Properties

Label 81.10.e.a.64.9
Level $81$
Weight $10$
Character 81.64
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 64.9
Character \(\chi\) \(=\) 81.64
Dual form 81.10.e.a.19.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-17.4636 - 6.35623i) q^{2} +(-127.639 - 107.102i) q^{4} +(-280.318 + 1589.76i) q^{5} +(610.601 - 512.355i) q^{7} +(6305.87 + 10922.1i) q^{8} +(15000.2 - 25981.2i) q^{10} +(4495.09 + 25492.9i) q^{11} +(106141. - 38632.3i) q^{13} +(-13919.9 + 5066.44i) q^{14} +(-25886.0 - 146807. i) q^{16} +(-64251.1 + 111286. i) q^{17} +(-175832. - 304550. i) q^{19} +(206046. - 172893. i) q^{20} +(83538.4 - 473770. i) q^{22} +(1965.39 + 1649.15i) q^{23} +(-613422. - 223267. i) q^{25} -2.09916e6 q^{26} -132811. q^{28} +(3.90737e6 + 1.42216e6i) q^{29} +(-4.10711e6 - 3.44627e6i) q^{31} +(640209. - 3.63081e6i) q^{32} +(1.82942e6 - 1.53506e6i) q^{34} +(643359. + 1.11433e6i) q^{35} +(1.52669e6 - 2.64430e6i) q^{37} +(1.13487e6 + 6.43617e6i) q^{38} +(-1.91312e7 + 6.96317e6i) q^{40} +(2.20476e7 - 8.02467e6i) q^{41} +(3.33783e6 + 1.89298e7i) q^{43} +(2.15659e6 - 3.73533e6i) q^{44} +(-23840.3 - 41292.6i) q^{46} +(-1.67023e7 + 1.40149e7i) q^{47} +(-6.89700e6 + 3.91149e7i) q^{49} +(9.29341e6 + 7.79810e6i) q^{50} +(-1.76854e7 - 6.43695e6i) q^{52} -8.11126e7 q^{53} -4.17877e7 q^{55} +(9.44636e6 + 3.43819e6i) q^{56} +(-5.91971e7 - 4.96722e7i) q^{58} +(-3.01060e7 + 1.70740e8i) q^{59} +(-7.48377e7 + 6.27963e7i) q^{61} +(4.98196e7 + 8.62901e7i) q^{62} +(-7.24209e7 + 1.25437e8i) q^{64} +(3.16628e7 + 1.79568e8i) q^{65} +(2.17705e8 - 7.92381e7i) q^{67} +(2.01199e7 - 7.32305e6i) q^{68} +(-4.15242e6 - 2.35496e7i) q^{70} +(-1.41531e8 + 2.45140e8i) q^{71} +(2.29279e8 + 3.97123e8i) q^{73} +(-4.34693e7 + 3.64750e7i) q^{74} +(-1.01749e7 + 5.77045e7i) q^{76} +(1.58061e7 + 1.32629e7i) q^{77} +(-5.29687e8 - 1.92790e8i) q^{79} +2.40644e8 q^{80} -4.36037e8 q^{82} +(-6.29101e7 - 2.28974e7i) q^{83} +(-1.58908e8 - 1.33339e8i) q^{85} +(6.20314e7 - 3.51798e8i) q^{86} +(-2.50091e8 + 2.09851e8i) q^{88} +(-2.71094e8 - 4.69549e8i) q^{89} +(4.50165e7 - 7.79709e7i) q^{91} +(-74232.5 - 420994. i) q^{92} +(3.80764e8 - 1.38587e8i) q^{94} +(5.33450e8 - 1.94160e8i) q^{95} +(1.23991e7 + 7.03187e7i) q^{97} +(3.69070e8 - 6.39247e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −17.4636 6.35623i −0.771789 0.280908i −0.0740446 0.997255i \(-0.523591\pi\)
−0.697745 + 0.716347i \(0.745813\pi\)
\(3\) 0 0
\(4\) −127.639 107.102i −0.249295 0.209184i
\(5\) −280.318 + 1589.76i −0.200579 + 1.13754i 0.703668 + 0.710529i \(0.251544\pi\)
−0.904247 + 0.427010i \(0.859567\pi\)
\(6\) 0 0
\(7\) 610.601 512.355i 0.0961205 0.0806547i −0.593461 0.804863i \(-0.702239\pi\)
0.689582 + 0.724208i \(0.257794\pi\)
\(8\) 6305.87 + 10922.1i 0.544302 + 0.942760i
\(9\) 0 0
\(10\) 15000.2 25981.2i 0.474349 0.821597i
\(11\) 4495.09 + 25492.9i 0.0925702 + 0.524992i 0.995465 + 0.0951300i \(0.0303267\pi\)
−0.902895 + 0.429862i \(0.858562\pi\)
\(12\) 0 0
\(13\) 106141. 38632.3i 1.03072 0.375150i 0.229363 0.973341i \(-0.426336\pi\)
0.801354 + 0.598191i \(0.204114\pi\)
\(14\) −13919.9 + 5066.44i −0.0968414 + 0.0352474i
\(15\) 0 0
\(16\) −25886.0 146807.i −0.0987472 0.560023i
\(17\) −64251.1 + 111286.i −0.186578 + 0.323162i −0.944107 0.329639i \(-0.893073\pi\)
0.757529 + 0.652801i \(0.226406\pi\)
\(18\) 0 0
\(19\) −175832. 304550.i −0.309533 0.536127i 0.668727 0.743508i \(-0.266839\pi\)
−0.978260 + 0.207381i \(0.933506\pi\)
\(20\) 206046. 172893.i 0.287958 0.241625i
\(21\) 0 0
\(22\) 83538.4 473770.i 0.0760299 0.431187i
\(23\) 1965.39 + 1649.15i 0.00146444 + 0.00122881i 0.643520 0.765430i \(-0.277474\pi\)
−0.642055 + 0.766659i \(0.721918\pi\)
\(24\) 0 0
\(25\) −613422. 223267.i −0.314072 0.114313i
\(26\) −2.09916e6 −0.900879
\(27\) 0 0
\(28\) −132811. −0.0408340
\(29\) 3.90737e6 + 1.42216e6i 1.02587 + 0.373387i 0.799508 0.600656i \(-0.205094\pi\)
0.226364 + 0.974043i \(0.427316\pi\)
\(30\) 0 0
\(31\) −4.10711e6 3.44627e6i −0.798746 0.670227i 0.149147 0.988815i \(-0.452347\pi\)
−0.947893 + 0.318588i \(0.896792\pi\)
\(32\) 640209. 3.63081e6i 0.107931 0.612108i
\(33\) 0 0
\(34\) 1.82942e6 1.53506e6i 0.234778 0.197002i
\(35\) 643359. + 1.11433e6i 0.0724682 + 0.125519i
\(36\) 0 0
\(37\) 1.52669e6 2.64430e6i 0.133919 0.231955i −0.791265 0.611474i \(-0.790577\pi\)
0.925184 + 0.379519i \(0.123910\pi\)
\(38\) 1.13487e6 + 6.43617e6i 0.0882917 + 0.500727i
\(39\) 0 0
\(40\) −1.91312e7 + 6.96317e6i −1.18160 + 0.430068i
\(41\) 2.20476e7 8.02467e6i 1.21852 0.443507i 0.348872 0.937171i \(-0.386565\pi\)
0.869653 + 0.493664i \(0.164343\pi\)
\(42\) 0 0
\(43\) 3.33783e6 + 1.89298e7i 0.148887 + 0.844379i 0.964164 + 0.265308i \(0.0854735\pi\)
−0.815277 + 0.579071i \(0.803415\pi\)
\(44\) 2.15659e6 3.73533e6i 0.0867424 0.150242i
\(45\) 0 0
\(46\) −23840.3 41292.6i −0.000785058 0.00135976i
\(47\) −1.67023e7 + 1.40149e7i −0.499270 + 0.418937i −0.857335 0.514760i \(-0.827881\pi\)
0.358065 + 0.933697i \(0.383437\pi\)
\(48\) 0 0
\(49\) −6.89700e6 + 3.91149e7i −0.170914 + 0.969303i
\(50\) 9.29341e6 + 7.79810e6i 0.210286 + 0.176451i
\(51\) 0 0
\(52\) −1.76854e7 6.43695e6i −0.335428 0.122086i
\(53\) −8.11126e7 −1.41204 −0.706020 0.708192i \(-0.749511\pi\)
−0.706020 + 0.708192i \(0.749511\pi\)
\(54\) 0 0
\(55\) −4.17877e7 −0.615767
