Properties

Label 81.11.d.e.53.3
Level $81$
Weight $11$
Character 81.53
Analytic conductor $51.464$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,11,Mod(26,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.26"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 11, names="a")
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,548] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.4639374666\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 86x^{6} + 6052x^{4} + 115584x^{2} + 1806336 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{19} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.3
Root \(2.26538 - 3.92375i\) of defining polynomial
Character \(\chi\) \(=\) 81.53
Dual form 81.11.d.e.26.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(20.3884 - 11.7713i) q^{2} +(-234.875 + 406.815i) q^{4} +(3831.75 + 2212.26i) q^{5} +(10784.0 + 18678.4i) q^{7} +35166.6i q^{8} +104164. q^{10} +(210295. - 121414. i) q^{11} +(199052. - 344768. i) q^{13} +(439737. + 253882. i) q^{14} +(173444. + 300414. i) q^{16} +2.02619e6i q^{17} -2.77192e6 q^{19} +(-1.79996e6 + 1.03921e6i) q^{20} +(2.85839e6 - 4.95088e6i) q^{22} +(2.14688e6 + 1.23950e6i) q^{23} +(4.90538e6 + 8.49636e6i) q^{25} -9.37237e6i q^{26} -1.01315e7 q^{28} +(-7.90991e6 + 4.56679e6i) q^{29} +(9.07315e6 - 1.57152e7i) q^{31} +(-2.41136e7 - 1.39220e7i) q^{32} +(2.38509e7 + 4.13109e7i) q^{34} +9.54280e7i q^{35} +1.14330e7 q^{37} +(-5.65150e7 + 3.26290e7i) q^{38} +(-7.77977e7 + 1.34750e8i) q^{40} +(1.18731e8 + 6.85496e7i) q^{41} +(-4.93948e7 - 8.55544e7i) q^{43} +1.14068e8i q^{44} +5.83620e7 q^{46} +(1.22806e8 - 7.09022e7i) q^{47} +(-9.13512e7 + 1.58225e8i) q^{49} +(2.00026e8 + 1.15485e8i) q^{50} +(9.35045e7 + 1.61955e8i) q^{52} -1.39084e8i q^{53} +1.07440e9 q^{55} +(-6.56857e8 + 3.79237e8i) q^{56} +(-1.07514e8 + 1.86219e8i) q^{58} +(-9.24898e8 - 5.33990e8i) q^{59} +(7.24880e8 + 1.25553e9i) q^{61} -4.27210e8i q^{62} -1.01073e9 q^{64} +(1.52543e9 - 8.80709e8i) q^{65} +(-7.23067e8 + 1.25239e9i) q^{67} +(-8.24286e8 - 4.75902e8i) q^{68} +(1.12331e9 + 1.94563e9i) q^{70} -1.33807e9i q^{71} -1.46812e9 q^{73} +(2.33101e8 - 1.34581e8i) q^{74} +(6.51053e8 - 1.12766e9i) q^{76} +(4.53564e9 + 2.61865e9i) q^{77} +(2.47690e9 + 4.29012e9i) q^{79} +1.53481e9i q^{80} +3.22766e9 q^{82} +(4.85531e8 - 2.80322e8i) q^{83} +(-4.48247e9 + 7.76386e9i) q^{85} +(-2.01417e9 - 1.16288e9i) q^{86} +(4.26972e9 + 7.39537e9i) q^{88} -4.73263e9i q^{89} +8.58629e9 q^{91} +(-1.00850e9 + 5.82255e8i) q^{92} +(1.66922e9 - 2.89117e9i) q^{94} +(-1.06213e10 - 6.13220e9i) q^{95} +(-6.08507e9 - 1.05396e10i) q^{97} +4.30128e9i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 548 q^{4} - 20516 q^{7} - 399600 q^{10} + 262420 q^{13} + 3207800 q^{16} - 16467032 q^{19} + 21085704 q^{22} + 47203580 q^{25} - 135208424 q^{28} + 46994920 q^{31} + 78985368 q^{34} + 216172888 q^{37}+ \cdots - 12969797468 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 20.3884 11.7713i 0.637138 0.367852i −0.146373 0.989229i \(-0.546760\pi\)
0.783511 + 0.621378i \(0.213427\pi\)
\(3\) 0 0
\(4\) −234.875 + 406.815i −0.229370 + 0.397280i
\(5\) 3831.75 + 2212.26i 1.22616 + 0.707923i 0.966224 0.257703i \(-0.0829656\pi\)
0.259935 + 0.965626i \(0.416299\pi\)
\(6\) 0 0
\(7\) 10784.0 + 18678.4i 0.641637 + 1.11135i 0.985067 + 0.172169i \(0.0550777\pi\)
−0.343431 + 0.939178i \(0.611589\pi\)
\(8\) 35166.6i 1.07320i
\(9\) 0 0
\(10\) 104164. 1.04164
\(11\) 210295. 121414.i 1.30577 0.753885i 0.324380 0.945927i \(-0.394844\pi\)
0.981387 + 0.192042i \(0.0615110\pi\)
\(12\) 0 0
\(13\) 199052. 344768.i 0.536105 0.928560i −0.463004 0.886356i \(-0.653229\pi\)
0.999109 0.0422044i \(-0.0134381\pi\)
\(14\) 439737. + 253882.i 0.817623 + 0.472055i
\(15\) 0 0
\(16\) 173444. + 300414.i 0.165409 + 0.286497i
\(17\) 2.02619e6i 1.42704i 0.700634 + 0.713520i \(0.252900\pi\)
−0.700634 + 0.713520i \(0.747100\pi\)
\(18\) 0 0
\(19\) −2.77192e6 −1.11947 −0.559735 0.828672i \(-0.689097\pi\)
−0.559735 + 0.828672i \(0.689097\pi\)
\(20\) −1.79996e6 + 1.03921e6i −0.562488 + 0.324753i
\(21\) 0 0
\(22\) 2.85839e6 4.95088e6i 0.554636 0.960658i
\(23\) 2.14688e6 + 1.23950e6i 0.333556 + 0.192579i 0.657419 0.753525i \(-0.271648\pi\)
−0.323863 + 0.946104i \(0.604982\pi\)
\(24\) 0 0
\(25\) 4.90538e6 + 8.49636e6i 0.502311 + 0.870028i
\(26\) 9.37237e6i 0.788828i
\(27\) 0 0
\(28\) −1.01315e7 −0.588689
\(29\) −7.90991e6 + 4.56679e6i −0.385640 + 0.222649i −0.680269 0.732962i \(-0.738137\pi\)
0.294630 + 0.955612i \(0.404804\pi\)
\(30\) 0 0
\(31\) 9.07315e6 1.57152e7i 0.316920 0.548921i −0.662924 0.748687i \(-0.730685\pi\)
0.979844 + 0.199765i \(0.0640180\pi\)
\(32\) −2.41136e7 1.39220e7i −0.718642 0.414908i
\(33\) 0 0
\(34\) 2.38509e7 + 4.13109e7i 0.524940 + 0.909222i
\(35\) 9.54280e7i 1.81692i
\(36\) 0 0
\(37\) 1.14330e7 0.164874 0.0824369 0.996596i \(-0.473730\pi\)
0.0824369 + 0.996596i \(0.473730\pi\)
\(38\) −5.65150e7 + 3.26290e7i −0.713257 + 0.411799i
\(39\) 0 0
\(40\) −7.77977e7 + 1.34750e8i −0.759744 + 1.31591i
\(41\) 1.18731e8 + 6.85496e7i 1.02482 + 0.591678i 0.915495 0.402328i \(-0.131799\pi\)
0.109321 + 0.994006i \(0.465132\pi\)
\(42\) 0 0
\(43\) −4.93948e7 8.55544e7i −0.336000 0.581969i 0.647676 0.761916i \(-0.275741\pi\)
−0.983676 + 0.179946i \(0.942408\pi\)
\(44\) 1.14068e8i 0.691674i
\(45\) 0 0
\(46\) 5.83620e7 0.283362
\(47\) 1.22806e8 7.09022e7i 0.535465 0.309151i −0.207774 0.978177i \(-0.566622\pi\)
0.743239 + 0.669026i \(0.233289\pi\)
\(48\) 0 0
\(49\) −9.13512e7 + 1.58225e8i −0.323396 + 0.560138i
\(50\) 2.00026e8 + 1.15485e8i 0.640083 + 0.369552i
\(51\) 0 0
\(52\) 9.35045e7 + 1.61955e8i 0.245932 + 0.425968i
\(53\) 1.39084e8i 0.332582i −0.986077 0.166291i \(-0.946821\pi\)
0.986077 0.166291i \(-0.0531792\pi\)
\(54\) 0 0
\(55\) 1.07440e9 2.13477
\(56\) −6.56857e8 + 3.79237e8i −1.19270 + 0.688605i
\(57\) 0 0
\(58\) −1.07514e8 + 1.86219e8i −0.163804 + 0.283717i
\(59\) −9.24898e8 5.33990e8i −1.29370 0.746918i −0.314393 0.949293i \(-0.601801\pi\)
−0.979308 + 0.202375i \(0.935134\pi\)
\(60\) 0 0
\(61\) 7.24880e8 + 1.25553e9i 0.858256 + 1.48654i 0.873591 + 0.486660i \(0.161785\pi\)
−0.0153358 + 0.999882i \(0.504882\pi\)
\(62\) 4.27210e8i 0.466318i
\(63\) 0 0
\(64\) −1.01073e9 −0.941317
\(65\) 1.52543e9 8.80709e8i 1.31470 0.759042i
