788i −0.524663 1.48257i
\(301\) 0.834273 + 14.3239i 0.0480867 + 0.825617i
\(302\) 19.4530 26.1299i 1.11940 1.50361i
\(303\) 14.8818 + 1.00021i 0.854935 + 0.0574605i
\(304\) 57.9701 + 38.1275i 3.32481 + 2.18676i
\(305\) −3.79876 + 21.5439i −0.217516 + 1.23360i
\(306\) −0.675511 + 8.86635i −0.0386164 + 0.506855i
\(307\) 2.00083 + 11.3473i 0.114194 + 0.647624i 0.987146 + 0.159819i \(0.0510911\pi\)
−0.872953 + 0.487805i \(0.837798\pi\)
\(308\) −7.09270 + 16.4427i −0.404144 + 0.936911i
\(309\) −1.73882 + 13.8060i −0.0989181 + 0.785396i
\(310\) 20.8330 4.93752i 1.18324 0.280432i
\(311\) 17.5668 + 18.6198i 0.996124 + 1.05583i 0.998440 + 0.0558320i \(0.0177811\pi\)
−0.00231655 + 0.999997i \(0.500737\pi\)
\(312\) −1.02691 1.59213i −0.0581372 0.0901367i
\(313\) 0.900785 + 1.20996i 0.0509154 + 0.0683912i 0.826852 0.562420i \(-0.190130\pi\)
−0.775936 + 0.630811i \(0.782722\pi\)
\(314\) −46.3167 + 38.8644i −2.61381 + 2.19324i
\(315\) 3.12530 16.0431i 0.176091 0.903927i
\(316\) −49.4714 41.5115i −2.78299 2.33520i
\(317\) −0.439344 + 7.54325i −0.0246760 + 0.423671i 0.963236 + 0.268656i \(0.0865796\pi\)
−0.987912 + 0.155015i \(0.950457\pi\)
\(318\) 6.47867 26.2871i 0.363306 1.47411i
\(319\) −0.321716 0.745821i −0.0180126 0.0417580i
\(320\) 34.9491 22.9864i 1.95371 1.28498i
\(321\) 0.0648930 7.26519i 0.00362198 0.405503i
\(322\) 0.679793 + 2.27067i 0.0378834 + 0.126539i
\(323\) −6.77481 −0.376961
\(324\) 39.8879 + 21.8504i 2.21599 + 1.21391i
\(325\) −0.419780 −0.0232852
\(326\) −8.68800 29.0199i −0.481184 1.60727i
\(327\) −16.9910 10.0132i −0.939604 0.553729i
\(328\) 37.7012 24.7965i 2.08170 1.36916i
\(329\) −6.46368 14.9845i −0.356354 0.826122i
\(330\) −23.3124 + 6.75298i −1.28330 + 0.371739i
\(331\) −1.75744 + 30.1740i −0.0965975 + 1.65851i 0.507535 + 0.861631i \(0.330557\pi\)
−0.604133 + 0.796884i \(0.706480\pi\)
\(332\) −64.7154 54.3027i −3.55172 2.98025i
\(333\) −19.2919 + 15.6091i −1.05719 + 0.855376i
\(334\) 10.9234 9.16582i 0.597701 0.501531i
\(335\) −19.2214 25.8188i −1.05018 1.41063i
\(336\) 37.8242 1.86419i 2.06348 0.101700i
\(337\) −15.5031 16.4324i −0.844510 0.895129i 0.151120 0.988515i \(-0.451712\pi\)
−0.995630 + 0.0933869i \(0.970231\pi\)
\(338\) 33.5480 7.95103i 1.82477 0.432479i
\(339\) −22.4284 + 9.43798i −1.21815 + 0.512601i
\(340\) −6.36229 + 14.7495i −0.345044 + 0.799902i
\(341\) −0.910502 5.16371i −0.0493064 0.279631i
\(342\) −19.9469 + 44.0608i −1.07860 + 2.38254i
\(343\) −3.43492 + 19.4804i −0.185468 + 1.05184i
\(344\) −50.8196 33.4246i −2.74001 1.80213i
\(345\) −1.28188 + 1.91159i −0.0690141 + 0.102917i
\(346\) 5.40732 7.26329i 0.290699 0.390477i
\(347\) 1.04245 + 17.8982i 0.0559618 + 0.960827i 0.903093 + 0.429444i \(0.141291\pi\)
−0.847132 + 0.531383i \(0.821672\pi\)
\(348\) −2.49302 + 2.91774i −0.133640 + 0.156407i
\(349\) 18.4132 19.5169i 0.985638 1.04472i −0.0133575 0.999911i \(-0.504252\pi\)
0.998996 0.0448048i \(-0.0142666\pi\)
\(350\) 7.90517 13.6921i 0.422549 0.731876i
\(351\) 0.522514 0.467150i 0.0278897 0.0249346i
\(352\) −13.0949 22.6810i −0.697960 1.20890i
\(353\) 20.3267 + 4.81751i 1.08188 + 0.256410i 0.732635 0.680622i \(-0.238290\pi\)
0.349244 + 0.937032i \(0.386438\pi\)
\(354\) 63.9564 10.6891i 3.39924 0.568121i
\(355\) −2.00704 1.00797i −0.106523 0.0534977i
\(356\) −54.6827 6.39149i −2.89818 0.338748i
\(357\) −2.98561 + 2.18153i −0.158015 + 0.115459i
\(358\) 15.9497 8.01026i 0.842969 0.423355i