\(56\) 9.44636e6 + 3.43819e6i 0.128357 + 0.0467180i
\(57\) 0 0
\(58\) −5.91971e7 4.96722e7i −0.686869 0.576352i
\(59\) −3.01060e7 + 1.70740e8i −0.323459 + 1.83443i 0.196832 + 0.980437i \(0.436935\pi\)
−0.520291 + 0.853989i \(0.674177\pi\)
\(60\) 0 0
\(61\) −7.48377e7 + 6.27963e7i −0.692048 + 0.580697i −0.919499 0.393092i \(-0.871405\pi\)
0.227451 + 0.973790i \(0.426961\pi\)
\(62\) 4.98196e7 + 8.62901e7i 0.428191 + 0.741649i
\(63\) 0 0
\(64\) −7.24209e7 + 1.25437e8i −0.539577 + 0.934576i
\(65\) 3.16628e7 + 1.79568e8i 0.220008 + 1.24773i
\(66\) 0 0
\(67\) 2.17705e8 7.92381e7i 1.31987 0.480394i 0.416454 0.909157i \(-0.363273\pi\)
0.903417 + 0.428763i \(0.141051\pi\)
\(68\) 2.01199e7 7.32305e6i 0.114113 0.0415338i
\(69\) 0 0
\(70\) −4.15242e6 2.35496e7i −0.0206709 0.117231i
\(71\) −1.41531e8 + 2.45140e8i −0.660983 + 1.14486i 0.319375 + 0.947629i \(0.396527\pi\)
−0.980358 + 0.197228i \(0.936806\pi\)
\(72\) 0 0
\(73\) 2.29279e8 + 3.97123e8i 0.944957 + 1.63671i 0.755837 + 0.654759i \(0.227230\pi\)
0.189119 + 0.981954i \(0.439437\pi\)
\(74\) −4.34693e7 + 3.64750e7i −0.168515 + 0.141401i
\(75\) 0 0
\(76\) −1.01749e7 + 5.77045e7i −0.0349838 + 0.198403i
\(77\) 1.58061e7 + 1.32629e7i 0.0512410 + 0.0429963i
\(78\) 0 0
\(79\) −5.29687e8 1.92790e8i −1.53002 0.556882i −0.566394 0.824134i \(-0.691662\pi\)
−0.963627 + 0.267252i \(0.913884\pi\)
\(80\) 2.40644e8 0.656855
\(81\) 0 0
\(82\) −4.36037e8 −1.06503
\(83\) −6.29101e7 2.28974e7i −0.145502 0.0529584i 0.268243 0.963351i \(-0.413557\pi\)
−0.413745 + 0.910393i \(0.635779\pi\)
\(84\) 0 0
\(85\) −1.58908e8 1.33339e8i −0.330187 0.277059i
\(86\) 6.20314e7 3.51798e8i 0.122284 0.693506i
\(87\) 0 0
\(88\) −2.50091e8 + 2.09851e8i −0.444555 + 0.373026i
\(89\) −2.71094e8 4.69549e8i −0.458000 0.793279i 0.540855 0.841116i \(-0.318101\pi\)
−0.998855 + 0.0478365i \(0.984767\pi\)
\(90\) 0 0
\(91\) 4.50165e7 7.79709e7i 0.0688154 0.119192i
\(92\) −74232.5 420994.i −0.000108031 0.000612675i
\(93\) 0 0
\(94\) 3.80764e8 1.38587e8i 0.503014 0.183082i
\(95\) 5.33450e8 1.94160e8i 0.671951 0.244570i
\(96\) 0 0
\(97\) 1.23991e7 + 7.03187e7i 0.0142206 + 0.0806488i 0.991092 0.133178i \(-0.0425182\pi\)
−0.976872 + 0.213827i \(0.931407\pi\)
\(98\) 3.69070e8 6.39247e8i 0.404195 0.700086i
\(99\) 0 0
\(100\) 5.43843e7 + 9.41964e7i 0.0543843 + 0.0941964i
\(101\) −1.11072e8 + 9.32004e7i −0.106208 + 0.0891192i −0.694345 0.719642i \(-0.744306\pi\)
0.588137 + 0.808761i \(0.299862\pi\)
\(102\) 0 0
\(103\) 2.46300e8 1.39683e9i 0.215624 1.22286i −0.664198 0.747557i \(-0.731227\pi\)
0.879821 0.475305i \(-0.157662\pi\)
\(104\) 1.09126e9 + 9.15675e8i 0.914698 + 0.767523i
\(105\) 0 0
\(106\) 1.41652e9 + 5.15571e8i 1.08980 + 0.396654i
\(107\) −2.27609e9 −1.67866 −0.839328 0.543625i \(-0.817051\pi\)
−0.839328 + 0.543625i \(0.817051\pi\)
\(108\) 0 0
\(109\) −7.56560e8 −0.513362 −0.256681 0.966496i \(-0.582629\pi\)
−0.256681 + 0.966496i \(0.582629\pi\)
\(110\) 7.29763e8 + 2.65612e8i 0.475242 + 0.172974i
\(111\) 0 0
\(112\) −9.10231e7 7.63774e7i −0.0546601 0.0458653i
\(113\) 3.43870e8 1.95018e9i 0.198400 1.12518i −0.709093 0.705115i \(-0.750895\pi\)
0.907493 0.420067i \(-0.137993\pi\)
\(114\) 0 0
\(115\) −3.17269e6 + 2.66221e6i −0.00169156 + 0.00141939i
\(116\) −3.46416e8 6.00011e8i −0.177639 0.307679i
\(117\) 0 0
\(118\) 1.61102e9 2.79037e9i 0.764948 1.32493i
\(119\) 1.77862e7 + 1.00871e8i 0.00813060 + 0.0461109i
\(120\) 0 0
\(121\) 1.58606e9 5.77280e8i 0.672645 0.244823i
\(122\) 1.70608e9 6.20964e8i 0.697238 0.253774i
\(123\) 0 0
\(124\) 1.55125e8 + 8.79759e8i 0.0589230 + 0.334169i
\(125\) −1.04956e9 + 1.81788e9i −0.384512 + 0.665995i
\(126\) 0 0
\(127\) 1.94110e9 + 3.36209e9i 0.662112 + 1.14681i 0.980060 + 0.198703i \(0.0636731\pi\)
−0.317948 + 0.948108i \(0.602994\pi\)
\(128\) 6.16009e8 5.16893e8i 0.202835 0.170198i
\(129\) 0 0
\(130\) 5.88433e8 3.33717e9i 0.180697 1.02479i
\(131\) −8.75614e8 7.34727e8i −0.259772 0.217974i 0.503595 0.863940i \(-0.332010\pi\)
−0.763366 + 0.645966i \(0.776455\pi\)
\(132\) 0 0
\(133\) −2.63401e8 9.58701e7i −0.0729936 0.0265675i
\(134\) −4.30556e9 −1.15361
\(135\) 0 0
\(136\) −1.62064e9 −0.406219
\(137\) −2.92900e9 1.06607e9i −0.710356 0.258549i −0.0385301 0.999257i \(-0.512268\pi\)
−0.671826 + 0.740709i \(0.734490\pi\)
\(138\) 0 0
\(139\) 1.22616e9 + 1.02887e9i 0.278599 + 0.233772i 0.771370 0.636387i \(-0.219572\pi\)
−0.492771 + 0.870159i \(0.664016\pi\)
\(140\) 3.72292e7 2.11137e8i 0.00819045 0.0464503i
\(141\) 0 0
\(142\) 4.02981e9 3.38141e9i 0.831739 0.697912i
\(143\) 1.46196e9 + 2.53220e9i 0.292364 + 0.506390i
\(144\) 0 0
\(145\) −3.35620e9 + 5.81312e9i −0.630511 + 1.09208i
\(146\) −1.47983e9 8.39256e9i −0.269541 1.52864i
\(147\) 0 0
\(148\) −4.78075e8 + 1.74005e8i −0.0819065 + 0.0298115i
\(149\) 4.49393e8 1.63566e8i 0.0746945 0.0271866i −0.304403 0.952543i \(-0.598457\pi\)
0.379097 + 0.925357i \(0.376235\pi\)
\(150\) 0 0
\(151\) 1.20387e9 + 6.82747e9i 0.188444 + 1.06872i 0.921450 + 0.388497i \(0.127006\pi\)
−0.733006 + 0.680222i \(0.761883\pi\)
\(152\) 2.21755e9 3.84091e9i 0.336959 0.583630i
\(153\) 0 0
\(154\) −1.91730e8 3.32086e8i −0.0274692 0.0475781i
\(155\) 6.63004e9 5.56327e9i 0.922622 0.774172i
\(156\) 0 0
\(157\) 1.25829e9 7.13614e9i 0.165285 0.937379i −0.783485 0.621411i \(-0.786560\pi\)
