Properties

Label 81.2.e.a.46.2
Level $81$
Weight $2$
Character 81.46
Analytic conductor $0.647$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,2,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.646788256372\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} - 258 x^{3} + 108 x^{2} - 27 x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 46.2
Root \(0.500000 + 0.258654i\) of defining polynomial
Character \(\chi\) \(=\) 81.46
Dual form 81.2.e.a.37.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.62143 + 1.36054i) q^{2} +(0.430663 + 2.44241i) q^{4} +(-2.52129 - 0.917674i) q^{5} +(0.168844 - 0.957561i) q^{7} +(-0.508086 + 0.880031i) q^{8} +O(q^{10})\) \(q+(1.62143 + 1.36054i) q^{2} +(0.430663 + 2.44241i) q^{4} +(-2.52129 - 0.917674i) q^{5} +(0.168844 - 0.957561i) q^{7} +(-0.508086 + 0.880031i) q^{8} +(-2.83955 - 4.91825i) q^{10} +(-0.297791 + 0.108387i) q^{11} +(-1.15981 + 0.973200i) q^{13} +(1.57657 - 1.32290i) q^{14} +(2.63991 - 0.960847i) q^{16} +(0.587342 + 1.01731i) q^{17} +(-3.11040 + 5.38737i) q^{19} +(1.15551 - 6.55323i) q^{20} +(-0.630310 - 0.229414i) q^{22} +(-0.375556 - 2.12988i) q^{23} +(1.68454 + 1.41350i) q^{25} -3.20463 q^{26} +2.41147 q^{28} +(3.37436 + 2.83142i) q^{29} +(-1.50609 - 8.54146i) q^{31} +(7.49746 + 2.72885i) q^{32} +(-0.431752 + 2.44859i) q^{34} +(-1.30443 + 2.25934i) q^{35} +(2.23332 + 3.86823i) q^{37} +(-12.3730 + 4.50341i) q^{38} +(2.08861 - 1.75255i) q^{40} +(-4.47767 + 3.75721i) q^{41} +(-5.25381 + 1.91223i) q^{43} +(-0.392973 - 0.680649i) q^{44} +(2.28885 - 3.96441i) q^{46} +(0.429965 - 2.43845i) q^{47} +(5.68943 + 2.07078i) q^{49} +(0.808243 + 4.58377i) q^{50} +(-2.87645 - 2.41362i) q^{52} +10.8920 q^{53} +0.850279 q^{55} +(0.756896 + 0.635111i) q^{56} +(1.61901 + 9.18189i) q^{58} +(-1.62023 - 0.589715i) q^{59} +(0.176214 - 0.999361i) q^{61} +(9.17898 - 15.8985i) q^{62} +(5.63455 + 9.75933i) q^{64} +(3.81731 - 1.38939i) q^{65} +(0.656156 - 0.550580i) q^{67} +(-2.23174 + 1.87265i) q^{68} +(-5.18896 + 1.88863i) q^{70} +(-4.79788 - 8.31018i) q^{71} +(7.62091 - 13.1998i) q^{73} +(-1.64171 + 9.31057i) q^{74} +(-14.4977 - 5.27674i) q^{76} +(0.0535070 + 0.303453i) q^{77} +(-8.59024 - 7.20807i) q^{79} -7.53771 q^{80} -12.3721 q^{82} +(-3.58886 - 3.01141i) q^{83} +(-0.547303 - 3.10391i) q^{85} +(-11.1203 - 4.04747i) q^{86} +(0.0559194 - 0.317135i) q^{88} +(-7.74976 + 13.4230i) q^{89} +(0.736071 + 1.27491i) q^{91} +(5.04032 - 1.83453i) q^{92} +(4.01476 - 3.36879i) q^{94} +(12.7861 - 10.7288i) q^{95} +(5.21481 - 1.89804i) q^{97} +(6.40762 + 11.0983i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 6 q^{4} + 3 q^{5} - 6 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{2} - 6 q^{4} + 3 q^{5} - 6 q^{7} - 6 q^{8} - 3 q^{10} - 3 q^{11} - 6 q^{13} - 15 q^{14} - 9 q^{17} - 3 q^{19} + 3 q^{20} + 3 q^{22} + 12 q^{23} + 3 q^{25} + 30 q^{26} - 12 q^{28} + 6 q^{29} + 3 q^{31} + 9 q^{34} - 12 q^{35} - 3 q^{37} - 42 q^{38} + 21 q^{40} - 15 q^{41} + 3 q^{43} - 3 q^{44} - 3 q^{46} + 15 q^{47} + 12 q^{49} + 33 q^{50} + 9 q^{52} + 18 q^{53} - 12 q^{55} + 33 q^{56} + 21 q^{58} + 12 q^{59} + 12 q^{61} + 12 q^{62} + 12 q^{64} - 3 q^{65} - 15 q^{67} - 9 q^{68} - 15 q^{70} - 27 q^{71} + 6 q^{73} - 33 q^{74} - 48 q^{76} - 15 q^{77} - 42 q^{79} - 42 q^{80} - 12 q^{82} - 39 q^{83} - 27 q^{85} - 51 q^{86} - 30 q^{88} - 9 q^{89} + 6 q^{91} + 39 q^{92} - 15 q^{94} + 33 q^{95} + 3 q^{97} + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.62143 + 1.36054i 1.14652 + 0.962046i 0.999633 0.0271067i \(-0.00862938\pi\)
0.146889 + 0.989153i \(0.453074\pi\)
\(3\) 0 0
\(4\) 0.430663 + 2.44241i 0.215332 + 1.22121i
\(5\) −2.52129 0.917674i −1.12755 0.410396i −0.290150 0.956981i \(-0.593705\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(6\) 0 0
\(7\) 0.168844 0.957561i 0.0638170 0.361924i −0.936130 0.351653i \(-0.885620\pi\)
0.999947 0.0102706i \(-0.00326930\pi\)
\(8\) −0.508086 + 0.880031i −0.179636 + 0.311138i
\(9\) 0 0
\(10\) −2.83955 4.91825i −0.897945 1.55529i
\(11\) −0.297791 + 0.108387i −0.0897872 + 0.0326799i −0.386523 0.922280i \(-0.626324\pi\)
0.296736 + 0.954960i \(0.404102\pi\)
\(12\) 0 0
\(13\) −1.15981 + 0.973200i −0.321675 + 0.269917i −0.789297 0.614011i \(-0.789555\pi\)
0.467623 + 0.883928i \(0.345111\pi\)
\(14\) 1.57657 1.32290i 0.421355 0.353559i
\(15\) 0 0
\(16\) 2.63991 0.960847i 0.659977 0.240212i
\(17\) 0.587342 + 1.01731i 0.142451 + 0.246733i 0.928419 0.371534i \(-0.121168\pi\)
−0.785968 + 0.618267i \(0.787835\pi\)
\(18\) 0 0
\(19\) −3.11040 + 5.38737i −0.713575 + 1.23595i 0.249931 + 0.968264i \(0.419592\pi\)
−0.963507 + 0.267685i \(0.913741\pi\)
\(20\) 1.15551 6.55323i 0.258380 1.46535i
\(21\) 0 0
\(22\) −0.630310 0.229414i −0.134383 0.0489113i
\(23\) −0.375556 2.12988i −0.0783089 0.444112i −0.998601 0.0528796i \(-0.983160\pi\)
0.920292 0.391232i \(-0.127951\pi\)
\(24\) 0 0
\(25\) 1.68454 + 1.41350i 0.336909 + 0.282700i
\(26\) −3.20463 −0.628480
\(27\) 0 0
\(28\) 2.41147 0.455726
\(29\) 3.37436 + 2.83142i 0.626602 + 0.525782i 0.899871 0.436156i \(-0.143660\pi\)
