Properties

Label 81.12.c.d
Level 81
Weight 12
Character orbit 81.c
Analytic conductor 62.236
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 81 = 3^{4} \)
Weight: \( k \) = \( 12 \)
Character orbit: \([\chi]\) = 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(62.2357976253\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 24 - 24 \zeta_{6} ) q^{2} + 1472 \zeta_{6} q^{4} -4830 \zeta_{6} q^{5} + ( 16744 - 16744 \zeta_{6} ) q^{7} + 84480 q^{8} +O(q^{10})\) \( q + ( 24 - 24 \zeta_{6} ) q^{2} + 1472 \zeta_{6} q^{4} -4830 \zeta_{6} q^{5} + ( 16744 - 16744 \zeta_{6} ) q^{7} + 84480 q^{8} -115920 q^{10} + ( -534612 + 534612 \zeta_{6} ) q^{11} + 577738 \zeta_{6} q^{13} -401856 \zeta_{6} q^{14} + ( -987136 + 987136 \zeta_{6} ) q^{16} -6905934 q^{17} + 10661420 q^{19} + ( 7109760 - 7109760 \zeta_{6} ) q^{20} + 12830688 \zeta_{6} q^{22} -18643272 \zeta_{6} q^{23} + ( 25499225 - 25499225 \zeta_{6} ) q^{25} + 13865712 q^{26} + 24647168 q^{28} + ( -128406630 + 128406630 \zeta_{6} ) q^{29} + 52843168 \zeta_{6} q^{31} + 196706304 \zeta_{6} q^{32} + ( -165742416 + 165742416 \zeta_{6} ) q^{34} -80873520 q^{35} -182213314 q^{37} + ( 255874080 - 255874080 \zeta_{6} ) q^{38} -408038400 \zeta_{6} q^{40} -308120442 \zeta_{6} q^{41} + ( 17125708 - 17125708 \zeta_{6} ) q^{43} -786948864 q^{44} -447438528 q^{46} + ( -2687348496 + 2687348496 \zeta_{6} ) q^{47} + 1696965207 \zeta_{6} q^{49} -611981400 \zeta_{6} q^{50} + ( -850430336 + 850430336 \zeta_{6} ) q^{52} -1596055698 q^{53} + 2582175960 q^{55} + ( 1414533120 - 1414533120 \zeta_{6} ) q^{56} + 3081759120 \zeta_{6} q^{58} + 5189203740 \zeta_{6} q^{59} + ( -6956478662 + 6956478662 \zeta_{6} ) q^{61} + 1268236032 q^{62} + 2699296768 q^{64} + ( 2790474540 - 2790474540 \zeta_{6} ) q^{65} + 15481826884 \zeta_{6} q^{67} -10165534848 \zeta_{6} q^{68} + ( -1940964480 + 1940964480 \zeta_{6} ) q^{70} + 9791485272 q^{71} + 1463791322 q^{73} + ( -4373119536 + 4373119536 \zeta_{6} ) q^{74} + 15693610240 \zeta_{6} q^{76} + 8951543328 \zeta_{6} q^{77} + ( -38116845680 + 38116845680 \zeta_{6} ) q^{79} + 4767866880 q^{80} -7394890608 q^{82} + ( 29335099668 - 29335099668 \zeta_{6} ) q^{83} + 33355661220 \zeta_{6} q^{85} -411016992 \zeta_{6} q^{86} + ( -45164021760 + 45164021760 \zeta_{6} ) q^{88} -24992917110 q^{89} + 9673645072 q^{91} + ( 27442896384 - 27442896384 \zeta_{6} ) q^{92} + 64496363904 \zeta_{6} q^{94} -51494658600 \zeta_{6} q^{95} + ( -75013568546 + 75013568546 \zeta_{6} ) q^{97} + 40727164968 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 24q^{2} + 1472q^{4} - 4830q^{5} + 16744q^{7} + 168960q^{8} + O(q^{10}) \) \( 2q + 24q^{2} + 1472q^{4} - 4830q^{5} + 16744q^{7} + 168960q^{8} - 231840q^{10} - 534612q^{11} + 577738q^{13} - 401856q^{14} - 