Properties

Label 81.12.c.d
Level $81$
Weight $12$
Character orbit 81.c
Analytic conductor $62.236$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(28,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.28"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,24,0,1472] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.2357976253\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 24 \zeta_{6} + 24) q^{2} + 1472 \zeta_{6} q^{4} - 4830 \zeta_{6} q^{5} + ( - 16744 \zeta_{6} + 16744) q^{7} + 84480 q^{8} - 115920 q^{10} + (534612 \zeta_{6} - 534612) q^{11} + 577738 \zeta_{6} q^{13} + \cdots + 40727164968 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 24 q^{2} + 1472 q^{4} - 4830 q^{5} + 16744 q^{7} + 168960 q^{8} - 231840 q^{10} - 534612 q^{11} + 577738 q^{13} - 401856 q^{14} - 987136 q^{16} - 13811868 q^{17} + 21322840 q^{19} + 7109760 q^{20}+ \cdots + 81454329936 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
0.500000 0.866025i
0.500000 + 0.866025i
12.0000 + 20.7846i 0 736.000 1274.79i −2415.00 + 4182.90i 0 8372.00 + 14500.7i 84480.0 0 −115920.
55.1 12.0000 20.7846i 0 736.000 + 1274.79i −2415.00 4182.90i 0 8372.00 14500.7i 84480.0 0 −115920.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.12.c.d 2
3.b odd 2 1 81.12.c.b 2
9.c even 3 1 1.12.a.a 1
9.c even 3 1 inner 81.12.c.d 2
9.d odd 6 1 9.12.a.b 1
9.d odd 6 1 81.12.c.b 2
36.f odd 6 1 16.12.a.a 1
36.h even 6 1 144.12.a.d 1
45.h odd 6 1 225.12.a.b 1
45.j even 6 1 25.12.a.b 1
45.k odd 12 2 25.12.b.b 2
45.l even 12 2 225.12.b.d 2
63.g even 3 1 49.12.c.b 2
63.h even 3 1 49.12.c.b 2
63.k odd 6 1 49.12.c.c 2
63.l odd 6 1 49.12.a.a 1
63.t odd 6 1 49.12.c.c 2
72.n even 6 1 64.12.a.b 1
72.p odd 6 1 64.12.a.f 1
99.h odd 6 1 121.12.a.b 1
117.t even 6 1 169.12.a.a 1
144.v odd 12 2 256.12.b.c 2
144.x even 12 2 256.12.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.12.a.a 1 9.c even 3 1
9.12.a.b 1 9.d odd 6 1
16.12.a.a 1 36.f odd 6 1
25.12.a.b 1 45.j even 6 1
25.12.b.b 2 45.k odd 12 2
49.12.a.a 1 63.l odd 6 1
49.12.c.b 2 63.g even 3 1
49.12.c.b 2 63.h even 3 1
49.12.c.c 2 63.k odd 6 1
49.12.c.c 2 63.t odd 6 1
64.12.a.b 1 72.n even 6 1
64.12.a.f 1 72.p odd 6 1
81.12.c.b 2 3.b odd 2 1
81.12.c.b 2 9.d odd 6 1
81.12.c.d 2 1.a even 1 1 trivial
81.12.c.d 2 9.c even 3 1 inner
121.12.a.b 1 99.h odd 6 1
144.12.a.d 1 36.h even 6 1
169.12.a.a 1 117.t even 6 1
225.12.a.b 1 45.h odd 6 1
225.12.b.d 2 45.l even 12 2
256.12.b.c 2 144.v odd 12 2
256.12.b.e 2 144.x even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 24T_{2} + 576 \) acting on \(S_{12}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 24T + 576 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4830 T + 23328900 \) Copy content Toggle raw display
$7$ \( T^{2} - 16744 T + 280361536 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 285809990544 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 333781196644 \) Copy content Toggle raw display
$17$ \( (T + 6905934)^{2} \) Copy content Toggle raw display
$19$ \( (T - 10661420)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 347571590865984 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 27\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( (T + 182213314)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 94\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 293289874501264 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 72\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( (T + 1596055698)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 48\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 23\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( (T - 9791485272)^{2} \) Copy content Toggle raw display
$73$ \( (T - 1463791322)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 86\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( (T + 24992917110)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 56\!\cdots\!16 \) Copy content Toggle raw display
show more
show less