\(66\) 0 0
\(67\) −7.23067e8 + 1.25239e9i −0.535556 + 0.927610i 0.463581 + 0.886055i \(0.346564\pi\)
−0.999136 + 0.0415549i \(0.986769\pi\)
\(68\) −8.24286e8 4.75902e8i −0.566935 0.327320i
\(69\) 0 0
\(70\) 1.12331e9 + 1.94563e9i 0.668357 + 1.15763i
\(71\) 1.33807e9i 0.741630i −0.928707 0.370815i \(-0.879078\pi\)
0.928707 0.370815i \(-0.120922\pi\)
\(72\) 0 0
\(73\) −1.46812e9 −0.708187 −0.354094 0.935210i \(-0.615211\pi\)
−0.354094 + 0.935210i \(0.615211\pi\)
\(74\) 2.33101e8 1.34581e8i 0.105047 0.0606491i
\(75\) 0 0
\(76\) 6.51053e8 1.12766e9i 0.256773 0.444743i
\(77\) 4.53564e9 + 2.61865e9i 1.67566 + 0.967441i
\(78\) 0 0
\(79\) 2.47690e9 + 4.29012e9i 0.804959 + 1.39423i 0.916319 + 0.400450i \(0.131146\pi\)
−0.111360 + 0.993780i \(0.535521\pi\)
\(80\) 1.53481e9i 0.468388i
\(81\) 0 0
\(82\) 3.22766e9 0.870600
\(83\) 4.85531e8 2.80322e8i 0.123261 0.0711650i −0.437102 0.899412i \(-0.643995\pi\)
0.560363 + 0.828247i \(0.310662\pi\)
\(84\) 0 0
\(85\) −4.48247e9 + 7.76386e9i −1.01024 + 1.74978i
\(86\) −2.01417e9 1.16288e9i −0.428157 0.247197i
\(87\) 0 0
\(88\) 4.26972e9 + 7.39537e9i 0.809070 + 1.40135i
\(89\) 4.73263e9i 0.847524i −0.905774 0.423762i \(-0.860709\pi\)
0.905774 0.423762i \(-0.139291\pi\)
\(90\) 0 0
\(91\) 8.58629e9 1.37594
\(92\) −1.00850e9 + 5.82255e8i −0.153015 + 0.0883435i
\(93\) 0 0
\(94\) 1.66922e9 2.89117e9i 0.227443 0.393944i
\(95\) −1.06213e10 6.13220e9i −1.37265 0.792498i
\(96\) 0 0
\(97\) −6.08507e9 1.05396e10i −0.708609 1.22735i −0.965373 0.260873i \(-0.915990\pi\)
0.256764 0.966474i \(-0.417344\pi\)
\(98\) 4.30128e9i 0.475847i
\(99\) 0 0
\(100\) −4.60860e9 −0.460860
\(101\) −1.03897e10 + 5.99851e9i −0.988547 + 0.570738i −0.904840 0.425753i \(-0.860009\pi\)
−0.0837072 + 0.996490i \(0.526676\pi\)
\(102\) 0 0
\(103\) −5.89242e9 + 1.02060e10i −0.508286 + 0.880377i 0.491668 + 0.870783i \(0.336387\pi\)
−0.999954 + 0.00959411i \(0.996946\pi\)
\(104\) 1.21243e10 + 6.99998e9i 0.996531 + 0.575348i
\(105\) 0 0
\(106\) −1.63720e9 2.83571e9i −0.122341 0.211901i
\(107\) 1.67650e10i 1.19532i 0.801749 + 0.597661i \(0.203903\pi\)
−0.801749 + 0.597661i \(0.796097\pi\)
\(108\) 0 0
\(109\) 1.39867e10 0.909040 0.454520 0.890736i \(-0.349811\pi\)
0.454520 + 0.890736i \(0.349811\pi\)
\(110\) 2.19053e10 1.26470e10i 1.36014 0.785280i
\(111\) 0 0
\(112\) −3.74084e9 + 6.47932e9i −0.212265 + 0.367654i
\(113\) −1.43914e9 8.30890e8i −0.0781110 0.0450974i 0.460436 0.887693i \(-0.347693\pi\)
−0.538547 + 0.842596i \(0.681026\pi\)
\(114\) 0 0
\(115\) 5.48420e9 + 9.49892e9i 0.272662 + 0.472264i
\(116\) 4.29049e9i 0.204276i
\(117\) 0 0
\(118\) −2.51430e10 −1.09902
\(119\) −3.78461e10 + 2.18505e10i −1.58594 + 0.915642i
\(120\) 0 0
\(121\) 1.65140e10 2.86030e10i 0.636685 1.10277i
\(122\) 2.95583e10 + 1.70655e10i 1.09366 + 0.631422i
\(123\) 0 0
\(124\) 4.26211e9 + 7.38219e9i 0.145384 + 0.251812i
\(125\) 1.99685e8i 0.00654329i
\(126\) 0 0
\(127\) 2.55071e9 0.0772045 0.0386022 0.999255i \(-0.487709\pi\)
0.0386022 + 0.999255i \(0.487709\pi\)
\(128\) 4.08513e9 2.35855e9i 0.118893 0.0686428i
\(129\) 0 0
\(130\) 2.07341e10 3.59125e10i 0.558430 0.967229i
\(131\) −1.40948e10 8.13764e9i −0.365344 0.210932i 0.306078 0.952006i \(-0.400983\pi\)
−0.671423 + 0.741075i \(0.734316\pi\)
\(132\) 0 0
\(133\) −2.98923e10 5.17750e10i −0.718293 1.24412i
\(134\) 3.40457e10i 0.788021i
\(135\) 0 0
\(136\) −7.12544e10 −1.53150
\(137\) 5.67115e10 3.27424e10i 1.17508 0.678434i 0.220211 0.975452i \(-0.429326\pi\)
0.954872 + 0.297018i \(0.0959922\pi\)
\(138\) 0 0
\(139\) 1.50595e10 2.60839e10i 0.290227 0.502688i −0.683636 0.729823i \(-0.739603\pi\)
0.973863 + 0.227135i \(0.0729359\pi\)
\(140\) −3.88215e10 2.24136e10i −0.721826 0.416746i
\(141\) 0 0
\(142\) −1.57508e10 2.72811e10i −0.272810 0.472521i
\(143\) 9.66707e10i 1.61664i
\(144\) 0 0
\(145\) −4.04117e10 −0.630474
\(146\) −2.99327e10 + 1.72817e10i −0.451213 + 0.260508i
\(147\) 0 0
\(148\) −2.68532e9 + 4.65112e9i −0.0378171 + 0.0655011i
\(149\) −8.56031e10 4.94230e10i −1.16562 0.672973i −0.212978 0.977057i \(-0.568316\pi\)
−0.952645 + 0.304084i \(0.901650\pi\)
\(150\) 0 0
\(151\) −4.16530e10 7.21452e10i −0.530594 0.919015i −0.999363 0.0356943i \(-0.988636\pi\)
0.468769 0.883321i \(-0.344698\pi\)
\(152\) 9.74790e10i 1.20141i
\(153\) 0 0
\(154\) 1.23299e11 1.42350
\(155\) 6.95320e10 4.01443e10i 0.777189 0.448710i
\(156\) 0 0
\(157\) 3.94580e10 6.83432e10i 0.413653 0.716469i −0.581633 0.813452i \(-0.697586\pi\)
0.995286 + 0.0969828i \(0.0309192\pi\)
\(158\) 1.01000e11 + 5.83126e10i 1.02574 + 0.592211i
\(159\) 0 0
\(160\) −6.15982e10 1.06691e11i −0.587446 1.01749i
\(161\) 5.34671e10i 0.494262i
\(162\) 0 0
\(163\) 1.98358e10 0.172390 0.0861951 0.996278i \(-0.472529\pi\)
0.0861951 + 0.996278i \(0.472529\pi\)
\(164\) −5.57740e10 + 3.22011e10i −0.470124 + 0.271426i
\(165\) 0 0
\(166\) 6.59948e9 1.14306e10i 0.0523564 0.0906839i
\(167\) 3.73359e10 + 2.15559e10i 0.287438 + 0.165952i 0.636786 0.771041i \(-0.280264\pi\)
−0.349348 + 0.936993i \(0.613597\pi\)
\(168\) 0 0
\(169\) −1.03141e10 1.78645e10i −0.0748162 0.129585i
\(170\) 2.11057e11i 1.48647i
\(171\) 0 0
\(172\) 4.64064e10 0.308273
\(173\) −1.09895e11 + 6.34480e10i −0.709167 + 0.409438i −0.810752 0.585389i \(-0.800942\pi\)
0.101586 + 0.994827i \(0.467608\pi\)
\(174\) 0 0
\(175\) −1.05799e11 + 1.83249e11i −0.644602 + 1.11648i
\(176\) 7.29488e10 + 4.21170e10i 0.431971 + 0.249399i
\(177\) 0 0
\(178\) −5.57090e10 9.64908e10i −0.311763 0.539990i
\(179\) 1.71735e11i 0.934531i −0.884117 0.467265i \(-0.845239\pi\)
0.884117 0.467265i \(-0.154761\pi\)
\(180\) 0 0
\(181\) −9.76637e10 −0.502737 −0.251368 0.967892i \(-0.580881\pi\)
−0.251368 + 0.967892i \(0.580881\pi\)
\(182\) 1.75061e11 1.01072e11i 0.876663 0.506141i
\(183\) 0 0
\(184\) −4.35891e10 + 7.54986e10i −0.206675 + 0.357972i
\(185\) 4.38084e10 + 2.52928e10i 0.202162 + 0.116718i
\(186\) 0 0
\(187\) 2.46008e11 + 4.26099e11i 1.07582 + 1.86338i
\(188\) 6.66126e10i 0.283640i
\(189\) 0 0
\(190\) −2.88735e11 −1.16609
\(191\) 8.71784e10 5.03325e10i 0.342959 0.198007i −0.318621 0.947882i \(-0.603220\pi\)
0.661580 + 0.749875i \(0.269886\pi\)
\(192\) 0 0
\(193\) 1.64225e11 2.84445e11i 0.613270 1.06221i −0.377415 0.926044i \(-0.623187\pi\)
0.990685 0.136171i \(-0.0434795\pi\)