−0.273269 + 0.961938i \(0.588105\pi\)
\(30\) 0 0
\(31\) −1.50609 8.54146i −0.270502 1.53409i −0.752897 0.658138i \(-0.771344\pi\)
0.482395 0.875954i \(-0.339767\pi\)
\(32\) 7.49746 + 2.72885i 1.32538 + 0.482398i
\(33\) 0 0
\(34\) −0.431752 + 2.44859i −0.0740449 + 0.419930i
\(35\) −1.30443 + 2.25934i −0.220489 + 0.381899i
\(36\) 0 0
\(37\) 2.23332 + 3.86823i 0.367156 + 0.635933i 0.989120 0.147113i \(-0.0469982\pi\)
−0.621964 + 0.783046i \(0.713665\pi\)
\(38\) −12.3730 + 4.50341i −2.00717 + 0.730550i
\(39\) 0 0
\(40\) 2.08861 1.75255i 0.330239 0.277103i
\(41\) −4.47767 + 3.75721i −0.699295 + 0.586778i −0.921573 0.388205i \(-0.873095\pi\)
0.222278 + 0.974983i \(0.428651\pi\)
\(42\) 0 0
\(43\) −5.25381 + 1.91223i −0.801199 + 0.291613i −0.709983 0.704219i \(-0.751298\pi\)
−0.0912158 + 0.995831i \(0.529075\pi\)
\(44\) −0.392973 0.680649i −0.0592429 0.102612i
\(45\) 0 0
\(46\) 2.28885 3.96441i 0.337473 0.584521i
\(47\) 0.429965 2.43845i 0.0627168 0.355685i −0.937258 0.348636i \(-0.886645\pi\)
0.999975 0.00704911i \(-0.00224382\pi\)
\(48\) 0 0
\(49\) 5.68943 + 2.07078i 0.812776 + 0.295826i
\(50\) 0.808243 + 4.58377i 0.114303 + 0.648243i
\(51\) 0 0
\(52\) −2.87645 2.41362i −0.398891 0.334710i
\(53\) 10.8920 1.49613 0.748063 0.663628i \(-0.230984\pi\)
0.748063 + 0.663628i \(0.230984\pi\)
\(54\) 0 0
\(55\) 0.850279 0.114652
\(56\) 0.756896 + 0.635111i 0.101145 + 0.0848703i
\(57\) 0 0
\(58\) 1.61901 + 9.18189i 0.212587 + 1.20564i
\(59\) −1.62023 0.589715i −0.210936 0.0767743i 0.234391 0.972142i \(-0.424690\pi\)
−0.445327 + 0.895368i \(0.646913\pi\)
\(60\) 0 0
\(61\) 0.176214 0.999361i 0.0225619 0.127955i −0.971446 0.237259i \(-0.923751\pi\)
0.994008 + 0.109304i \(0.0348621\pi\)
\(62\) 9.17898 15.8985i 1.16573 2.01911i
\(63\) 0 0
\(64\) 5.63455 + 9.75933i 0.704319 + 1.21992i
\(65\) 3.81731 1.38939i 0.473478 0.172332i
\(66\) 0 0
\(67\) 0.656156 0.550580i 0.0801622 0.0672641i −0.601826 0.798627i \(-0.705560\pi\)
0.681988 + 0.731363i \(0.261116\pi\)
\(68\) −2.23174 + 1.87265i −0.270638 + 0.227092i
\(69\) 0 0
\(70\) −5.18896 + 1.88863i −0.620200 + 0.225734i
\(71\) −4.79788 8.31018i −0.569404 0.986237i −0.996625 0.0820894i \(-0.973841\pi\)
0.427221 0.904147i \(-0.359493\pi\)
\(72\) 0 0
\(73\) 7.62091 13.1998i 0.891960 1.54492i 0.0544385 0.998517i \(-0.482663\pi\)
0.837522 0.546404i \(-0.184004\pi\)
\(74\) −1.64171 + 9.31057i −0.190844 + 1.08233i
\(75\) 0 0
\(76\) −14.4977 5.27674i −1.66300 0.605284i
\(77\) 0.0535070 + 0.303453i 0.00609768 + 0.0345817i
\(78\) 0 0
\(79\) −8.59024 7.20807i −0.966478 0.810971i 0.0155168 0.999880i \(-0.495061\pi\)
−0.981995 + 0.188908i \(0.939505\pi\)
\(80\) −7.53771 −0.842741
\(81\) 0 0
\(82\) −12.3721 −1.36626
\(83\) −3.58886 3.01141i −0.393929 0.330546i 0.424212 0.905563i \(-0.360551\pi\)
−0.818141 + 0.575017i \(0.804995\pi\)
\(84\) 0 0
\(85\) −0.547303 3.10391i −0.0593633 0.336666i
\(86\) −11.1203 4.04747i −1.19914 0.436450i
\(87\) 0 0
\(88\) 0.0559194 0.317135i 0.00596103 0.0338067i
\(89\) −7.74976 + 13.4230i −0.821473 + 1.42283i 0.0831130 + 0.996540i \(0.473514\pi\)
−0.904586 + 0.426292i \(0.859820\pi\)
\(90\) 0 0
\(91\) 0.736071 + 1.27491i 0.0771612 + 0.133647i
\(92\) 5.04032 1.83453i 0.525490 0.191263i
\(93\) 0 0
\(94\) 4.01476 3.36879i 0.414091 0.347464i
\(95\) 12.7861 10.7288i 1.31182 1.10075i
\(96\) 0 0
\(97\) 5.21481 1.89804i 0.529484 0.192716i −0.0634241 0.997987i \(-0.520202\pi\)
0.592908 + 0.805270i \(0.297980\pi\)
\(98\) 6.40762 + 11.0983i 0.647267 + 1.12110i
\(99\) 0 0
\(100\) −2.72688 + 4.72309i −0.272688 + 0.472309i
\(101\) 1.76063 9.98501i 0.175189 0.993546i −0.762737 0.646709i \(-0.776145\pi\)
0.937926 0.346836i \(-0.112744\pi\)
\(102\) 0 0
\(103\) 9.25906 + 3.37002i 0.912323 + 0.332058i 0.755180 0.655518i \(-0.227549\pi\)
0.157143 + 0.987576i \(0.449772\pi\)
\(104\) −0.267160 1.51514i −0.0261972 0.148572i
\(105\) 0 0
\(106\) 17.6605 + 14.8189i 1.71534 + 1.43934i
\(107\) −5.17080 −0.499880 −0.249940 0.968261i \(-0.580411\pi\)
−0.249940 + 0.968261i \(0.580411\pi\)
\(108\) 0 0
\(109\) −7.31065 −0.700234 −0.350117 0.936706i \(-0.613858\pi\)
−0.350117 + 0.936706i \(0.613858\pi\)
\(110\) 1.37867 + 1.15684i 0.131451 + 0.110300i
\(111\) 0 0
\(112\) −0.474338 2.69010i −0.0448207 0.254191i
\(113\) 9.74991 + 3.54868i 0.917195 + 0.333832i 0.757122 0.653274i \(-0.226605\pi\)
0.160073 + 0.987105i \(0.448827\pi\)
\(114\) 0 0
\(115\) −1.00765 + 5.71469i −0.0939642 + 0.532898i
\(116\) −5.46229 + 9.46096i −0.507161 + 0.878428i
\(117\) 0 0
\(118\) −1.82475 3.16056i −0.167982 0.290953i
\(119\) 1.07330 0.390650i 0.0983894 0.0358108i
\(120\) 0 0
\(121\) −8.34956 + 7.00611i −0.759051 + 0.636919i
\(122\) 1.64539 1.38064i 0.148966 0.124998i
\(123\) 0 0
\(124\) 20.2132 7.35699i 1.81520 0.660677i
\(125\) 3.75766 + 6.50846i 0.336095 + 0.582134i
\(126\) 0 0
\(127\) −2.61372 + 4.52709i −0.231930 + 0.401714i −0.958376 0.285509i \(-0.907837\pi\)
0.726446 + 0.687223i \(0.241171\pi\)
\(128\) −1.37098 + 7.77522i −0.121179 + 0.687239i
\(129\) 0 0
\(130\) 8.07980 + 2.94081i 0.708645 + 0.257926i