\(359\) −12.6815 + 4.61568i −0.669303 + 0.243606i −0.654248 0.756280i \(-0.727015\pi\)
−0.0150553 + 0.999887i \(0.504792\pi\)
\(360\) 46.6418 + 51.2410i 2.45824 + 2.70064i
\(361\) −16.7731 6.10492i −0.882796 0.321311i
\(362\) 5.18200 0.605689i 0.272360 0.0318343i
\(363\) −2.90901 12.7818i −0.152683 0.670869i
\(364\) 0.373960 1.24911i 0.0196008 0.0654714i
\(365\) −2.94849 + 9.84864i −0.154331 + 0.515501i
\(366\) −7.84067 34.4508i −0.409838 1.80077i
\(367\) 9.80117 1.14559i 0.511617 0.0597994i 0.143632 0.989631i \(-0.454122\pi\)
0.367985 + 0.929832i \(0.380048\pi\)
\(368\) −5.01116 1.82391i −0.261225 0.0950780i
\(369\) 11.2372 + 12.3453i 0.584986 + 0.642670i
\(370\) −58.7974 + 21.4005i −3.05673 + 1.11256i
\(371\) 10.0609 5.05276i 0.522334 0.262326i
\(372\) −20.0032 + 14.6160i −1.03712 + 0.757804i
\(373\) −10.7181 1.25276i −0.554960 0.0648656i −0.166010 0.986124i \(-0.553088\pi\)
−0.388951 + 0.921259i \(0.627162\pi\)
\(374\) 4.90677 + 2.46427i 0.253723 + 0.127425i
\(375\) −9.18596 + 1.53527i −0.474361 + 0.0792808i
\(376\) 67.3169 + 15.9544i 3.47160 + 0.822785i
\(377\) 0.0295714 + 0.0512192i 0.00152301 + 0.00263792i
\(378\) 5.39740 + 25.8403i 0.277612 + 1.32908i
\(379\) −6.41085 + 11.1039i −0.329303 + 0.570370i −0.982374 0.186927i \(-0.940147\pi\)
0.653071 + 0.757297i \(0.273480\pi\)
\(380\) −59.9575 + 63.5512i −3.07575 + 3.26011i
\(381\) 8.32786 9.74662i 0.426649 0.499334i
\(382\) 0.725410 + 12.4548i 0.0371152 + 0.637244i
\(383\) −8.30072 + 11.1498i −0.424147 + 0.569728i −0.961909 0.273368i \(-0.911862\pi\)
0.537763 + 0.843096i \(0.319270\pi\)
\(384\) −10.3514 + 15.4364i −0.528242 + 0.787736i
\(385\) −8.43242 5.54609i −0.429756 0.282655i
\(386\) 2.90979 16.5022i 0.148104 0.839942i
\(387\) 9.28042 20.4996i 0.471750 1.04205i
\(388\) 2.01979 + 11.4548i 0.102539 + 0.581528i
\(389\) 13.7750 31.9341i 0.698422 1.61912i −0.0840673 0.996460i \(-0.526791\pi\)
0.782489 0.622664i \(-0.213950\pi\)
\(390\) 1.62890 0.685447i 0.0824823 0.0347089i
\(391\) 0.506662 0.120081i 0.0256230 0.00607276i
\(392\) −18.5917 19.7061i −0.939024 0.995307i
\(393\) −12.4523 + 0.613719i −0.628134 + 0.0309580i
\(394\) −17.1152 22.9897i −0.862252 1.15821i
\(395\) 27.8829 23.3965i 1.40294 1.17721i
\(396\) 21.8327 17.6650i 1.09714 0.887698i
\(397\) 11.3325 + 9.50911i 0.568763 + 0.477249i 0.881235 0.472678i \(-0.156713\pi\)
−0.312472 + 0.949927i \(0.601157\pi\)
\(398\) 0.363009 6.23262i 0.0181960 0.312413i
\(399\) −19.3183 + 5.59600i −0.967125 + 0.280151i
\(400\) 14.0891 + 32.6622i 0.704455 + 1.63311i
\(401\) 21.6965 14.2700i 1.08347 0.712610i 0.123397 0.992357i \(-0.460621\pi\)
0.960074 + 0.279747i \(0.0902507\pi\)
\(402\) 44.7874 + 26.3942i 2.23379 + 1.31642i
\(403\) 0.109498 + 0.365750i 0.00545450 + 0.0182193i
\(404\) −43.5167 −2.16504
\(405\) −16.0320 + 20.0014i −0.796635 + 0.993877i
\(406\) −2.22752 −0.110550
\(407\) 4.39488 + 14.6799i 0.217846 + 0.727656i
\(408\) 0.140010 15.6750i 0.00693152 0.776027i
\(409\) −17.3254 + 11.3951i −0.856685 + 0.563450i −0.900138 0.435605i \(-0.856534\pi\)
0.0434533 + 0.999055i \(0.486164\pi\)
\(410\) 16.6717 + 38.6495i 0.823359 + 1.90876i
\(411\) −5.87387 + 23.8331i −0.289736 + 1.17560i
\(412\) 2.36058 40.5297i 0.116298 1.99675i
\(413\) 20.6561 + 17.3326i 1.01642 + 0.852880i
\(414\) 0.710787 3.64869i 0.0349333 0.179323i
\(415\) 36.4746 30.6058i 1.79047 1.50238i
\(416\) 1.13877 + 1.52963i 0.0558326 + 0.0749962i
\(417\) −12.8896 19.9843i −0.631208 0.978634i
