Properties

Label 81.2.e.a.37.1
Level $81$
Weight $2$
Character 81.37
Analytic conductor $0.647$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,2,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.646788256372\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 37.1
Root \(0.500000 + 2.22827i\) of defining polynomial
Character \(\chi\) \(=\) 81.37
Dual form 81.2.e.a.46.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.318266 - 0.267057i) q^{2} +(-0.317323 + 1.79963i) q^{4} +(2.08159 - 0.757639i) q^{5} +(-0.229151 - 1.29958i) q^{7} +(0.795075 + 1.37711i) q^{8} +O(q^{10})\) \(q+(0.318266 - 0.267057i) q^{2} +(-0.317323 + 1.79963i) q^{4} +(2.08159 - 0.757639i) q^{5} +(-0.229151 - 1.29958i) q^{7} +(0.795075 + 1.37711i) q^{8} +(0.460168 - 0.797034i) q^{10} +(-4.90067 - 1.78370i) q^{11} +(-0.0138336 - 0.0116078i) q^{13} +(-0.419993 - 0.352416i) q^{14} +(-2.81355 - 1.02405i) q^{16} +(-1.56640 + 2.71308i) q^{17} +(-0.208676 - 0.361438i) q^{19} +(0.702929 + 3.98651i) q^{20} +(-2.03606 + 0.741067i) q^{22} +(0.179619 - 1.01867i) q^{23} +(-0.0712019 + 0.0597455i) q^{25} -0.00750270 q^{26} +2.41147 q^{28} +(5.98068 - 5.01839i) q^{29} +(0.647649 - 3.67300i) q^{31} +(-4.15744 + 1.51319i) q^{32} +(0.226015 + 1.28180i) q^{34} +(-1.46161 - 2.53159i) q^{35} +(-2.21238 + 3.83195i) q^{37} +(-0.162939 - 0.0593049i) q^{38} +(2.69838 + 2.26421i) q^{40} +(2.81517 + 2.36221i) q^{41} +(7.80685 + 2.84146i) q^{43} +(4.76508 - 8.25337i) q^{44} +(-0.214876 - 0.372177i) q^{46} +(1.23254 + 6.99008i) q^{47} +(4.94145 - 1.79854i) q^{49} +(-0.00670569 + 0.0380299i) q^{50} +(0.0252794 - 0.0212119i) q^{52} +1.30057 q^{53} -11.5526 q^{55} +(1.60747 - 1.34883i) q^{56} +(0.563252 - 3.19436i) q^{58} +(-3.47856 + 1.26609i) q^{59} +(1.20064 + 6.80919i) q^{61} +(-0.774775 - 1.34195i) q^{62} +(2.07506 - 3.59410i) q^{64} +(-0.0375905 - 0.0136818i) q^{65} +(-8.44702 - 7.08789i) q^{67} +(-4.38548 - 3.67985i) q^{68} +(-1.14126 - 0.415384i) q^{70} +(-3.04214 + 5.26914i) q^{71} +(0.273486 + 0.473692i) q^{73} +(0.319224 + 1.81041i) q^{74} +(0.716670 - 0.260847i) q^{76} +(-1.19507 + 6.77756i) q^{77} +(0.374706 - 0.314416i) q^{79} -6.63254 q^{80} +1.52681 q^{82} +(-3.53428 + 2.96561i) q^{83} +(-1.20507 + 6.83430i) q^{85} +(3.24348 - 1.18053i) q^{86} +(-1.44005 - 8.16694i) q^{88} +(-1.68653 - 2.92116i) q^{89} +(-0.0119153 + 0.0206379i) q^{91} +(1.77623 + 0.646495i) q^{92} +(2.25902 + 1.89554i) q^{94} +(-0.708218 - 0.594266i) q^{95} +(-9.34182 - 3.40014i) q^{97} +(1.09238 - 1.89206i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 6 q^{4} + 3 q^{5} - 6 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{2} - 6 q^{4} + 3 q^{5} - 6 q^{7} - 6 q^{8} - 3 q^{10} - 3 q^{11} - 6 q^{13} - 15 q^{14} - 9 q^{17} - 3 q^{19} + 3 q^{20} + 3 q^{22} + 12 q^{23} + 3 q^{25} + 30 q^{26} - 12 q^{28} + 6 q^{29} + 3 q^{31} + 9 q^{34} - 12 q^{35} - 3 q^{37} - 42 q^{38} + 21 q^{40} - 15 q^{41} + 3 q^{43} - 3 q^{44} - 3 q^{46} + 15 q^{47} + 12 q^{49} + 33 q^{50} + 9 q^{52} + 18 q^{53} - 12 q^{55} + 33 q^{56} + 21 q^{58} + 12 q^{59} + 12 q^{61} + 12 q^{62} + 12 q^{64} - 3 q^{65} - 15 q^{67} - 9 q^{68} - 15 q^{70} - 27 q^{71} + 6 q^{73} - 33 q^{74} - 48 q^{76} - 15 q^{77} - 42 q^{79} - 42 q^{80} - 12 q^{82} - 39 q^{83} - 27 q^{85} - 51 q^{86} - 30 q^{88} - 9 q^{89} + 6 q^{91} + 39 q^{92} - 15 q^{94} + 33 q^{95} + 3 q^{97} + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.318266 0.267057i 0.225048 0.188837i −0.523291 0.852154i \(-0.675296\pi\)
0.748339 + 0.663316i \(0.230852\pi\)
\(3\) 0 0
\(4\) −0.317323 + 1.79963i −0.158661 + 0.899813i
\(5\) 2.08159 0.757639i 0.930917 0.338826i 0.168344 0.985728i \(-0.446158\pi\)
0.762573 + 0.646902i \(0.223936\pi\)
\(6\) 0 0
\(7\) −0.229151 1.29958i −0.0866110 0.491195i −0.996997 0.0774361i \(-0.975327\pi\)
0.910386 0.413759i \(-0.135784\pi\)
\(8\) 0.795075 + 1.37711i 0.281102 + 0.486882i
\(9\) 0 0
\(10\) 0.460168 0.797034i 0.145518 0.252044i
\(11\) −4.90067 1.78370i −1.47761 0.537805i −0.527454 0.849584i \(-0.676853\pi\)
−0.950155 + 0.311778i \(0.899075\pi\)
\(12\) 0 0
\(13\) −0.0138336 0.0116078i −0.00383676 0.00321942i 0.640867 0.767652i \(-0.278575\pi\)
−0.644704 + 0.764432i \(0.723019\pi\)
\(14\) −0.419993 0.352416i −0.112248 0.0941870i
\(15\) 0 0
\(16\) −2.81355 1.02405i −0.703389 0.256012i
\(17\) −1.56640 + 2.71308i −0.379907 + 0.658019i −0.991048 0.133503i \(-0.957377\pi\)
0.611141 + 0.791522i \(0.290711\pi\)
\(18\) 0 0
\(19\) −0.208676 0.361438i −0.0478736 0.0829195i 0.841096 0.540886i \(-0.181911\pi\)
−0.888969 + 0.457967i \(0.848578\pi\)
\(20\) 0.702929 + 3.98651i 0.157180 + 0.891410i
\(21\) 0 0
\(22\) −2.03606 + 0.741067i −0.434090 + 0.157996i
\(23\) 0.179619 1.01867i 0.0374532 0.212408i −0.960338 0.278839i \(-0.910050\pi\)
0.997791 + 0.0664316i \(0.0211614\pi\)
\(24\) 0 0
\(25\) −0.0712019 + 0.0597455i −0.0142404 + 0.0119491i
\(26\) −0.00750270 −0.00147140
\(27\) 0 0
\(28\) 2.41147 0.455726
\(29\) 5.98068 5.01839i 1.11058 0.931891i 0.112493 0.993652i \(-0.464116\pi\)
0.998091 + 0.0617615i \(0.0196718\pi\)
\(30\) 0 0
\(31\) 0.647649 3.67300i 0.116321 0.659691i −0.869766 0.493464i \(-0.835730\pi\)
