Properties

Label 81.2.g
Level $81$
Weight $2$
Character orbit 81.g
Rep. character $\chi_{81}(4,\cdot)$
Character field $\Q(\zeta_{27})$
Dimension $144$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.g (of order \(27\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 81 \)
Character field: \(\Q(\zeta_{27})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(81, [\chi])\).

Total New Old
Modular forms 180 180 0
Cusp forms 144 144 0
Eisenstein series 36 36 0

Trace form

\( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9} - 18 q^{10} - 18 q^{11} - 18 q^{12} - 18 q^{13} - 18 q^{14} - 18 q^{15} - 18 q^{16} - 18 q^{17} - 9 q^{18} - 18 q^{19}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(81, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
81.2.g.a 81.g 81.g $144$ $0.647$ None 81.2.g.a \(-18\) \(-18\) \(-18\) \(-18\) $\mathrm{SU}(2)[C_{27}]$