Properties

Label 81.11.d.e
Level $81$
Weight $11$
Character orbit 81.d
Analytic conductor $51.464$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,11,Mod(26,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.26");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.4639374666\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 86x^{6} + 6052x^{4} + 115584x^{2} + 1806336 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{19} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} + (\beta_{6} - 137 \beta_1) q^{4} + (\beta_{7} + \beta_{4} + \cdots + 43 \beta_{2}) q^{5} + (44 \beta_{6} - 44 \beta_{5} + \cdots - 5129) q^{7} + (4 \beta_{4} - 570 \beta_{2}) q^{8}+ \cdots + ( - 1805408 \beta_{4} - 599638696 \beta_{2}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 548 q^{4} - 20516 q^{7} - 399600 q^{10} + 262420 q^{13} + 3207800 q^{16} - 16467032 q^{19} + 21085704 q^{22} + 47203580 q^{25} - 135208424 q^{28} + 46994920 q^{31} + 78985368 q^{34} + 216172888 q^{37}+ \cdots - 12969797468 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 86x^{6} + 6052x^{4} + 115584x^{2} + 1806336 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -43\nu^{6} - 3026\nu^{4} - 260236\nu^{2} - 4970112 ) / 4066944 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 43\nu^{7} + 3026\nu^{5} + 260236\nu^{3} + 9037056\nu ) / 1355648 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 43\nu^{7} + 3026\nu^{5} + 260236\nu^{3} - 3163776\nu ) / 1355648 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -13633\nu^{7} - 2236214\nu^{5} - 137410660\nu^{3} - 4581228288\nu ) / 2711296 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 27\nu^{6} - 3905604 ) / 6052 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -10593\nu^{6} - 1171062\nu^{4} - 64108836\nu^{2} - 1224381312 ) / 1355648 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -40849\nu^{7} - 2236214\nu^{5} - 137410660\nu^{3} + 1289452416\nu ) / 2711296 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 9 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} - \beta_{5} - 1161\beta _1 - 1161 ) / 27 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 8\beta_{7} + 4\beta_{4} + 2956\beta_{3} + 1478\beta_{2} ) / 243 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -86\beta_{6} + 63558\beta_1 ) / 27 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -344\beta_{7} - 688\beta_{4} - 90820\beta_{3} - 181640\beta_{2} ) / 243 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 6052\beta_{5} + 3905604 ) / 27 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -24208\beta_{7} + 24208\beta_{4} - 5824088\beta_{3} + 5824088\beta_{2} ) / 243 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
−4.04574 7.00744i
−2.26538 3.92375i
2.26538 + 3.92375i
4.04574 + 7.00744i
−4.04574 + 7.00744i
−2.26538 + 3.92375i
2.26538 3.92375i
4.04574 7.00744i
−36.4117 21.0223i 0 371.875 + 644.106i 4203.27 2426.76i 0 −15913.0 + 27562.1i 11783.0i 0 −204064.
26.2 −20.3884 11.7713i 0 −234.875 406.815i −3831.75 + 2212.26i 0 10784.0 18678.4i 35166.6i 0 104164.
26.3 20.3884 + 11.7713i 0 −234.875 406.815i 3831.75 2212.26i 0 10784.0 18678.4i 35166.6i 0 104164.
26.4 36.4117 + 21.0223i 0 371.875 + 644.106i −4203.27 + 2426.76i 0 −15913.0 + 27562.1i 11783.0i 0 −204064.
53.1 −36.4117 + 21.0223i 0 371.875 644.106i 4203.27 + 2426.76i 0 −15913.0 27562.1i 11783.0i 0 −204064.
53.2 −20.3884 + 11.7713i 0 −234.875 + 406.815i −3831.75 2212.26i 0 10784.0 + 18678.4i 35166.6i 0 104164.
53.3 20.3884 11.7713i 0 −234.875 + 406.815i 3831.75 + 2212.26i 0 10784.0 + 18678.4i 35166.6i 0 104164.
53.4 36.4117 21.0223i 0 371.875 644.106i −4203.27 2426.76i 0 −15913.0 27562.1i 11783.0i 0 −204064.
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 26.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.11.d.e 8
3.b odd 2 1 inner 81.11.d.e 8
9.c even 3 1 27.11.b.c 4
9.c even 3 1 inner 81.11.d.e 8
9.d odd 6 1 27.11.b.c 4
9.d odd 6 1 inner 81.11.d.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.11.b.c 4 9.c even 3 1
27.11.b.c 4 9.d odd 6 1
81.11.d.e 8 1.a even 1 1 trivial
81.11.d.e 8 3.b odd 2 1 inner
81.11.d.e 8 9.c even 3 1 inner
81.11.d.e 8 9.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 2322T_{2}^{6} + 4411908T_{2}^{4} - 2275039872T_{2}^{2} + 959961010176 \) acting on \(S_{11}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + \cdots + 959961010176 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T^{4} + \cdots + 47\!\cdots\!41)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 60\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( (T^{4} + \cdots + 11\!\cdots\!25)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + \cdots + 15\!\cdots\!36)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots + 3727788408121)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 25\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 68\!\cdots\!36 \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 94\!\cdots\!00)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots + 487162727648041)^{4} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 30\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 34\!\cdots\!00)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 57\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( (T^{4} + \cdots + 17\!\cdots\!56)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 73\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 54\!\cdots\!21)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 44\!\cdots\!21)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 80\!\cdots\!16)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 51\!\cdots\!55)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 15\!\cdots\!21)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 85\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots + 15\!\cdots\!96)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots + 47\!\cdots\!21)^{2} \) Copy content Toggle raw display
show more
show less