0.986088 0.166227i \(-0.0531584\pi\)
\(32\) −4.15744 + 1.51319i −0.734939 + 0.267496i
\(33\) 0 0
\(34\) 0.226015 + 1.28180i 0.0387613 + 0.219826i
\(35\) −1.46161 2.53159i −0.247058 0.427916i
\(36\) 0 0
\(37\) −2.21238 + 3.83195i −0.363713 + 0.629969i −0.988569 0.150771i \(-0.951824\pi\)
0.624856 + 0.780740i \(0.285158\pi\)
\(38\) −0.162939 0.0593049i −0.0264322 0.00962052i
\(39\) 0 0
\(40\) 2.69838 + 2.26421i 0.426651 + 0.358002i
\(41\) 2.81517 + 2.36221i 0.439655 + 0.368915i 0.835580 0.549368i \(-0.185132\pi\)
−0.395925 + 0.918283i \(0.629576\pi\)
\(42\) 0 0
\(43\) 7.80685 + 2.84146i 1.19053 + 0.433319i 0.859911 0.510445i \(-0.170519\pi\)
0.330622 + 0.943763i \(0.392741\pi\)
\(44\) 4.76508 8.25337i 0.718363 1.24424i
\(45\) 0 0
\(46\) −0.214876 0.372177i −0.0316818 0.0548745i
\(47\) 1.23254 + 6.99008i 0.179784 + 1.01961i 0.932475 + 0.361234i \(0.117644\pi\)
−0.752691 + 0.658374i \(0.771245\pi\)
\(48\) 0 0
\(49\) 4.94145 1.79854i 0.705921 0.256934i
\(50\) −0.00670569 + 0.0380299i −0.000948328 + 0.00537824i
\(51\) 0 0
\(52\) 0.0252794 0.0212119i 0.00350562 0.00294157i
\(53\) 1.30057 0.178648 0.0893238 0.996003i \(-0.471529\pi\)
0.0893238 + 0.996003i \(0.471529\pi\)
\(54\) 0 0
\(55\) −11.5526 −1.55775
\(56\) 1.60747 1.34883i 0.214808 0.180245i
\(57\) 0 0
\(58\) 0.563252 3.19436i 0.0739586 0.419440i
\(59\) −3.47856 + 1.26609i −0.452871 + 0.164831i −0.558377 0.829587i \(-0.688576\pi\)
0.105507 + 0.994419i \(0.466354\pi\)
\(60\) 0 0
\(61\) 1.20064 + 6.80919i 0.153727 + 0.871828i 0.959941 + 0.280204i \(0.0904020\pi\)
−0.806214 + 0.591624i \(0.798487\pi\)
\(62\) −0.774775 1.34195i −0.0983965 0.170428i
\(63\) 0 0
\(64\) 2.07506 3.59410i 0.259382 0.449263i
\(65\) −0.0375905 0.0136818i −0.00466253 0.00169702i
\(66\) 0 0
\(67\) −8.44702 7.08789i −1.03197 0.865923i −0.0408835 0.999164i \(-0.513017\pi\)
−0.991084 + 0.133241i \(0.957462\pi\)
\(68\) −4.38548 3.67985i −0.531817 0.446247i
\(69\) 0 0
\(70\) −1.14126 0.415384i −0.136406 0.0496479i
\(71\) −3.04214 + 5.26914i −0.361035 + 0.625332i −0.988132 0.153610i \(-0.950910\pi\)
0.627096 + 0.778942i \(0.284243\pi\)
\(72\) 0 0
\(73\) 0.273486 + 0.473692i 0.0320092 + 0.0554415i 0.881586 0.472023i \(-0.156476\pi\)
−0.849577 + 0.527465i \(0.823143\pi\)
\(74\) 0.319224 + 1.81041i 0.0371090 + 0.210456i
\(75\) 0 0
\(76\) 0.716670 0.260847i 0.0822077 0.0299212i
\(77\) −1.19507 + 6.77756i −0.136190 + 0.772374i
\(78\) 0 0
\(79\) 0.374706 0.314416i 0.0421577 0.0353745i −0.621465 0.783442i \(-0.713462\pi\)
0.663623 + 0.748067i \(0.269018\pi\)
\(80\) −6.63254 −0.741540
\(81\) 0 0
\(82\) 1.52681 0.168608
\(83\) −3.53428 + 2.96561i −0.387937 + 0.325518i −0.815809 0.578321i \(-0.803708\pi\)
0.427872 + 0.903839i \(0.359263\pi\)
\(84\) 0 0
\(85\) −1.20507 + 6.83430i −0.130708 + 0.741284i
\(86\) 3.24348 1.18053i 0.349754 0.127300i
\(87\) 0 0
\(88\) −1.44005 8.16694i −0.153510 0.870599i
\(89\) −1.68653 2.92116i −0.178772 0.309642i 0.762688 0.646766i \(-0.223879\pi\)
−0.941460 + 0.337124i \(0.890546\pi\)
\(90\) 0 0
\(91\) −0.0119153 + 0.0206379i −0.00124906 + 0.00216344i
\(92\) 1.77623 + 0.646495i 0.185185 + 0.0674018i
\(93\) 0 0
\(94\) 2.25902 + 1.89554i 0.233000 + 0.195510i
\(95\) −0.708218 0.594266i −0.0726617 0.0609704i
\(96\) 0 0
\(97\) −9.34182 3.40014i −0.948518 0.345232i −0.178994 0.983850i \(-0.557284\pi\)
−0.769524 + 0.638618i \(0.779507\pi\)
\(98\) 1.09238 1.89206i 0.110347 0.191127i
\(99\) 0 0
\(100\) −0.0849256 0.147095i −0.00849256 0.0147095i
\(101\) −2.39626 13.5898i −0.238436 1.35224i −0.835255 0.549863i \(-0.814680\pi\)
0.596818 0.802377i \(-0.296431\pi\)
\(102\) 0 0
\(103\) −4.28981 + 1.56136i −0.422687 + 0.153846i −0.544601 0.838695i \(-0.683319\pi\)
0.121914 + 0.992541i \(0.461097\pi\)
\(104\) 0.00498644 0.0282795i 0.000488961 0.00277303i
\(105\) 0 0
\(106\) 0.413928 0.347327i 0.0402042 0.0337354i
\(107\) 11.2965 1.09207 0.546035 0.837762i \(-0.316136\pi\)
0.546035 + 0.837762i \(0.316136\pi\)
\(108\) 0 0
\(109\) 14.5032 1.38915 0.694577 0.719419i \(-0.255592\pi\)
0.694577 + 0.719419i \(0.255592\pi\)
\(110\) −3.67680 + 3.08520i −0.350569 + 0.294162i
\(111\) 0 0
\(112\) −0.686107 + 3.89110i −0.0648310 + 0.367675i
\(113\) 11.8011 4.29523i 1.11015 0.404062i 0.279102 0.960262i \(-0.409963\pi\)
0.831049 + 0.556200i \(0.187741\pi\)
\(114\) 0 0
\(115\) −0.397890 2.25655i −0.0371035 0.210424i
\(116\) 7.13341 + 12.3554i 0.662321 + 1.14717i
\(117\) 0 0
\(118\) −0.768989 + 1.33193i −0.0707912 + 0.122614i
\(119\) 3.88481 + 1.41395i 0.356120 + 0.129617i
\(120\) 0 0
\(121\) 12.4085 + 10.4120i 1.12805 + 0.946544i
\(122\) 2.20056 + 1.84649i 0.199230 + 0.167174i
\(123\) 0 0
\(124\) 6.40452 + 2.33105i 0.575143 + 0.209335i
\(125\) −5.64092 + 9.77035i −0.504539 + 0.873887i
\(126\) 0 0
\(127\) 4.19749 + 7.27027i 0.372467 + 0.645132i 0.989944 0.141456i \(-0.0451785\pi\)
−0.617477 + 0.786589i \(0.711845\pi\)
\(128\) −1.83594 10.4121i −0.162276 0.920310i
\(129\) 0 0
\(130\) −0.0156176 + 0.00568434i −0.00136975 + 0.000498549i
\(131\) 2.69761 15.2989i 0.235691 1.33667i −0.605463 0.795874i \(-0.707012\pi\)