\(131\) 1.25622 + 7.12440i 0.109757 + 0.622461i 0.989213 + 0.146482i \(0.0467951\pi\)
−0.879457 + 0.475979i \(0.842094\pi\)
\(132\) 0 0
\(133\) 4.63357 + 3.88802i 0.401781 + 0.337134i
\(134\) 1.81300 0.156619
\(135\) 0 0
\(136\) −1.19368 −0.102357
\(137\) −8.61748 7.23092i −0.736241 0.617779i 0.195584 0.980687i \(-0.437340\pi\)
−0.931825 + 0.362907i \(0.881784\pi\)
\(138\) 0 0
\(139\) 1.62885 + 9.23766i 0.138157 + 0.783528i 0.972609 + 0.232447i \(0.0746733\pi\)
−0.834452 + 0.551081i \(0.814216\pi\)
\(140\) −6.08002 2.21295i −0.513855 0.187028i
\(141\) 0 0
\(142\) 3.52690 20.0021i 0.295971 1.67854i
\(143\) 0.239900 0.415518i 0.0200614 0.0347474i
\(144\) 0 0
\(145\) −5.90940 10.2354i −0.490749 0.850003i
\(146\) 30.3156 11.0340i 2.50894 0.913179i
\(147\) 0 0
\(148\) −8.48600 + 7.12060i −0.697545 + 0.585310i
\(149\) −14.5941 + 12.2459i −1.19560 + 1.00322i −0.195851 + 0.980634i \(0.562747\pi\)
−0.999745 + 0.0225899i \(0.992809\pi\)
\(150\) 0 0
\(151\) −3.77193 + 1.37287i −0.306955 + 0.111723i −0.490905 0.871213i \(-0.663334\pi\)
0.183950 + 0.982936i \(0.441112\pi\)
\(152\) −3.16070 5.47450i −0.256367 0.444041i
\(153\) 0 0
\(154\) −0.326102 + 0.564825i −0.0262780 + 0.0455149i
\(155\) −4.04099 + 22.9176i −0.324580 + 1.84078i
\(156\) 0 0
\(157\) −6.83713 2.48851i −0.545662 0.198605i 0.0544560 0.998516i \(-0.482658\pi\)
−0.600118 + 0.799911i \(0.704880\pi\)
\(158\) −4.12159 23.3747i −0.327896 1.85959i
\(159\) 0 0
\(160\) −16.3991 13.7604i −1.29646 1.08786i
\(161\) −2.10290 −0.165732
\(162\) 0 0
\(163\) 12.4492 0.975094 0.487547 0.873097i \(-0.337892\pi\)
0.487547 + 0.873097i \(0.337892\pi\)
\(164\) −11.1050 9.31823i −0.867157 0.727632i
\(165\) 0 0
\(166\) −1.72194 9.76558i −0.133648 0.757956i
\(167\) −2.19126 0.797553i −0.169565 0.0617165i 0.255843 0.966718i \(-0.417647\pi\)
−0.425408 + 0.905002i \(0.639869\pi\)
\(168\) 0 0
\(169\) −1.85937 + 10.5450i −0.143029 + 0.811157i
\(170\) 3.33558 5.77739i 0.255827 0.443106i
\(171\) 0 0
\(172\) −6.93308 12.0085i −0.528643 0.915636i
\(173\) −3.36623 + 1.22521i −0.255930 + 0.0931509i −0.466799 0.884363i \(-0.654593\pi\)
0.210869 + 0.977514i \(0.432371\pi\)
\(174\) 0 0
\(175\) 1.63794 1.37439i 0.123816 0.103894i
\(176\) −0.681996 + 0.572262i −0.0514074 + 0.0431359i
\(177\) 0 0
\(178\) −30.8281 + 11.2205i −2.31067 + 0.841014i
\(179\) −9.99785 17.3168i −0.747275 1.29432i −0.949124 0.314901i \(-0.898029\pi\)
0.201850 0.979416i \(-0.435305\pi\)
\(180\) 0 0
\(181\) −4.86616 + 8.42844i −0.361699 + 0.626481i −0.988241 0.152907i \(-0.951136\pi\)
0.626542 + 0.779388i \(0.284470\pi\)
\(182\) −0.541082 + 3.06863i −0.0401077 + 0.227462i
\(183\) 0 0
\(184\) 2.06518 + 0.751664i 0.152247 + 0.0554134i
\(185\) −2.08108 11.8024i −0.153004 0.867728i
\(186\) 0 0
\(187\) −0.285168 0.239284i −0.0208535 0.0174982i
\(188\) 6.14088 0.447869
\(189\) 0 0
\(190\) 35.3286 2.56301
\(191\) 13.6023 + 11.4137i 0.984227 + 0.825864i 0.984722 0.174135i \(-0.0557130\pi\)
−0.000494763 1.00000i \(0.500157\pi\)
\(192\) 0 0
\(193\) 1.83795 + 10.4235i 0.132299 + 0.750303i 0.976703 + 0.214596i \(0.0688435\pi\)
−0.844404 + 0.535706i \(0.820045\pi\)
\(194\) 11.0378 + 4.01743i 0.792467 + 0.288434i
\(195\) 0 0
\(196\) −2.60748 + 14.7878i −0.186249 + 1.05627i
\(197\) 7.07945 12.2620i 0.504390 0.873628i −0.495597 0.868552i \(-0.665051\pi\)
0.999987 0.00507615i \(-0.00161579\pi\)
\(198\) 0 0
\(199\) −3.77010 6.53000i −0.267255 0.462899i 0.700897 0.713263i \(-0.252783\pi\)
−0.968152 + 0.250363i \(0.919450\pi\)
\(200\) −2.09982 + 0.764271i −0.148479 + 0.0540421i
\(201\) 0 0
\(202\) 16.4397 13.7946i 1.15669 0.970582i
\(203\) 3.28100 2.75308i 0.230281 0.193229i
\(204\) 0 0
\(205\) 14.7374 5.36397i 1.02930 0.374636i
\(206\) 10.4278 + 18.0616i 0.726543 + 1.25841i
\(207\) 0 0
\(208\) −2.12670 + 3.68356i −0.147460 + 0.255409i
\(209\) 0.342328 1.94144i 0.0236793 0.134292i
\(210\) 0 0
\(211\) −4.89922 1.78317i −0.337276 0.122758i 0.167829 0.985816i \(-0.446324\pi\)
−0.505106 + 0.863058i \(0.668546\pi\)
\(212\) 4.69077 + 26.6027i 0.322163 + 1.82708i
\(213\) 0 0
\(214\) −8.38408 7.03508i −0.573124 0.480908i
\(215\) 15.0012 1.02307
\(216\) 0 0
\(217\) −8.43326 −0.572487
\(218\) −11.8537 9.94643i −0.802833 0.673657i
\(219\) 0 0
\(220\) 0.366184 + 2.07673i 0.0246881 + 0.140013i
\(221\) −1.67125 0.608285i −0.112420 0.0409177i
\(222\) 0 0
\(223\) 3.07250 17.4250i 0.205750 1.16686i −0.690506 0.723326i \(-0.742612\pi\)
0.896256 0.443537i \(-0.146277\pi\)
\(224\) 3.87894 6.71853i 0.259173 0.448901i
\(225\) 0 0
\(226\) 10.9807 + 19.0191i 0.730423 + 1.26513i
\(227\) −14.8208 + 5.39434i −0.983692 + 0.358035i −0.783275 0.621676i \(-0.786452\pi\)
−0.200418 + 0.979711i \(0.564230\pi\)
\(228\) 0 0
\(229\) −1.35350 + 1.13572i −0.0894415 + 0.0750504i −0.686412 0.727213i \(-0.740815\pi\)
0.596971 + 0.802263i \(0.296371\pi\)
\(230\) −9.40889 + 7.89500i −0.620404 + 0.520581i
\(231\) 0 0
\(232\) −4.20620 + 1.53093i −0.276151 + 0.100511i
\(233\) −6.94920 12.0364i −0.455257 0.788529i 0.543446 0.839444i \(-0.317119\pi\)
−0.998703 + 0.0509157i \(0.983786\pi\)
\(234\) 0 0