987136q^{16} - 13811868q^{17} + 21322840q^{19} + 7109760q^{20} + 12830688q^{22} - 18643272q^{23} + 25499225q^{25} + 27731424q^{26} + 49294336q^{28} - 128406630q^{29} + 52843168q^{31} + 196706304q^{32} - 165742416q^{34} - 161747040q^{35} - 364426628q^{37} + 255874080q^{38} - 408038400q^{40} - 308120442q^{41} + 17125708q^{43} - 1573897728q^{44} - 894877056q^{46} - 2687348496q^{47} + 1696965207q^{49} - 611981400q^{50} - 850430336q^{52} - 3192111396q^{53} + 5164351920q^{55} + 1414533120q^{56} + 3081759120q^{58} + 5189203740q^{59} - 6956478662q^{61} + 2536472064q^{62} + 5398593536q^{64} + 2790474540q^{65} + 15481826884q^{67} - 10165534848q^{68} - 1940964480q^{70} + 19582970544q^{71} + 2927582644q^{73} - 4373119536q^{74} + 15693610240q^{76} + 8951543328q^{77} - 38116845680q^{79} + 9535733760q^{80} - 14789781216q^{82} + 29335099668q^{83} + 33355661220q^{85} - 411016992q^{86} - 45164021760q^{88} - 49985834220q^{89} + 19347290144q^{91} + 27442896384q^{92} + 64496363904q^{94} - 51494658600q^{95} - 75013568546q^{97} + 81454329936q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
0.500000 0.866025i
0.500000 + 0.866025i
12.0000 + 20.7846i 0 736.000 1274.79i −2415.00 + 4182.90i 0 8372.00 + 14500.7i 84480.0 0 −115920.
55.1 12.0000 20.7846i 0 736.000 + 1274.79i −2415.00 4182.90i 0 8372.00 14500.7i 84480.0 0 −115920.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.12.c.d 2
3.b odd 2 1 81.12.c.b 2
9.c even 3 1 1.12.a.a 1
9.c even 3 1 inner 81.12.c.d 2
9.d odd 6 1 9.12.a.b 1
9.d odd 6 1 81.12.c.b 2
36.f odd 6 1 16.12.a.a 1
36.h even 6 1 144.12.a.d 1
45.h odd 6 1 225.12.a.b 1
45.j even 6 1 25.12.a.b 1
45.k odd 12 2 25.12.b.b 2
45.l even 12 2 225.12.b.d 2
63.g even 3 1 49.12.c.b 2
63.h even 3 1 49.12.c.b 2
63.k odd 6 1 49.12.c.c 2
63.l odd 6 1 49.12.a.a 1
63.t odd 6 1 49.12.c.c 2
72.n even 6 1 64.12.a.b 1
72.p odd 6 1 64.12.a.f 1
99.h odd 6 1 121.12.a.b 1
117.t even 6 1 169.12.a.a 1
144.v odd 12 2 256.12.b.c 2
144.x even 12 2 256.12.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.12.a.a 1 9.c even 3 1
9.12.a.b 1 9.d odd 6 1
16.12.a.a 1 36.f odd 6 1
25.12.a.b 1 45.j even 6 1
25.12.b.b 2 45.k odd 12 2
49.12.a.a 1 63.l odd 6 1
49.12.c.b 2 63.g even 3 1
49.12.c.b 2 63.h even 3 1
49.12.c.c 2 63.k odd 6 1
49.12.c.c 2 63.t odd 6 1
64.12.a.b 1 72.n even 6 1
64.12.a.f 1 72.p odd 6 1
81.12.c.b 2 3.b odd 2 1
81.12.c.b 2 9.d odd 6 1
81.12.c.d 2 1.a even 1 1 trivial
81.12.c.d 2 9.c even 3 1 inner
121.12.a.b 1 99.h odd 6 1
144.12.a.d 1 36.h even 6 1
169.12.a.a 1 117.t even 6 1
225.12.a.b 1 45.h odd 6 1
225.12.b.d 2 45.l even 12 2
256.12.b.c 2 144.v odd 12 2
256.12.b.e 2 144.x even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 24 T_{2} + 576 \) acting on \(S_{12}^{\mathrm{new}}(81, [\chi])\).