\(194\) −2.48130e11 1.43258e11i −0.902964 0.521327i
\(195\) 0 0
\(196\) −4.29122e10 7.43261e10i −0.148354 0.256957i
\(197\) 2.22370e11i 0.749453i 0.927135 + 0.374727i \(0.122263\pi\)
−0.927135 + 0.374727i \(0.877737\pi\)
\(198\) 0 0
\(199\) 1.76697e11 0.566191 0.283095 0.959092i \(-0.408639\pi\)
0.283095 + 0.959092i \(0.408639\pi\)
\(200\) −2.98789e11 + 1.72506e11i −0.933714 + 0.539080i
\(201\) 0 0
\(202\) −1.41220e11 + 2.44600e11i −0.419894 + 0.727278i
\(203\) −1.70601e11 9.84964e10i −0.494881 0.285720i
\(204\) 0 0
\(205\) 3.03299e11 + 5.25329e11i 0.837725 + 1.45098i
\(206\) 2.77445e11i 0.747896i
\(207\) 0 0
\(208\) 1.38097e11 0.354706
\(209\) −5.82920e11 + 3.36549e11i −1.46177 + 0.843951i
\(210\) 0 0
\(211\) 1.33629e11 2.31453e11i 0.319513 0.553414i −0.660873 0.750498i \(-0.729814\pi\)
0.980387 + 0.197084i \(0.0631472\pi\)
\(212\) 5.65817e10 + 3.26674e10i 0.132128 + 0.0762844i
\(213\) 0 0
\(214\) 1.97345e11 + 3.41812e11i 0.439701 + 0.761585i
\(215\) 4.37097e11i 0.951449i
\(216\) 0 0
\(217\) 3.91379e11 0.813390
\(218\) 2.85167e11 1.64641e11i 0.579184 0.334392i
\(219\) 0 0
\(220\) −2.52349e11 + 4.37081e11i −0.489652 + 0.848102i
\(221\) 6.98567e11 + 4.03318e11i 1.32509 + 0.765043i
\(222\) 0 0
\(223\) 2.53690e11 + 4.39404e11i 0.460023 + 0.796783i 0.998962 0.0455621i \(-0.0145079\pi\)
−0.538939 + 0.842345i \(0.681175\pi\)
\(224\) 6.00539e11i 1.06488i
\(225\) 0 0
\(226\) −3.91225e10 −0.0663566
\(227\) 8.32283e11 4.80519e11i 1.38083 0.797225i 0.388576 0.921417i \(-0.372967\pi\)
0.992258 + 0.124192i \(0.0396338\pi\)
\(228\) 0 0
\(229\) −1.04136e11 + 1.80369e11i −0.165357 + 0.286407i −0.936782 0.349913i \(-0.886211\pi\)
0.771425 + 0.636321i \(0.219544\pi\)
\(230\) 2.23628e11 + 1.29112e11i 0.347446 + 0.200598i
\(231\) 0 0
\(232\) −1.60599e11 2.78165e11i −0.238947 0.413869i
\(233\) 1.26797e12i 1.84642i 0.384296 + 0.923210i \(0.374444\pi\)
−0.384296 + 0.923210i \(0.625556\pi\)
\(234\) 0 0
\(235\) 6.27417e11 0.875420
\(236\) 4.34470e11 2.50842e11i 0.593472 0.342641i
\(237\) 0 0
\(238\) −5.14415e11 + 8.90993e11i −0.673641 + 1.16678i
\(239\) −8.64760e11 4.99270e11i −1.10894 0.640244i −0.170382 0.985378i \(-0.554500\pi\)
−0.938553 + 0.345134i \(0.887834\pi\)
\(240\) 0 0
\(241\) −2.80502e11 4.85843e11i −0.345025 0.597601i 0.640333 0.768097i \(-0.278796\pi\)
−0.985358 + 0.170496i \(0.945463\pi\)
\(242\) 7.77561e11i 0.936823i
\(243\) 0 0
\(244\) −6.81024e11 −0.787432
\(245\) −7.00070e11 + 4.04185e11i −0.793069 + 0.457879i
\(246\) 0 0
\(247\) −5.51755e11 + 9.55668e11i −0.600153 + 1.03949i
\(248\) 5.52649e11 + 3.19072e11i 0.589103 + 0.340119i
\(249\) 0 0
\(250\) 2.35055e9 + 4.07127e9i 0.00240696 + 0.00416898i
\(251\) 1.09342e12i 1.09753i −0.835975 0.548767i \(-0.815097\pi\)
0.835975 0.548767i \(-0.184903\pi\)
\(252\) 0 0
\(253\) 6.01971e11 0.580728
\(254\) 5.20050e10 3.00251e10i 0.0491899 0.0283998i
\(255\) 0 0
\(256\) 5.73021e11 9.92501e11i 0.521159 0.902675i
\(257\) −1.51176e12 8.72816e11i −1.34840 0.778497i −0.360374 0.932808i \(-0.617351\pi\)
−0.988022 + 0.154311i \(0.950684\pi\)
\(258\) 0 0
\(259\) 1.23293e11 + 2.13550e11i 0.105789 + 0.183232i
\(260\) 8.27425e11i 0.696405i
\(261\) 0 0
\(262\) −3.83161e11 −0.310367
\(263\) 3.30907e11 1.91049e11i 0.262983 0.151833i −0.362712 0.931901i \(-0.618149\pi\)
0.625695 + 0.780068i \(0.284816\pi\)
\(264\) 0 0
\(265\) 3.07691e11 5.32937e11i 0.235443 0.407799i
\(266\) −1.21891e12 7.03741e11i −0.915303 0.528451i
\(267\) 0 0
\(268\) −3.39660e11 5.88309e11i −0.245681 0.425531i
\(269\) 1.54623e12i 1.09777i −0.835896 0.548887i \(-0.815052\pi\)
0.835896 0.548887i \(-0.184948\pi\)
\(270\) 0 0
\(271\) 1.85954e12 1.27221 0.636104 0.771603i \(-0.280545\pi\)
0.636104 + 0.771603i \(0.280545\pi\)
\(272\) −6.08696e11 + 3.51431e11i −0.408843 + 0.236045i
\(273\) 0 0
\(274\) 7.70839e11 1.33513e12i 0.499127 0.864513i
\(275\) 2.06315e12 + 1.19116e12i 1.31180 + 0.757369i
\(276\) 0 0
\(277\) 9.83899e11 + 1.70416e12i 0.603326 + 1.04499i 0.992314 + 0.123748i \(0.0394914\pi\)
−0.388988 + 0.921243i \(0.627175\pi\)
\(278\) 7.09079e11i 0.427042i
\(279\) 0 0
\(280\) −3.35588e12 −1.94992
\(281\) 3.06376e11 1.76886e11i 0.174873 0.100963i −0.410008 0.912082i \(-0.634474\pi\)
0.584882 + 0.811119i \(0.301141\pi\)
\(282\) 0 0
\(283\) 7.77229e11 1.34620e12i 0.428170 0.741613i −0.568540 0.822655i \(-0.692492\pi\)
0.996711 + 0.0810425i \(0.0258250\pi\)
\(284\) 5.44347e11 + 3.14279e11i 0.294635 + 0.170107i
\(285\) 0 0
\(286\) −1.13794e12 1.97096e12i −0.594686 1.03003i
\(287\) 2.95695e12i 1.51857i
\(288\) 0 0
\(289\) −2.08947e12 −1.03645
\(290\) −8.23931e11 + 4.75697e11i −0.401699 + 0.231921i
\(291\) 0 0
\(292\) 3.44825e11 5.97254e11i 0.162437 0.281349i
\(293\) 3.16621e12 + 1.82801e12i 1.46623 + 0.846526i 0.999287 0.0377630i \(-0.0120232\pi\)
0.466940 + 0.884289i \(0.345357\pi\)
\(294\) 0 0
\(295\) −2.36265e12 4.09223e12i −1.05752 1.83168i
\(296\) 4.02060e11i 0.176943i
\(297\) 0 0
\(298\) −2.32708e12 −0.990217
\(299\) 8.54681e11 4.93450e11i 0.357642 0.206485i
\(300\) 0 0
\(301\) 1.06535e12 1.84523e12i 0.431180 0.746826i
\(302\) −1.69848e12 9.80618e11i −0.676123 0.390360i
\(303\) 0 0
\(304\) −4.80772e11 8.32722e11i −0.185170 0.320724i
\(305\) 6.41449e12i 2.43032i
\(306\) 0 0
\(307\) 4.14571e12 1.52022 0.760111 0.649793i \(-0.225144\pi\)
0.760111 + 0.649793i \(0.225144\pi\)
\(308\) −2.13061e12 + 1.23011e12i −0.768690 + 0.443803i
\(309\) 0 0
\(310\) 9.45099e11 1.63696e12i 0.330118 0.571781i
\(311\) −6.42068e11 3.70698e11i −0.220688 0.127414i 0.385581 0.922674i \(-0.374001\pi\)
−0.606269 + 0.795260i \(0.707334\pi\)
\(312\) 0 0
\(313\) 5.99277e11 + 1.03798e12i 0.199483 + 0.345515i 0.948361 0.317193i \(-0.102740\pi\)
−0.748878 + 0.662708i \(0.769407\pi\)
\(314\) 1.85788e12i 0.608653i
\(315\) 0 0
\(316\) −2.32705e12 −0.738533
\(317\) 1.80801e12 1.04386e12i 0.564814 0.326096i −0.190261 0.981733i \(-0.560934\pi\)
0.755076 + 0.655638i \(0.227600\pi\)
\(318\) 0 0
\(319\) −1.10894e12 + 1.92075e12i −0.335704 + 0.581456i
\(320\) −3.87287e12 2.23600e12i −1.15420 0.666380i
\(321\) 0 0
\(322\) 6.29375e11 + 1.09011e12i 0.181815 + 0.314913i
\(323\) 5.61644e12i 1.59753i
\(324\) 0 0
\(325\) 3.90570e12 1.07716
\(326\) 4.04422e11 2.33493e11i 0.109836 0.0634141i
\(327\) 0 0