0.948770 0.315968i \(-0.102329\pi\)
\(158\) 8.02482e9 + 6.73362e9i 1.02442 + 0.859591i
\(159\) 0 0
\(160\) 5.59265e9 + 2.03556e9i 0.674648 + 0.245552i
\(161\) 2.04502e6 0.000239873
\(162\) 0 0
\(163\) −1.48150e10 −1.64383 −0.821915 0.569610i \(-0.807094\pi\)
−0.821915 + 0.569610i \(0.807094\pi\)
\(164\) −3.67360e9 1.33708e9i −0.396547 0.144331i
\(165\) 0 0
\(166\) 9.53096e8 + 7.99743e8i 0.0974205 + 0.0817455i
\(167\) −3.07828e9 + 1.74578e10i −0.306256 + 1.73686i 0.311278 + 0.950319i \(0.399243\pi\)
−0.617534 + 0.786544i \(0.711868\pi\)
\(168\) 0 0
\(169\) 1.65000e9 1.38451e9i 0.155594 0.130559i
\(170\) 1.92756e9 + 3.33864e9i 0.177006 + 0.306584i
\(171\) 0 0
\(172\) 1.60138e9 2.77367e9i 0.139513 0.241644i
\(173\) −2.08583e9 1.18294e10i −0.177040 1.00405i −0.935762 0.352631i \(-0.885287\pi\)
0.758722 0.651414i \(-0.225824\pi\)
\(174\) 0 0
\(175\) −4.88948e8 + 1.77962e8i −0.0394086 + 0.0143436i
\(176\) 3.62617e9 1.31982e9i 0.284867 0.103683i
\(177\) 0 0
\(178\) 1.74972e9 + 9.92316e9i 0.130641 + 0.740900i
\(179\) −1.07814e10 + 1.86739e10i −0.784939 + 1.35955i 0.144097 + 0.989564i \(0.453972\pi\)
−0.929036 + 0.369990i \(0.879361\pi\)
\(180\) 0 0
\(181\) −1.09960e10 1.90457e10i −0.761522 1.31900i −0.942066 0.335428i \(-0.891119\pi\)
0.180543 0.983567i \(-0.442214\pi\)
\(182\) −1.28175e9 + 1.07552e9i −0.0865929 + 0.0726601i
\(183\) 0 0
\(184\) −5.61875e6 + 3.18655e7i −0.000361376 + 0.00204946i
\(185\) 3.77585e9 + 3.16831e9i 0.236996 + 0.198864i
\(186\) 0 0
\(187\) −3.12582e9 1.13771e9i −0.186929 0.0680367i
\(188\) 3.63289e9 0.212100
\(189\) 0 0
\(190\) −1.05501e10 −0.587307
\(191\) −4.20187e9 1.52936e9i −0.228451 0.0831493i 0.225259 0.974299i \(-0.427677\pi\)
−0.453709 + 0.891150i \(0.649900\pi\)
\(192\) 0 0
\(193\) −2.16606e10 1.81754e10i −1.12373 0.942921i −0.124943 0.992164i \(-0.539875\pi\)
−0.998787 + 0.0492430i \(0.984319\pi\)
\(194\) 2.30429e8 1.30683e9i 0.0116797 0.0662386i
\(195\) 0 0
\(196\) 5.06961e9 4.25391e9i 0.245370 0.205890i
\(197\) 8.39382e9 + 1.45385e10i 0.397065 + 0.687737i 0.993362 0.115027i \(-0.0366953\pi\)
−0.596297 + 0.802764i \(0.703362\pi\)
\(198\) 0 0
\(199\) −1.43606e10 + 2.48733e10i −0.649134 + 1.12433i 0.334196 + 0.942504i \(0.391535\pi\)
−0.983330 + 0.181830i \(0.941798\pi\)
\(200\) −1.42961e9 8.10775e9i −0.0631806 0.358315i
\(201\) 0 0
\(202\) 2.53212e9 9.21615e8i 0.107005 0.0389465i
\(203\) 3.11449e9 1.13358e9i 0.128723 0.0468512i
\(204\) 0 0
\(205\) 6.57697e9 + 3.72999e10i 0.260096 + 1.47508i
\(206\) −1.31799e10 + 2.28282e10i −0.509928 + 0.883221i
\(207\) 0 0
\(208\) −8.41904e9 1.45822e10i −0.311873 0.540180i
\(209\) 6.97349e9 5.85145e9i 0.252809 0.212132i
\(210\) 0 0
\(211\) −1.83777e9 + 1.04225e10i −0.0638294 + 0.361995i 0.936117 + 0.351687i \(0.114392\pi\)
−0.999947 + 0.0103071i \(0.996719\pi\)
\(212\) 1.03532e10 + 8.68732e9i 0.352015 + 0.295376i
\(213\) 0 0
\(214\) 3.97487e10 + 1.44673e10i 1.29557 + 0.471548i
\(215\) −3.10294e10 −0.990378
\(216\) 0 0
\(217\) −4.27352e9 −0.130833
\(218\) 1.32123e10 + 4.80887e9i 0.396208 + 0.144208i
\(219\) 0 0
\(220\) 5.33375e9 + 4.47555e9i 0.153508 + 0.128808i
\(221\) −2.52046e9 + 1.42942e10i −0.0710745 + 0.403084i
\(222\) 0 0
\(223\) 4.93800e9 4.14348e9i 0.133715 0.112200i −0.573477 0.819221i \(-0.694406\pi\)
0.707192 + 0.707021i \(0.249962\pi\)
\(224\) −1.46935e9 2.54499e9i −0.0389950 0.0675413i
\(225\) 0 0
\(226\) −1.84010e10 + 3.18715e10i −0.469196 + 0.812671i
\(227\) −5.28046e8 2.99470e9i −0.0131994 0.0748578i 0.977497 0.210952i \(-0.0676562\pi\)
−0.990696 + 0.136094i \(0.956545\pi\)
\(228\) 0 0
\(229\) 1.65307e10 6.01668e9i 0.397220 0.144576i −0.135684 0.990752i \(-0.543323\pi\)
0.532904 + 0.846176i \(0.321101\pi\)
\(230\) 7.23282e7 2.63253e7i 0.00170425 0.000620295i
\(231\) 0 0
\(232\) 9.10634e9 + 5.16446e10i 0.206371 + 1.17039i
\(233\) −2.16335e9 + 3.74704e9i −0.0480868 + 0.0832887i −0.889067 0.457777i \(-0.848646\pi\)
0.840980 + 0.541066i \(0.181979\pi\)
\(234\) 0 0
\(235\) −1.75983e10 3.04812e10i −0.376415 0.651969i
\(236\) 2.21293e10 1.85687e10i 0.464369 0.389651i
\(237\) 0 0
\(238\) 3.30546e8 1.87462e9i 0.00667783 0.0378719i
\(239\) 5.29871e10 + 4.44615e10i 1.05046 + 0.881442i 0.993142 0.116914i \(-0.0373003\pi\)
0.0573191 + 0.998356i \(0.481745\pi\)
\(240\) 0 0
\(241\) −3.12649e10 1.13795e10i −0.597007 0.217293i 0.0258013 0.999667i \(-0.491786\pi\)
−0.622809 + 0.782374i \(0.714008\pi\)
\(242\) −3.13677e10 −0.587913
\(243\) 0 0
\(244\) 1.62778e10 0.293997
\(245\) −6.02499e10 2.19292e10i −1.06834 0.388843i
\(246\) 0 0
\(247\) −3.04285e10 2.55325e10i −0.520169 0.436473i
\(248\) 1.17416e10 6.65900e10i 0.197104 1.11783i
\(249\) 0 0
\(250\) 2.98839e10 2.50756e10i 0.483846 0.405995i
\(251\) −1.43058e10 2.47784e10i −0.227500 0.394042i 0.729566 0.683910i \(-0.239722\pi\)
−0.957067 + 0.289868i \(0.906389\pi\)
\(252\) 0 0
\(253\) −3.32072e7 + 5.75166e7i −0.000509554 + 0.000882573i
\(254\) −1.25284e10 7.10522e10i −0.188862 1.07109i
\(255\) 0 0
\(256\) 5.56434e10 2.02525e10i 0.809718 0.294713i
\(257\) −1.28810e10 + 4.68831e9i −0.184184 + 0.0670374i −0.432466 0.901650i \(-0.642356\pi\)
0.248282 + 0.968688i \(0.420134\pi\)
\(258\) 0 0
\(259\) −4.22624e8 2.39682e9i −0.00583586 0.0330968i
\(260\) 1.51907e10 2.63111e10i 0.206157 0.357075i
\(261\) 0 0
