Defining parameters
| Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 81.g (of order \(27\) and degree \(18\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 81 \) |
| Character field: | \(\Q(\zeta_{27})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(18\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(81, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 180 | 180 | 0 |
| Cusp forms | 144 | 144 | 0 |
| Eisenstein series | 36 | 36 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(81, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 81.2.g.a | $144$ | $0.647$ | None | \(-18\) | \(-18\) | \(-18\) | \(-18\) | ||