\(328\) −2.41066e12 + 4.17538e12i −0.634989 + 1.09983i
\(329\) 2.64868e12 + 1.52922e12i 0.687148 + 0.396725i
\(330\) 0 0
\(331\) −2.86746e12 4.96659e12i −0.721701 1.25002i −0.960317 0.278910i \(-0.910027\pi\)
0.238616 0.971114i \(-0.423306\pi\)
\(332\) 2.63362e11i 0.0652924i
\(333\) 0 0
\(334\) 1.01496e12 0.244184
\(335\) −5.54122e12 + 3.19923e12i −1.31335 + 0.758265i
\(336\) 0 0
\(337\) 1.90495e11 3.29947e11i 0.0438262 0.0759092i −0.843280 0.537474i \(-0.819379\pi\)
0.887106 + 0.461565i \(0.152712\pi\)
\(338\) −4.20574e11 2.42819e11i −0.0953365 0.0550426i
\(339\) 0 0
\(340\) −2.10564e12 3.64707e12i −0.463435 0.802693i
\(341\) 4.40643e12i 0.955685i
\(342\) 0 0
\(343\) 2.15190e12 0.453264
\(344\) 3.00866e12 1.73705e12i 0.624570 0.360595i
\(345\) 0 0
\(346\) −1.49373e12 + 2.58721e12i −0.301225 + 0.521737i
\(347\) −3.07166e11 1.77342e11i −0.0610556 0.0352505i 0.469161 0.883112i \(-0.344556\pi\)
−0.530217 + 0.847862i \(0.677890\pi\)
\(348\) 0 0
\(349\) 3.83987e12 + 6.65085e12i 0.741634 + 1.28455i 0.951751 + 0.306872i \(0.0992822\pi\)
−0.210117 + 0.977676i \(0.567384\pi\)
\(350\) 4.98156e12i 0.948473i
\(351\) 0 0
\(352\) −6.76130e12 −1.25117
\(353\) 5.70032e12 3.29108e12i 1.03998 0.600434i 0.120154 0.992755i \(-0.461661\pi\)
0.919828 + 0.392321i \(0.128328\pi\)
\(354\) 0 0
\(355\) 2.96016e12 5.12715e12i 0.525017 0.909356i
\(356\) 1.92530e12 + 1.11157e12i 0.336705 + 0.194397i
\(357\) 0 0
\(358\) −2.02154e12 3.50141e12i −0.343769 0.595425i
\(359\) 6.68773e12i 1.12152i −0.827979 0.560760i \(-0.810509\pi\)
0.827979 0.560760i \(-0.189491\pi\)
\(360\) 0 0
\(361\) 1.55245e12 0.253211
\(362\) −1.99121e12 + 1.14963e12i −0.320313 + 0.184933i
\(363\) 0 0
\(364\) −2.01670e12 + 3.49303e12i −0.315599 + 0.546633i
\(365\) −5.62548e12 3.24787e12i −0.868350 0.501342i
\(366\) 0 0
\(367\) 4.65590e12 + 8.06426e12i 0.699316 + 1.21125i 0.968704 + 0.248219i \(0.0798453\pi\)
−0.269388 + 0.963032i \(0.586821\pi\)
\(368\) 8.59936e11i 0.127417i
\(369\) 0 0
\(370\) 1.19091e12 0.171740
\(371\) 2.59788e12 1.49989e12i 0.369615 0.213397i
\(372\) 0 0
\(373\) −3.09224e11 + 5.35591e11i −0.0428281 + 0.0741804i −0.886645 0.462451i \(-0.846970\pi\)
0.843817 + 0.536631i \(0.180303\pi\)
\(374\) 1.00314e13 + 5.79165e12i 1.37090 + 0.791488i
\(375\) 0 0
\(376\) 2.49339e12 + 4.31868e12i 0.331781 + 0.574661i
\(377\) 3.63611e12i 0.477453i
\(378\) 0 0
\(379\) 6.79881e11 0.0869435 0.0434717 0.999055i \(-0.486158\pi\)
0.0434717 + 0.999055i \(0.486158\pi\)
\(380\) 4.98934e12 2.88060e12i 0.629688 0.363550i
\(381\) 0 0
\(382\) 1.18495e12 2.05240e12i 0.145675 0.252316i
\(383\) −4.87000e12 2.81170e12i −0.590929 0.341173i 0.174536 0.984651i \(-0.444158\pi\)
−0.765465 + 0.643478i \(0.777491\pi\)
\(384\) 0 0
\(385\) 1.15863e13 + 2.00680e13i 1.36975 + 2.37247i
\(386\) 7.73252e12i 0.902370i
\(387\) 0 0
\(388\) 5.71692e12 0.650135
\(389\) −8.35189e12 + 4.82197e12i −0.937642 + 0.541348i −0.889220 0.457479i \(-0.848752\pi\)
−0.0484214 + 0.998827i \(0.515419\pi\)
\(390\) 0 0
\(391\) −2.51147e12 + 4.35000e12i −0.274818 + 0.475998i
\(392\) −5.56424e12 3.21252e12i −0.601140 0.347068i
\(393\) 0 0
\(394\) 2.61757e12 + 4.53377e12i 0.275688 + 0.477505i
\(395\) 2.19182e13i 2.27940i
\(396\) 0 0
\(397\) −1.48431e11 −0.0150512 −0.00752561 0.999972i \(-0.502395\pi\)
−0.00752561 + 0.999972i \(0.502395\pi\)
\(398\) 3.60256e12 2.07994e12i 0.360742 0.208274i
\(399\) 0 0
\(400\) −1.70162e12 + 2.94729e12i −0.166173 + 0.287821i
\(401\) −1.86635e11 1.07754e11i −0.0180000 0.0103923i 0.490973 0.871175i \(-0.336641\pi\)
−0.508973 + 0.860782i \(0.669975\pi\)
\(402\) 0 0
\(403\) −3.61205e12 6.25626e12i −0.339804 0.588559i
\(404\) 5.63560e12i 0.523640i
\(405\) 0 0
\(406\) −4.63771e12 −0.420410
\(407\) 2.40430e12 1.38813e12i 0.215287 0.124296i
\(408\) 0 0
\(409\) 5.52925e12 9.57694e12i 0.483114 0.836778i −0.516698 0.856168i \(-0.672839\pi\)
0.999812 + 0.0193896i \(0.00617229\pi\)
\(410\) 1.23676e13 + 7.14043e12i 1.06749 + 0.616318i
\(411\) 0 0
\(412\) −2.76796e12 4.79425e12i −0.233171 0.403864i
\(413\) 2.30342e13i 1.91700i
\(414\) 0 0
\(415\) 2.48058e12 0.201517
\(416\) −9.59973e12 + 5.54240e12i −0.770535 + 0.444868i
\(417\) 0 0
\(418\) −7.92322e12 + 1.37234e13i −0.620898 + 1.07543i
\(419\) −6.71893e12 3.87918e12i −0.520272 0.300379i 0.216774 0.976222i \(-0.430447\pi\)
−0.737046 + 0.675843i \(0.763780\pi\)
\(420\) 0 0
\(421\) 4.72007e12 + 8.17540e12i 0.356893 + 0.618156i 0.987440 0.157995i \(-0.0505028\pi\)
−0.630547 + 0.776151i \(0.717170\pi\)
\(422\) 6.29194e12i 0.470135i
\(423\) 0 0
\(424\) 4.89113e12 0.356928
\(425\) −1.72153e13 + 9.93925e12i −1.24157 + 0.716818i
\(426\) 0 0
\(427\) −1.56342e13 + 2.70792e13i −1.10138 + 1.90764i
\(428\) −6.82026e12 3.93768e12i −0.474878 0.274171i
\(429\) 0 0
\(430\) −5.14518e12 8.91172e12i −0.349992 0.606205i
\(431\) 1.56255e13i 1.05063i 0.850909 + 0.525313i \(0.176052\pi\)
−0.850909 + 0.525313i \(0.823948\pi\)
\(432\) 0 0
\(433\) −1.68288e13 −1.10564 −0.552820 0.833301i \(-0.686448\pi\)
−0.552820 + 0.833301i \(0.686448\pi\)
\(434\) 7.97960e12 4.60702e12i 0.518242 0.299207i
\(435\) 0 0
\(436\) −3.28513e12 + 5.69000e12i −0.208506 + 0.361144i
\(437\) −5.95097e12 3.43580e12i −0.373406 0.215586i
\(438\) 0 0
\(439\) 3.07061e12 + 5.31844e12i 0.188322 + 0.326184i 0.944691 0.327962i \(-0.106362\pi\)
−0.756369 + 0.654145i \(0.773028\pi\)
\(440\) 3.77829e13i 2.29104i
\(441\) 0 0
\(442\) 1.89902e13 1.12569
\(443\) −1.18984e12 + 6.86954e11i −0.0697380 + 0.0402633i −0.534464 0.845192i \(-0.679486\pi\)
0.464726 + 0.885455i \(0.346153\pi\)
\(444\) 0 0
\(445\) 1.04698e13 1.81342e13i 0.599982 1.03920i
\(446\) 1.03447e13 + 5.97251e12i 0.586196 + 0.338441i
\(447\) 0 0
\(448\) −1.08997e13 1.88789e13i −0.603984 1.04613i
\(449\) 1.04566e13i 0.573004i 0.958080 + 0.286502i \(0.0924925\pi\)
−0.958080 + 0.286502i \(0.907508\pi\)
\(450\) 0 0
\(451\) 3.32915e13 1.78423
\(452\) 6.76037e11 3.90310e11i 0.0358326 0.0206880i
\(453\) 0 0
\(454\) 1.13126e13 1.95940e13i 0.586521 1.01588i
\(455\) 3.29005e13 + 1.89951e13i 1.68712 + 0.974058i
\(456\) 0 0
\(457\) −1.69623e13 2.93796e13i −0.850951 1.47389i −0.880351 0.474322i \(-0.842693\pi\)
0.0294005 0.999568i \(-0.490640\pi\)
\(458\) 4.90325e12i 0.243308i
\(459\) 0 0
\(460\) −5.15240e12 −0.250162