\(235\) −3.32177 + 5.75347i −0.216688 + 0.375315i
\(236\) 0.742554 4.21123i 0.0483362 0.274128i
\(237\) 0 0
\(238\) 2.27177 + 0.826858i 0.147257 + 0.0535973i
\(239\) 3.44391 + 19.5314i 0.222768 + 1.26338i 0.866906 + 0.498471i \(0.166105\pi\)
−0.644138 + 0.764909i \(0.722784\pi\)
\(240\) 0 0
\(241\) 14.8419 + 12.4538i 0.956050 + 0.802221i 0.980306 0.197485i \(-0.0632773\pi\)
−0.0242563 + 0.999706i \(0.507722\pi\)
\(242\) −23.0703 −1.48301
\(243\) 0 0
\(244\) 2.51674 0.161118
\(245\) −12.4444 10.4421i −0.795043 0.667120i
\(246\) 0 0
\(247\) −1.63550 9.27540i −0.104065 0.590179i
\(248\) 8.28198 + 3.01439i 0.525906 + 0.191414i
\(249\) 0 0
\(250\) −2.76224 + 15.6654i −0.174699 + 0.990769i
\(251\) −2.73786 + 4.74212i −0.172812 + 0.299320i −0.939402 0.342818i \(-0.888619\pi\)
0.766590 + 0.642137i \(0.221952\pi\)
\(252\) 0 0
\(253\) 0.342689 + 0.593554i 0.0215447 + 0.0373164i
\(254\) −10.3972 + 3.78428i −0.652380 + 0.237447i
\(255\) 0 0
\(256\) 4.46383 3.74560i 0.278989 0.234100i
\(257\) 8.85943 7.43395i 0.552636 0.463717i −0.323196 0.946332i \(-0.604757\pi\)
0.875833 + 0.482615i \(0.160313\pi\)
\(258\) 0 0
\(259\) 4.08115 1.48542i 0.253590 0.0922993i
\(260\) 5.03743 + 8.72508i 0.312408 + 0.541107i
\(261\) 0 0
\(262\) −7.65614 + 13.2608i −0.472998 + 0.819257i
\(263\) −1.12488 + 6.37952i −0.0693632 + 0.393378i 0.930285 + 0.366839i \(0.119560\pi\)
−0.999648 + 0.0265395i \(0.991551\pi\)
\(264\) 0 0
\(265\) −27.4618 9.99526i −1.68696 0.614004i
\(266\) 2.22318 + 12.6083i 0.136312 + 0.773064i
\(267\) 0 0
\(268\) 1.62733 + 1.36549i 0.0994048 + 0.0834106i
\(269\) 13.8387 0.843758 0.421879 0.906652i \(-0.361371\pi\)
0.421879 + 0.906652i \(0.361371\pi\)
\(270\) 0 0
\(271\) 1.94536 0.118172 0.0590860 0.998253i \(-0.481181\pi\)
0.0590860 + 0.998253i \(0.481181\pi\)
\(272\) 2.52800 + 2.12125i 0.153283 + 0.128619i
\(273\) 0 0
\(274\) −4.13466 23.4488i −0.249784 1.41660i
\(275\) −0.654846 0.238344i −0.0394887 0.0143727i
\(276\) 0 0
\(277\) 2.16586 12.2832i 0.130134 0.738026i −0.847991 0.530010i \(-0.822188\pi\)
0.978125 0.208016i \(-0.0667007\pi\)
\(278\) −9.92713 + 17.1943i −0.595390 + 1.03125i
\(279\) 0 0
\(280\) −1.32553 2.29588i −0.0792154 0.137205i
\(281\) 9.16752 3.33670i 0.546888 0.199051i −0.0537751 0.998553i \(-0.517125\pi\)
0.600663 + 0.799502i \(0.294903\pi\)
\(282\) 0 0
\(283\) 20.3547 17.0797i 1.20996 1.01528i 0.210676 0.977556i \(-0.432433\pi\)
0.999288 0.0377246i \(-0.0120110\pi\)
\(284\) 18.2306 15.2973i 1.08179 0.907728i
\(285\) 0 0
\(286\) 0.954309 0.347340i 0.0564295 0.0205386i
\(287\) 2.84173 + 4.92202i 0.167742 + 0.290538i
\(288\) 0 0
\(289\) 7.81006 13.5274i 0.459415 0.795730i
\(290\) 4.34397 24.6359i 0.255087 1.44667i
\(291\) 0 0
\(292\) 35.5214 + 12.9287i 2.07873 + 0.756598i
\(293\) −2.12849 12.0712i −0.124347 0.705210i −0.981693 0.190469i \(-0.938999\pi\)
0.857346 0.514741i \(-0.172112\pi\)
\(294\) 0 0
\(295\) 3.54389 + 2.97368i 0.206334 + 0.173134i
\(296\) −4.53888 −0.263817
\(297\) 0 0
\(298\) −40.3243 −2.33592
\(299\) 2.50838 + 2.10478i 0.145063 + 0.121723i
\(300\) 0 0
\(301\) 0.944004 + 5.35371i 0.0544115 + 0.308583i
\(302\) −7.98375 2.90585i −0.459413 0.167213i
\(303\) 0 0
\(304\) −3.03473 + 17.2108i −0.174053 + 0.987106i
\(305\) −1.36137 + 2.35797i −0.0779521 + 0.135017i
\(306\) 0 0
\(307\) 13.2370 + 22.9271i 0.755475 + 1.30852i 0.945138 + 0.326671i \(0.105927\pi\)
−0.189663 + 0.981849i \(0.560740\pi\)
\(308\) −0.718114 + 0.261372i −0.0409184 + 0.0148931i
\(309\) 0 0
\(310\) −37.7324 + 31.6613i −2.14306 + 1.79824i
\(311\) 13.5280 11.3513i 0.767100 0.643673i −0.172865 0.984946i \(-0.555302\pi\)
0.939964 + 0.341272i \(0.110858\pi\)
\(312\) 0 0
\(313\) −9.06541 + 3.29954i −0.512407 + 0.186501i −0.585266 0.810841i \(-0.699010\pi\)
0.0728589 + 0.997342i \(0.476788\pi\)
\(314\) −7.70019 13.3371i −0.434547 0.752657i
\(315\) 0 0
\(316\) 13.9056 24.0852i 0.782250 1.35490i
\(317\) 0.644320 3.65412i 0.0361886 0.205236i −0.961352 0.275321i \(-0.911216\pi\)
0.997541 + 0.0700850i \(0.0223270\pi\)
\(318\) 0 0
\(319\) −1.31174 0.477435i −0.0734434 0.0267312i
\(320\) −5.25044 29.7767i −0.293509 1.66457i
\(321\) 0 0
\(322\) −3.40971 2.86108i −0.190016 0.159442i
\(323\) −7.30748 −0.406599
\(324\) 0 0
\(325\) −3.32937 −0.184680
\(326\) 20.1854 + 16.9376i 1.11797 + 0.938085i
\(327\) 0 0
\(328\) −1.03142 5.84948i −0.0569507 0.322983i
\(329\) −2.26237 0.823435i −0.124728 0.0453974i
\(330\) 0 0
\(331\) −0.245329 + 1.39133i −0.0134845 + 0.0764745i −0.990807 0.135280i \(-0.956807\pi\)
0.977323 + 0.211755i \(0.0679177\pi\)
\(332\) 5.80953 10.0624i 0.318839 0.552246i
\(333\) 0 0
\(334\) −2.46786 4.27446i −0.135035 0.233888i
\(335\) −2.15961 + 0.786034i −0.117992 + 0.0429456i
\(336\) 0 0
\(337\) −9.95097 + 8.34986i −0.542064 + 0.454846i −0.872243 0.489073i \(-0.837335\pi\)
0.330179 + 0.943918i \(0.392891\pi\)
\(338\) −17.3618 + 14.5683i −0.944356 + 0.792409i
\(339\) 0 0
\(340\) 7.34533 2.67348i 0.398356 0.144990i
\(341\) 1.37428 + 2.38033i 0.0744215 + 0.128902i
\(342\) 0 0
\(343\) 6.34669 10.9928i 0.342689 0.593555i