\(418\) 20.4951 + 21.7235i 1.00245 + 1.06253i
\(419\) −8.83320 + 2.09351i −0.431530 + 0.102275i −0.440640 0.897684i \(-0.645248\pi\)
0.00910971 + 0.999959i \(0.497100\pi\)
\(420\) −5.95894 + 47.3132i −0.290767 + 2.30865i
\(421\) −10.2320 + 23.7203i −0.498675 + 1.15606i 0.464107 + 0.885779i \(0.346375\pi\)
−0.962782 + 0.270279i \(0.912884\pi\)
\(422\) 5.10110 + 28.9298i 0.248318 + 1.40828i
\(423\) −1.94429 + 25.5196i −0.0945345 + 1.24080i
\(424\) −8.28783 + 47.0026i −0.402492 + 2.28265i
\(425\) −2.90184 1.90857i −0.140760 0.0925794i
\(426\) 3.61920 + 0.243248i 0.175351 + 0.0117854i
\(427\) 8.77372 11.7852i 0.424590 0.570324i
\(428\) 1.23253 + 21.1618i 0.0595767 + 1.02289i
\(429\) −0.144388 0.408004i −0.00697110 0.0196986i
\(430\) 38.9360 41.2697i 1.87766 1.99020i
\(431\) −10.5319 + 18.2418i −0.507305 + 0.878678i 0.492659 + 0.870222i \(0.336025\pi\)
−0.999964 + 0.00845587i \(0.997308\pi\)
\(432\) −53.8851 24.9767i −2.59255 1.20169i
\(433\) −14.6179 25.3190i −0.702493 1.21675i −0.967589 0.252532i \(-0.918737\pi\)
0.265095 0.964222i \(-0.414597\pi\)
\(434\) −13.9918 3.31613i −0.671630 0.159179i
\(435\) −1.37551 1.66932i −0.0659505 0.0800378i
\(436\) 51.4201 + 25.8241i 2.46257 + 1.23675i
\(437\) 2.81303 + 0.328796i 0.134565 + 0.0157284i
\(438\) −1.78021 16.5081i −0.0850619 0.788789i
\(439\) −21.8815 + 10.9893i −1.04435 + 0.524490i −0.886382 0.462955i \(-0.846789\pi\)
−0.157963 + 0.987445i \(0.550493\pi\)
\(440\) 40.2061 14.6338i 1.91675 0.697640i
\(441\) 6.12774 7.93118i 0.291797 0.377675i
\(442\) −0.375695 0.136742i −0.0178700 0.00650414i
\(443\) 20.1422 2.35429i 0.956986 0.111856i 0.376760 0.926311i \(-0.377038\pi\)
0.580226 + 0.814455i \(0.302964\pi\)
\(444\) 53.1050 49.2129i 2.52025 2.33554i
\(445\) 8.89946 29.7263i 0.421875 1.40916i
\(446\) 3.09118 10.3253i 0.146372 0.488915i
\(447\) −3.39169 1.04850i −0.160422 0.0495926i
\(448\) −27.9043 + 3.26155i −1.31836 + 0.154094i
\(449\) 29.1855 + 10.6227i 1.37735 + 0.501314i 0.921374 0.388678i \(-0.127068\pi\)
0.455976 + 0.889992i \(0.349290\pi\)
\(450\) −20.9564 + 13.2531i −0.987896 + 0.624759i
\(451\) 9.68668 3.52566i 0.456128 0.166017i
\(452\) 63.4429 31.8622i 2.98410 1.49867i
\(453\) −19.4317 8.58865i −0.912979 0.403530i
\(454\) −28.4402 3.32418i −1.33477 0.156012i
\(455\) 0.656725 + 0.329820i 0.0307877 + 0.0154622i
\(456\) 29.8760 79.8572i 1.39907 3.73965i
\(457\) −5.27146 1.24936i −0.246588 0.0584425i 0.105463 0.994423i \(-0.466368\pi\)
−0.352051 + 0.935981i \(0.614516\pi\)
\(458\) −7.57498 13.1202i −0.353956 0.613069i
\(459\) 5.73596 0.853636i 0.267732 0.0398443i
\(460\) 3.35757 5.81548i 0.156547 0.271148i
\(461\) 11.5436 12.2355i 0.537638 0.569863i −0.400424 0.916330i \(-0.631137\pi\)
0.938062 + 0.346467i \(0.112619\pi\)
\(462\) 16.0271 + 2.97385i 0.745648 + 0.138356i
\(463\) −0.378882 6.50516i −0.0176082 0.302320i −0.995602 0.0936858i \(-0.970135\pi\)
0.977994 0.208635i \(-0.0669019\pi\)
\(464\) 2.99275 4.01996i 0.138935 0.186622i
\(465\) −6.15492 12.5333i −0.285428 0.581220i
\(466\) −58.7108 38.6147i −2.71973 1.78879i
\(467\) −1.70237 + 9.65460i −0.0787761 + 0.446761i 0.919751 + 0.392503i \(0.128391\pi\)
−0.998527 + 0.0542586i \(0.982720\pi\)
\(468\) −1.42965 + 1.46211i −0.0660855 + 0.0675860i
\(469\) 3.75394 + 21.2896i 0.173341 + 0.983064i
\(470\) −25.5598 + 59.2542i −1.17898 + 2.73319i
\(471\) 31.4175 + 23.8285i 1.44764 + 1.09796i
\(472\) −111.230 + 26.3620i −5.11978 + 1.21341i
\(473\) −9.53546 10.1070i −0.438441 0.464720i