\(461\) 1.98110e13 1.14379e13i 0.951485 0.549340i 0.0579434 0.998320i \(-0.481546\pi\)
0.893542 + 0.448979i \(0.148212\pi\)
\(462\) 0 0
\(463\) 1.83345e12 3.17563e12i 0.0861716 0.149254i −0.819718 0.572767i \(-0.805870\pi\)
0.905890 + 0.423513i \(0.139203\pi\)
\(464\) −2.74385e12 1.58416e12i −0.127577 0.0736563i
\(465\) 0 0
\(466\) 1.49256e13 + 2.58520e13i 0.679209 + 1.17642i
\(467\) 2.48699e13i 1.11967i −0.828605 0.559834i \(-0.810865\pi\)
0.828605 0.559834i \(-0.189135\pi\)
\(468\) 0 0
\(469\) −3.11902e13 −1.37453
\(470\) 1.27920e13 7.38548e12i 0.557764 0.322025i
\(471\) 0 0
\(472\) 1.87786e13 3.25256e13i 0.801593 1.38840i
\(473\) −2.07750e13 1.19944e13i −0.877475 0.506611i
\(474\) 0 0
\(475\) −1.35973e13 2.35512e13i −0.562321 0.973969i
\(476\) 2.05285e13i 0.840083i
\(477\) 0 0
\(478\) −2.35081e13 −0.942060
\(479\) 3.81706e12 2.20378e12i 0.151374 0.0873959i −0.422400 0.906410i \(-0.638812\pi\)
0.573774 + 0.819014i \(0.305479\pi\)
\(480\) 0 0
\(481\) 2.27576e12 3.94173e12i 0.0883896 0.153095i
\(482\) −1.14380e13 6.60372e12i −0.439657 0.253836i
\(483\) 0 0
\(484\) 7.75743e12 + 1.34363e13i 0.292073 + 0.505885i
\(485\) 5.38470e13i 2.00656i
\(486\) 0 0
\(487\) −9.42862e12 −0.344194 −0.172097 0.985080i \(-0.555054\pi\)
−0.172097 + 0.985080i \(0.555054\pi\)
\(488\) −4.41527e13 + 2.54916e13i −1.59536 + 0.921080i
\(489\) 0 0
\(490\) −9.51555e12 + 1.64814e13i −0.336863 + 0.583464i
\(491\) −1.21887e13 7.03713e12i −0.427119 0.246597i 0.271000 0.962579i \(-0.412646\pi\)
−0.698119 + 0.715982i \(0.745979\pi\)
\(492\) 0 0
\(493\) −9.25320e12 1.60270e13i −0.317729 0.550323i
\(494\) 2.59794e13i 0.883069i
\(495\) 0 0
\(496\) 6.29473e12 0.209686
\(497\) 2.49930e13 1.44297e13i 0.824208 0.475857i
\(498\) 0 0
\(499\) 1.68854e13 2.92464e13i 0.545769 0.945300i −0.452789 0.891618i \(-0.649571\pi\)
0.998558 0.0536824i \(-0.0170959\pi\)
\(500\) −8.12350e10 4.69010e10i −0.00259952 0.00150083i
\(501\) 0 0
\(502\) −1.28709e13 2.22931e13i −0.403730 0.699281i
\(503\) 4.24460e12i 0.131825i 0.997825 + 0.0659124i \(0.0209958\pi\)
−0.997825 + 0.0659124i \(0.979004\pi\)
\(504\) 0 0
\(505\) −5.30811e13 −1.61615
\(506\) 1.22732e13 7.08596e12i 0.370004 0.213622i
\(507\) 0 0
\(508\) −5.99097e11 + 1.03767e12i −0.0177084 + 0.0306718i
\(509\) −1.74176e13 1.00560e13i −0.509798 0.294332i 0.222952 0.974829i \(-0.428431\pi\)
−0.732751 + 0.680497i \(0.761764\pi\)
\(510\) 0 0
\(511\) −1.58322e13 2.74222e13i −0.454399 0.787042i
\(512\) 2.21504e13i 0.629552i
\(513\) 0 0
\(514\) −4.10966e13 −1.14549
\(515\) −4.51566e13 + 2.60712e13i −1.24648 + 0.719655i
\(516\) 0 0
\(517\) 1.72170e13 2.98208e13i 0.466128 0.807358i
\(518\) 5.02752e12 + 2.90264e12i 0.134805 + 0.0778295i
\(519\) 0 0
\(520\) 3.09716e13 + 5.36443e13i 0.814604 + 1.41094i
\(521\) 1.35570e12i 0.0353163i 0.999844 + 0.0176581i \(0.00562105\pi\)
−0.999844 + 0.0176581i \(0.994379\pi\)
\(522\) 0 0
\(523\) 5.72383e13 1.46278 0.731389 0.681961i \(-0.238872\pi\)
0.731389 + 0.681961i \(0.238872\pi\)
\(524\) 6.62103e12 3.82265e12i 0.167598 0.0967628i
\(525\) 0 0
\(526\) 4.49779e12 7.79040e12i 0.111704 0.193478i
\(527\) 3.18420e13 + 1.83840e13i 0.783333 + 0.452258i
\(528\) 0 0
\(529\) −1.76405e13 3.05543e13i −0.425827 0.737554i
\(530\) 1.44877e13i 0.346432i
\(531\) 0 0
\(532\) 2.80838e13 0.659019
\(533\) 4.72674e13 2.72898e13i 1.09882 0.634403i
\(534\) 0 0
\(535\) −3.70886e13 + 6.42393e13i −0.846196 + 1.46565i
\(536\) −4.40423e13 2.54278e13i −0.995511 0.574759i
\(537\) 0 0
\(538\) −1.82011e13 3.15252e13i −0.403818 0.699434i
\(539\) 4.43653e13i 0.975212i
\(540\) 0 0
\(541\) 2.34478e13 0.505961 0.252980 0.967471i \(-0.418589\pi\)
0.252980 + 0.967471i \(0.418589\pi\)
\(542\) 3.79130e13 2.18891e13i 0.810573 0.467985i
\(543\) 0 0
\(544\) 2.82087e13 4.88589e13i 0.592091 1.02553i
\(545\) 5.35935e13 + 3.09422e13i 1.11463 + 0.643531i
\(546\) 0 0
\(547\) 6.84180e12 + 1.18503e13i 0.139712 + 0.241988i 0.927388 0.374102i \(-0.122049\pi\)
−0.787676 + 0.616090i \(0.788716\pi\)
\(548\) 3.07615e13i 0.622449i
\(549\) 0 0
\(550\) 5.60859e13 1.11440
\(551\) 2.19256e13 1.26588e13i 0.431712 0.249249i
\(552\) 0 0
\(553\) −5.34218e13 + 9.25293e13i −1.03298 + 1.78918i
\(554\) 4.01203e13 + 2.31635e13i 0.768804 + 0.443869i
\(555\) 0 0
\(556\) 7.07421e12 + 1.22529e13i 0.133139 + 0.230603i
\(557\) 6.54044e13i 1.21992i 0.792432 + 0.609960i \(0.208814\pi\)
−0.792432 + 0.609960i \(0.791186\pi\)
\(558\) 0 0
\(559\) −3.93285e13 −0.720525
\(560\) −2.86679e13 + 1.65514e13i −0.520541 + 0.300535i
\(561\) 0 0
\(562\) 4.16435e12 7.21287e12i 0.0742790 0.128655i
\(563\) −2.72295e13 1.57209e13i −0.481390 0.277931i 0.239605 0.970870i \(-0.422982\pi\)
−0.720996 + 0.692940i \(0.756315\pi\)
\(564\) 0 0
\(565\) −3.67629e12 6.36752e12i −0.0638510 0.110593i
\(566\) 3.65959e13i 0.630013i
\(567\) 0 0
\(568\) 4.70554e13 0.795917
\(569\) −8.78437e13 + 5.07166e13i −1.47282 + 0.850332i −0.999532 0.0305771i \(-0.990265\pi\)
−0.473286 + 0.880909i \(0.656932\pi\)
\(570\) 0 0
\(571\) −1.43078e13 + 2.47818e13i −0.235718 + 0.408275i −0.959481 0.281773i \(-0.909077\pi\)
0.723763 + 0.690048i \(0.242411\pi\)
\(572\) 3.93271e13 + 2.27055e13i 0.642261 + 0.370810i
\(573\) 0 0
\(574\) 3.48071e13 + 6.02876e13i 0.558609 + 0.967539i
\(575\) 2.43209e13i 0.386937i
\(576\) 0 0
\(577\) −1.60161e13 −0.250425 −0.125212 0.992130i \(-0.539961\pi\)
−0.125212 + 0.992130i \(0.539961\pi\)
\(578\) −4.26010e13 + 2.45957e13i −0.660359 + 0.381259i
\(579\) 0 0
\(580\) 9.49169e12 1.64401e13i 0.144612 0.250475i
\(581\) 1.04719e13 + 6.04597e12i 0.158178 + 0.0913241i
\(582\) 0 0
\(583\) −1.68868e13 2.92488e13i −0.250729 0.434275i
\(584\) 5.16289e13i 0.760027i
\(585\) 0 0
\(586\) 8.60719e13 1.24559
\(587\) −1.14113e14 + 6.58831e13i −1.63736 + 0.945330i −0.655623 + 0.755089i \(0.727594\pi\)
−0.981737 + 0.190242i \(0.939073\pi\)
\(588\) 0 0
\(589\) −2.51500e13 + 4.35611e13i −0.354782 + 0.614501i
\(590\) −9.63414e13 5.56228e13i −1.34758 0.778023i
\(591\) 0 0
\(592\) 1.98298e12 + 3.43463e12i 0.0272716 + 0.0472358i
\(593\) 4.28136e13i 0.583859i 0.956440 + 0.291930i \(0.0942973\pi\)
−0.956440 + 0.291930i \(0.905703\pi\)
\(594\) 0 0
\(595\) −1.93356e14 −2.59282
\(596\) 4.02120e13 2.32164e13i 0.534718 0.308719i
\(597\) 0 0
\(598\) 1.16171e13 2.01214e13i 0.151911 0.263118i