\(262\) 1.06213e10 + 1.83966e10i 0.139258 + 0.241202i
\(263\) −1.54430e10 + 1.29582e10i −0.199036 + 0.167011i −0.736858 0.676047i \(-0.763692\pi\)
0.537822 + 0.843058i \(0.319247\pi\)
\(264\) 0 0
\(265\) 2.27373e10 1.28950e11i 0.283226 1.60625i
\(266\) 3.99055e9 + 3.34847e9i 0.0488726 + 0.0410090i
\(267\) 0 0
\(268\) −3.62742e10 1.32027e10i −0.429528 0.156335i
\(269\) 1.53806e10 0.179096 0.0895481 0.995982i \(-0.471458\pi\)
0.0895481 + 0.995982i \(0.471458\pi\)
\(270\) 0 0
\(271\) 5.60281e10 0.631022 0.315511 0.948922i \(-0.397824\pi\)
0.315511 + 0.948922i \(0.397824\pi\)
\(272\) 1.80007e10 + 6.55174e9i 0.199402 + 0.0725766i
\(273\) 0 0
\(274\) 4.43746e10 + 3.72347e10i 0.475617 + 0.399090i
\(275\) 2.93435e9 1.66415e10i 0.0309396 0.175467i
\(276\) 0 0
\(277\) 1.30917e11 1.09852e11i 1.33609 1.12111i 0.353478 0.935443i \(-0.384999\pi\)
0.982612 0.185670i \(-0.0594456\pi\)
\(278\) −1.48734e10 2.57615e10i −0.149351 0.258684i
\(279\) 0 0
\(280\) −8.11388e9 + 1.40537e10i −0.0788892 + 0.136640i
\(281\) 9.07283e9 + 5.14545e10i 0.0868089 + 0.492318i 0.996952 + 0.0780227i \(0.0248607\pi\)
−0.910143 + 0.414295i \(0.864028\pi\)
\(282\) 0 0
\(283\) 6.89819e10 2.51073e10i 0.639287 0.232681i −0.00198143 0.999998i \(-0.500631\pi\)
0.641268 + 0.767317i \(0.278408\pi\)
\(284\) 4.43199e10 1.61311e10i 0.404265 0.147140i
\(285\) 0 0
\(286\) −9.43593e9 5.35138e10i −0.0833946 0.472954i
\(287\) 9.35081e9 1.61961e10i 0.0813543 0.140910i
\(288\) 0 0
\(289\) 5.10375e10 + 8.83996e10i 0.430377 + 0.745435i
\(290\) 9.55609e10 8.01851e10i 0.793395 0.665737i
\(291\) 0 0
\(292\) 1.32677e10 7.52448e10i 0.106800 0.605694i
\(293\) 1.75418e10 + 1.47193e10i 0.139050 + 0.116676i 0.709660 0.704545i \(-0.248849\pi\)
−0.570610 + 0.821221i \(0.693293\pi\)
\(294\) 0 0
\(295\) −2.62996e11 9.57226e10i −2.02185 0.735894i
\(296\) 3.85084e10 0.291570
\(297\) 0 0
\(298\) −8.88769e9 −0.0652853
\(299\) 2.72319e8 + 9.91161e7i 0.00197042 + 0.000717173i
\(300\) 0 0
\(301\) 1.17368e10 + 9.84838e9i 0.0824142 + 0.0691537i
\(302\) 2.23731e10 1.26884e11i 0.154773 0.877761i
\(303\) 0 0
\(304\) −4.01584e10 + 3.36969e10i −0.269678 + 0.226287i
\(305\) −7.88527e10 1.36577e11i −0.521756 0.903708i
\(306\) 0 0
\(307\) −2.68079e9 + 4.64326e9i −0.0172242 + 0.0298333i −0.874509 0.485009i \(-0.838816\pi\)
0.857285 + 0.514842i \(0.172150\pi\)
\(308\) −5.96997e8 3.38574e9i −0.00378002 0.0214375i
\(309\) 0 0
\(310\) −1.51146e11 + 5.50126e10i −0.929541 + 0.338325i
\(311\) −6.13619e9 + 2.23339e9i −0.0371944 + 0.0135376i −0.360550 0.932740i \(-0.617411\pi\)
0.323356 + 0.946277i \(0.395189\pi\)
\(312\) 0 0
\(313\) 4.11967e10 + 2.33638e11i 0.242612 + 1.37592i 0.825973 + 0.563709i \(0.190626\pi\)
−0.583361 + 0.812213i \(0.698263\pi\)
\(314\) −6.73333e10 + 1.16625e11i −0.390883 + 0.677029i
\(315\) 0 0
\(316\) 4.69606e10 + 8.13381e10i 0.264936 + 0.458883i
\(317\) −2.09537e11 + 1.75822e11i −1.16545 + 0.977929i −0.999966 0.00828314i \(-0.997363\pi\)
−0.165485 + 0.986212i \(0.552919\pi\)
\(318\) 0 0
\(319\) −1.86912e10 + 1.06003e11i −0.101060 + 0.573139i
\(320\) −1.79113e11 1.50294e11i −0.954889 0.801247i
\(321\) 0 0
\(322\) −3.57134e7 1.29986e7i −0.000185131 6.73822e-5i
\(323\) 4.51896e10 0.231008
\(324\) 0 0
\(325\) −7.37347e10 −0.366604
\(326\) 2.58723e11 + 9.41674e10i 1.26869 + 0.461765i
\(327\) 0 0
\(328\) 2.26676e11 + 1.90204e11i 1.08137 + 0.907374i
\(329\) −3.01783e9 + 1.71150e10i −0.0142008 + 0.0805369i
\(330\) 0 0
\(331\) −1.45802e11 + 1.22342e11i −0.667631 + 0.560209i −0.912363 0.409382i \(-0.865744\pi\)
0.244732 + 0.969591i \(0.421300\pi\)
\(332\) 5.57744e9 + 9.66041e9i 0.0251950 + 0.0436389i
\(333\) 0 0
\(334\) 1.64724e11 2.85310e11i 0.724264 1.25446i
\(335\) 6.49430e10 + 3.68310e11i 0.281729 + 1.59776i
\(336\) 0 0
\(337\) −2.47427e11 + 9.00562e10i −1.04499 + 0.380346i −0.806771 0.590865i \(-0.798787\pi\)
−0.238221 + 0.971211i \(0.576564\pi\)
\(338\) −3.76152e10 + 1.36908e10i −0.156761 + 0.0570564i
\(339\) 0 0
\(340\) 6.00193e9 + 3.40386e10i 0.0243577 + 0.138139i
\(341\) 6.93938e10 1.20194e11i 0.277924 0.481378i
\(342\) 0 0
\(343\) 3.19120e10 + 5.52731e10i 0.124489 + 0.215621i
\(344\) −1.85705e11 + 1.55825e11i −0.715007 + 0.599962i
\(345\) 0 0
\(346\) −3.87639e10 + 2.19841e11i −0.145407 + 0.824644i
\(347\) 1.87218e11 + 1.57095e11i 0.693210 + 0.581673i 0.919833 0.392310i \(-0.128324\pi\)
−0.226623 + 0.973983i \(0.572768\pi\)
\(348\) 0 0
\(349\) −1.11185e11 4.04679e10i −0.401172 0.146015i 0.133551 0.991042i \(-0.457362\pi\)
−0.534723 + 0.845027i \(0.679584\pi\)
\(350\) 9.66996e9 0.0344444
\(351\) 0 0
\(352\) 9.54377e10 0.331343
\(353\) −8.80596e10 3.20511e10i −0.301850 0.109864i 0.186655 0.982425i \(-0.440235\pi\)
−0.488505 + 0.872561i \(0.662458\pi\)
\(354\) 0 0
\(355\) −3.50039e11 2.93718e11i −1.16974 0.981528i
\(356\) −1.56874e10 + 8.89676e10i −0.0517638 + 0.293567i
\(357\) 0 0
\(358\) 3.06977e11 2.57584e11i 0.987717 0.828793i
\(359\) 8.91130e10 + 1.54348e11i 0.283150 + 0.490430i 0.972159 0.234323i \(-0.0752874\pi\)
−0.689009 + 0.724753i \(0.741954\pi\)
\(360\) 0 0
\(361\) 9.95100e10 1.72356e11i 0.308379 0.534128i
\(362\) 7.09716e10 + 4.02500e11i 0.217218 + 1.23190i
\(363\) 0 0
\(364\) −1.40967e10 + 5.13078e9i −0.0420883 + 0.0153189i
\(365\) −6.95602e11 + 2.53178e11i −2.05136 + 0.746636i