\(474\) −26.8514 + 52.2957i −1.23333 + 2.40202i
\(475\) −11.2813 15.1534i −0.517621 0.695286i
\(476\) 8.26432 6.93459i 0.378795 0.317846i
\(477\) −17.6539 0.315396i −0.808315 0.0144410i
\(478\) 7.30348 + 6.12835i 0.334054 + 0.280304i
\(479\) −0.214085 + 3.67570i −0.00978179 + 0.167947i 0.989879 + 0.141912i \(0.0453251\pi\)
−0.999661 + 0.0260347i \(0.991712\pi\)
\(480\) −50.2999 48.3120i −2.29587 2.20513i
\(481\) −0.441935 1.02452i −0.0201505 0.0467141i
\(482\) −18.8294 + 12.3843i −0.857655 + 0.564089i
\(483\) 1.34555 0.760914i 0.0612248 0.0346228i
\(484\) 10.9689 + 36.6388i 0.498588 + 1.66540i
\(485\) −6.55569 −0.297678
\(486\) 11.3365 39.8178i 0.514233 1.80617i
\(487\) 21.6887 0.982808 0.491404 0.870932i \(-0.336484\pi\)
0.491404 + 0.870932i \(0.336484\pi\)
\(488\) 17.8637 + 59.6690i 0.808653 + 2.70109i
\(489\) −17.1967 + 9.72475i −0.777660 + 0.439768i
\(490\) 21.1138 13.8867i 0.953823 0.627339i
\(491\) −5.36951 12.4479i −0.242323 0.561767i 0.753039 0.657976i \(-0.228587\pi\)
−0.995361 + 0.0962096i \(0.969328\pi\)
\(492\) −35.1271 33.7387i −1.58365 1.52106i
\(493\) −0.0284528 + 0.488516i −0.00128145 + 0.0220017i
\(494\) −1.66586 1.39782i −0.0749506 0.0628910i
\(495\) 7.66821 + 13.8472i 0.344660 + 0.622386i
\(496\) 24.7831 20.7955i 1.11279 0.933745i
\(497\) 0.900761 + 1.20993i 0.0404046 + 0.0542728i
\(498\) −35.1254 + 68.4099i −1.57400 + 3.06552i
\(499\) −3.62608 3.84342i −0.162326 0.172055i 0.641106 0.767453i \(-0.278476\pi\)
−0.803431 + 0.595398i \(0.796995\pi\)
\(500\) 26.4401 6.26642i 1.18244 0.280243i
\(501\) −7.40954 5.61975i −0.331034 0.251072i
\(502\) 4.32451 10.0253i 0.193012 0.447453i
\(503\) −3.77163 21.3900i −0.168169 0.953731i −0.945737 0.324933i \(-0.894658\pi\)
0.777568 0.628798i \(-0.216453\pi\)
\(504\) −12.5483 44.8127i −0.558946 1.99612i
\(505\) 4.25901 24.1541i 0.189524 1.07484i
\(506\) −1.91779 1.26135i −0.0852560 0.0560738i
\(507\) −9.91144 20.1828i −0.440183 0.896349i
\(508\) −22.3356 + 30.0019i −0.990981 + 1.33112i
\(509\) −1.17869 20.2374i −0.0522447 0.897007i −0.918010 0.396557i \(-0.870205\pi\)
0.865765 0.500450i \(-0.166832\pi\)
\(510\) 14.3766 + 2.66760i 0.636608 + 0.118123i
\(511\) 4.73822 5.02222i 0.209606 0.222170i
\(512\) −11.8929 + 20.5990i −0.525595 + 0.910358i
\(513\) 30.9055 + 6.30762i 1.36451 + 0.278488i
\(514\) −7.67167 13.2877i −0.338383 0.586096i
\(515\) 22.2651 + 5.27692i 0.981117 + 0.232529i
\(516\) −23.0047 + 61.4903i −1.01272 + 2.70696i
\(517\) 14.1229 + 7.09279i 0.621125 + 0.311941i
\(518\) 41.7396 + 4.87865i 1.83393 + 0.214356i
\(519\) −5.40138 2.38737i −0.237094 0.104794i
\(520\) −2.78405 + 1.39820i −0.122089 + 0.0613153i
\(521\) 14.6420 5.32927i 0.641479 0.233479i −0.000740713 1.00000i \(-0.500236\pi\)
0.642220 + 0.766520i \(0.278014\pi\)
\(522\) 3.09335 + 1.62337i 0.135392 + 0.0710529i
\(523\) −12.3756 4.50436i −0.541148 0.196962i 0.0569613 0.998376i \(-0.481859\pi\)
−0.598109 + 0.801415i \(0.704081\pi\)
\(524\) 36.1287 4.22284i 1.57829 0.184475i
\(525\) −9.85106 3.04535i −0.429936 0.132910i
\(526\) 10.9533 36.5866i 0.477588 1.59525i
\(527\) −0.905981 + 3.02619i −0.0394651 + 0.131823i
\(528\) −26.8998 + 24.9283i −1.17066 + 1.08487i
\(529\) 22.6283 2.64487i 0.983838 0.114994i
\(530\) −41.8350 15.2267i −1.81719 0.661405i
\(531\) −16.0535 39.1235i −0.696664 1.69781i
\(532\) 55.1410 20.0697i 2.39066 0.870131i
\(533\) −0.670750 + 0.336863i −0.0290534 + 0.0145912i