0.841154 0.540796i \(-0.181877\pi\)
\(132\) 0 0
\(133\) −0.421899 + 0.354015i −0.0365833 + 0.0306970i
\(134\) −4.58126 −0.395761
\(135\) 0 0
\(136\) −4.98162 −0.427170
\(137\) −9.19820 + 7.71820i −0.785855 + 0.659411i −0.944716 0.327890i \(-0.893662\pi\)
0.158861 + 0.987301i \(0.449218\pi\)
\(138\) 0 0
\(139\) 1.06709 6.05176i 0.0905093 0.513304i −0.905522 0.424299i \(-0.860520\pi\)
0.996031 0.0890042i \(-0.0283685\pi\)
\(140\) 5.01971 1.82703i 0.424243 0.154412i
\(141\) 0 0
\(142\) 0.438950 + 2.48941i 0.0368359 + 0.208907i
\(143\) 0.0470893 + 0.0815610i 0.00393780 + 0.00682047i
\(144\) 0 0
\(145\) 8.64723 14.9774i 0.718113 1.24381i
\(146\) 0.213544 + 0.0777237i 0.0176730 + 0.00643246i
\(147\) 0 0
\(148\) −6.19404 5.19742i −0.509147 0.427225i
\(149\) −0.676280 0.567466i −0.0554030 0.0464886i 0.614666 0.788788i \(-0.289291\pi\)
−0.670069 + 0.742299i \(0.733735\pi\)
\(150\) 0 0
\(151\) −7.72942 2.81328i −0.629011 0.228941i 0.00778980 0.999970i \(-0.497520\pi\)
−0.636801 + 0.771028i \(0.719743\pi\)
\(152\) 0.331826 0.574740i 0.0269147 0.0466176i
\(153\) 0 0
\(154\) 1.42964 + 2.47621i 0.115204 + 0.199539i
\(155\) −1.43466 8.13639i −0.115235 0.653530i
\(156\) 0 0
\(157\) −11.8024 + 4.29571i −0.941932 + 0.342835i −0.766928 0.641733i \(-0.778216\pi\)
−0.175003 + 0.984568i \(0.555994\pi\)
\(158\) 0.0352893 0.200135i 0.00280746 0.0159219i
\(159\) 0 0
\(160\) −7.50766 + 6.29968i −0.593533 + 0.498033i
\(161\) −1.36501 −0.107578
\(162\) 0 0
\(163\) 3.31466 0.259624 0.129812 0.991539i \(-0.458563\pi\)
0.129812 + 0.991539i \(0.458563\pi\)
\(164\) −5.14440 + 4.31667i −0.401710 + 0.337075i
\(165\) 0 0
\(166\) −0.332853 + 1.88770i −0.0258344 + 0.146514i
\(167\) −19.3229 + 7.03295i −1.49525 + 0.544226i −0.954826 0.297167i \(-0.903958\pi\)
−0.540424 + 0.841393i \(0.681736\pi\)
\(168\) 0 0
\(169\) −2.25737 12.8022i −0.173644 0.984783i
\(170\) 1.44161 + 2.49694i 0.110567 + 0.191507i
\(171\) 0 0
\(172\) −7.59085 + 13.1477i −0.578797 + 1.00251i
\(173\) 13.1870 + 4.79966i 1.00259 + 0.364911i 0.790581 0.612357i \(-0.209779\pi\)
0.212005 + 0.977269i \(0.432001\pi\)
\(174\) 0 0
\(175\) 0.0939601 + 0.0788419i 0.00710272 + 0.00595989i
\(176\) 11.9617 + 10.0371i 0.901648 + 0.756572i
\(177\) 0 0
\(178\) −1.31688 0.479305i −0.0987043 0.0359254i
\(179\) 5.09500 8.82479i 0.380818 0.659596i −0.610361 0.792123i \(-0.708976\pi\)
0.991179 + 0.132527i \(0.0423091\pi\)
\(180\) 0 0
\(181\) −12.0274 20.8320i −0.893987 1.54843i −0.835054 0.550169i \(-0.814563\pi\)
−0.0589331 0.998262i \(-0.518770\pi\)
\(182\) 0.00171925 + 0.00975037i 0.000127440 + 0.000722746i
\(183\) 0 0
\(184\) 1.54563 0.562565i 0.113946 0.0414728i
\(185\) −1.70204 + 9.65275i −0.125137 + 0.709685i
\(186\) 0 0
\(187\) 12.5157 10.5019i 0.915240 0.767978i
\(188\) −12.9706 −0.945981
\(189\) 0 0
\(190\) −0.384104 −0.0278658
\(191\) −8.38541 + 7.03619i −0.606747 + 0.509121i −0.893606 0.448852i \(-0.851833\pi\)
0.286860 + 0.957973i \(0.407389\pi\)
\(192\) 0 0
\(193\) −1.87644 + 10.6418i −0.135069 + 0.766013i 0.839743 + 0.542984i \(0.182706\pi\)
−0.974812 + 0.223029i \(0.928405\pi\)
\(194\) −3.88121 + 1.41265i −0.278655 + 0.101422i
\(195\) 0 0
\(196\) 1.66867 + 9.46347i 0.119190 + 0.675962i
\(197\) −11.0367 19.1161i −0.786331 1.36196i −0.928201 0.372080i \(-0.878645\pi\)
0.141870 0.989885i \(-0.454689\pi\)
\(198\) 0 0
\(199\) −6.44338 + 11.1603i −0.456759 + 0.791130i −0.998787 0.0492301i \(-0.984323\pi\)
0.542028 + 0.840360i \(0.317657\pi\)
\(200\) −0.138887 0.0505508i −0.00982080 0.00357448i
\(201\) 0 0
\(202\) −4.39190 3.68524i −0.309013 0.259293i
\(203\) −7.89228 6.62241i −0.553929 0.464802i
\(204\) 0 0
\(205\) 7.64974 + 2.78428i 0.534281 + 0.194462i
\(206\) −0.948326 + 1.64255i −0.0660730 + 0.114442i
\(207\) 0 0
\(208\) 0.0270347 + 0.0468255i 0.00187452 + 0.00324676i
\(209\) 0.377957 + 2.14350i 0.0261439 + 0.148269i
\(210\) 0 0
\(211\) 22.5485 8.20699i 1.55230 0.564992i 0.583347 0.812223i \(-0.301743\pi\)
0.968957 + 0.247230i \(0.0795204\pi\)
\(212\) −0.412702 + 2.34055i −0.0283445 + 0.160749i
\(213\) 0 0
\(214\) 3.59528 3.01680i 0.245768 0.206224i
\(215\) 18.4035 1.25511
\(216\) 0 0
\(217\) −4.92177 −0.334112
\(218\) 4.61587 3.87317i 0.312626 0.262324i
\(219\) 0 0
\(220\) 3.66590 20.7904i 0.247155 1.40169i
\(221\) 0.0531618 0.0193493i 0.00357605 0.00130158i
\(222\) 0 0
\(223\) 3.76160 + 21.3331i 0.251895 + 1.42857i 0.803918 + 0.594740i \(0.202745\pi\)
−0.552023 + 0.833829i \(0.686144\pi\)
\(224\) 2.91919 + 5.05618i 0.195047 + 0.337831i
\(225\) 0 0
\(226\) 2.60880 4.51858i 0.173535 0.300571i
\(227\) 20.3367 + 7.40196i 1.34979 + 0.491285i 0.912884 0.408220i \(-0.133850\pi\)
0.436911 + 0.899505i \(0.356072\pi\)
\(228\) 0 0
\(229\) −8.27739 6.94555i −0.546985 0.458975i 0.326934 0.945047i \(-0.393985\pi\)
−0.873919 + 0.486072i \(0.838429\pi\)
\(230\) −0.729261 0.611922i −0.0480860 0.0403490i
\(231\) 0 0
\(232\) 11.6660 + 4.24606i 0.765908 + 0.278768i
\(233\) 3.81950 6.61557i 0.250224 0.433400i −0.713364 0.700794i \(-0.752829\pi\)
0.963587 + 0.267394i \(0.0861625\pi\)
\(234\) 0 0
\(235\) 7.86160 + 13.6167i 0.512834 + 0.888255i