\(366\) 0 0
\(367\) −2.64512e10 1.50012e11i −0.0761111 0.431647i −0.998923 0.0463968i \(-0.985226\pi\)
0.922812 0.385251i \(-0.125885\pi\)
\(368\) 1.91231e8 3.31222e8i 0.000543554 0.000941464i
\(369\) 0 0
\(370\) −4.58014e10 7.93303e10i −0.127049 0.220055i
\(371\) −4.95274e10 + 4.15585e10i −0.135726 + 0.113888i
\(372\) 0 0
\(373\) −1.18121e11 + 6.69899e11i −0.315965 + 1.79193i 0.250793 + 0.968041i \(0.419309\pi\)
−0.566758 + 0.823884i \(0.691802\pi\)
\(374\) 4.73566e10 + 3.97369e10i 0.125158 + 0.105020i
\(375\) 0 0
\(376\) −2.58394e11 9.40478e10i −0.666711 0.242663i
\(377\) 4.69674e11 1.19746
\(378\) 0 0
\(379\) −1.34945e11 −0.335954 −0.167977 0.985791i \(-0.553723\pi\)
−0.167977 + 0.985791i \(0.553723\pi\)
\(380\) −8.88841e10 3.23512e10i −0.218674 0.0795910i
\(381\) 0 0
\(382\) 6.36589e10 + 5.34161e10i 0.152959 + 0.128347i
\(383\) 6.63858e10 3.76492e11i 0.157645 0.894050i −0.798683 0.601753i \(-0.794469\pi\)
0.956328 0.292297i \(-0.0944196\pi\)
\(384\) 0 0
\(385\) −2.55156e10 + 2.14101e10i −0.0591878 + 0.0496645i
\(386\) 2.62744e11 + 4.55087e11i 0.602408 + 1.04340i
\(387\) 0 0
\(388\) 5.94867e9 1.03034e10i 0.0133253 0.0230801i
\(389\) −7.26294e10 4.11902e11i −0.160820 0.912054i −0.953270 0.302118i \(-0.902306\pi\)
0.792451 0.609936i \(-0.208805\pi\)
\(390\) 0 0
\(391\) −3.09806e8 + 1.12760e8i −0.000670339 + 0.000243984i
\(392\) −4.70708e11 + 1.71324e11i −1.00685 + 0.366463i
\(393\) 0 0
\(394\) −5.41761e10 3.07248e11i −0.113260 0.642327i
\(395\) 4.54971e11 7.88033e11i 0.940365 1.62876i
\(396\) 0 0
\(397\) 2.77084e11 + 4.79923e11i 0.559827 + 0.969649i 0.997510 + 0.0705199i \(0.0224658\pi\)
−0.437683 + 0.899129i \(0.644201\pi\)
\(398\) 4.08889e11 3.43099e11i 0.816830 0.685401i
\(399\) 0 0
\(400\) −1.68981e10 + 9.58339e10i −0.0330041 + 0.187176i
\(401\) −7.45020e10 6.25146e10i −0.143886 0.120735i 0.568004 0.823026i \(-0.307716\pi\)
−0.711890 + 0.702291i \(0.752160\pi\)
\(402\) 0 0
\(403\) −5.69071e11 2.07125e11i −1.07472 0.391165i
\(404\) 2.41591e10 0.0451195
\(405\) 0 0
\(406\) −6.15956e10 −0.112508
\(407\) 7.42736e10 + 2.70334e10i 0.134171 + 0.0488344i
\(408\) 0 0
\(409\) 2.35442e11 + 1.97559e11i 0.416033 + 0.349093i 0.826652 0.562714i \(-0.190243\pi\)
−0.410618 + 0.911807i \(0.634687\pi\)
\(410\) 1.22229e11 6.93195e11i 0.213622 1.21151i
\(411\) 0 0
\(412\) −1.81041e11 + 1.51912e11i −0.309556 + 0.259749i
\(413\) 6.90965e10 + 1.19679e11i 0.116864 + 0.202414i
\(414\) 0 0
\(415\) 5.40362e10 9.35935e10i 0.0894270 0.154892i
\(416\) −7.23136e10 4.10111e11i −0.118386 0.671400i
\(417\) 0 0
\(418\) −1.58975e11 + 5.78623e10i −0.254705 + 0.0927049i
\(419\) −7.46444e11 + 2.71683e11i −1.18313 + 0.430626i −0.857308 0.514804i \(-0.827865\pi\)
−0.325827 + 0.945430i \(0.605643\pi\)
\(420\) 0 0
\(421\) −6.14953e10 3.48757e11i −0.0954053 0.541070i −0.994622 0.103568i \(-0.966974\pi\)
0.899217 0.437503i \(-0.144137\pi\)
\(422\) 9.83421e10 1.70334e11i 0.150950 0.261453i
\(423\) 0 0
\(424\) −5.11486e11 8.85920e11i −0.768577 1.33121i
\(425\) 6.42596e10 5.39202e10i 0.0955405 0.0801680i
\(426\) 0 0
\(427\) −1.35220e10 + 7.66869e10i −0.0196841 + 0.111634i
\(428\) 2.90518e11 + 2.43773e11i 0.418481 + 0.351147i
\(429\) 0 0
\(430\) 5.41886e11 + 1.97230e11i 0.764363 + 0.278205i
\(431\) 4.28096e11 0.597576 0.298788 0.954319i \(-0.403418\pi\)
0.298788 + 0.954319i \(0.403418\pi\)
\(432\) 0 0
\(433\) 1.26300e12 1.72666 0.863330 0.504639i \(-0.168375\pi\)
0.863330 + 0.504639i \(0.168375\pi\)
\(434\) 7.46310e10 + 2.71635e10i 0.100975 + 0.0367520i
\(435\) 0 0
\(436\) 9.65667e10 + 8.10291e10i 0.127979 + 0.107387i
\(437\) 1.56672e8 8.88533e8i 0.000205507 0.00116549i
\(438\) 0 0
\(439\) 6.80449e11 5.70965e11i 0.874390 0.733701i −0.0906275 0.995885i \(-0.528887\pi\)
0.965018 + 0.262184i \(0.0844428\pi\)
\(440\) −2.63508e11 4.56409e11i −0.335163 0.580520i
\(441\) 0 0
\(442\) 1.34874e11 2.33608e11i 0.168084 0.291130i
\(443\) 4.14262e9 + 2.34940e10i 0.00511044 + 0.0289827i 0.987256 0.159138i \(-0.0508715\pi\)
−0.982146 + 0.188121i \(0.939760\pi\)
\(444\) 0 0
\(445\) 8.22463e11 2.99352e11i 0.994252 0.361878i
\(446\) −1.12572e11 + 4.09729e10i −0.134718 + 0.0490332i
\(447\) 0 0
\(448\) 2.00478e10 + 1.13697e11i 0.0235134 + 0.133351i
\(449\) −2.17348e11 + 3.76458e11i −0.252375 + 0.437127i −0.964179 0.265251i \(-0.914545\pi\)
0.711804 + 0.702378i \(0.247878\pi\)
\(450\) 0 0
\(451\) 3.03679e11 + 5.25987e11i 0.345637 + 0.598660i
\(452\) −2.52760e11 + 2.12091e11i −0.284830 + 0.239001i
\(453\) 0 0
\(454\) −9.81341e9 + 5.56546e10i −0.0108410 + 0.0614823i
\(455\) 1.11336e11 + 9.34221e10i 0.121782 + 0.102188i
\(456\) 0 0
\(457\) 1.03488e12 + 3.76664e11i 1.10985 + 0.403954i 0.830940 0.556362i \(-0.187803\pi\)
0.278914 + 0.960316i \(0.410026\pi\)
\(458\) −3.26929e11 −0.347183
\(459\) 0 0
\(460\) 6.90087e8 0.000718611
\(461\) 6.56893e10 + 2.39090e10i 0.0677393 + 0.0246551i 0.375668 0.926754i \(-0.377413\pi\)
−0.307928 + 0.951410i \(0.599636\pi\)
\(462\) 0 0
\(463\) −4.84959e11 4.06929e11i −0.490445 0.411532i 0.363741 0.931500i \(-0.381499\pi\)
−0.854186 + 0.519968i \(0.825944\pi\)
\(464\) 1.07637e11 6.10441e11i 0.107803 0.611383i
\(465\) 0 0
\(466\) 6.15969e10 5.16860e10i 0.0605094 0.0507734i
\(467\) −5.33198e11 9.23527e11i −0.518756 0.898511i −0.999762 0.0217944i \(-0.993062\pi\)