\(534\) 5.37324 + 49.8267i 0.232523 + 2.15621i
\(535\) −11.8665 1.38700i −0.513035 0.0599652i
\(536\) −81.8973 41.1304i −3.53743 1.77656i
\(537\) −7.40215 8.98329i −0.319427 0.387657i
\(538\) 21.4267 + 5.07821i 0.923769 + 0.218937i
\(539\) −3.09447 5.35978i −0.133288 0.230862i
\(540\) 42.7560 61.3610i 1.83993 2.64056i
\(541\) 12.1790 21.0947i 0.523618 0.906933i −0.476004 0.879443i \(-0.657915\pi\)
0.999622 0.0274896i \(-0.00875133\pi\)
\(542\) −15.6158 + 16.5518i −0.670756 + 0.710960i
\(543\) −1.13514 3.20762i −0.0487135 0.137652i
\(544\) 0.917418 + 15.7515i 0.0393340 + 0.675339i
\(545\) −19.3663 + 26.0134i −0.829561 + 1.11429i
\(546\) −1.18424 0.0795931i −0.0506807 0.00340627i
\(547\) 12.0509 + 7.92597i 0.515257 + 0.338890i 0.780360 0.625330i \(-0.215036\pi\)
−0.265103 + 0.964220i \(0.585406\pi\)
\(548\) 12.4359 70.5278i 0.531237 3.01280i
\(549\) −20.7728 + 9.97192i −0.886563 + 0.425591i
\(550\) 2.65876 + 15.0786i 0.113370 + 0.642952i
\(551\) −1.05422 + 2.44396i −0.0449114 + 0.104116i
\(552\) −0.818875 + 6.50175i −0.0348536 + 0.276733i
\(553\) −23.7869 + 5.63761i −1.01152 + 0.239736i
\(554\) 55.9233 + 59.2752i 2.37595 + 2.51836i
\(555\) 22.1183 + 34.2926i 0.938871 + 1.45564i
\(556\) 41.4318 + 55.6526i 1.75710 + 2.36020i
\(557\) 17.7225 14.8710i 0.750928 0.630103i −0.184821 0.982772i \(-0.559170\pi\)
0.935748 + 0.352669i \(0.114726\pi\)
\(558\) 17.0137 + 14.8021i 0.720248 + 0.626621i
\(559\) 0.775053 + 0.650347i 0.0327812 + 0.0275067i
\(560\) 3.62088 62.1681i 0.153010 2.62708i
\(561\) 0.856913 3.47691i 0.0361789 0.146795i
\(562\) −3.92189 9.09196i −0.165435 0.383521i
\(563\) −0.434182 + 0.285566i −0.0182986 + 0.0120352i −0.558625 0.829420i \(-0.688671\pi\)
0.540327 + 0.841455i \(0.318301\pi\)
\(564\) 0.666940 74.6682i 0.0280832 3.14410i
\(565\) 11.4760 + 38.3326i 0.482800 + 1.61266i
\(566\) −18.9008 −0.794460
\(567\) 15.6509 7.17204i 0.657277 0.301197i
\(568\) −6.39460 −0.268312
\(569\) 0.952616 + 3.18196i 0.0399358 + 0.133395i 0.975633 0.219410i \(-0.0704132\pi\)
−0.935697 + 0.352805i \(0.885228\pi\)
\(570\) 68.5189 + 40.3797i 2.86994 + 1.69132i
\(571\) 19.8356 13.0461i 0.830092 0.545960i −0.0618625 0.998085i \(-0.519704\pi\)
0.891955 + 0.452124i \(0.149334\pi\)
\(572\) 0.500140 + 1.15946i 0.0209119 + 0.0484793i
\(573\) 7.81515 2.26384i 0.326482 0.0945734i
\(574\) 1.64374 28.2218i 0.0686082 1.17796i
\(575\) 1.11227 + 0.933308i 0.0463850 + 0.0389216i
\(576\) 41.1276 + 15.8068i 1.71365 + 0.658616i
\(577\) −30.1749 + 25.3198i −1.25620 + 1.05408i −0.260123 + 0.965576i \(0.583763\pi\)
−0.996076 + 0.0885007i \(0.971792\pi\)
\(578\) 24.9857 + 33.5617i 1.03927 + 1.39598i
\(579\) −10.9151 + 0.537956i −0.453614 + 0.0223567i
\(580\) 4.33072 + 4.59030i 0.179824 + 0.190602i
\(581\) −31.1166 + 7.37476i −1.29093 + 0.305957i
\(582\) 9.75908 4.10667i 0.404527 0.170227i
\(583\) −4.31844 + 10.0113i −0.178852 + 0.414624i
\(584\) 5.08279 + 28.8259i 0.210327 + 1.19282i
\(585\) −0.671627 0.936628i −0.0277684 0.0387248i
\(586\) −3.94457 + 22.3708i −0.162949 + 0.924128i
\(587\) −8.28466 5.44891i −0.341945 0.224900i 0.366908 0.930257i \(-0.380416\pi\)
−0.708852 + 0.705357i \(0.750787\pi\)
\(588\) −16.2862 + 24.2867i −0.671631 + 1.00157i
\(589\) −10.2603 + 13.7820i −0.422768 + 0.567876i
\(590\) −6.19988 106.448i −0.255245 4.38239i
\(591\) −12.1423 + 14.2110i −0.499469 + 0.584561i
\(592\) −64.8830 + 68.7720i −2.66668 + 2.82651i
\(593\) 5.22061 9.04237i 0.214385 0.371326i −0.738697 0.674037i \(-0.764559\pi\)