\(344\) 0.986567 5.59510i 0.0531921 0.301667i
\(345\) 0 0
\(346\) −7.12504 2.59330i −0.383045 0.139417i
\(347\) 0.833591 + 4.72753i 0.0447495 + 0.253787i 0.998973 0.0453070i \(-0.0144266\pi\)
−0.954224 + 0.299094i \(0.903316\pi\)
\(348\) 0 0
\(349\) −17.2954 14.5126i −0.925803 0.776841i 0.0492565 0.998786i \(-0.484315\pi\)
−0.975059 + 0.221946i \(0.928759\pi\)
\(350\) 4.52571 0.241909
\(351\) 0 0
\(352\) −2.52845 −0.134767
\(353\) 22.7565 + 19.0950i 1.21121 + 1.01632i 0.999237 + 0.0390490i \(0.0124328\pi\)
0.211972 + 0.977276i \(0.432012\pi\)
\(354\) 0 0
\(355\) 4.47081 + 25.3552i 0.237286 + 1.34572i
\(356\) −36.1220 13.1473i −1.91446 0.696807i
\(357\) 0 0
\(358\) 7.34937 41.6804i 0.388427 2.20288i
\(359\) 6.70991 11.6219i 0.354136 0.613381i −0.632834 0.774288i \(-0.718108\pi\)
0.986970 + 0.160906i \(0.0514418\pi\)
\(360\) 0 0
\(361\) −9.84920 17.0593i −0.518379 0.897858i
\(362\) −19.3573 + 7.04550i −1.01740 + 0.370303i
\(363\) 0 0
\(364\) −2.79686 + 2.34685i −0.146595 + 0.123008i
\(365\) −31.3276 + 26.2870i −1.63976 + 1.37592i
\(366\) 0 0
\(367\) 7.47054 2.71905i 0.389959 0.141933i −0.139597 0.990208i \(-0.544581\pi\)
0.529556 + 0.848275i \(0.322359\pi\)
\(368\) −3.03793 5.26184i −0.158363 0.274293i
\(369\) 0 0
\(370\) 12.6833 21.9681i 0.659372 1.14207i
\(371\) 1.83904 10.4297i 0.0954782 0.541484i
\(372\) 0 0
\(373\) 10.7318 + 3.90604i 0.555670 + 0.202247i 0.604564 0.796557i \(-0.293347\pi\)
−0.0488939 + 0.998804i \(0.515570\pi\)
\(374\) −0.136823 0.775963i −0.00707496 0.0401241i
\(375\) 0 0
\(376\) 1.92745 + 1.61733i 0.0994009 + 0.0834072i
\(377\) −6.66917 −0.343480
\(378\) 0 0
\(379\) −24.1705 −1.24155 −0.620777 0.783987i \(-0.713183\pi\)
−0.620777 + 0.783987i \(0.713183\pi\)
\(380\) 31.7106 + 26.6084i 1.62672 + 1.36498i
\(381\) 0 0
\(382\) 6.52637 + 37.0129i 0.333918 + 1.89374i
\(383\) 8.87378 + 3.22979i 0.453429 + 0.165035i 0.558631 0.829416i \(-0.311327\pi\)
−0.105202 + 0.994451i \(0.533549\pi\)
\(384\) 0 0
\(385\) 0.143564 0.814194i 0.00731672 0.0414952i
\(386\) −11.2015 + 19.4016i −0.570143 + 0.987516i
\(387\) 0 0
\(388\) 6.88162 + 11.9193i 0.349361 + 0.605111i
\(389\) −2.39406 + 0.871367i −0.121384 + 0.0441801i −0.401998 0.915641i \(-0.631684\pi\)
0.280614 + 0.959821i \(0.409462\pi\)
\(390\) 0 0
\(391\) 1.94617 1.63303i 0.0984218 0.0825857i
\(392\) −4.71308 + 3.95474i −0.238046 + 0.199745i
\(393\) 0 0
\(394\) 28.1617 10.2500i 1.41876 0.516388i
\(395\) 15.0438 + 26.0567i 0.756937 + 1.31105i
\(396\) 0 0
\(397\) −1.83759 + 3.18279i −0.0922258 + 0.159740i −0.908447 0.417999i \(-0.862731\pi\)
0.816222 + 0.577739i \(0.196065\pi\)
\(398\) 2.77138 15.7173i 0.138917 0.787836i
\(399\) 0 0
\(400\) 5.80519 + 2.11292i 0.290260 + 0.105646i
\(401\) −2.80420 15.9034i −0.140035 0.794177i −0.971220 0.238182i \(-0.923448\pi\)
0.831186 0.555995i \(-0.187663\pi\)
\(402\) 0 0
\(403\) 10.0593 + 8.44078i 0.501091 + 0.420465i
\(404\) 25.1458 1.25105
\(405\) 0 0
\(406\) 9.06558 0.449917
\(407\) −1.08433 0.909859i −0.0537481 0.0451000i
\(408\) 0 0
\(409\) 1.59443 + 9.04248i 0.0788396 + 0.447122i 0.998517 + 0.0544462i \(0.0173393\pi\)
−0.919677 + 0.392676i \(0.871550\pi\)
\(410\) 31.1935 + 11.3535i 1.54054 + 0.560710i
\(411\) 0 0
\(412\) −4.24345 + 24.0658i −0.209060 + 1.18564i
\(413\) −0.838253 + 1.45190i −0.0412477 + 0.0714432i
\(414\) 0 0
\(415\) 6.28506 + 10.8860i 0.308522 + 0.534375i
\(416\) −11.3514 + 4.13157i −0.556548 + 0.202567i
\(417\) 0 0
\(418\) 3.19646 2.68215i 0.156344 0.131188i
\(419\) 5.34613 4.48594i 0.261176 0.219152i −0.502791 0.864408i \(-0.667694\pi\)
0.763967 + 0.645256i \(0.223249\pi\)
\(420\) 0 0
\(421\) −28.9525 + 10.5379i −1.41106 + 0.513584i −0.931441 0.363894i \(-0.881447\pi\)
−0.479619 + 0.877477i \(0.659225\pi\)
\(422\) −5.51765 9.55686i −0.268595 0.465221i
\(423\) 0 0
\(424\) −5.53405 + 9.58526i −0.268757 + 0.465502i
\(425\) −0.448559 + 2.54390i −0.0217583 + 0.123397i
\(426\) 0 0
\(427\) −0.927196 0.337472i −0.0448702 0.0163314i
\(428\) −2.22687 12.6292i −0.107640 0.610457i
\(429\) 0 0
\(430\) 24.3233 + 20.4097i 1.17297 + 0.984242i
\(431\) −27.8971 −1.34376 −0.671879 0.740661i \(-0.734513\pi\)
−0.671879 + 0.740661i \(0.734513\pi\)
\(432\) 0 0
\(433\) 19.1706 0.921278 0.460639 0.887588i \(-0.347620\pi\)
0.460639 + 0.887588i \(0.347620\pi\)
\(434\) −13.6739 11.4738i −0.656369 0.550759i
\(435\) 0 0
\(436\) −3.14843 17.8556i −0.150782 0.855130i
\(437\) 12.6426 + 4.60154i 0.604778 + 0.220121i
\(438\) 0 0
\(439\) −4.12397 + 23.3882i −0.196826 + 1.11626i 0.712968 + 0.701197i \(0.247351\pi\)
−0.909794 + 0.415060i \(0.863761\pi\)
\(440\) −0.432015 + 0.748272i −0.0205955 + 0.0356725i
\(441\) 0 0
\(442\) −1.88221 3.26009i −0.0895278 0.155067i
\(443\) 21.9496 7.98900i 1.04286 0.379569i 0.236894 0.971536i \(-0.423871\pi\)
0.805962 + 0.591967i \(0.201648\pi\)
\(444\) 0 0
\(445\) 31.8573 26.7314i 1.51018 1.26719i
\(446\) 28.6892 24.0731i 1.35847 1.13989i
\(447\) 0 0
\(448\) 10.2965 3.74762i 0.486464 0.177059i
\(449\) 2.40953 + 4.17343i 0.113713 + 0.196956i 0.917264 0.398279i \(-0.130392\pi\)
−0.803552 + 0.595235i \(0.797059\pi\)