0.481007 0.876717i \(-0.340271\pi\)
\(468\) 0 0
\(469\) 9.23327e10 1.59925e11i 0.0881207 0.152629i
\(470\) 1.13585e11 + 6.44171e11i 0.107369 + 0.608921i
\(471\) 0 0
\(472\) −2.05468e12 + 7.47842e11i −1.90548 + 0.693539i
\(473\) −4.67571e11 + 1.70182e11i −0.429509 + 0.156329i
\(474\) 0 0
\(475\) 3.98632e10 + 2.26075e11i 0.0359294 + 0.203766i
\(476\) 8.53324e9 1.47800e10i 0.00761873 0.0131960i
\(477\) 0 0
\(478\) −6.42739e11 1.11326e12i −0.563130 0.975370i
\(479\) −5.72842e11 + 4.80671e11i −0.497193 + 0.417194i −0.856596 0.515988i \(-0.827425\pi\)
0.359403 + 0.933182i \(0.382980\pi\)
\(480\) 0 0
\(481\) 5.98893e10 3.39649e11i 0.0510148 0.289319i
\(482\) 4.73666e11 + 3.97453e11i 0.399724 + 0.335409i
\(483\) 0 0
\(484\) −2.64271e11 9.61870e10i −0.218900 0.0796732i
\(485\) −1.15266e11 −0.0945936
\(486\) 0 0
\(487\) 6.87914e11 0.554184 0.277092 0.960843i \(-0.410629\pi\)
0.277092 + 0.960843i \(0.410629\pi\)
\(488\) −1.15778e12 4.21399e11i −0.924141 0.336360i
\(489\) 0 0
\(490\) 9.12793e11 + 7.65924e11i 0.715303 + 0.600210i
\(491\) 3.57819e11 2.02929e12i 0.277841 1.57572i −0.451948 0.892045i \(-0.649271\pi\)
0.729789 0.683672i \(-0.239618\pi\)
\(492\) 0 0
\(493\) −4.09320e11 + 3.43460e11i −0.312070 + 0.261858i
\(494\) 3.69100e11 + 6.39300e11i 0.278852 + 0.482985i
\(495\) 0 0
\(496\) −3.99619e11 + 6.92161e11i −0.296469 + 0.513499i
\(497\) 3.91793e10 + 2.22197e11i 0.0288040 + 0.163356i
\(498\) 0 0
\(499\) 2.01988e12 7.35175e11i 1.45839 0.530809i 0.513466 0.858110i \(-0.328361\pi\)
0.944920 + 0.327300i \(0.106139\pi\)
\(500\) 3.28663e11 1.19624e11i 0.235172 0.0855957i
\(501\) 0 0
\(502\) 9.23340e10 + 5.23652e11i 0.0648925 + 0.368024i
\(503\) 7.52953e10 1.30415e11i 0.0524460 0.0908391i −0.838611 0.544731i \(-0.816632\pi\)
0.891057 + 0.453892i \(0.149965\pi\)
\(504\) 0 0
\(505\) −1.17031e11 2.02703e11i −0.0800735 0.138691i
\(506\) 9.45506e8 7.93373e8i 0.000641190 0.000538022i
\(507\) 0 0
\(508\) 1.12326e11 6.37030e11i 0.0748328 0.424398i
\(509\) 1.00277e12 + 8.41426e11i 0.662174 + 0.555630i 0.910738 0.412985i \(-0.135514\pi\)
−0.248563 + 0.968616i \(0.579958\pi\)
\(510\) 0 0
\(511\) 3.43466e11 + 1.25011e11i 0.222838 + 0.0811065i
\(512\) −1.51218e12 −0.972501
\(513\) 0 0
\(514\) 2.54749e11 0.160982
\(515\) 2.15159e12 + 7.83114e11i 1.34780 + 0.490561i
\(516\) 0 0
\(517\) −4.32358e11 3.62792e11i −0.266156 0.223332i
\(518\) −7.85420e9 + 4.45434e10i −0.00479312 + 0.0271831i
\(519\) 0 0
\(520\) −1.76160e12 + 1.47816e12i −1.05656 + 0.886556i
\(521\) 5.73452e10 + 9.93248e10i 0.0340979 + 0.0590593i 0.882571 0.470180i \(-0.155811\pi\)
−0.848473 + 0.529239i \(0.822478\pi\)
\(522\) 0 0
\(523\) −1.53405e12 + 2.65706e12i −0.896566 + 1.55290i −0.0647127 + 0.997904i \(0.520613\pi\)
−0.831854 + 0.554995i \(0.812720\pi\)
\(524\) 3.30719e10 + 1.87560e11i 0.0191632 + 0.108680i
\(525\) 0 0
\(526\) 3.52056e11 1.28138e11i 0.200529 0.0729865i
\(527\) 6.47409e11 2.35638e11i 0.365621 0.133075i
\(528\) 0 0
\(529\) −3.12766e11 1.77378e12i −0.173648 0.984804i
\(530\) −1.21671e12 + 2.10740e12i −0.669800 + 1.16013i
\(531\) 0 0
\(532\) 2.33524e10 + 4.04475e10i 0.0126395 + 0.0218922i
\(533\) 2.03015e12 1.70350e12i 1.08957 0.914259i
\(534\) 0 0
\(535\) 6.38027e11 3.61843e12i 0.336703 1.90954i
\(536\) 2.23826e12 + 1.87813e12i 1.17130 + 0.982841i
\(537\) 0 0
\(538\) −2.68600e11 9.77623e10i −0.138225 0.0503096i
\(539\) −1.02815e12 −0.524698
\(540\) 0 0
\(541\) −2.16618e12 −1.08719 −0.543597 0.839346i \(-0.682938\pi\)
−0.543597 + 0.839346i \(0.682938\pi\)
\(542\) −9.78453e11 3.56128e11i −0.487016 0.177259i
\(543\) 0 0
\(544\) 3.62924e11 + 3.04530e11i 0.177673 + 0.149085i
\(545\) 2.12077e11 1.20275e12i 0.102970 0.583970i
\(546\) 0 0
\(547\) −2.55652e12 + 2.14518e12i −1.22098 + 1.02452i −0.222202 + 0.975001i \(0.571324\pi\)
−0.998773 + 0.0495193i \(0.984231\pi\)
\(548\) 2.59677e11 + 4.49773e11i 0.123004 + 0.213050i
\(549\) 0 0
\(550\) −1.57022e11 + 2.71970e11i −0.0731691 + 0.126733i
\(551\) −2.53920e11 1.44005e12i −0.117358 0.665573i
\(552\) 0 0
\(553\) −4.22204e11 + 1.53670e11i −0.191982 + 0.0698756i
\(554\) −2.98452e12 + 1.08628e12i −1.34611 + 0.489944i
\(555\) 0 0
\(556\) −4.63118e10 2.62648e11i −0.0205521 0.116557i
\(557\) 1.36006e12 2.35570e12i 0.598702 1.03698i −0.394311 0.918977i \(-0.629017\pi\)
0.993013 0.118006i \(-0.0376501\pi\)
\(558\) 0 0
\(559\) 1.08558e12 + 1.88028e12i 0.470229 + 0.814460i
\(560\) 1.46937e11 1.23295e11i 0.0631372 0.0529784i
\(561\) 0 0
\(562\) 1.68613e11 9.56250e11i 0.0712979 0.404351i
\(563\) 2.02498e12 + 1.69916e12i 0.849441 + 0.712766i 0.959667 0.281141i \(-0.0907128\pi\)
−0.110225 + 0.993907i \(0.535157\pi\)
\(564\) 0 0
\(565\) 3.00393e12 + 1.09334e12i 1.24014 + 0.451376i
\(566\) −1.36426e12 −0.558757
\(567\) 0 0
\(568\) −3.56992e12 −1.43910
\(569\) −1.25065e12 4.55200e11i −0.500186 0.182053i 0.0795917 0.996828i \(-0.474638\pi\)
−0.579778 + 0.814775i \(0.696861\pi\)
\(570\) 0 0
\(571\) −1.49100e12 1.25110e12i −0.586969 0.492526i 0.300258 0.953858i \(-0.402927\pi\)
−0.887227 + 0.461332i \(0.847372\pi\)
\(572\) 8.45994e10 4.79787e11i 0.0330434 0.187399i
\(573\) 0 0
\(574\) −2.66245e11 + 2.23406e11i −0.102371 + 0.0858996i
\(575\) −8.37409e8 1.45043e9i −0.000319471 0.000553341i
\(576\) 0 0
\(577\) −8.98161e11 + 1.55566e12i −0.337336 + 0.584283i −0.983931 0.178550i \(-0.942859\pi\)