\(236\) −1.17467 6.66187i −0.0764644 0.433651i
\(237\) 0 0
\(238\) 1.61401 0.587451i 0.104621 0.0380788i
\(239\) 0.561143 3.18240i 0.0362973 0.205852i −0.961266 0.275623i \(-0.911116\pi\)
0.997563 + 0.0697711i \(0.0222269\pi\)
\(240\) 0 0
\(241\) −20.3346 + 17.0628i −1.30987 + 1.09911i −0.321518 + 0.946903i \(0.604193\pi\)
−0.988349 + 0.152206i \(0.951362\pi\)
\(242\) 6.72979 0.432608
\(243\) 0 0
\(244\) −12.6350 −0.808873
\(245\) 8.92345 7.48766i 0.570098 0.478369i
\(246\) 0 0
\(247\) −0.00130875 + 0.00742226i −8.32735e−5 + 0.000472267i
\(248\) 5.57306 2.02843i 0.353890 0.128805i
\(249\) 0 0
\(250\) 0.813927 + 4.61601i 0.0514773 + 0.291942i
\(251\) −2.24965 3.89651i −0.141997 0.245945i 0.786252 0.617906i \(-0.212019\pi\)
−0.928248 + 0.371961i \(0.878686\pi\)
\(252\) 0 0
\(253\) −2.69726 + 4.67179i −0.169575 + 0.293713i
\(254\) 3.27749 + 1.19291i 0.205648 + 0.0748498i
\(255\) 0 0
\(256\) 2.99340 + 2.51176i 0.187088 + 0.156985i
\(257\) −10.5219 8.82895i −0.656340 0.550735i 0.252647 0.967559i \(-0.418699\pi\)
−0.908987 + 0.416824i \(0.863143\pi\)
\(258\) 0 0
\(259\) 5.48690 + 1.99707i 0.340939 + 0.124092i
\(260\) 0.0365505 0.0633073i 0.00226677 0.00392615i
\(261\) 0 0
\(262\) −3.22711 5.58952i −0.199372 0.345322i
\(263\) 4.20273 + 23.8349i 0.259151 + 1.46972i 0.785187 + 0.619258i \(0.212567\pi\)
−0.526036 + 0.850462i \(0.676322\pi\)
\(264\) 0 0
\(265\) 2.70727 0.985365i 0.166306 0.0605305i
\(266\) −0.0397339 + 0.225342i −0.00243624 + 0.0138166i
\(267\) 0 0
\(268\) 15.4360 12.9523i 0.942902 0.791189i
\(269\) −12.0062 −0.732032 −0.366016 0.930609i \(-0.619278\pi\)
−0.366016 + 0.930609i \(0.619278\pi\)
\(270\) 0 0
\(271\) 3.71777 0.225839 0.112919 0.993604i \(-0.463980\pi\)
0.112919 + 0.993604i \(0.463980\pi\)
\(272\) 7.18547 6.02933i 0.435683 0.365582i
\(273\) 0 0
\(274\) −0.866273 + 4.91288i −0.0523335 + 0.296798i
\(275\) 0.455505 0.165790i 0.0274680 0.00999753i
\(276\) 0 0
\(277\) −4.07780 23.1264i −0.245011 1.38953i −0.820466 0.571695i \(-0.806286\pi\)
0.575455 0.817833i \(-0.304825\pi\)
\(278\) −1.27654 2.21104i −0.0765621 0.132609i
\(279\) 0 0
\(280\) 2.32418 4.02560i 0.138897 0.240576i
\(281\) −19.1432 6.96754i −1.14199 0.415649i −0.299356 0.954142i \(-0.596772\pi\)
−0.842630 + 0.538493i \(0.818994\pi\)
\(282\) 0 0
\(283\) 8.88607 + 7.45630i 0.528222 + 0.443231i 0.867487 0.497460i \(-0.165734\pi\)
−0.339265 + 0.940691i \(0.610178\pi\)
\(284\) −8.51714 7.14673i −0.505399 0.424080i
\(285\) 0 0
\(286\) 0.0367683 + 0.0133826i 0.00217416 + 0.000791328i
\(287\) 2.42478 4.19984i 0.143130 0.247909i
\(288\) 0 0
\(289\) 3.59280 + 6.22291i 0.211341 + 0.366053i
\(290\) −1.24771 7.07610i −0.0732679 0.415523i
\(291\) 0 0
\(292\) −0.939253 + 0.341860i −0.0549656 + 0.0200058i
\(293\) −5.48280 + 31.0945i −0.320308 + 1.81656i 0.220470 + 0.975394i \(0.429241\pi\)
−0.540779 + 0.841165i \(0.681870\pi\)
\(294\) 0 0
\(295\) −6.28172 + 5.27099i −0.365736 + 0.306889i
\(296\) −7.03603 −0.408961
\(297\) 0 0
\(298\) −0.366782 −0.0212471
\(299\) −0.0143093 + 0.0120069i −0.000827529 + 0.000694379i
\(300\) 0 0
\(301\) 1.90376 10.7968i 0.109731 0.622315i
\(302\) −3.21131 + 1.16882i −0.184790 + 0.0672581i
\(303\) 0 0
\(304\) 0.216991 + 1.23062i 0.0124453 + 0.0705809i
\(305\) 7.65816 + 13.2643i 0.438505 + 0.759513i
\(306\) 0 0
\(307\) 4.06027 7.03259i 0.231732 0.401371i −0.726586 0.687075i \(-0.758894\pi\)
0.958318 + 0.285704i \(0.0922275\pi\)
\(308\) −11.8178 4.30134i −0.673384 0.245092i
\(309\) 0 0
\(310\) −2.62948 2.20640i −0.149344 0.125315i
\(311\) 18.2691 + 15.3296i 1.03594 + 0.869259i 0.991546 0.129754i \(-0.0414189\pi\)
0.0443970 + 0.999014i \(0.485863\pi\)
\(312\) 0 0
\(313\) −25.2876 9.20392i −1.42934 0.520236i −0.492596 0.870258i \(-0.663952\pi\)
−0.936742 + 0.350022i \(0.886174\pi\)
\(314\) −2.60909 + 4.51908i −0.147240 + 0.255026i
\(315\) 0 0
\(316\) 0.446928 + 0.774102i 0.0251417 + 0.0435466i
\(317\) 1.44689 + 8.20574i 0.0812657 + 0.460881i 0.998100 + 0.0616130i \(0.0196244\pi\)
−0.916834 + 0.399268i \(0.869264\pi\)
\(318\) 0 0
\(319\) −38.2606 + 13.9257i −2.14218 + 0.779692i
\(320\) 1.59640 9.05361i 0.0892412 0.506112i
\(321\) 0 0
\(322\) −0.434435 + 0.364534i −0.0242101 + 0.0203147i
\(323\) 1.30748 0.0727501
\(324\) 0 0
\(325\) 0.00167849 9.31061e−5
\(326\) 1.05494 0.885201i 0.0584278 0.0490268i
\(327\) 0 0
\(328\) −1.01475 + 5.75493i −0.0560301 + 0.317763i
\(329\) 8.80173 3.20357i 0.485255 0.176618i
\(330\) 0 0
\(331\) −1.11487 6.32272i −0.0612786 0.347528i −0.999996 0.00284030i \(-0.999096\pi\)
0.938717 0.344688i \(-0.112015\pi\)
\(332\) −4.21548 7.30143i −0.231355 0.400718i
\(333\) 0 0
\(334\) −4.27161 + 7.39865i −0.233732 + 0.404836i
\(335\) −22.9533 8.35432i −1.25407 0.456446i
\(336\) 0 0
\(337\) 5.72610 + 4.80477i 0.311921 + 0.261732i 0.785285 0.619134i \(-0.212516\pi\)
−0.473365 + 0.880867i \(0.656961\pi\)
\(338\) −4.13735 3.47165i −0.225042 0.188833i
\(339\) 0 0
\(340\) −11.9168 4.33735i −0.646278 0.235226i
\(341\) −9.72545 + 16.8450i −0.526663 + 0.912206i
\(342\) 0 0
\(343\) −8.08839 14.0095i −0.436732 0.756442i
\(344\) 2.29403 + 13.0101i 0.123686 + 0.701456i
\(345\) 0 0