\(450\) 0 0
\(451\) 0.926176 1.60418i 0.0436119 0.0755380i
\(452\) −4.46841 + 25.3416i −0.210176 + 1.19197i
\(453\) 0 0
\(454\) −31.3701 11.4178i −1.47227 0.535863i
\(455\) −0.685893 3.88989i −0.0321552 0.182361i
\(456\) 0 0
\(457\) −3.74872 3.14555i −0.175358 0.147142i 0.550885 0.834581i \(-0.314290\pi\)
−0.726242 + 0.687439i \(0.758735\pi\)
\(458\) −3.73978 −0.174749
\(459\) 0 0
\(460\) −14.3916 −0.671012
\(461\) −21.4419 17.9919i −0.998650 0.837967i −0.0118535 0.999930i \(-0.503773\pi\)
−0.986797 + 0.161963i \(0.948218\pi\)
\(462\) 0 0
\(463\) −4.77104 27.0579i −0.221729 1.25749i −0.868840 0.495093i \(-0.835134\pi\)
0.647111 0.762396i \(-0.275977\pi\)
\(464\) 11.6285 + 4.23245i 0.539842 + 0.196486i
\(465\) 0 0
\(466\) 5.10832 28.9707i 0.236639 1.34204i
\(467\) −10.6232 + 18.4000i −0.491585 + 0.851450i −0.999953 0.00968963i \(-0.996916\pi\)
0.508368 + 0.861140i \(0.330249\pi\)
\(468\) 0 0
\(469\) −0.416426 0.721272i −0.0192288 0.0333052i
\(470\) −13.2138 + 4.80944i −0.609508 + 0.221843i
\(471\) 0 0
\(472\) 1.34218 1.12623i 0.0617790 0.0518387i
\(473\) 1.35728 1.13889i 0.0624076 0.0523662i
\(474\) 0 0
\(475\) −12.8547 + 4.67871i −0.589812 + 0.214674i
\(476\) 1.41636 + 2.45321i 0.0649188 + 0.112443i
\(477\) 0 0
\(478\) −20.9892 + 36.3543i −0.960022 + 1.66281i
\(479\) 7.23745 41.0456i 0.330688 1.87542i −0.135560 0.990769i \(-0.543283\pi\)
0.466248 0.884654i \(-0.345606\pi\)
\(480\) 0 0
\(481\) −6.35480 2.31296i −0.289754 0.105462i
\(482\) 7.12113 + 40.3859i 0.324358 + 1.83953i
\(483\) 0 0
\(484\) −20.7077 17.3758i −0.941258 0.789809i
\(485\) −14.8898 −0.676112
\(486\) 0 0
\(487\) 4.02801 0.182527 0.0912634 0.995827i \(-0.470909\pi\)
0.0912634 + 0.995827i \(0.470909\pi\)
\(488\) 0.789937 + 0.662836i 0.0357588 + 0.0300052i
\(489\) 0 0
\(490\) −5.97081 33.8622i −0.269734 1.52974i
\(491\) −36.2922 13.2093i −1.63784 0.596126i −0.651184 0.758920i \(-0.725727\pi\)
−0.986660 + 0.162793i \(0.947950\pi\)
\(492\) 0 0
\(493\) −0.898521 + 5.09577i −0.0404674 + 0.229502i
\(494\) 9.96769 17.2645i 0.448468 0.776769i
\(495\) 0 0
\(496\) −12.1830 21.1015i −0.547032 0.947487i
\(497\) −8.76759 + 3.19114i −0.393280 + 0.143142i
\(498\) 0 0
\(499\) −3.11922 + 2.61734i −0.139636 + 0.117168i −0.709930 0.704272i \(-0.751274\pi\)
0.570295 + 0.821440i \(0.306829\pi\)
\(500\) −14.2781 + 11.9807i −0.638534 + 0.535794i
\(501\) 0 0
\(502\) −10.8911 + 3.96403i −0.486093 + 0.176923i
\(503\) −1.71297 2.96695i −0.0763775 0.132290i 0.825307 0.564684i \(-0.191002\pi\)
−0.901684 + 0.432395i \(0.857669\pi\)
\(504\) 0 0
\(505\) −13.6020 + 23.5594i −0.605282 + 1.04838i
\(506\) −0.251909 + 1.42865i −0.0111987 + 0.0635111i
\(507\) 0 0
\(508\) −12.1827 4.43412i −0.540518 0.196732i
\(509\) 2.12952 + 12.0771i 0.0943893 + 0.535308i 0.994933 + 0.100542i \(0.0320578\pi\)
−0.900543 + 0.434766i \(0.856831\pi\)
\(510\) 0 0
\(511\) −11.3529 9.52619i −0.502222 0.421414i
\(512\) 28.1241 1.24292
\(513\) 0 0
\(514\) 24.4791 1.07973
\(515\) −20.2522 16.9936i −0.892418 0.748827i
\(516\) 0 0
\(517\) 0.136257 + 0.772750i 0.00599257 + 0.0339855i
\(518\) 8.63825 + 3.14407i 0.379543 + 0.138142i
\(519\) 0 0
\(520\) −0.716818 + 4.06528i −0.0314345 + 0.178274i
\(521\) 7.04117 12.1957i 0.308479 0.534302i −0.669551 0.742766i \(-0.733513\pi\)
0.978030 + 0.208465i \(0.0668466\pi\)
\(522\) 0 0
\(523\) −4.88956 8.46897i −0.213806 0.370322i 0.739097 0.673599i \(-0.235253\pi\)
−0.952902 + 0.303277i \(0.901919\pi\)
\(524\) −16.8597 + 6.13643i −0.736520 + 0.268071i
\(525\) 0 0
\(526\) −10.5035 + 8.81348i −0.457974 + 0.384286i
\(527\) 7.80469 6.54892i 0.339978 0.285275i
\(528\) 0 0
\(529\) 17.2176 6.26668i 0.748590 0.272464i
\(530\) −30.9283 53.5694i −1.34344 2.32691i
\(531\) 0 0
\(532\) −7.50065 + 12.9915i −0.325195 + 0.563254i
\(533\) 1.53675 8.71534i 0.0665640 0.377503i
\(534\) 0 0
\(535\) 13.0371 + 4.74511i 0.563642 + 0.205149i
\(536\) 0.151144 + 0.857180i 0.00652843 + 0.0370245i
\(537\) 0 0
\(538\) 22.4384 + 18.8280i 0.967387 + 0.811734i
\(539\) −1.91871 −0.0826445
\(540\) 0 0
\(541\) 40.9454 1.76038 0.880189 0.474623i \(-0.157416\pi\)
0.880189 + 0.474623i \(0.157416\pi\)
\(542\) 3.15426 + 2.64674i 0.135487 + 0.113687i
\(543\) 0 0
\(544\) 1.62750 + 9.22999i 0.0697783 + 0.395732i
\(545\) 18.4323 + 6.70879i 0.789551 + 0.287373i
\(546\) 0 0
\(547\) 0.192798 1.09341i 0.00824343 0.0467508i −0.980409 0.196975i \(-0.936888\pi\)
0.988652 + 0.150224i \(0.0479994\pi\)
\(548\) 13.9497 24.1615i 0.595900 1.03213i
\(549\) 0 0
\(550\) −0.737508 1.27740i −0.0314474 0.0544686i
\(551\) −25.7495 + 9.37206i −1.09697 + 0.399263i
\(552\) 0 0
\(553\) −8.35257 + 7.00864i −0.355188 + 0.298038i
\(554\) 20.2236 16.9696i 0.859216 0.720968i
\(555\) 0 0
\(556\) −21.8607 + 7.95664i −0.927100 + 0.337437i
\(557\) 17.5201 + 30.3458i 0.742352 + 1.28579i 0.951422 + 0.307890i \(0.0996230\pi\)
−0.209070 + 0.977901i \(0.567044\pi\)
\(558\) 0 0
\(559\) 4.23247 7.33084i 0.179014 0.310062i
\(560\) −1.27269 + 7.21781i −0.0537812 + 0.305008i
\(561\) 0 0
\(562\) 19.4042 + 7.06254i 0.818516 + 0.297915i