0.646595 + 0.762834i \(0.276193\pi\)
\(578\) −3.29411e11 1.86818e12i −0.122762 0.696216i
\(579\) 0 0
\(580\) 1.05098e12 3.82525e11i 0.385628 0.140357i
\(581\) −5.01446e10 + 1.82511e10i −0.0182571 + 0.00664504i
\(582\) 0 0
\(583\) −3.64609e11 2.06780e12i −0.130713 0.741310i
\(584\) −2.89161e12 + 5.00842e12i −1.02868 + 1.78173i
\(585\) 0 0
\(586\) −2.12783e11 3.68552e11i −0.0745416 0.129110i
\(587\) −3.44036e12 + 2.88680e12i −1.19600 + 1.00357i −0.196268 + 0.980550i \(0.562882\pi\)
−0.999735 + 0.0230158i \(0.992673\pi\)
\(588\) 0 0
\(589\) −3.27401e11 + 1.85679e12i −0.112089 + 0.635687i
\(590\) 3.98442e12 + 3.34332e12i 1.35373 + 1.13591i
\(591\) 0 0
\(592\) −4.27721e11 1.55678e11i −0.143124 0.0520929i
\(593\) 2.68424e12 0.891407 0.445703 0.895181i \(-0.352954\pi\)
0.445703 + 0.895181i \(0.352954\pi\)
\(594\) 0 0
\(595\) −1.65346e11 −0.0540838
\(596\) −7.48784e10 2.72535e10i −0.0243080 0.00884738i
\(597\) 0 0
\(598\) −4.12567e9 3.46185e9i −0.00131929 0.00110701i
\(599\) −8.87977e10 + 5.03597e11i −0.0281826 + 0.159832i −0.995651 0.0931597i \(-0.970303\pi\)
0.967469 + 0.252991i \(0.0814144\pi\)
\(600\) 0 0
\(601\) 2.07245e12 1.73900e12i 0.647962 0.543705i −0.258490 0.966014i \(-0.583225\pi\)
0.906452 + 0.422309i \(0.138780\pi\)
\(602\) −1.42369e11 2.46590e11i −0.0441805 0.0765229i
\(603\) 0 0
\(604\) 5.77575e11 1.00039e12i 0.176580 0.305846i
\(605\) 4.73135e11 + 2.68328e12i 0.143577 + 0.814267i
\(606\) 0 0
\(607\) −4.72762e10 + 1.72071e10i −0.0141349 + 0.00514470i −0.349078 0.937094i \(-0.613505\pi\)
0.334943 + 0.942238i \(0.391283\pi\)
\(608\) −1.21833e12 + 4.43436e11i −0.361576 + 0.131603i
\(609\) 0 0
\(610\) 5.08938e11 + 2.88633e12i 0.148827 + 0.844038i
\(611\) −1.23137e12 + 2.13280e12i −0.357441 + 0.619107i
\(612\) 0 0
\(613\) 6.02886e9 + 1.04423e10i 0.00172450 + 0.00298692i 0.866886 0.498506i \(-0.166118\pi\)
−0.865162 + 0.501493i \(0.832784\pi\)
\(614\) 7.63299e10 6.40484e10i 0.0216739 0.0181866i
\(615\) 0 0
\(616\) −4.51874e10 + 2.56270e11i −0.0126446 + 0.0717109i
\(617\) 3.43937e12 + 2.88597e12i 0.955422 + 0.801694i 0.980202 0.197999i \(-0.0634441\pi\)
−0.0247802 + 0.999693i \(0.507889\pi\)
\(618\) 0 0
\(619\) 6.52254e12 + 2.37401e12i 1.78570 + 0.649942i 0.999488 + 0.0319882i \(0.0101839\pi\)
0.786214 + 0.617954i \(0.212038\pi\)
\(620\) −1.44209e12 −0.391949
\(621\) 0 0
\(622\) 1.21356e11 0.0325091
\(623\) −4.06106e11 1.47811e11i −0.108005 0.0393106i
\(624\) 0 0
\(625\) −3.57248e12 2.99767e12i −0.936504 0.785821i
\(626\) 7.65614e11 4.34201e12i 0.199262 1.13007i
\(627\) 0 0
\(628\) −9.24903e11 + 7.76086e11i −0.237289 + 0.199109i
\(629\) 1.96183e11 + 3.39799e11i 0.0499727 + 0.0865553i
\(630\) 0 0
\(631\) 2.17006e12 3.75865e12i 0.544928 0.943843i −0.453684 0.891163i \(-0.649890\pi\)
0.998611 0.0526798i \(-0.0167763\pi\)
\(632\) −1.23447e12 7.00100e12i −0.307788 1.74555i
\(633\) 0 0
\(634\) 4.77684e12 1.73863e12i 1.17419 0.427370i
\(635\) −5.88904e12 + 2.14343e12i −1.43735 + 0.523152i
\(636\) 0 0
\(637\) 7.79039e11 + 4.41815e12i 0.187470 + 1.06319i
\(638\) 1.00019e12 1.73239e12i 0.238996 0.413954i
\(639\) 0 0
\(640\) 6.49057e11 + 1.12420e12i 0.152923 + 0.264871i
\(641\) 6.22809e12 5.22599e12i 1.45712 1.22267i 0.529942 0.848034i \(-0.322214\pi\)
0.927174 0.374631i \(-0.122231\pi\)
\(642\) 0 0
\(643\) −7.54498e11 + 4.27897e12i −0.174064 + 0.987165i 0.765155 + 0.643846i \(0.222662\pi\)
−0.939219 + 0.343319i \(0.888449\pi\)
\(644\) −2.61025e8 2.19026e8i −5.97991e−5 5.01774e-5i
\(645\) 0 0
\(646\) −7.89173e11 2.87235e11i −0.178290 0.0648921i
\(647\) −5.86334e12 −1.31545 −0.657727 0.753256i \(-0.728482\pi\)
−0.657727 + 0.753256i \(0.728482\pi\)
\(648\) 0 0
\(649\) −4.48798e12 −0.993002
\(650\) 1.28767e12 + 4.68675e11i 0.282941 + 0.102982i
\(651\) 0 0
\(652\) 1.89097e12 + 1.58671e12i 0.409799 + 0.343862i
\(653\) 1.16333e12 6.59756e12i 0.250376 1.41995i −0.557293 0.830316i \(-0.688160\pi\)
0.807669 0.589636i \(-0.200729\pi\)
\(654\) 0 0
\(655\) 1.41349e12 1.18606e12i 0.300059 0.251780i
\(656\) −1.74880e12 3.02901e12i −0.368700 0.638607i
\(657\) 0 0
\(658\) 1.61489e11 2.79707e11i 0.0335835 0.0581684i
\(659\) 4.47489e10 + 2.53783e11i 0.00924267 + 0.0524178i 0.989080 0.147378i \(-0.0470833\pi\)
−0.979838 + 0.199796i \(0.935972\pi\)
\(660\) 0 0
\(661\) −4.08951e12 + 1.48846e12i −0.833229 + 0.303271i −0.723184 0.690656i \(-0.757322\pi\)
−0.110046 + 0.993927i \(0.535100\pi\)
\(662\) 3.32386e12 1.20978e12i 0.672638 0.244820i
\(663\) 0 0
\(664\) −1.46616e11 8.31499e11i −0.0292701 0.165999i
\(665\) 2.26246e11 3.91870e11i 0.0448626 0.0777042i
\(666\) 0 0
\(667\) 5.33411e9 + 9.23895e9i 0.00104351 + 0.00180741i
\(668\) 2.26268e12 1.89861e12i 0.439671 0.368928i
\(669\) 0 0
\(670\) 1.20693e12 6.84481e12i 0.231390 1.31228i
\(671\) −1.93726e12 1.62556e12i −0.368924 0.309564i
\(672\) 0 0
\(673\) 4.63098e12 + 1.68554e12i 0.870173 + 0.316717i 0.738237 0.674541i \(-0.235659\pi\)
0.131936 + 0.991258i \(0.457881\pi\)
\(674\) 4.89339e12 0.913356
\(675\) 0 0
\(676\) −3.58889e11 −0.0660998
\(677\) −8.07971e11 2.94078e11i −0.147825 0.0538038i 0.267048 0.963683i \(-0.413952\pi\)
−0.414873 + 0.909879i \(0.636174\pi\)
\(678\) 0 0
\(679\) 4.35990e10 + 3.65839e10i 0.00787160 + 0.00660505i
\(680\) 4.54293e11 2.57642e12i 0.0814790 0.462091i