\(346\) 5.47874 1.99410i 0.294539 0.107203i
\(347\) 5.46202 30.9766i 0.293216 1.66291i −0.381148 0.924514i \(-0.624471\pi\)
0.674364 0.738399i \(-0.264418\pi\)
\(348\) 0 0
\(349\) 9.07988 7.61893i 0.486035 0.407832i −0.366568 0.930391i \(-0.619467\pi\)
0.852603 + 0.522560i \(0.175023\pi\)
\(350\) 0.0509595 0.00272390
\(351\) 0 0
\(352\) 23.0733 1.22981
\(353\) 6.28699 5.27541i 0.334623 0.280782i −0.459958 0.887941i \(-0.652135\pi\)
0.794580 + 0.607159i \(0.207691\pi\)
\(354\) 0 0
\(355\) −2.34040 + 13.2731i −0.124215 + 0.704461i
\(356\) 5.79217 2.10818i 0.306984 0.111733i
\(357\) 0 0
\(358\) −0.735157 4.16928i −0.0388542 0.220353i
\(359\) 8.86365 + 15.3523i 0.467806 + 0.810263i 0.999323 0.0367840i \(-0.0117114\pi\)
−0.531517 + 0.847047i \(0.678378\pi\)
\(360\) 0 0
\(361\) 9.41291 16.3036i 0.495416 0.858086i
\(362\) −9.39122 3.41812i −0.493591 0.179653i
\(363\) 0 0
\(364\) −0.0333594 0.0279919i −0.00174851 0.00146717i
\(365\) 0.928176 + 0.778832i 0.0485829 + 0.0407659i
\(366\) 0 0
\(367\) 19.0941 + 6.94969i 0.996704 + 0.362771i 0.788313 0.615275i \(-0.210955\pi\)
0.208392 + 0.978045i \(0.433177\pi\)
\(368\) −1.54854 + 2.68215i −0.0807232 + 0.139817i
\(369\) 0 0
\(370\) 2.03613 + 3.52668i 0.105853 + 0.183343i
\(371\) −0.298028 1.69020i −0.0154728 0.0877509i
\(372\) 0 0
\(373\) 9.09758 3.31125i 0.471055 0.171450i −0.0955754 0.995422i \(-0.530469\pi\)
0.566630 + 0.823972i \(0.308247\pi\)
\(374\) 1.17871 6.68481i 0.0609498 0.345663i
\(375\) 0 0
\(376\) −8.64615 + 7.25498i −0.445891 + 0.374147i
\(377\) −0.140987 −0.00726119
\(378\) 0 0
\(379\) −4.12905 −0.212095 −0.106048 0.994361i \(-0.533820\pi\)
−0.106048 + 0.994361i \(0.533820\pi\)
\(380\) 1.29419 1.08595i 0.0663905 0.0557083i
\(381\) 0 0
\(382\) −0.789725 + 4.47876i −0.0404059 + 0.229153i
\(383\) 4.46371 1.62466i 0.228085 0.0830162i −0.225450 0.974255i \(-0.572385\pi\)
0.453535 + 0.891239i \(0.350163\pi\)
\(384\) 0 0
\(385\) 2.64729 + 15.0136i 0.134919 + 0.765162i
\(386\) 2.24476 + 3.88803i 0.114255 + 0.197896i
\(387\) 0 0
\(388\) 9.08336 15.7328i 0.461138 0.798714i
\(389\) −20.4978 7.46059i −1.03928 0.378267i −0.234673 0.972074i \(-0.575402\pi\)
−0.804607 + 0.593807i \(0.797624\pi\)
\(390\) 0 0
\(391\) 2.48238 + 2.08297i 0.125539 + 0.105340i
\(392\) 6.40561 + 5.37495i 0.323532 + 0.271476i
\(393\) 0 0
\(394\) −8.61767 3.13658i −0.434152 0.158018i
\(395\) 0.541773 0.938378i 0.0272595 0.0472149i
\(396\) 0 0
\(397\) 17.4245 + 30.1802i 0.874512 + 1.51470i 0.857282 + 0.514847i \(0.172151\pi\)
0.0172294 + 0.999852i \(0.494515\pi\)
\(398\) 0.929715 + 5.27268i 0.0466024 + 0.264295i
\(399\) 0 0
\(400\) 0.261513 0.0951829i 0.0130756 0.00475914i
\(401\) 3.26911 18.5401i 0.163252 0.925847i −0.787597 0.616191i \(-0.788675\pi\)
0.950849 0.309656i \(-0.100214\pi\)
\(402\) 0 0
\(403\) −0.0515948 + 0.0432932i −0.00257012 + 0.00215659i
\(404\) 25.2170 1.25459
\(405\) 0 0
\(406\) −4.28040 −0.212433
\(407\) 17.6772 14.8329i 0.876226 0.735241i
\(408\) 0 0
\(409\) −1.10439 + 6.26334i −0.0546088 + 0.309702i −0.999862 0.0166371i \(-0.994704\pi\)
0.945253 + 0.326339i \(0.105815\pi\)
\(410\) 3.17821 1.15677i 0.156960 0.0571289i
\(411\) 0 0
\(412\) −1.44862 8.21551i −0.0713682 0.404749i
\(413\) 2.44251 + 4.23055i 0.120188 + 0.208172i
\(414\) 0 0
\(415\) −5.11007 + 8.85090i −0.250843 + 0.434474i
\(416\) 0.0750772 + 0.0273259i 0.00368096 + 0.00133976i
\(417\) 0 0
\(418\) 0.692727 + 0.581267i 0.0338824 + 0.0284307i
\(419\) 18.6286 + 15.6313i 0.910069 + 0.763638i 0.972132 0.234434i \(-0.0753236\pi\)
−0.0620632 + 0.998072i \(0.519768\pi\)
\(420\) 0 0
\(421\) 7.50818 + 2.73275i 0.365926 + 0.133186i 0.518438 0.855115i \(-0.326514\pi\)
−0.152511 + 0.988302i \(0.548736\pi\)
\(422\) 4.98469 8.63373i 0.242651 0.420283i
\(423\) 0 0
\(424\) 1.03405 + 1.79103i 0.0502181 + 0.0869803i
\(425\) −0.0505638 0.286762i −0.00245271 0.0139100i
\(426\) 0 0
\(427\) 8.57397 3.12067i 0.414924 0.151020i
\(428\) −3.58462 + 20.3294i −0.173269 + 0.982659i
\(429\) 0 0
\(430\) 5.85720 4.91477i 0.282459 0.237011i
\(431\) −9.87124 −0.475481 −0.237740 0.971329i \(-0.576407\pi\)
−0.237740 + 0.971329i \(0.576407\pi\)
\(432\) 0 0
\(433\) −6.10369 −0.293325 −0.146662 0.989187i \(-0.546853\pi\)
−0.146662 + 0.989187i \(0.546853\pi\)
\(434\) −1.56643 + 1.31439i −0.0751911 + 0.0630928i
\(435\) 0 0
\(436\) −4.60219 + 26.1003i −0.220405 + 1.24998i
\(437\) −0.405669 + 0.147651i −0.0194058 + 0.00706312i
\(438\) 0 0
\(439\) −2.62800 14.9041i −0.125427 0.711334i −0.981053 0.193739i \(-0.937938\pi\)
0.855626 0.517595i \(-0.173173\pi\)
\(440\) −9.18520 15.9092i −0.437887 0.758443i
\(441\) 0 0
\(442\) 0.0117522 0.0203554i 0.000558996 0.000968210i
\(443\) −0.679204 0.247210i −0.0322699 0.0117453i 0.325835 0.945427i \(-0.394355\pi\)
−0.358105 + 0.933681i \(0.616577\pi\)
\(444\) 0 0
\(445\) −5.72386 4.80289i −0.271337 0.227679i
\(446\) 6.89432 + 5.78502i 0.326456 + 0.273929i
\(447\) 0 0
\(448\) −5.14633 1.87311i −0.243141 0.0884962i
\(449\) 0.834224 1.44492i 0.0393695 0.0681899i −0.845669 0.533707i \(-0.820798\pi\)
0.885039 + 0.465517i \(0.154132\pi\)
\(450\) 0 0
\(451\) −9.58275 16.5978i −0.451234 0.781560i