0.953082 + 0.302712i \(0.0978920\pi\)
\(594\) −20.0895 15.8100i −0.824283 0.648692i
\(595\) 3.04023 + 5.26583i 0.124637 + 0.215878i
\(596\) 10.0784 + 2.38863i 0.412828 + 0.0978419i
\(597\) −4.01592 + 0.671188i −0.164361 + 0.0274699i
\(598\) 0.149359 + 0.0750110i 0.00610775 + 0.00306743i
\(599\) 45.1843 + 5.28129i 1.84618 + 0.215788i 0.965945 0.258748i \(-0.0833099\pi\)
0.880236 + 0.474536i \(0.157384\pi\)
\(600\) 35.2938 25.7885i 1.44086 1.05281i
\(601\) −8.38249 + 4.20984i −0.341929 + 0.171723i −0.611474 0.791265i \(-0.709423\pi\)
0.269545 + 0.962988i \(0.413127\pi\)
\(602\) −35.8082 + 13.0331i −1.45943 + 0.531190i
\(603\) 10.3024 32.3007i 0.419545 1.31539i
\(604\) 58.2462 + 21.1999i 2.37000 + 0.862611i
\(605\) −21.4100 + 2.50247i −0.870440 + 0.101740i
\(606\) 8.79063 + 38.6248i 0.357095 + 1.56902i
\(607\) −9.14350 + 30.5414i −0.371123 + 1.23964i 0.544896 + 0.838504i \(0.316569\pi\)
−0.916019 + 0.401135i \(0.868616\pi\)
\(608\) −24.6136 + 82.2153i −0.998215 + 3.33427i
\(609\) 0.322382 + 1.41650i 0.0130636 + 0.0573995i
\(610\) −57.7065 + 6.74492i −2.33647 + 0.273094i
\(611\) −1.08134 0.393577i −0.0437465 0.0159224i
\(612\) −16.5304 + 3.60719i −0.668203 + 0.145812i
\(613\) −23.7444 + 8.64224i −0.959025 + 0.349057i −0.773652 0.633611i \(-0.781572\pi\)
−0.185374 + 0.982668i \(0.559350\pi\)
\(614\) −27.3463 + 13.7338i −1.10361 + 0.554252i
\(615\) 22.1647 16.1953i 0.893767 0.653059i
\(616\) −28.5418 3.33606i −1.14998 0.134414i
\(617\) −7.10092 3.56622i −0.285872 0.143571i 0.300085 0.953913i \(-0.402985\pi\)
−0.585957 + 0.810342i \(0.699281\pi\)
\(618\) −36.4504 + 6.09202i −1.46625 + 0.245057i
\(619\) −34.7786 8.24267i −1.39787 0.331301i −0.538486 0.842634i \(-0.681004\pi\)
−0.859382 + 0.511333i \(0.829152\pi\)
\(620\) 20.3692 + 35.2805i 0.818047 + 1.41690i
\(621\) −2.42311 + 0.0760674i −0.0972359 + 0.00305248i
\(622\) −33.9927 + 58.8771i −1.36298 + 2.36076i
\(623\) −14.3014 + 15.1586i −0.572974 + 0.607317i
\(624\) 1.73471 2.03024i 0.0694439 0.0812746i
\(625\) 1.79524 + 30.8231i 0.0718097 + 1.23292i
\(626\) −2.39233 + 3.21345i −0.0956165 + 0.128435i
\(627\) 10.8480 16.1770i 0.433227 0.646046i
\(628\) −96.1188 63.2184i −3.83556 2.52269i
\(629\) 1.60309 9.09157i 0.0639193 0.362504i
\(630\) 43.1982 4.26848i 1.72106 0.170060i
\(631\) −3.64311 20.6611i −0.145030 0.822506i −0.967343 0.253471i \(-0.918428\pi\)
0.822313 0.569035i \(-0.192683\pi\)
\(632\) 41.0471 95.1579i 1.63277 3.78518i
\(633\) 17.6584 7.43075i 0.701860 0.295346i
\(634\) −19.5266 + 4.62788i −0.775499 + 0.183797i
\(635\) −14.4666 15.3337i −0.574091 0.608501i
\(636\) 51.4523 2.53586i 2.04022 0.100554i
\(637\) 0.269103 + 0.361468i 0.0106623 + 0.0143219i
\(638\) 1.65251 1.38662i 0.0654233 0.0548967i
\(639\) −0.369112 2.33669i −0.0146018 0.0924379i
\(640\) 23.4122 + 19.6452i 0.925449 + 0.776544i
\(641\) 0.277307 4.76118i 0.0109530 0.188055i −0.988394 0.151914i \(-0.951456\pi\)
0.999347 0.0361412i \(-0.0115066\pi\)
\(642\) 18.5339 5.36878i 0.731474 0.211889i
\(643\) −3.21101 7.44397i −0.126630 0.293561i 0.843093 0.537767i \(-0.180732\pi\)
−0.969723 + 0.244206i \(0.921473\pi\)
\(644\) −3.76805 + 2.47829i −0.148482 + 0.0976582i
\(645\) −31.8789 18.7869i −1.25523 0.739734i
\(646\) −5.16037 17.2368i −0.203032 0.678174i
\(647\) 10.4984 0.412736 0.206368 0.978474i \(-0.433836\pi\)
0.206368 + 0.978474i \(0.433836\pi\)
\(648\) −15.2327 + 71.3762i −0.598398 + 2.80392i
\(649\) −26.1134 −1.02504