\(563\) 6.73255 + 38.1822i 0.283743 + 1.60919i 0.709741 + 0.704463i \(0.248812\pi\)
−0.425998 + 0.904724i \(0.640077\pi\)
\(564\) 0 0
\(565\) −21.3258 17.8945i −0.897183 0.752826i
\(566\) 56.2413 2.36400
\(567\) 0 0
\(568\) 9.75095 0.409141
\(569\) 26.0213 + 21.8344i 1.09087 + 0.915347i 0.996777 0.0802169i \(-0.0255613\pi\)
0.0940904 + 0.995564i \(0.470006\pi\)
\(570\) 0 0
\(571\) 1.75191 + 9.93559i 0.0733153 + 0.415792i 0.999272 + 0.0381610i \(0.0121500\pi\)
−0.925956 + 0.377631i \(0.876739\pi\)
\(572\) 1.11818 + 0.406986i 0.0467536 + 0.0170169i
\(573\) 0 0
\(574\) −2.08894 + 11.8470i −0.0871908 + 0.494484i
\(575\) 2.37795 4.11873i 0.0991674 0.171763i
\(576\) 0 0
\(577\) 6.06615 + 10.5069i 0.252537 + 0.437407i 0.964224 0.265090i \(-0.0854017\pi\)
−0.711687 + 0.702497i \(0.752068\pi\)
\(578\) 31.0680 11.3078i 1.29226 0.470344i
\(579\) 0 0
\(580\) 22.4541 18.8412i 0.932355 0.782339i
\(581\) −3.48957 + 2.92810i −0.144772 + 0.121478i
\(582\) 0 0
\(583\) −3.24352 + 1.18055i −0.134333 + 0.0488932i
\(584\) 7.74416 + 13.4133i 0.320456 + 0.555046i
\(585\) 0 0
\(586\) 12.9722 22.4685i 0.535877 0.928167i
\(587\) −5.51319 + 31.2669i −0.227554 + 1.29052i 0.630189 + 0.776442i \(0.282977\pi\)
−0.857743 + 0.514079i \(0.828134\pi\)
\(588\) 0 0
\(589\) 50.7006 + 18.4535i 2.08908 + 0.760363i
\(590\) 1.70036 + 9.64321i 0.0700027 + 0.397005i
\(591\) 0 0
\(592\) 9.61254 + 8.06588i 0.395073 + 0.331506i
\(593\) −13.4906 −0.553993 −0.276996 0.960871i \(-0.589339\pi\)
−0.276996 + 0.960871i \(0.589339\pi\)
\(594\) 0 0
\(595\) −3.06459 −0.125636
\(596\) −36.1947 30.3710i −1.48259 1.24404i
\(597\) 0 0
\(598\) 1.20352 + 6.82550i 0.0492156 + 0.279115i
\(599\) −39.8715 14.5120i −1.62911 0.592946i −0.644020 0.765009i \(-0.722735\pi\)
−0.985086 + 0.172063i \(0.944957\pi\)
\(600\) 0 0
\(601\) −3.43906 + 19.5039i −0.140282 + 0.795579i 0.830753 + 0.556641i \(0.187910\pi\)
−0.971035 + 0.238938i \(0.923201\pi\)
\(602\) −5.75330 + 9.96501i −0.234487 + 0.406144i
\(603\) 0 0
\(604\) −4.97755 8.62136i −0.202533 0.350798i
\(605\) 27.4810 10.0022i 1.11726 0.406649i
\(606\) 0 0
\(607\) −27.5769 + 23.1397i −1.11931 + 0.939213i −0.998569 0.0534715i \(-0.982971\pi\)
−0.120741 + 0.992684i \(0.538527\pi\)
\(608\) −38.0215 + 31.9038i −1.54197 + 1.29387i
\(609\) 0 0
\(610\) −5.41548 + 1.97107i −0.219266 + 0.0798064i
\(611\) 1.87442 + 3.24659i 0.0758310 + 0.131343i
\(612\) 0 0
\(613\) −13.2314 + 22.9175i −0.534411 + 0.925627i 0.464780 + 0.885426i \(0.346133\pi\)
−0.999192 + 0.0402013i \(0.987200\pi\)
\(614\) −9.73045 + 55.1841i −0.392689 + 2.22705i
\(615\) 0 0
\(616\) −0.294234 0.107093i −0.0118550 0.00431488i
\(617\) −8.52903 48.3705i −0.343366 1.94732i −0.319425 0.947611i \(-0.603490\pi\)
−0.0239406 0.999713i \(-0.507621\pi\)
\(618\) 0 0
\(619\) −18.5430 15.5595i −0.745307 0.625387i 0.188950 0.981987i \(-0.439492\pi\)
−0.934257 + 0.356600i \(0.883936\pi\)
\(620\) −57.7145 −2.31787
\(621\) 0 0
\(622\) 37.3785 1.49874
\(623\) 11.5448 + 9.68725i 0.462533 + 0.388111i
\(624\) 0 0
\(625\) −5.41077 30.6860i −0.216431 1.22744i
\(626\) −19.1881 6.98388i −0.766909 0.279132i
\(627\) 0 0
\(628\) 3.13347 17.7708i 0.125039 0.709132i
\(629\) −2.62345 + 4.54395i −0.104604 + 0.181179i
\(630\) 0 0
\(631\) −8.84842 15.3259i −0.352250 0.610115i 0.634393 0.773010i \(-0.281250\pi\)
−0.986643 + 0.162895i \(0.947917\pi\)
\(632\) 10.7079 3.89736i 0.425938 0.155029i
\(633\) 0 0
\(634\) 6.01629 5.04827i 0.238937 0.200492i
\(635\) 10.7443 9.01555i 0.426375 0.357771i
\(636\) 0 0
\(637\) −8.61398 + 3.13523i −0.341298 + 0.124222i
\(638\) −1.47732 2.55880i −0.0584878 0.101304i
\(639\) 0 0
\(640\) 10.5917 18.3454i 0.418676 0.725167i
\(641\) −6.60738 + 37.4723i −0.260976 + 1.48007i 0.519278 + 0.854605i \(0.326201\pi\)
−0.780254 + 0.625463i \(0.784910\pi\)
\(642\) 0 0
\(643\) −44.1115 16.0553i −1.73959 0.633158i −0.740352 0.672220i \(-0.765341\pi\)
−0.999237 + 0.0390615i \(0.987563\pi\)
\(644\) −0.905644 5.13616i −0.0356874 0.202393i
\(645\) 0 0
\(646\) −11.8485 9.94211i −0.466175 0.391167i
\(647\) 28.2333 1.10997 0.554983 0.831862i \(-0.312725\pi\)
0.554983 + 0.831862i \(0.312725\pi\)
\(648\) 0 0
\(649\) 0.546406 0.0214483
\(650\) −5.39834 4.52974i −0.211740 0.177671i
\(651\) 0 0
\(652\) 5.36140 + 30.4060i 0.209969 + 1.19079i
\(653\) 33.1779 + 12.0758i 1.29835 + 0.472562i 0.896460 0.443125i \(-0.146130\pi\)
0.401893 + 0.915687i \(0.368353\pi\)
\(654\) 0 0
\(655\) 3.37057 19.1155i 0.131699 0.746902i
\(656\) −8.21052 + 14.2210i −0.320567 + 0.555239i
\(657\) 0 0
\(658\) −2.54795 4.41318i −0.0993295 0.172044i
\(659\) 39.1793 14.2601i 1.52621 0.555494i 0.563519 0.826103i \(-0.309447\pi\)
0.962689 + 0.270609i \(0.0872250\pi\)
\(660\) 0 0
\(661\) 0.975874 0.818856i 0.0379571 0.0318498i −0.623612 0.781734i \(-0.714335\pi\)
0.661569 + 0.749884i \(0.269891\pi\)
\(662\) −2.29075 + 1.92216i −0.0890324 + 0.0747070i
\(663\) 0 0
\(664\) 4.47359 1.62825i 0.173609 0.0631885i
\(665\) −8.11461 14.0549i −0.314671 0.545027i
\(666\) 0 0
\(667\) 4.76334 8.25035i 0.184437 0.319455i
\(668\) 1.00426 5.69543i 0.0388559 0.220363i
\(669\) 0 0