\(452\) 3.98507 + 22.6005i 0.187442 + 1.06304i
\(453\) 0 0
\(454\) 8.44922 3.07526i 0.396541 0.144329i
\(455\) −0.00916673 + 0.0519871i −0.000429743 + 0.00243719i
\(456\) 0 0
\(457\) 8.49041 7.12430i 0.397165 0.333261i −0.422232 0.906488i \(-0.638753\pi\)
0.819397 + 0.573227i \(0.194309\pi\)
\(458\) −4.48926 −0.209769
\(459\) 0 0
\(460\) 4.18720 0.195229
\(461\) 16.7644 14.0670i 0.780797 0.655166i −0.162653 0.986683i \(-0.552005\pi\)
0.943449 + 0.331517i \(0.107561\pi\)
\(462\) 0 0
\(463\) 4.31546 24.4742i 0.200556 1.13741i −0.703724 0.710473i \(-0.748481\pi\)
0.904281 0.426938i \(-0.140408\pi\)
\(464\) −21.9660 + 7.99499i −1.01975 + 0.371158i
\(465\) 0 0
\(466\) −0.551115 3.12553i −0.0255299 0.144787i
\(467\) −5.91777 10.2499i −0.273842 0.474308i 0.696001 0.718041i \(-0.254961\pi\)
−0.969842 + 0.243734i \(0.921628\pi\)
\(468\) 0 0
\(469\) −7.27564 + 12.6018i −0.335958 + 0.581896i
\(470\) 6.13850 + 2.23423i 0.283148 + 0.103057i
\(471\) 0 0
\(472\) −4.50927 3.78373i −0.207556 0.174160i
\(473\) −33.1905 27.8501i −1.52610 1.28055i
\(474\) 0 0
\(475\) 0.0364524 + 0.0132676i 0.00167255 + 0.000608759i
\(476\) −3.77733 + 6.54252i −0.173134 + 0.299876i
\(477\) 0 0
\(478\) −0.671288 1.16270i −0.0307040 0.0531809i
\(479\) −0.501383 2.84349i −0.0229088 0.129922i 0.971209 0.238231i \(-0.0765676\pi\)
−0.994117 + 0.108309i \(0.965456\pi\)
\(480\) 0 0
\(481\) 0.0750857 0.0273290i 0.00342361 0.00124609i
\(482\) −1.91508 + 10.8610i −0.0872297 + 0.494704i
\(483\) 0 0
\(484\) −22.6752 + 19.0267i −1.03069 + 0.864852i
\(485\) −22.0220 −0.999966
\(486\) 0 0
\(487\) 8.75903 0.396910 0.198455 0.980110i \(-0.436408\pi\)
0.198455 + 0.980110i \(0.436408\pi\)
\(488\) −8.42241 + 7.06724i −0.381265 + 0.319919i
\(489\) 0 0
\(490\) 0.840397 4.76613i 0.0379653 0.215312i
\(491\) −21.2117 + 7.72044i −0.957272 + 0.348418i −0.772964 0.634450i \(-0.781227\pi\)
−0.184308 + 0.982869i \(0.559004\pi\)
\(492\) 0 0
\(493\) 4.24716 + 24.0869i 0.191283 + 1.08482i
\(494\) 0.00156564 + 0.00271176i 7.04413e−5 + 0.000122008i
\(495\) 0 0
\(496\) −5.58354 + 9.67097i −0.250708 + 0.434239i
\(497\) 7.54478 + 2.74608i 0.338430 + 0.123178i
\(498\) 0 0
\(499\) −19.4061 16.2836i −0.868734 0.728955i 0.0950968 0.995468i \(-0.469684\pi\)
−0.963831 + 0.266513i \(0.914128\pi\)
\(500\) −15.7930 13.2519i −0.706284 0.592642i
\(501\) 0 0
\(502\) −1.75657 0.639340i −0.0783997 0.0285352i
\(503\) 1.87207 3.24252i 0.0834714 0.144577i −0.821267 0.570543i \(-0.806733\pi\)
0.904739 + 0.425967i \(0.140066\pi\)
\(504\) 0 0
\(505\) −15.2842 26.4731i −0.680139 1.17804i
\(506\) 0.389187 + 2.20719i 0.0173015 + 0.0981216i
\(507\) 0 0
\(508\) −14.4157 + 5.24690i −0.639595 + 0.232793i
\(509\) −4.22831 + 23.9800i −0.187417 + 1.06289i 0.735394 + 0.677640i \(0.236997\pi\)
−0.922811 + 0.385253i \(0.874114\pi\)
\(510\) 0 0
\(511\) 0.552932 0.463965i 0.0244603 0.0205246i
\(512\) 22.7690 1.00626
\(513\) 0 0
\(514\) −5.70660 −0.251707
\(515\) −7.74669 + 6.50025i −0.341360 + 0.286435i
\(516\) 0 0
\(517\) 6.42792 36.4546i 0.282700 1.60327i
\(518\) 2.27962 0.829715i 0.100161 0.0364556i
\(519\) 0 0
\(520\) −0.0110459 0.0626444i −0.000484395 0.00274714i
\(521\) 9.81046 + 16.9922i 0.429804 + 0.744443i 0.996856 0.0792397i \(-0.0252492\pi\)
−0.567051 + 0.823682i \(0.691916\pi\)
\(522\) 0 0
\(523\) −10.4077 + 18.0267i −0.455097 + 0.788251i −0.998694 0.0510956i \(-0.983729\pi\)
0.543597 + 0.839346i \(0.317062\pi\)
\(524\) 26.6763 + 9.70937i 1.16536 + 0.424156i
\(525\) 0 0
\(526\) 7.70284 + 6.46345i 0.335860 + 0.281820i
\(527\) 8.95067 + 7.51051i 0.389897 + 0.327163i
\(528\) 0 0
\(529\) 20.6075 + 7.50052i 0.895978 + 0.326109i
\(530\) 0.598482 1.03660i 0.0259964 0.0450271i
\(531\) 0 0
\(532\) −0.503217 0.871598i −0.0218172 0.0377886i
\(533\) −0.0115240 0.0653558i −0.000499159 0.00283087i
\(534\) 0 0
\(535\) 23.5147 8.55864i 1.01663 0.370022i
\(536\) 3.04479 17.2679i 0.131515 0.745859i
\(537\) 0 0
\(538\) −3.82117 + 3.20634i −0.164742 + 0.138235i
\(539\) −27.4245 −1.18126
\(540\) 0 0
\(541\) −30.6272 −1.31676 −0.658382 0.752684i \(-0.728759\pi\)
−0.658382 + 0.752684i \(0.728759\pi\)
\(542\) 1.18324 0.992856i 0.0508245 0.0426468i
\(543\) 0 0
\(544\) 2.40681 13.6497i 0.103191 0.585227i
\(545\) 30.1898 10.9882i 1.29319 0.470682i
\(546\) 0 0
\(547\) 3.93273 + 22.3036i 0.168151 + 0.953633i 0.945756 + 0.324879i \(0.105324\pi\)
−0.777604 + 0.628754i \(0.783565\pi\)
\(548\) −10.9711 19.0025i −0.468661 0.811745i
\(549\) 0 0
\(550\) 0.100696 0.174411i 0.00429370 0.00743691i
\(551\) −3.06186 1.11443i −0.130440 0.0474761i
\(552\) 0 0
\(553\) −0.494473 0.414912i −0.0210271 0.0176439i
\(554\) −7.47387 6.27132i −0.317534 0.266443i
\(555\) 0 0
\(556\) 10.5523 + 3.84072i 0.447517 + 0.162883i
\(557\) 18.2259 31.5682i 0.772256 1.33759i −0.164067 0.986449i \(-0.552461\pi\)
0.936324 0.351138i \(-0.114205\pi\)
\(558\) 0 0
\(559\) −0.0750139 0.129928i −0.00317275 0.00549537i
\(560\) 1.51985 + 8.61952i 0.0642256 + 0.364241i
\(561\) 0 0
\(562\) −7.95334 + 2.89478i −0.335491 + 0.122109i
\(563\) −4.60450 + 26.1134i −0.194056 + 1.10055i 0.719700 + 0.694285i \(0.244279\pi\)