\(650\) −0.319746 1.06803i −0.0125415 0.0418915i
\(651\) −0.0837601 + 9.37748i −0.00328282 + 0.367532i
\(652\) 48.1571 31.6734i 1.88598 1.24043i
\(653\) −18.5099 42.9107i −0.724347 1.67922i −0.733888 0.679270i \(-0.762296\pi\)
0.00954143 0.999954i \(-0.496963\pi\)
\(654\) 12.5340 50.8563i 0.490117 1.98864i
\(655\) −1.19205 + 20.4666i −0.0465771 + 0.799697i
\(656\) 48.7230 + 40.8835i 1.90231 + 1.59623i
\(657\) −10.2400 + 3.52123i −0.399502 + 0.137376i
\(658\) 33.2010 27.8589i 1.29431 1.08605i
\(659\) 9.05090 + 12.1575i 0.352573 + 0.473588i 0.942661 0.333751i \(-0.108314\pi\)
−0.590088 + 0.807339i \(0.700907\pi\)
\(660\) −25.0315 38.8091i −0.974349 1.51064i
\(661\) 32.9798 + 34.9565i 1.28276 + 1.35965i 0.900051 + 0.435784i \(0.143529\pi\)
0.382714 + 0.923867i \(0.374990\pi\)
\(662\) −78.1089 + 18.5122i −3.03579 + 0.719496i
\(663\) −0.0325822 + 0.258698i −0.00126539 + 0.0100470i
\(664\) 53.6952 124.479i 2.08378 4.83074i
\(665\) 5.74304 + 32.5704i 0.222706 + 1.26303i
\(666\) −54.4082 37.1939i −2.10827 1.44123i
\(667\) 0.0355229 0.201460i 0.00137545 0.00780057i
\(668\) 22.6688 + 14.9095i 0.877081 + 0.576865i
\(669\) −7.01331 0.471367i −0.271150 0.0182241i
\(670\) 51.0486 68.5701i 1.97218 2.64910i
\(671\) 0.827319 + 14.2045i 0.0319383 + 0.548359i
\(672\) 15.6267 + 44.1573i 0.602815 + 1.70341i
\(673\) 18.2030 19.2941i 0.701676 0.743733i −0.274292 0.961646i \(-0.588444\pi\)
0.975968 + 0.217913i \(0.0699250\pi\)
\(674\) 29.9994 51.9604i 1.15553 2.00144i
\(675\) 11.4608 + 11.4083i 0.441125 + 0.439106i
\(676\) 32.8011 + 56.8132i 1.26158 + 2.18512i
\(677\) −46.0265 10.9085i −1.76894 0.419247i −0.788337 0.615244i \(-0.789057\pi\)
−0.980604 + 0.195997i \(0.937206\pi\)
\(678\) −41.0963 49.8747i −1.57829 1.91542i
\(679\) 3.93459 + 1.97602i 0.150996 + 0.0758329i
\(680\) −25.6026 2.99251i −0.981814 0.114758i
\(681\) 2.00219 + 18.5665i 0.0767239 + 0.711470i
\(682\) 12.4443 6.24974i 0.476515 0.239315i
\(683\) 14.6776 5.34220i 0.561622 0.204414i −0.0455809 0.998961i \(-0.514514\pi\)
0.607203 + 0.794547i \(0.292292\pi\)
\(684\) −91.2005 12.3149i −3.48714 0.470871i
\(685\) 37.9295 + 13.8052i 1.44921 + 0.527470i
\(686\) −52.1793 + 6.09889i −1.99222 + 0.232857i
\(687\) −7.24699 + 6.71586i −0.276490 + 0.256226i
\(688\) 24.5889 82.1328i 0.937445 3.13128i
\(689\) 0.227688 0.760532i 0.00867424 0.0289740i
\(690\) −5.83998 1.80537i −0.222324 0.0687291i
\(691\) −6.51561 + 0.761565i −0.247865 + 0.0289713i −0.239118 0.970990i \(-0.576858\pi\)
−0.00874704 + 0.999962i \(0.502784\pi\)
\(692\) 16.1906 + 5.89289i 0.615474 + 0.224014i
\(693\) −0.428455 10.6222i −0.0162756 0.403503i
\(694\) −44.7436 + 16.2853i −1.69844 + 0.618182i
\(695\) −34.9451 + 17.5501i −1.32554 + 0.665713i
\(696\) −5.63284 2.48968i −0.213512 0.0943710i
\(697\) −6.16832 0.720974i −0.233642 0.0273088i
\(698\) 63.6812 + 31.9819i 2.41037 + 1.21053i
\(699\) −16.0584 + 42.9234i −0.607386 + 1.62351i
\(700\) 29.2724 + 6.93768i 1.10639 + 0.262220i
\(701\) 11.9474 + 20.6936i 0.451249 + 0.781586i 0.998464 0.0554061i \(-0.0176454\pi\)
−0.547215 + 0.836992i \(0.684312\pi\)
\(702\) 1.58654 + 0.973579i 0.0598802 + 0.0367454i
\(703\) 25.1069 43.4864i 0.946924 1.64012i
\(704\) 18.6708 19.7899i 0.703682 0.745859i
\(705\) 41.3795 + 7.67802i 1.55844 + 0.289171i
\(706\) 3.22585 + 55.3856i 0.121406 + 2.08447i
\(707\) −9.83673 + 13.2130i −0.369948 + 0.496927i
\(708\) 54.3866 + 110.748i 2.04397 + 4.16217i