\(670\) −4.57108 1.66374i −0.176596 0.0642758i
\(671\) 0.0558427 + 0.316700i 0.00215578 + 0.0122261i
\(672\) 0 0
\(673\) 27.2963 + 22.9043i 1.05219 + 0.882896i 0.993323 0.115370i \(-0.0368053\pi\)
0.0588715 + 0.998266i \(0.481250\pi\)
\(674\) −27.4951 −1.05907
\(675\) 0 0
\(676\) −26.5561 −1.02139
\(677\) −13.7902 11.5714i −0.530002 0.444725i 0.338100 0.941110i \(-0.390216\pi\)
−0.868102 + 0.496386i \(0.834660\pi\)
\(678\) 0 0
\(679\) −0.936996 5.31397i −0.0359586 0.203931i
\(680\) 3.00961 + 1.09541i 0.115413 + 0.0420071i
\(681\) 0 0
\(682\) −1.01023 + 5.72929i −0.0386836 + 0.219386i
\(683\) 19.8807 34.4344i 0.760715 1.31760i −0.181768 0.983341i \(-0.558182\pi\)
0.942483 0.334255i \(-0.108485\pi\)
\(684\) 0 0
\(685\) 15.0915 + 26.1393i 0.576617 + 0.998730i
\(686\) 25.2468 9.18909i 0.963928 0.350841i
\(687\) 0 0
\(688\) −12.0322 + 10.0962i −0.458724 + 0.384915i
\(689\) −12.6327 + 10.6001i −0.481266 + 0.403830i
\(690\) 0 0
\(691\) 15.8251 5.75986i 0.602015 0.219115i −0.0229909 0.999736i \(-0.507319\pi\)
0.625006 + 0.780620i \(0.285097\pi\)
\(692\) −4.44218 7.69408i −0.168866 0.292485i
\(693\) 0 0
\(694\) −5.08038 + 8.79948i −0.192849 + 0.334024i
\(695\) 4.37036 24.7855i 0.165777 0.940169i
\(696\) 0 0
\(697\) −6.45216 2.34839i −0.244393 0.0889518i
\(698\) −8.29833 47.0622i −0.314097 1.78133i
\(699\) 0 0
\(700\) 4.06223 + 3.40862i 0.153538 + 0.128834i
\(701\) 8.96921 0.338762 0.169381 0.985551i \(-0.445823\pi\)
0.169381 + 0.985551i \(0.445823\pi\)
\(702\) 0 0
\(703\) −27.7861 −1.04797
\(704\) −2.73570 2.29552i −0.103106 0.0865158i
\(705\) 0 0
\(706\) 10.9186 + 61.9223i 0.410926 + 2.33048i
\(707\) −9.26398 3.37181i −0.348408 0.126810i
\(708\) 0 0
\(709\) 3.15026 17.8660i 0.118311 0.670973i −0.866747 0.498748i \(-0.833793\pi\)
0.985058 0.172225i \(-0.0550955\pi\)
\(710\) −27.2477 + 47.1944i −1.02259 + 1.77117i
\(711\) 0 0
\(712\) −7.87509 13.6401i −0.295131 0.511183i
\(713\) −17.6267 + 6.41560i −0.660125 + 0.240266i
\(714\) 0 0
\(715\) −0.986166 + 0.827492i −0.0368805 + 0.0309464i
\(716\) 37.9890 31.8766i 1.41972 1.19128i
\(717\) 0 0
\(718\) 26.6917 9.71498i 0.996125 0.362560i
\(719\) 15.7860 + 27.3421i 0.588718 + 1.01969i 0.994401 + 0.105675i \(0.0337004\pi\)
−0.405683 + 0.914014i \(0.632966\pi\)
\(720\) 0 0
\(721\) 4.79034 8.29711i 0.178402 0.309001i
\(722\) 7.24010 41.0606i 0.269449 1.52812i
\(723\) 0 0
\(724\) −22.6814 8.25536i −0.842948 0.306808i
\(725\) 1.68204 + 9.53930i 0.0624693 + 0.354281i
\(726\) 0 0
\(727\) 29.4232 + 24.6890i 1.09125 + 0.915664i 0.996806 0.0798662i \(-0.0254493\pi\)
0.0944407 + 0.995530i \(0.469894\pi\)
\(728\) −1.49595 −0.0554436
\(729\) 0 0
\(730\) −86.5599 −3.20373
\(731\) −5.03111 4.22160i −0.186082 0.156142i
\(732\) 0 0
\(733\) −5.26680 29.8695i −0.194534 1.10326i −0.913081 0.407778i \(-0.866304\pi\)
0.718547 0.695478i \(-0.244807\pi\)
\(734\) 15.8123 + 5.75521i 0.583643 + 0.212429i
\(735\) 0 0
\(736\) 2.99643 16.9936i 0.110450 0.626391i
\(737\) −0.135721 + 0.235076i −0.00499936 + 0.00865915i
\(738\) 0 0
\(739\) −5.00127 8.66245i −0.183975 0.318653i 0.759256 0.650792i \(-0.225563\pi\)
−0.943230 + 0.332139i \(0.892230\pi\)
\(740\) 27.9300 10.1657i 1.02673 0.373699i
\(741\) 0 0
\(742\) 17.1719 14.4089i 0.630400 0.528969i
\(743\) −27.7873 + 23.3163i −1.01942 + 0.855394i −0.989554 0.144160i \(-0.953952\pi\)
−0.0298642 + 0.999554i \(0.509507\pi\)
\(744\) 0 0
\(745\) 48.0337 17.4828i 1.75982 0.640521i
\(746\) 12.0865 + 20.9344i 0.442517 + 0.766461i
\(747\) 0 0
\(748\) 0.461619 0.799548i 0.0168785 0.0292344i
\(749\) −0.873058 + 4.95136i −0.0319008 + 0.180919i
\(750\) 0 0
\(751\) 13.6766 + 4.97788i 0.499067 + 0.181646i 0.579274 0.815133i \(-0.303336\pi\)
−0.0802073 + 0.996778i \(0.525558\pi\)
\(752\) −1.20791 6.85041i −0.0440480 0.249809i
\(753\) 0 0
\(754\) −10.8136 9.07366i −0.393807 0.330443i
\(755\) 10.7700 0.391959
\(756\) 0 0
\(757\) −45.5754 −1.65646 −0.828232 0.560385i \(-0.810653\pi\)
−0.828232 + 0.560385i \(0.810653\pi\)
\(758\) −39.1907 32.8849i −1.42347 1.19443i
\(759\) 0 0
\(760\) 2.94524 + 16.7033i 0.106835 + 0.605892i
\(761\) 20.9040 + 7.60843i 0.757769 + 0.275805i 0.691871 0.722021i \(-0.256787\pi\)
0.0658978 + 0.997826i \(0.479009\pi\)
\(762\) 0 0
\(763\) −1.23436 + 7.00040i −0.0446868 + 0.253431i
\(764\) −22.0189 + 38.1379i −0.796616 + 1.37978i
\(765\) 0 0
\(766\) 9.99393 + 17.3100i 0.361096 + 0.625436i
\(767\) 2.45307 0.892846i 0.0885754 0.0322388i
\(768\) 0 0
\(769\) 10.4679 8.78365i 0.377484 0.316747i −0.434230 0.900802i \(-0.642979\pi\)
0.811714 + 0.584056i \(0.198535\pi\)
\(770\) 1.34052 1.12483i 0.0483091 0.0405361i
\(771\) 0 0
\(772\) −24.6670 + 8.97807i −0.887786 + 0.323128i
\(773\) −10.3270 17.8869i −0.371436 0.643345i 0.618351 0.785902i \(-0.287801\pi\)
−0.989787 + 0.142557i \(0.954468\pi\)
\(774\) 0 0
\(775\) 9.53628 16.5173i 0.342553 0.593319i
\(776\) −0.979243 + 5.55356i −0.0351528 + 0.199361i
\(777\) 0 0
\(778\) −5.06732 1.84436i −0.181672 0.0661233i
\(779\) −6.31415 35.8093i −0.226228 1.28300i
\(780\) 0 0
\(781\) 2.32948 + 1.95466i 0.0833553 + 0.0699434i