−0.913756 + 0.406263i \(0.866832\pi\)
\(564\) 0 0
\(565\) 21.3108 17.8819i 0.896552 0.752296i
\(566\) 4.81938 0.202574
\(567\) 0 0
\(568\) −9.67492 −0.405950
\(569\) −17.5941 + 14.7632i −0.737581 + 0.618904i −0.932187 0.361978i \(-0.882102\pi\)
0.194606 + 0.980882i \(0.437657\pi\)
\(570\) 0 0
\(571\) −0.833165 + 4.72511i −0.0348669 + 0.197740i −0.997266 0.0739009i \(-0.976455\pi\)
0.962399 + 0.271641i \(0.0875662\pi\)
\(572\) −0.161722 + 0.0588619i −0.00676193 + 0.00246114i
\(573\) 0 0
\(574\) −0.349871 1.98422i −0.0146033 0.0828197i
\(575\) 0.0480718 + 0.0832628i 0.00200473 + 0.00347230i
\(576\) 0 0
\(577\) 2.15666 3.73545i 0.0897831 0.155509i −0.817636 0.575735i \(-0.804716\pi\)
0.907419 + 0.420226i \(0.138049\pi\)
\(578\) 2.80533 + 1.02106i 0.116686 + 0.0424704i
\(579\) 0 0
\(580\) 24.2098 + 20.3145i 1.00526 + 0.843512i
\(581\) 4.66393 + 3.91351i 0.193493 + 0.162360i
\(582\) 0 0
\(583\) −6.37369 2.31983i −0.263971 0.0960777i
\(584\) −0.434885 + 0.753242i −0.0179957 + 0.0311694i
\(585\) 0 0
\(586\) 6.55900 + 11.3605i 0.270950 + 0.469299i
\(587\) −7.26235 41.1868i −0.299749 1.69996i −0.647246 0.762281i \(-0.724079\pi\)
0.347497 0.937681i \(-0.387032\pi\)
\(588\) 0 0
\(589\) −1.46271 + 0.532383i −0.0602699 + 0.0219365i
\(590\) −0.591603 + 3.35515i −0.0243559 + 0.138129i
\(591\) 0 0
\(592\) 10.1488 8.51582i 0.417111 0.349998i
\(593\) 31.5370 1.29507 0.647536 0.762035i \(-0.275800\pi\)
0.647536 + 0.762035i \(0.275800\pi\)
\(594\) 0 0
\(595\) 9.15786 0.375436
\(596\) 1.23583 1.03698i 0.0506214 0.0424764i
\(597\) 0 0
\(598\) −0.00134763 + 0.00764279i −5.51087e−5 + 0.000312537i
\(599\) −11.8686 + 4.31982i −0.484938 + 0.176503i −0.572907 0.819620i \(-0.694184\pi\)
0.0879695 + 0.996123i \(0.471962\pi\)
\(600\) 0 0
\(601\) 3.56725 + 20.2309i 0.145511 + 0.825235i 0.966955 + 0.254946i \(0.0820577\pi\)
−0.821444 + 0.570289i \(0.806831\pi\)
\(602\) −2.27744 3.94465i −0.0928216 0.160772i
\(603\) 0 0
\(604\) 7.51556 13.0173i 0.305804 0.529668i
\(605\) 33.7180 + 12.2724i 1.37083 + 0.498942i
\(606\) 0 0
\(607\) 9.89160 + 8.30003i 0.401487 + 0.336888i 0.821068 0.570830i \(-0.193378\pi\)
−0.419581 + 0.907718i \(0.637823\pi\)
\(608\) 1.41448 + 1.18689i 0.0573648 + 0.0481348i
\(609\) 0 0
\(610\) 5.97966 + 2.17642i 0.242109 + 0.0881205i
\(611\) 0.0640889 0.111005i 0.00259276 0.00449079i
\(612\) 0 0
\(613\) 15.5799 + 26.9851i 0.629265 + 1.08992i 0.987699 + 0.156364i \(0.0499774\pi\)
−0.358434 + 0.933555i \(0.616689\pi\)
\(614\) −0.585856 3.32255i −0.0236432 0.134087i
\(615\) 0 0
\(616\) −10.2836 + 3.74293i −0.414339 + 0.150807i
\(617\) 1.23998 7.03230i 0.0499199 0.283110i −0.949621 0.313400i \(-0.898532\pi\)
0.999541 + 0.0302901i \(0.00964312\pi\)
\(618\) 0 0
\(619\) −7.68412 + 6.44774i −0.308851 + 0.259157i −0.784017 0.620740i \(-0.786832\pi\)
0.475166 + 0.879896i \(0.342388\pi\)
\(620\) 15.0977 0.606338
\(621\) 0 0
\(622\) 9.90827 0.397285
\(623\) −3.40981 + 2.86117i −0.136611 + 0.114630i
\(624\) 0 0
\(625\) −4.25900 + 24.1540i −0.170360 + 0.966160i
\(626\) −10.5061 + 3.82392i −0.419909 + 0.152835i
\(627\) 0 0
\(628\) −3.98552 22.6030i −0.159039 0.901957i
\(629\) −6.93093 12.0047i −0.276354 0.478660i
\(630\) 0 0
\(631\) 3.53780 6.12765i 0.140838 0.243938i −0.786975 0.616985i \(-0.788354\pi\)
0.927812 + 0.373047i \(0.121687\pi\)
\(632\) 0.730905 + 0.266028i 0.0290738 + 0.0105820i
\(633\) 0 0
\(634\) 2.65189 + 2.22520i 0.105320 + 0.0883741i
\(635\) 14.2457 + 11.9536i 0.565324 + 0.474363i
\(636\) 0 0
\(637\) −0.0892352 0.0324790i −0.00353563 0.00128686i
\(638\) −8.45809 + 14.6498i −0.334859 + 0.579993i
\(639\) 0 0
\(640\) −11.7103 20.2828i −0.462890 0.801750i
\(641\) 0.870188 + 4.93508i 0.0343704 + 0.194924i 0.997158 0.0753337i \(-0.0240022\pi\)
−0.962788 + 0.270258i \(0.912891\pi\)
\(642\) 0 0
\(643\) −1.53960 + 0.560367i −0.0607157 + 0.0220987i −0.372199 0.928153i \(-0.621396\pi\)
0.311484 + 0.950251i \(0.399174\pi\)
\(644\) 0.433147 2.45650i 0.0170684 0.0967997i
\(645\) 0 0
\(646\) 0.416126 0.349171i 0.0163722 0.0137379i
\(647\) −34.4927 −1.35605 −0.678024 0.735040i \(-0.737164\pi\)
−0.678024 + 0.735040i \(0.737164\pi\)
\(648\) 0 0
\(649\) 19.3056 0.757813
\(650\) 0.000534207 0 0.000448253i 2.09533e−5 0 1.75819e-5i
\(651\) 0 0
\(652\) −1.05182 + 5.96515i −0.0411923 + 0.233613i
\(653\) 36.4230 13.2569i 1.42534 0.518783i 0.489751 0.871862i \(-0.337088\pi\)
0.935593 + 0.353080i \(0.114866\pi\)
\(654\) 0 0
\(655\) −5.97570 33.8899i −0.233490 1.32419i
\(656\) −5.50161 9.52907i −0.214802 0.372048i
\(657\) 0 0
\(658\) 1.94575 3.37015i 0.0758534 0.131382i
\(659\) 8.82552 + 3.21223i 0.343794 + 0.125131i 0.508146 0.861271i \(-0.330331\pi\)
−0.164352 + 0.986402i \(0.552553\pi\)
\(660\) 0 0
\(661\) −18.4980 15.5217i −0.719489 0.603723i 0.207755 0.978181i \(-0.433384\pi\)
−0.927244 + 0.374458i \(0.877829\pi\)
\(662\) −2.04335 1.71457i −0.0794169 0.0666387i
\(663\) 0 0
\(664\) −6.89399 2.50921i −0.267539 0.0973761i
\(665\) −0.610007 + 1.05656i −0.0236551 + 0.0409718i
\(666\) 0 0
\(667\) −4.03784 6.99375i −0.156346 0.270799i
\(668\) −6.52510 37.0057i −0.252464 1.43179i
\(669\) 0 0
