Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [81,2,Mod(4,81)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(81, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("81.4");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.g (of order \(27\), degree \(18\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.646788256372\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{27})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{27}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −2.25893 | − | 0.264031i | −1.57391 | − | 0.723054i | 3.08696 | + | 0.731623i | −0.524452 | + | 0.263390i | 3.36444 | + | 2.04889i | −1.09261 | + | 3.64956i | −2.50575 | − | 0.912019i | 1.95439 | + | 2.27604i | 1.25424 | − | 0.456507i |
4.2 | −2.10031 | − | 0.245492i | 1.49640 | − | 0.872226i | 2.40496 | + | 0.569987i | −0.401399 | + | 0.201590i | −3.35704 | + | 1.46459i | 0.699754 | − | 2.33734i | −0.937080 | − | 0.341069i | 1.47844 | − | 2.61040i | 0.892552 | − | 0.324862i |
4.3 | −0.907715 | − | 0.106097i | −0.350962 | + | 1.69612i | −1.13340 | − | 0.268621i | −3.40320 | + | 1.70915i | 0.498526 | − | 1.50236i | 0.208293 | − | 0.695746i | 2.71786 | + | 0.989221i | −2.75365 | − | 1.19055i | 3.27047 | − | 1.19035i |
4.4 | −0.702679 | − | 0.0821314i | 1.28612 | + | 1.16012i | −1.45908 | − | 0.345808i | 3.06981 | − | 1.54172i | −0.808449 | − | 0.920826i | −0.775884 | + | 2.59163i | 2.32646 | + | 0.846761i | 0.308226 | + | 2.98412i | −2.28372 | + | 0.831205i |
4.5 | −0.186105 | − | 0.0217526i | −0.680105 | − | 1.59294i | −1.91193 | − | 0.453135i | 1.41557 | − | 0.710926i | 0.0919205 | + | 0.311248i | 1.16062 | − | 3.87673i | 0.698107 | + | 0.254090i | −2.07491 | + | 2.16673i | −0.278909 | + | 0.101515i |
4.6 | 1.04137 | + | 0.121718i | 1.32397 | − | 1.11673i | −0.876460 | − | 0.207725i | −0.681964 | + | 0.342495i | 1.51467 | − | 1.00178i | −0.831257 | + | 2.77659i | −2.85789 | − | 1.04019i | 0.505808 | − | 2.95705i | −0.751863 | + | 0.273656i |
4.7 | 1.69853 | + | 0.198530i | −1.07544 | + | 1.35773i | 0.899496 | + | 0.213184i | 1.22732 | − | 0.616384i | −2.09621 | + | 2.09264i | 0.0889729 | − | 0.297190i | −1.72842 | − | 0.629095i | −0.686860 | − | 2.92031i | 2.20701 | − | 0.803287i |
4.8 | 2.43604 | + | 0.284732i | −1.18775 | − | 1.26065i | 3.90713 | + | 0.926007i | −3.57352 | + | 1.79469i | −2.53446 | − | 3.40919i | 0.377600 | − | 1.26127i | 4.64483 | + | 1.69058i | −0.178488 | + | 2.99469i | −9.21624 | + | 3.35444i |
7.1 | −1.45464 | − | 1.95391i | −0.684440 | + | 1.59108i | −1.12821 | + | 3.76849i | −2.46571 | + | 1.62172i | 4.10445 | − | 0.977107i | −1.57141 | + | 1.66559i | 4.42639 | − | 1.61107i | −2.06308 | − | 2.17800i | 6.75541 | + | 2.45877i |
7.2 | −1.32716 | − | 1.78269i | 1.62274 | − | 0.605570i | −0.843016 | + | 2.81587i | 2.46097 | − | 1.61861i | −3.23319 | − | 2.08915i | −2.02832 | + | 2.14989i | 1.96178 | − | 0.714030i | 2.26657 | − | 1.96536i | −6.15160 | − | 2.23900i |
7.3 | −0.886934 | − | 1.19136i | −0.340526 | − | 1.69825i | −0.0590788 | + | 0.197337i | −1.33926 | + | 0.880846i | −1.72120 | + | 1.91192i | 1.30515 | − | 1.38337i | −2.50387 | + | 0.911335i | −2.76808 | + | 1.15659i | 2.23724 | + | 0.814290i |
7.4 | −0.474186 | − | 0.636942i | −1.48279 | + | 0.895173i | 0.392763 | − | 1.31192i | 1.83182 | − | 1.20481i | 1.27329 | + | 0.519973i | 2.43989 | − | 2.58613i | −2.51422 | + | 0.915103i | 1.39733 | − | 2.65471i | −1.63602 | − | 0.595462i |
