Properties

Label 81.11.d.c
Level $81$
Weight $11$
Character orbit 81.d
Analytic conductor $51.464$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,11,Mod(26,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.26");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.4639374666\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (30 \zeta_{6} + 30) q^{2} + 1676 \zeta_{6} q^{4} + ( - 480 \zeta_{6} + 960) q^{5} + ( - 16093 \zeta_{6} + 16093) q^{7} + (39120 \zeta_{6} - 19560) q^{8} + 43200 q^{10} + ( - 169440 \zeta_{6} - 169440) q^{11}+ \cdots + (1409436000 \zeta_{6} - 704718000) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 90 q^{2} + 1676 q^{4} + 1440 q^{5} + 16093 q^{7} + 86400 q^{10} - 508320 q^{11} - 608639 q^{13} + 1448370 q^{14} - 44176 q^{16} - 4209098 q^{19} + 2413440 q^{20} - 15249600 q^{22} - 7938720 q^{23}+ \cdots + 13694177593 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
0.500000 + 0.866025i
0.500000 0.866025i
45.0000 + 25.9808i 0 838.000 + 1451.46i 720.000 415.692i 0 8046.50 13936.9i 33878.9i 0 43200.0
53.1 45.0000 25.9808i 0 838.000 1451.46i 720.000 + 415.692i 0 8046.50 + 13936.9i 33878.9i 0 43200.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.11.d.c 2
3.b odd 2 1 81.11.d.a 2
9.c even 3 1 27.11.b.b 2
9.c even 3 1 81.11.d.a 2
9.d odd 6 1 27.11.b.b 2
9.d odd 6 1 inner 81.11.d.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.11.b.b 2 9.c even 3 1
27.11.b.b 2 9.d odd 6 1
81.11.d.a 2 3.b odd 2 1
81.11.d.a 2 9.c even 3 1
81.11.d.c 2 1.a even 1 1 trivial
81.11.d.c 2 9.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 90T_{2} + 2700 \) acting on \(S_{11}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 90T + 2700 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 1440 T + 691200 \) Copy content Toggle raw display
$7$ \( T^{2} - 16093 T + 258984649 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 86129740800 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 370441432321 \) Copy content Toggle raw display
$17$ \( T^{2} + 304819200 \) Copy content Toggle raw display
$19$ \( (T + 2104549)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 21007758412800 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 990228672000000 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 676734751543876 \) Copy content Toggle raw display
$37$ \( (T - 51946607)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 51\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} + 11\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 12\!\cdots\!01 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 34\!\cdots\!21 \) Copy content Toggle raw display
$71$ \( T^{2} + 95\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T - 413274143)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 11\!\cdots\!01 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{2} + 81\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 18\!\cdots\!49 \) Copy content Toggle raw display
show more
show less