\(599\) −1.09823e14 6.34064e13i −1.42416 0.822240i −0.427511 0.904010i \(-0.640609\pi\)
−0.996651 + 0.0817702i \(0.973943\pi\)
\(600\) 0 0
\(601\) 6.29495e13 + 1.09032e14i 0.802823 + 1.39053i 0.917751 + 0.397157i \(0.130003\pi\)
−0.114927 + 0.993374i \(0.536664\pi\)
\(602\) 5.01619e13i 0.634442i
\(603\) 0 0
\(604\) 3.91330e13 0.486809
\(605\) 1.26555e14 7.30664e13i 1.56135 0.901448i
\(606\) 0 0
\(607\) 2.57876e13 4.46654e13i 0.312944 0.542035i −0.666054 0.745903i \(-0.732018\pi\)
0.978998 + 0.203868i \(0.0653514\pi\)
\(608\) 6.68410e13 + 3.85906e13i 0.804498 + 0.464477i
\(609\) 0 0
\(610\) 7.55066e13 + 1.30781e14i 0.893997 + 1.54845i
\(611\) 5.64529e13i 0.662949i
\(612\) 0 0
\(613\) 6.86500e13 0.793119 0.396560 0.918009i \(-0.370204\pi\)
0.396560 + 0.918009i \(0.370204\pi\)
\(614\) 8.45245e13 4.88003e13i 0.968592 0.559217i
\(615\) 0 0
\(616\) −9.20892e13 + 1.59503e14i −1.03826 + 1.79832i
\(617\) 8.06745e13 + 4.65775e13i 0.902216 + 0.520895i 0.877919 0.478810i \(-0.158932\pi\)
0.0242976 + 0.999705i \(0.492265\pi\)
\(618\) 0 0
\(619\) 4.65318e13 + 8.05954e13i 0.512031 + 0.886864i 0.999903 + 0.0139483i \(0.00444002\pi\)
−0.487872 + 0.872915i \(0.662227\pi\)
\(620\) 3.77156e13i 0.411682i
\(621\) 0 0
\(622\) −1.74543e13 −0.187478
\(623\) 8.83980e13 5.10366e13i 0.941894 0.543803i
\(624\) 0 0
\(625\) 4.74623e13 8.22072e13i 0.497679 0.862005i
\(626\) 2.44366e13 + 1.41085e13i 0.254197 + 0.146760i
\(627\) 0 0
\(628\) 1.85354e13 + 3.21042e13i 0.189759 + 0.328673i
\(629\) 2.31655e13i 0.235282i
\(630\) 0 0
\(631\) 8.95590e13 0.895288 0.447644 0.894212i \(-0.352263\pi\)
0.447644 + 0.894212i \(0.352263\pi\)
\(632\) −1.50869e14 + 8.71044e13i −1.49629 + 0.863882i
\(633\) 0 0
\(634\) 2.45750e13 4.25652e13i 0.239910 0.415536i
\(635\) 9.77368e12 + 5.64283e12i 0.0946650 + 0.0546548i
\(636\) 0 0
\(637\) 3.63673e13 + 6.29900e13i 0.346748 + 0.600585i
\(638\) 5.22147e13i 0.493957i
\(639\) 0 0
\(640\) 2.08709e13 0.194375
\(641\) −9.32438e13 + 5.38344e13i −0.861648 + 0.497473i −0.864564 0.502523i \(-0.832405\pi\)
0.00291565 + 0.999996i \(0.499072\pi\)
\(642\) 0 0
\(643\) −2.37874e13 + 4.12010e13i −0.216417 + 0.374846i −0.953710 0.300728i \(-0.902771\pi\)
0.737293 + 0.675573i \(0.236104\pi\)
\(644\) −2.17512e13 1.25581e13i −0.196361 0.113369i
\(645\) 0 0
\(646\) −6.61126e13 1.14510e14i −0.587654 1.01785i
\(647\) 1.19789e13i 0.105656i 0.998604 + 0.0528280i \(0.0168235\pi\)
−0.998604 + 0.0528280i \(0.983176\pi\)
\(648\) 0 0
\(649\) −2.59335e14 −2.25236
\(650\) 7.96310e13 4.59750e13i 0.686303 0.396237i
\(651\) 0 0
\(652\) −4.65894e12 + 8.06952e12i −0.0395411 + 0.0684873i
\(653\) −1.38814e13 8.01446e12i −0.116915 0.0675007i 0.440402 0.897801i \(-0.354836\pi\)
−0.557317 + 0.830300i \(0.688169\pi\)
\(654\) 0 0
\(655\) −3.60051e13 6.23627e13i −0.298647 0.517272i
\(656\) 4.75580e13i 0.391476i
\(657\) 0 0
\(658\) 7.20033e13 0.583744
\(659\) 1.93514e14 1.11726e14i 1.55699 0.898930i 0.559450 0.828864i \(-0.311012\pi\)
0.997542 0.0700656i \(-0.0223208\pi\)
\(660\) 0 0
\(661\) −9.09783e12 + 1.57579e13i −0.0720992 + 0.124880i −0.899821 0.436259i \(-0.856303\pi\)
0.827722 + 0.561138i \(0.189636\pi\)
\(662\) −1.16926e14 6.75073e13i −0.919647 0.530959i
\(663\) 0 0
\(664\) 9.85797e12 + 1.70745e13i 0.0763743 + 0.132284i
\(665\) 2.64518e14i 2.03398i
\(666\) 0 0
\(667\) −2.26422e13 −0.171510
\(668\) −1.75385e13 + 1.01259e13i −0.131859 + 0.0761289i
\(669\) 0 0
\(670\) −7.53178e13 + 1.30454e14i −0.557858 + 0.966239i
\(671\) 3.04877e14 + 1.76021e14i 2.24136 + 1.29405i
\(672\) 0 0
\(673\) −1.19622e14 2.07191e14i −0.866432 1.50070i −0.865618 0.500705i \(-0.833074\pi\)
−0.000814545 1.00000i \(-0.500259\pi\)
\(674\) 8.96946e12i 0.0644862i
\(675\) 0 0
\(676\) 9.69004e12 0.0686423
\(677\) −2.00676e14 + 1.15860e14i −1.41108 + 0.814686i −0.995490 0.0948664i \(-0.969758\pi\)
−0.415588 + 0.909553i \(0.636424\pi\)
\(678\) 0 0
\(679\) 1.31243e14 2.27319e14i 0.909340 1.57502i
\(680\) −2.73029e14 1.57633e14i −1.87786 1.08419i
\(681\) 0 0
\(682\) −5.18692e13 8.98401e13i −0.351550 0.608903i
\(683\) 1.67561e14i 1.12738i −0.825986 0.563690i \(-0.809381\pi\)
0.825986 0.563690i \(-0.190619\pi\)
\(684\) 0 0
\(685\) 2.89739e14 1.92112
\(686\) 4.38738e13 2.53305e13i 0.288792 0.166734i
\(687\) 0 0
\(688\) 1.71345e13 2.96778e13i 0.111155 0.192526i
\(689\) −4.79519e13 2.76850e13i −0.308823 0.178299i
\(690\) 0 0
\(691\) −9.62134e13 1.66647e14i −0.610725 1.05781i −0.991119 0.132982i \(-0.957545\pi\)
0.380394 0.924825i \(-0.375788\pi\)
\(692\) 5.96094e13i 0.375651i
\(693\) 0 0
\(694\) −8.35017e12 −0.0518678
\(695\) 1.15409e14 6.66312e13i 0.711729 0.410917i
\(696\) 0 0
\(697\) −1.38895e14 + 2.40573e14i −0.844349 + 1.46246i
\(698\) 1.56578e14 + 9.04003e13i 0.945047 + 0.545623i
\(699\) 0 0
\(700\) −4.96991e13 8.60813e13i −0.295705 0.512175i
\(701\) 3.26565e14i 1.92921i 0.263702 + 0.964604i \(0.415057\pi\)
−0.263702 + 0.964604i \(0.584943\pi\)
\(702\) 0 0
\(703\) −3.16913e13 −0.184571
\(704\) −2.12552e14 + 1.22717e14i −1.22914 + 0.709645i
\(705\) 0 0
\(706\) 7.74804e13 1.34200e14i 0.441742 0.765119i
\(707\) −2.24085e14 1.29376e14i −1.26858 0.732413i
\(708\) 0 0
\(709\) 1.60811e14 + 2.78533e14i 0.897604 + 1.55470i 0.830549 + 0.556946i \(0.188027\pi\)
0.0670547 + 0.997749i \(0.478640\pi\)
\(710\) 1.39379e14i 0.772514i
\(711\) 0 0
\(712\) 1.66431e14 0.909563
\(713\) 3.89579e13 2.24924e13i 0.211421 0.122064i
\(714\) 0 0
\(715\) 2.13861e14 3.70418e14i 1.14446 1.98226i
\(716\) 6.98644e13 + 4.03362e13i 0.371271 + 0.214353i
\(717\) 0 0
\(718\) −7.87231e13 1.36352e14i −0.412553 0.714563i
\(719\) 2.74758e13i 0.142990i 0.997441 + 0.0714950i \(0.0227770\pi\)
−0.997441 + 0.0714950i \(0.977223\pi\)
\(720\) 0 0
\(721\) −2.54175e14 −1.30454
\(722\) 3.16521e13 1.82743e13i 0.161331 0.0931442i
\(723\) 0 0
\(724\) 2.29387e13 3.97311e13i 0.115313 0.199727i
\(725\) −7.76022e13 4.48037e13i −0.387422 0.223678i
\(726\) 0 0
\(727\) −4.21021e13 7.29230e13i −0.207316 0.359081i 0.743552 0.668678i \(-0.233139\pi\)
−0.950868 + 0.309597i \(0.899806\pi\)
\(728\) 3.01951e14i 1.47666i
\(729\) 0 0
\(730\) −1.52926e14 −0.737679
\(731\) 1.73350e14 1.00084e14i 0.830494 0.479486i
\(732\) 0 0
\(733\) −1.81007e14 + 3.13513e14i −0.855412 + 1.48162i 0.0208494 + 0.999783i \(0.493363\pi\)
−0.876262 + 0.481835i \(0.839970\pi\)