\(709\) 38.7934 + 25.5148i 1.45692 + 0.958230i 0.997548 + 0.0699848i \(0.0222951\pi\)
0.459370 + 0.888245i \(0.348075\pi\)
\(710\) 1.03578 5.87419i 0.0388721 0.220455i
\(711\) 37.1415 + 9.50649i 1.39291 + 0.356521i
\(712\) −15.3414 87.0056i −0.574945 3.26067i
\(713\) 0.523048 1.21256i 0.0195883 0.0454108i
\(714\) −7.82449 5.93447i −0.292824 0.222092i
\(715\) −0.692509 + 0.164128i −0.0258983 + 0.00613802i
\(716\) 23.3054 + 24.7022i 0.870962 + 0.923166i
\(717\) 2.84007 5.53129i 0.106064 0.206570i
\(718\) −21.4029 28.7491i −0.798750 1.07291i
\(719\) 3.57771 3.00206i 0.133426 0.111958i −0.573632 0.819113i \(-0.694466\pi\)
0.707059 + 0.707155i \(0.250022\pi\)
\(720\) −50.3351 + 83.6939i −1.87588 + 3.11909i
\(721\) −11.7725 9.87828i −0.438430 0.367886i
\(722\) 2.75638 47.3251i 0.102582 1.76126i
\(723\) 10.6004 + 10.1815i 0.394233 + 0.378652i
\(724\) 3.93198 + 9.11535i 0.146131 + 0.338769i
\(725\) −1.14006 + 0.749827i −0.0423406 + 0.0278479i
\(726\) 30.3043 17.1371i 1.12470 0.636018i
\(727\) 9.93094 + 33.1716i 0.368318 + 1.23027i 0.918566 + 0.395267i \(0.129348\pi\)
−0.550248 + 0.835001i \(0.685467\pi\)
\(728\) 2.09238 0.0775488
\(729\) −26.9612 1.44626i −0.998564 0.0535652i
\(730\) −27.3033 −1.01054
\(731\) 2.40090 + 8.01955i 0.0888003 + 0.296614i
\(732\) 58.5190 33.0926i 2.16292 1.22314i
\(733\) 37.6284 24.7486i 1.38984 0.914111i 0.389860 0.920874i \(-0.372523\pi\)
0.999977 + 0.00676337i \(0.00215286\pi\)
\(734\) 10.3802 + 24.0640i 0.383141 + 0.888220i
\(735\) −11.8864 11.4167i −0.438438 0.421110i
\(736\) 0.383523 6.58483i 0.0141368 0.242720i
\(737\) −16.0376 13.4571i −0.590752 0.495699i
\(738\) −22.8501 + 37.9937i −0.841125 + 1.39857i
\(739\) −38.9851 + 32.7123i −1.43409 + 1.20334i −0.490842 + 0.871249i \(0.663311\pi\)
−0.943246 + 0.332094i \(0.892245\pi\)
\(740\) −71.0961 95.4987i −2.61355 3.51060i
\(741\) −0.647794 + 1.26164i −0.0237973 + 0.0463475i
\(742\) 20.5188 + 21.7487i 0.753270 + 0.798420i
\(743\) 17.7765 4.21312i 0.652158 0.154564i 0.108798 0.994064i \(-0.465300\pi\)
0.543360 + 0.839500i \(0.317152\pi\)
\(744\) −31.6755 24.0242i −1.16128 0.880771i
\(745\) −2.31220 + 5.36027i −0.0847123 + 0.196385i
\(746\) −4.97660 28.2237i −0.182206 1.03334i
\(747\) 48.5861 + 12.4358i 1.77767 + 0.455002i
\(748\) −1.81423 + 10.2890i −0.0663347 + 0.376203i
\(749\) 6.70398 + 4.40927i 0.244958 + 0.161111i
\(750\) −10.9030 22.2020i −0.398123 0.810702i
\(751\) 13.2429 17.7883i 0.483241 0.649105i −0.491910 0.870646i \(-0.663701\pi\)
0.975151 + 0.221541i \(0.0711087\pi\)
\(752\) 5.66980 + 97.3466i 0.206756 + 3.54987i
\(753\) −7.00108 1.29906i −0.255134 0.0473404i
\(754\) −0.107790 + 0.114251i −0.00392548 + 0.00416077i
\(755\) −17.4677 + 30.2549i −0.635713 + 1.10109i
\(756\) −44.1568 + 23.9400i −1.60597 + 0.870690i
\(757\) −1.95553 3.38708i −0.0710750 0.123106i 0.828298 0.560288i \(-0.189310\pi\)
−0.899373 + 0.437183i \(0.855976\pi\)
\(758\) −33.1343 7.85297i −1.20349 0.285233i
\(759\) −0.524548 + 1.40209i −0.0190399 + 0.0508927i
\(760\) −125.292 62.9242i −4.54483 2.28250i
\(761\) −3.11784 0.364424i −0.113022 0.0132103i 0.0593940 0.998235i \(-0.481083\pi\)
−0.172416 + 0.985024i \(0.555157\pi\)
\(762\) 31.1412 + 13.7642i 1.12813 + 0.498623i
\(763\) 19.4643 9.77532i 0.704654 0.353890i
\(764\) −22.3071 + 8.11911i −0.807042 + 0.293739i
\(765\) −0.384333 9.52831i −0.0138956 0.344497i
\(766\) −34.6905 12.6263i −1.25342 0.456207i
\(767\) 1.88855 0.220740i 0.0681917 0.00797046i
\(768\) 1.44843