\(670\) −9.53633 + 3.47094i −0.368421 + 0.134094i
\(671\) 6.26159 35.5112i 0.241726 1.37090i
\(672\) 0 0
\(673\) −20.2742 + 17.0121i −0.781514 + 0.655768i −0.943630 0.331003i \(-0.892613\pi\)
0.162115 + 0.986772i \(0.448168\pi\)
\(674\) 3.10557 0.119622
\(675\) 0 0
\(676\) 23.7554 0.913671
\(677\) −23.7986 + 19.9694i −0.914654 + 0.767486i −0.972999 0.230811i \(-0.925862\pi\)
0.0583448 + 0.998296i \(0.481418\pi\)
\(678\) 0 0
\(679\) −2.27807 + 12.9196i −0.0874245 + 0.495809i
\(680\) −10.3697 + 3.77426i −0.397660 + 0.144736i
\(681\) 0 0
\(682\) 1.40328 + 7.95842i 0.0537345 + 0.304744i
\(683\) 19.0681 + 33.0268i 0.729619 + 1.26374i 0.957044 + 0.289942i \(0.0936359\pi\)
−0.227425 + 0.973796i \(0.573031\pi\)
\(684\) 0 0
\(685\) −13.2993 + 23.0351i −0.508140 + 0.880125i
\(686\) −6.31558 2.29868i −0.241130 0.0877642i
\(687\) 0 0
\(688\) −19.0552 15.9892i −0.726472 0.609583i
\(689\) −0.0179917 0.0150968i −0.000685428 0.000575142i
\(690\) 0 0
\(691\) −30.9436 11.2626i −1.17715 0.428448i −0.321957 0.946754i \(-0.604341\pi\)
−0.855195 + 0.518306i \(0.826563\pi\)
\(692\) −12.8221 + 22.2085i −0.487424 + 0.844242i
\(693\) 0 0
\(694\) −6.53414 11.3175i −0.248033 0.429605i
\(695\) −2.36380 13.4058i −0.0896641 0.508510i
\(696\) 0 0
\(697\) −10.8185 + 3.93762i −0.409781 + 0.149148i
\(698\) 0.855130 4.84968i 0.0323672 0.183563i
\(699\) 0 0
\(700\) −0.171702 + 0.144075i −0.00648971 + 0.00544551i
\(701\) 2.30710 0.0871381 0.0435690 0.999050i \(-0.486127\pi\)
0.0435690 + 0.999050i \(0.486127\pi\)
\(702\) 0 0
\(703\) 1.84668 0.0696490
\(704\) −16.5800 + 13.9123i −0.624881 + 0.524338i
\(705\) 0 0
\(706\) 0.592100 3.35796i 0.0222840 0.126379i
\(707\) −17.1120 + 6.22826i −0.643563 + 0.234238i
\(708\) 0 0
\(709\) −1.93654 10.9826i −0.0727281 0.412462i −0.999336 0.0364329i \(-0.988400\pi\)
0.926608 0.376029i \(-0.122711\pi\)
\(710\) 2.79979 + 4.84937i 0.105074 + 0.181994i
\(711\) 0 0
\(712\) 2.68184 4.64508i 0.100506 0.174082i
\(713\) −3.62525 1.31948i −0.135767 0.0494151i
\(714\) 0 0
\(715\) 0.159815 + 0.134100i 0.00597673 + 0.00501507i
\(716\) 14.2646 + 11.9694i 0.533092 + 0.447317i
\(717\) 0 0
\(718\) 6.92093 + 2.51901i 0.258287 + 0.0940087i
\(719\) −16.0850 + 27.8600i −0.599869 + 1.03900i 0.392971 + 0.919551i \(0.371447\pi\)
−0.992840 + 0.119453i \(0.961886\pi\)
\(720\) 0 0
\(721\) 3.01213 + 5.21717i 0.112178 + 0.194297i
\(722\) −1.35819 7.70267i −0.0505465 0.286664i
\(723\) 0 0
\(724\) 41.3064 15.0343i 1.53514 0.558745i
\(725\) −0.126010 + 0.714637i −0.00467989 + 0.0265410i
\(726\) 0 0
\(727\) −4.11022 + 3.44888i −0.152440 + 0.127912i −0.715818 0.698287i \(-0.753946\pi\)
0.563378 + 0.826199i \(0.309501\pi\)
\(728\) −0.0378942 −0.00140445
\(729\) 0 0
\(730\) 0.503399 0.0186316
\(731\) −19.9377 + 16.7297i −0.737424 + 0.618772i
\(732\) 0 0
\(733\) −2.53463 + 14.3746i −0.0936187 + 0.530938i 0.901543 + 0.432689i \(0.142435\pi\)
−0.995162 + 0.0982489i \(0.968676\pi\)
\(734\) 7.93296 2.88736i 0.292811 0.106574i
\(735\) 0 0
\(736\) 0.794682 + 4.50687i 0.0292924 + 0.166125i
\(737\) 28.7534 + 49.8023i 1.05915 + 1.83449i
\(738\) 0 0
\(739\) 21.6083 37.4266i 0.794873 1.37676i −0.128047 0.991768i \(-0.540871\pi\)
0.922920 0.384992i \(-0.125796\pi\)
\(740\) −16.8312 6.12607i −0.618729 0.225199i
\(741\) 0 0
\(742\) −0.546231 0.458343i −0.0200528 0.0168263i
\(743\) −6.21431 5.21443i −0.227981 0.191299i 0.521641 0.853165i \(-0.325320\pi\)
−0.749622 + 0.661866i \(0.769765\pi\)
\(744\) 0 0
\(745\) −1.83767 0.668859i −0.0673272 0.0245051i
\(746\) 2.01116 3.48342i 0.0736336 0.127537i
\(747\) 0 0
\(748\) 14.9280 + 25.8561i 0.545823 + 0.945393i
\(749\) −2.58860 14.6807i −0.0945854 0.536420i
\(750\) 0 0
\(751\) −8.22744 + 2.99454i −0.300223 + 0.109272i −0.487740 0.872989i \(-0.662178\pi\)
0.187516 + 0.982261i \(0.439956\pi\)
\(752\) 3.69037 20.9291i 0.134574 0.763207i
\(753\) 0 0
\(754\) −0.0448713 + 0.0376515i −0.00163412 + 0.00137119i
\(755\) −18.2210 −0.663129
\(756\) 0 0
\(757\) −32.1511 −1.16855 −0.584276 0.811555i \(-0.698622\pi\)
−0.584276 + 0.811555i \(0.698622\pi\)
\(758\) −1.31414 + 1.10269i −0.0477316 + 0.0400515i
\(759\) 0 0
\(760\) 0.255283 1.44778i 0.00926008 0.0525165i
\(761\) −23.0656 + 8.39520i −0.836128 + 0.304326i −0.724371 0.689410i \(-0.757870\pi\)
−0.111756 + 0.993736i \(0.535648\pi\)
\(762\) 0 0
\(763\) −3.32342 18.8481i −0.120316 0.682346i
\(764\) −10.0016 17.3233i −0.361846 0.626736i
\(765\) 0 0
\(766\) 0.986770 1.70914i 0.0356535 0.0617536i
\(767\) 0.0628177 + 0.0228638i 0.00226822 + 0.000825563i
\(768\) 0 0
\(769\) 24.0648 + 20.1928i 0.867800 + 0.728170i 0.963634 0.267227i \(-0.0861073\pi\)
−0.0958338 + 0.995397i \(0.530552\pi\)
\(770\) 4.85201 + 4.07132i 0.174854 + 0.146720i
\(771\) 0 0
\(772\) −18.5558 6.75377i −0.667839 0.243073i
\(773\) 14.3573 24.8675i 0.516395 0.894422i −0.483424 0.875386i \(-0.660607\pi\)
0.999819 0.0190355i \(-0.00605954\pi\)
\(774\) 0 0
\(775\) 0.173332 + 0.300219i 0.00622625 + 0.0107842i
\(776\) −2.74507 15.5681i −0.0985424 0.558862i
\(777\) 0 0
\(778\) −8.51615 + 3.09962i −0.305319 + 0.111127i
\(779\) 0.266332 1.51044i 0.00954233 0.0541173i