\(734\) 1.89853e14 + 1.09612e14i 0.891122 + 0.514489i
\(735\) 0 0
\(736\) −3.45127e13 5.97778e13i −0.159805 0.276790i
\(737\) 3.51162e14i 1.61499i
\(738\) 0 0
\(739\) −2.44206e14 −1.10799 −0.553993 0.832522i \(-0.686896\pi\)
−0.553993 + 0.832522i \(0.686896\pi\)
\(740\) −2.05790e13 + 1.18813e13i −0.0927395 + 0.0535432i
\(741\) 0 0
\(742\) 3.53111e13 6.11606e13i 0.156997 0.271927i
\(743\) 5.96794e13 + 3.44559e13i 0.263560 + 0.152167i 0.625958 0.779857i \(-0.284708\pi\)
−0.362397 + 0.932024i \(0.618042\pi\)
\(744\) 0 0
\(745\) −2.18673e14 3.78753e14i −0.952826 1.65034i
\(746\) 1.45598e13i 0.0630176i
\(747\) 0 0
\(748\) −2.31124e14 −0.987047
\(749\) −3.13144e14 + 1.80794e14i −1.32842 + 0.766962i
\(750\) 0 0
\(751\) 1.22270e14 2.11778e14i 0.511825 0.886506i −0.488081 0.872798i \(-0.662303\pi\)
0.999906 0.0137082i \(-0.00436360\pi\)
\(752\) 4.26000e13 + 2.45951e13i 0.177141 + 0.102273i
\(753\) 0 0
\(754\) 4.28016e13 + 7.41346e13i 0.175632 + 0.304203i
\(755\) 3.68589e14i 1.50248i
\(756\) 0 0
\(757\) −3.72001e13 −0.149646 −0.0748230 0.997197i \(-0.523839\pi\)
−0.0748230 + 0.997197i \(0.523839\pi\)
\(758\) 1.38617e13 8.00306e12i 0.0553950 0.0319823i
\(759\) 0 0
\(760\) 2.15649e14 3.73515e14i 0.850510 1.47313i
\(761\) 4.82702e13 + 2.78688e13i 0.189128 + 0.109193i 0.591574 0.806250i \(-0.298507\pi\)
−0.402446 + 0.915444i \(0.631840\pi\)
\(762\) 0 0
\(763\) 1.50833e14 + 2.61250e14i 0.583274 + 1.01026i
\(764\) 4.72873e13i 0.181668i
\(765\) 0 0
\(766\) −1.32389e14 −0.502005
\(767\) −3.68205e14 + 2.12583e14i −1.38712 + 0.800853i
\(768\) 0 0
\(769\) −2.09461e13 + 3.62798e13i −0.0778883 + 0.134906i −0.902339 0.431028i \(-0.858151\pi\)
0.824450 + 0.565934i \(0.191484\pi\)
\(770\) 4.72452e14 + 2.72770e14i 1.74544 + 1.00773i
\(771\) 0 0
\(772\) 7.71444e13 + 1.33618e14i 0.281331 + 0.487280i
\(773\) 4.44998e13i 0.161236i 0.996745 + 0.0806178i \(0.0256893\pi\)
−0.996745 + 0.0806178i \(0.974311\pi\)
\(774\) 0 0
\(775\) 1.78029e14 0.636769
\(776\) 3.70644e14 2.13991e14i 1.31719 0.760480i
\(777\) 0 0
\(778\) −1.13521e14 + 1.96625e14i −0.398272 + 0.689827i
\(779\) −3.29113e14 1.90014e14i −1.14725 0.662365i
\(780\) 0 0
\(781\) −1.62460e14 2.81389e14i −0.559103 0.968395i
\(782\) 1.18253e14i 0.404369i
\(783\) 0 0
\(784\) −6.33773e13 −0.213970
\(785\) 3.02386e14 1.74583e14i 1.01441 0.585670i
\(786\) 0 0
\(787\) 2.64586e12 4.58276e12i 0.00876381 0.0151794i −0.861610 0.507570i \(-0.830544\pi\)
0.870374 + 0.492391i \(0.163877\pi\)
\(788\) −9.04634e13 5.22291e13i −0.297743 0.171902i
\(789\) 0 0
\(790\) 2.58005e14 + 4.46878e14i 0.838481 + 1.45229i
\(791\) 3.58412e13i 0.115745i
\(792\) 0 0
\(793\) 5.77155e14 1.84046
\(794\) −3.02627e12 + 1.74722e12i −0.00958971 + 0.00553662i
\(795\) 0 0
\(796\) −4.15016e13 + 7.18828e13i −0.129867 + 0.224936i
\(797\) −1.98830e14 1.14794e14i −0.618287 0.356968i 0.157915 0.987453i \(-0.449523\pi\)
−0.776202 + 0.630485i \(0.782856\pi\)
\(798\) 0 0
\(799\) 1.43662e14 + 2.48829e14i 0.441171 + 0.764130i
\(800\) 2.73171e14i 0.833651i
\(801\) 0 0
\(802\) −5.07360e12 −0.0152913
\(803\) −3.08739e14 + 1.78251e14i −0.924728 + 0.533892i
\(804\) 0 0
\(805\) −1.18283e14 + 2.04872e14i −0.349900 + 0.606044i
\(806\) −1.47288e14 8.50369e13i −0.433005 0.249995i
\(807\) 0 0
\(808\) −2.10947e14 3.65372e14i −0.612516 1.06091i
\(809\) 2.21639e14i 0.639594i −0.947486 0.319797i \(-0.896385\pi\)
0.947486 0.319797i \(-0.103615\pi\)
\(810\) 0 0
\(811\) 2.70111e14 0.769907 0.384953 0.922936i \(-0.374218\pi\)
0.384953 + 0.922936i \(0.374218\pi\)
\(812\) 8.01396e13 4.62686e13i 0.227022 0.131071i
\(813\) 0 0
\(814\) 3.26800e13 5.66034e13i 0.0914450 0.158387i
\(815\) 7.60059e13 + 4.38821e13i 0.211378 + 0.122039i
\(816\) 0 0
\(817\) 1.36918e14 + 2.37150e14i 0.376142 + 0.651496i
\(818\) 2.60345e14i 0.710858i
\(819\) 0 0
\(820\) −2.84949e14 −0.768596
\(821\) 1.26495e14 7.30320e13i 0.339124 0.195793i −0.320761 0.947160i \(-0.603939\pi\)
0.659885 + 0.751367i \(0.270605\pi\)
\(822\) 0 0
\(823\) 1.91213e13 3.31190e13i 0.0506428 0.0877159i −0.839593 0.543216i \(-0.817206\pi\)
0.890236 + 0.455500i \(0.150540\pi\)
\(824\) −3.58910e14 2.07217e14i −0.944821 0.545493i
\(825\) 0 0
\(826\) −2.71141e14 4.69631e14i −0.705173 1.22140i
\(827\) 3.49746e13i 0.0904119i 0.998978 + 0.0452060i \(0.0143944\pi\)
−0.998978 + 0.0452060i \(0.985606\pi\)
\(828\) 0 0
\(829\) 6.43554e14 1.64366 0.821831 0.569732i \(-0.192953\pi\)
0.821831 + 0.569732i \(0.192953\pi\)
\(830\) 5.05751e13 2.91995e13i 0.128394 0.0741286i
\(831\) 0 0
\(832\) −2.01188e14 + 3.48468e14i −0.504644 + 0.874070i
\(833\) −3.20595e14 1.85095e14i −0.799339 0.461499i
\(834\) 0 0
\(835\) 9.53744e13 + 1.65193e14i 0.234963 + 0.406968i
\(836\) 3.16188e14i 0.774308i
\(837\) 0 0
\(838\) −1.82651e14 −0.441980
\(839\) 6.72646e13 3.88352e13i 0.161799 0.0934149i −0.416914 0.908946i \(-0.636888\pi\)
0.578713 + 0.815531i \(0.303555\pi\)
\(840\) 0 0
\(841\) −1.68643e14 + 2.92097e14i −0.400855 + 0.694301i
\(842\) 1.92469e14 + 1.11122e14i 0.454780 + 0.262567i
\(843\) 0 0
\(844\) 6.27723e13 + 1.08725e14i 0.146574 + 0.253873i
\(845\) 9.12695e13i 0.211857i
\(846\) 0 0
\(847\) 7.12346e14 1.63408
\(848\) 4.17829e13 2.41234e13i 0.0952838 0.0550121i
\(849\) 0 0
\(850\) −2.33995e14 + 4.05291e14i −0.527366 + 0.913424i
\(851\) 2.45453e13 + 1.41712e13i 0.0549946 + 0.0317512i
\(852\) 0 0
\(853\) 1.76843e14 + 3.06302e14i 0.391601 + 0.678272i 0.992661 0.120931i \(-0.0385881\pi\)
−0.601060 + 0.799204i \(0.705255\pi\)
\(854\) 7.36136e14i 1.62057i
\(855\) 0 0
\(856\) −5.89569e14 −1.28282
\(857\) 4.79645e14 2.76923e14i 1.03757 0.599040i 0.118424 0.992963i \(-0.462216\pi\)
0.919143 + 0.393924i \(0.128883\pi\)
\(858\) 0 0
\(859\) −2.41046e14 + 4.17503e14i −0.515387 + 0.892676i 0.484454 + 0.874817i \(0.339018\pi\)
−0.999841 + 0.0178594i \(0.994315\pi\)
\(860\) 1.77818e14 + 1.02663e14i 0.377992 + 0.218234i
\(861\) 0 0
\(862\) 1.83932e14 + 3.18580e14i 0.386475 + 0.669394i
\(863\) 2.02122e14i 0.422240i 0.977460 + 0.211120i \(0.0677111\pi\)
−0.977460 + 0.211120i \(0.932289\pi\)
\(864\) 0 0
\(865\) −5.61454e14 −1.15940
\(866\) −3.43113e14 + 1.98096e14i −0.704446 + 0.406712i
\(867\) 0 0
\(868\) −9.19250e13 + 1.59219e14i −0.186567 + 0.323144i
\(869\) 1.04176e15 + 6.01461e14i 2.10218 + 1.21369i
\(870\) 0 0