7.5 | −0.120683 | − | 0.162105i | 1.25647 | + | 1.19218i | 0.561893 | − | 1.87685i | −0.761396 | + | 0.500778i | 0.0416250 | − | 0.347556i | −0.112573 | + | 0.119321i | −0.751874 | + | 0.273660i | 0.157410 | + | 2.99587i | 0.173067 | + | 0.0629911i |
7.6 | 0.470263 | + | 0.631673i | −1.10956 | − | 1.32999i | 0.395743 | − | 1.32187i | 2.32750 | − | 1.53082i | 0.318331 | − | 1.32633i | −3.41908 | + | 3.62402i | 2.50111 | − | 0.910331i | −0.537739 | + | 2.95141i | 2.06152 | + | 0.750330i |
7.7 | 0.925932 | + | 1.24374i | 1.03494 | − | 1.38884i | −0.115939 | + | 0.387262i | −2.65494 | + | 1.74618i | 2.68565 | + | 0.00122935i | −0.200969 | + | 0.213014i | 2.32510 | − | 0.846267i | −0.857778 | − | 2.87476i | −4.63010 | − | 1.68522i |
7.8 | 1.55705 | + | 2.09149i | −1.63477 | − | 0.572310i | −1.37629 | + | 4.59713i | −0.270787 | + | 0.178099i | −1.34844 | − | 4.31021i | 2.64546 | − | 2.80403i | −6.85740 | + | 2.49589i | 2.34492 | + | 1.87119i | −0.794122 | − | 0.289037i |
13.1 | −2.38576 | − | 1.19817i | 1.71560 | − | 0.238151i | 3.06192 | + | 4.11287i | 0.727126 | + | 2.42877i | −4.37836 | − | 1.48742i | 0.202369 | + | 0.469143i | −1.44988 | − | 8.22270i | 2.88657 | − | 0.817145i | 1.17534 | − | 6.66569i |
13.2 | −1.89071 | − | 0.949549i | −0.540889 | + | 1.64543i | 1.47882 | + | 1.98639i | −1.11651 | − | 3.72940i | 2.58508 | − | 2.59743i | −1.32100 | − | 3.06243i | −0.175036 | − | 0.992677i | −2.41488 | − | 1.77999i | −1.43025 | + | 8.11138i |
13.3 | −1.07782 | − | 0.541304i | −1.45923 | + | 0.933081i | −0.325622 | − | 0.437386i | 1.12732 | + | 3.76550i | 2.07788 | − | 0.215810i | 0.736444 | + | 1.70727i | 0.533084 | + | 3.02327i | 1.25872 | − | 2.72317i | 0.823230 | − | 4.66877i |
13.4 | −0.698417 | − | 0.350758i | 0.295453 | − | 1.70667i | −0.829563 | − | 1.11430i | 0.424677 | + | 1.41852i | −0.804976 | + | 1.08833i | −1.50560 | − | 3.49038i | 0.459961 | + | 2.60857i | −2.82541 | − | 1.00848i | 0.200956 | − | 1.13968i |
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.g | even | 27 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 81.2.g.a | ✓ | 144 |
3.b | odd | 2 | 1 | 243.2.g.a | 144 | ||
9.c | even | 3 | 1 | 729.2.g.c | 144 | ||
9.c | even | 3 | 1 | 729.2.g.d | 144 | ||
9.d | odd | 6 | 1 | 729.2.g.a | 144 | ||
9.d | odd | 6 | 1 | 729.2.g.b | 144 | ||
81.g | even | 27 | 1 | inner | 81.2.g.a | ✓ | 144 |
81.g | even | 27 | 1 | 729.2.g.c | 144 | ||
81.g | even | 27 | 1 | 729.2.g.d | 144 | ||
81.g | even | 27 | 1 | 6561.2.a.c | 72 | ||
81.h | odd | 54 | 1 | 243.2.g.a | 144 | ||
81.h | odd | 54 | 1 | 729.2.g.a | 144 | ||
81.h | odd | 54 | 1 | 729.2.g.b | 144 | ||
81.h | odd | 54 | 1 | 6561.2.a.d | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
81.2.g.a | ✓ | 144 | 1.a | even | 1 | 1 | trivial |
81.2.g.a | ✓ | 144 | 81.g | even | 27 | 1 | inner |
243.2.g.a | 144 | 3.b | odd | 2 | 1 | ||
243.2.g.a | 144 | 81.h | odd | 54 | 1 | ||
729.2.g.a | 144 | 9.d | odd | 6 | 1 | ||
729.2.g.a | 144 | 81.h | odd | 54 | 1 | ||
729.2.g.b | 144 | 9.d | odd | 6 | 1 | ||
729.2.g.b | 144 | 81.h | odd | 54 | 1 | ||
729.2.g.c | 144 | 9.c | even | 3 | 1 | ||
729.2.g.c | 144 | 81.g | even | 27 | 1 | ||
729.2.g.d | 144 | 9.c | even | 3 | 1 | ||
729.2.g.d | 144 | 81.g | even | 27 | 1 | ||
6561.2.a.c | 72 | 81.g | even | 27 | 1 | ||
6561.2.a.d | 72 | 81.h | odd | 54 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(81, [\chi])\).