\(871\) 2.87856e14 + 4.98581e14i 0.574228 + 0.994592i
\(872\) 4.91866e14i 0.975583i
\(873\) 0 0
\(874\) −1.61775e14 −0.317215
\(875\) −3.72981e12 + 2.15340e12i −0.00727187 + 0.00419842i
\(876\) 0 0
\(877\) 1.41832e14 2.45660e14i 0.273386 0.473518i −0.696341 0.717711i \(-0.745190\pi\)
0.969727 + 0.244193i \(0.0785232\pi\)
\(878\) 1.25210e14 + 7.22898e13i 0.239975 + 0.138549i
\(879\) 0 0
\(880\) 1.86348e14 + 3.22763e14i 0.353110 + 0.611605i
\(881\) 7.92783e14i 1.49374i −0.664970 0.746870i \(-0.731556\pi\)
0.664970 0.746870i \(-0.268444\pi\)
\(882\) 0 0
\(883\) 5.58732e14 1.04088 0.520439 0.853899i \(-0.325768\pi\)
0.520439 + 0.853899i \(0.325768\pi\)
\(884\) −3.28151e14 + 1.89458e14i −0.607873 + 0.350956i
\(885\) 0 0
\(886\) −1.61726e13 + 2.80118e13i −0.0296218 + 0.0513065i
\(887\) −4.85660e13 2.80396e13i −0.0884533 0.0510685i 0.455121 0.890430i \(-0.349596\pi\)
−0.543574 + 0.839361i \(0.682929\pi\)
\(888\) 0 0
\(889\) 2.75068e13 + 4.76432e13i 0.0495372 + 0.0858010i
\(890\) 4.92971e14i 0.882818i
\(891\) 0 0
\(892\) −2.38342e14 −0.422062
\(893\) −3.40409e14 + 1.96535e14i −0.599437 + 0.346085i
\(894\) 0 0
\(895\) 3.79922e14 6.58045e14i 0.661576 1.14588i
\(896\) 8.81080e13 + 5.08692e13i 0.152572 + 0.0880876i
\(897\) 0 0
\(898\) 1.23087e14 + 2.13193e14i 0.210781 + 0.365083i
\(899\) 1.65741e14i 0.282248i
\(900\) 0 0
\(901\) 2.81812e14 0.474609
\(902\) 6.78761e14 3.91883e14i 1.13680 0.656332i
\(903\) 0 0
\(904\) 2.92196e13 5.06099e13i 0.0483985 0.0838287i
\(905\) −3.74223e14 2.16058e14i −0.616435 0.355899i
\(906\) 0 0
\(907\) 5.11795e13 + 8.86455e13i 0.0833795 + 0.144418i 0.904700 0.426050i \(-0.140095\pi\)
−0.821320 + 0.570468i \(0.806762\pi\)
\(908\) 4.51447e14i 0.731438i
\(909\) 0 0
\(910\) 8.94386e14 1.43324
\(911\) 1.75865e14 1.01536e14i 0.280277 0.161818i −0.353272 0.935521i \(-0.614931\pi\)
0.633549 + 0.773703i \(0.281597\pi\)
\(912\) 0 0
\(913\) 6.80699e13 1.17901e14i 0.107300 0.185850i
\(914\) −6.91670e14 3.99336e14i −1.08435 0.626048i
\(915\) 0 0
\(916\) −4.89178e13 8.47282e13i −0.0758560 0.131386i
\(917\) 3.51025e14i 0.541366i
\(918\) 0 0
\(919\) −1.21378e15 −1.85167 −0.925835 0.377929i \(-0.876636\pi\)
−0.925835 + 0.377929i \(0.876636\pi\)
\(920\) −3.34045e14 + 1.92861e14i −0.506834 + 0.292621i
\(921\) 0 0
\(922\) 2.69277e14 4.66401e14i 0.404152 0.700012i
\(923\) −4.61324e14 2.66345e14i −0.688648 0.397591i
\(924\) 0 0
\(925\) 5.60832e13 + 9.71390e13i 0.0828179 + 0.143445i
\(926\) 8.63281e13i 0.126794i
\(927\) 0 0
\(928\) 2.54315e14 0.369516
\(929\) −6.37295e14 + 3.67942e14i −0.921005 + 0.531742i −0.883955 0.467571i \(-0.845129\pi\)
−0.0370493 + 0.999313i \(0.511796\pi\)
\(930\) 0 0
\(931\) 2.53218e14 4.38586e14i 0.362031 0.627057i
\(932\) −5.15831e14 2.97815e14i −0.733546 0.423513i
\(933\) 0 0
\(934\) −2.92750e14 5.07057e14i −0.411872 0.713383i
\(935\) 2.17694e15i 3.04640i
\(936\) 0 0
\(937\) −9.68431e14 −1.34082 −0.670410 0.741991i \(-0.733882\pi\)
−0.670410 + 0.741991i \(0.733882\pi\)
\(938\) −6.35919e14 + 3.67148e14i −0.875765 + 0.505623i
\(939\) 0 0
\(940\) −1.47364e14 + 2.55242e14i −0.200795 + 0.347787i
\(941\) 4.94676e14 + 2.85601e14i 0.670460 + 0.387090i 0.796251 0.604967i \(-0.206814\pi\)
−0.125791 + 0.992057i \(0.540147\pi\)
\(942\) 0 0
\(943\) 1.69935e14 + 2.94336e14i 0.227889 + 0.394716i
\(944\) 3.70469e14i 0.494188i
\(945\) 0 0
\(946\) −5.64759e14 −0.745431
\(947\) −4.38321e14 + 2.53065e14i −0.575496 + 0.332263i −0.759341 0.650693i \(-0.774479\pi\)
0.183846 + 0.982955i \(0.441145\pi\)
\(948\) 0 0
\(949\) −2.92233e14 + 5.06162e14i −0.379662 + 0.657595i
\(950\) −5.54455e14 3.20115e14i −0.716553 0.413702i
\(951\) 0 0
\(952\) −7.68407e14 1.33092e15i −0.982667 1.70203i
\(953\) 1.56038e14i 0.198503i −0.995062 0.0992515i \(-0.968355\pi\)
0.995062 0.0992515i \(-0.0316448\pi\)
\(954\) 0 0
\(955\) 4.45394e14 0.560696
\(956\) 4.06221e14 2.34532e14i 0.508713 0.293705i
\(957\) 0 0
\(958\) 5.18826e13 8.98632e13i 0.0642975 0.111366i
\(959\) 1.22315e15 + 7.06187e14i 1.50795 + 0.870617i
\(960\) 0 0
\(961\) 2.45170e14 + 4.24647e14i 0.299124 + 0.518097i
\(962\) 1.07154e14i 0.130057i
\(963\) 0 0
\(964\) 2.63531e14 0.316553
\(965\) 1.25853e15 7.26615e14i 1.50393 0.868296i
\(966\) 0 0
\(967\) 4.10240e14 7.10557e14i 0.485183 0.840362i −0.514672 0.857387i \(-0.672086\pi\)
0.999855 + 0.0170254i \(0.00541962\pi\)
\(968\) 1.00587e15 + 5.80741e14i 1.18349 + 0.683291i
\(969\) 0 0
\(970\) −6.33847e14 1.09786e15i −0.738118 1.27846i
\(971\) 3.49738e14i 0.405179i −0.979264 0.202590i \(-0.935064\pi\)
0.979264 0.202590i \(-0.0649357\pi\)
\(972\) 0 0
\(973\) 6.49608e14 0.744881
\(974\) −1.92235e14 + 1.10987e14i −0.219299 + 0.126612i
\(975\) 0 0
\(976\) −2.51452e14 + 4.35527e14i −0.283926 + 0.491775i
\(977\) −3.49868e13 2.01996e13i −0.0393035 0.0226919i 0.480219 0.877148i \(-0.340557\pi\)
−0.519523 + 0.854456i \(0.673890\pi\)
\(978\) 0 0
\(979\) −5.74607e14 9.95248e14i −0.638936 1.10667i
\(980\) 3.79732e14i 0.420094i
\(981\) 0 0
\(982\) −3.31344e14 −0.362845
\(983\) 2.67505e14 1.54444e14i 0.291450 0.168269i −0.347146 0.937811i \(-0.612849\pi\)
0.638595 + 0.769543i \(0.279516\pi\)
\(984\) 0 0
\(985\) −4.91940e14 + 8.52065e14i −0.530556 + 0.918949i
\(986\) −3.77316e14 2.17844e14i −0.404875 0.233755i
\(987\) 0 0
\(988\) −2.59187e14 4.48925e14i −0.275314 0.476858i
\(989\) 2.44900e14i 0.258826i
\(990\) 0 0
\(991\) 1.06886e15 1.11828 0.559140 0.829073i \(-0.311131\pi\)
0.559140 + 0.829073i \(0.311131\pi\)
\(992\) −4.37573e14 + 2.52633e14i −0.455504 + 0.262985i
\(993\) 0 0
\(994\) 3.39712e14 5.88399e14i 0.350090 0.606373i
\(995\) 6.77057e14 + 3.90899e14i 0.694240 + 0.400820i
\(996\) 0 0
\(997\) −4.62631e14 8.01300e14i −0.469633 0.813429i 0.529764 0.848145i \(-0.322281\pi\)
−0.999397 + 0.0347164i \(0.988947\pi\)
\(998\) 7.95051e14i 0.803049i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.11.d.e.53.3 8
3.2 odd 2 inner 81.11.d.e.53.2 8
9.2 odd 6 inner 81.11.d.e.26.3 8
9.4 even 3 27.11.b.c.26.3 yes 4
9.5 odd 6 27.11.b.c.26.2 4
9.7 even 3 inner 81.11.d.e.26.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.11.b.c.26.2 4 9.5 odd 6
27.11.b.c.26.3 yes 4 9.4 even 3
81.11.d.e.26.2 8 9.7 even 3 inner
81.11.d.e.26.3 8 9.2 odd 6 inner
81.11.d.e.53.2 8 3.2 odd 2 inner
81.11.d.e.53.3 8 1.1 even 1 trivial