\(681\) 0 0
\(682\) −1.97584e12 + 1.65793e12i −0.349722 + 0.293451i
\(683\) −2.19930e12 3.80931e12i −0.386716 0.669812i 0.605290 0.796005i \(-0.293057\pi\)
−0.992006 + 0.126194i \(0.959724\pi\)
\(684\) 0 0
\(685\) 2.51584e12 4.35756e12i 0.436592 0.756199i
\(686\) −2.05969e11 1.16811e12i −0.0355094 0.201384i
\(687\) 0 0
\(688\) 2.69261e12 9.80031e11i 0.458169 0.166760i
\(689\) −8.60940e12 + 3.13356e12i −1.45541 + 0.529727i
\(690\) 0 0
\(691\) −1.08407e12 6.14808e12i −0.180887 1.02586i −0.931127 0.364695i \(-0.881173\pi\)
0.750240 0.661166i \(-0.229938\pi\)
\(692\) −1.00071e12 + 1.73329e12i −0.165895 + 0.287338i
\(693\) 0 0
\(694\) −2.27097e12 3.93344e12i −0.371616 0.643657i
\(695\) −1.97937e12 + 1.66088e12i −0.321806 + 0.270027i
\(696\) 0 0
\(697\) −5.23548e11 + 2.96919e12i −0.0840251 + 0.476530i
\(698\) 1.68446e12 + 1.41343e12i 0.268603 + 0.225385i
\(699\) 0 0
\(700\) 8.14691e10 + 2.96523e10i 0.0128248 + 0.00466785i
\(701\) 1.23156e13 1.92630 0.963150 0.268965i \(-0.0866815\pi\)
0.963150 + 0.268965i \(0.0866815\pi\)
\(702\) 0 0
\(703\) −1.07376e12 −0.165810
\(704\) −3.52329e12 1.28237e12i −0.540593 0.196760i
\(705\) 0 0
\(706\) 1.33411e12 + 1.11945e12i 0.202102 + 0.169584i
\(707\) −2.00689e10 + 1.13816e11i −0.00302090 + 0.0171324i
\(708\) 0 0
\(709\) 6.51478e12 5.46655e12i 0.968259 0.812466i −0.0140180 0.999902i \(-0.504462\pi\)
0.982277 + 0.187436i \(0.0600178\pi\)
\(710\) 4.24601e12 + 7.35430e12i 0.627073 + 1.08612i
\(711\) 0 0
\(712\) 3.41897e12 5.92184e12i 0.498581 0.863568i
\(713\) −2.38862e9 1.35465e10i −0.000346133 0.00196302i
\(714\) 0 0
\(715\) −4.43540e12 + 1.61435e12i −0.634681 + 0.231005i
\(716\) 3.37614e12 1.22881e12i 0.480078 0.174734i
\(717\) 0 0
\(718\) −5.75161e11 3.26190e12i −0.0807661 0.458047i
\(719\) 3.51879e12 6.09472e12i 0.491036 0.850499i −0.508911 0.860819i \(-0.669952\pi\)
0.999947 + 0.0103202i \(0.00328507\pi\)
\(720\) 0 0
\(721\) −5.65284e11 9.79101e11i −0.0779037 0.134933i
\(722\) −2.83334e12 + 2.37745e12i −0.388044 + 0.325608i
\(723\) 0 0
\(724\) −6.36307e11 + 3.60868e12i −0.0860683 + 0.488117i
\(725\) −2.07934e12 1.74477e12i −0.279515 0.234541i
\(726\) 0 0
\(727\) −6.18464e12 2.25102e12i −0.821125 0.298865i −0.102914 0.994690i \(-0.532817\pi\)
−0.718211 + 0.695825i \(0.755039\pi\)
\(728\) 1.13547e12 0.149826
\(729\) 0 0
\(730\) 1.37570e13 1.79296
\(731\) −2.32108e12 8.44804e11i −0.300650 0.109428i
\(732\) 0 0
\(733\) 3.20204e12 + 2.68683e12i 0.409693 + 0.343773i 0.824226 0.566261i \(-0.191611\pi\)
−0.414533 + 0.910034i \(0.636055\pi\)
\(734\) −4.91579e11 + 2.78788e12i −0.0625116 + 0.354521i
\(735\) 0 0
\(736\) 7.24602e9 6.08013e9i 0.000910226 0.000763770i
\(737\) 2.99861e12 + 5.19375e12i 0.374384 + 0.648451i
\(738\) 0 0
\(739\) −3.48679e12 + 6.03931e12i −0.430057 + 0.744881i −0.996878 0.0789601i \(-0.974840\pi\)
0.566820 + 0.823841i \(0.308173\pi\)
\(740\) −1.42614e11 8.08802e11i −0.0174831 0.0991515i
\(741\) 0 0
\(742\) 1.12908e12 4.10952e11i 0.136744 0.0497707i
\(743\) −9.07412e12 + 3.30271e12i −1.09233 + 0.397577i −0.824484 0.565885i \(-0.808535\pi\)
−0.267848 + 0.963461i \(0.586313\pi\)
\(744\) 0 0
\(745\) 1.34058e11 + 7.60278e11i 0.0159437 + 0.0904210i
\(746\) 6.32086e12 1.09480e13i 0.747225 1.29423i
\(747\) 0 0
\(748\) 2.77127e11 + 4.79998e11i 0.0323684 + 0.0560638i
\(749\) −1.38978e12 + 1.16616e12i −0.161353 + 0.135392i
\(750\) 0 0
\(751\) 8.52907e11 4.83708e12i 0.0978413 0.554885i −0.895998 0.444057i \(-0.853539\pi\)
0.993840 0.110828i \(-0.0353503\pi\)
\(752\) 2.48983e12 + 2.08922e12i 0.283916 + 0.238234i
\(753\) 0 0
\(754\) −8.20220e12 2.98536e12i −0.924186 0.336376i
\(755\) −1.11915e13 −1.25351
\(756\) 0 0
\(757\) −4.59607e12 −0.508692 −0.254346 0.967113i \(-0.581860\pi\)
−0.254346 + 0.967113i \(0.581860\pi\)
\(758\) 2.35662e12 + 8.57740e11i 0.259286 + 0.0943723i
\(759\) 0 0
\(760\) 5.48450e12 + 4.60205e12i 0.596316 + 0.500368i
\(761\) −1.02595e12 + 5.81848e12i −0.110891 + 0.628895i 0.877812 + 0.479006i \(0.159003\pi\)
−0.988703 + 0.149889i \(0.952108\pi\)
\(762\) 0 0
\(763\) −4.61956e11 + 3.87627e11i −0.0493447 + 0.0414051i
\(764\) 3.72526e11 + 6.45235e11i 0.0395582 + 0.0685169i
\(765\) 0 0
\(766\) −3.55241e12 + 6.15295e12i −0.372815 + 0.645734i
\(767\) 3.40057e12 + 1.92856e13i 0.354791 + 2.01212i
\(768\) 0 0
\(769\) −1.45061e13 + 5.27977e12i −1.49583 + 0.544436i −0.954976 0.296684i \(-0.904119\pi\)
−0.540849 + 0.841119i \(0.681897\pi\)
\(770\) 5.81682e11 2.11715e11i 0.0596317 0.0217042i
\(771\) 0 0
\(772\) 8.18118e11 + 4.63978e12i 0.0828969 + 0.470132i
\(773\) −5.05669e11 + 8.75844e11i −0.0509400 + 0.0882306i −0.890371 0.455236i \(-0.849555\pi\)
0.839431 + 0.543466i \(0.182888\pi\)
\(774\) 0 0
\(775\) 1.74995e12 + 3.03100e12i 0.174248 + 0.301807i
\(776\) −6.89841e11 + 5.78845e11i −0.0682922 + 0.0573039i
\(777\) 0 0
\(778\) −1.34977e12 + 7.65494e12i −0.132085 + 0.749089i
\(779\) −6.32059e12 5.30361e12i −0.614949 0.516004i
\(780\) 0 0
\(781\) −6.88552e12 2.50613e12i −0.662228 0.241031i
\(782\) 6.12706e9 0.000585898
\(783\) 0 0
\(784\) 5.92086e12 0.559709
\(785\) 1.09920e13 + 4.00077e12i 1.03315 + 0.376037i
\(786\) 0 0
\(787\) −1.50781e12 1.26520e12i −0.140107 0.117564i 0.570041 0.821616i \(-0.306927\pi\)
−0.710148 + 0.704053i \(0.751372\pi\)
\(788\) 4.85725e11 2.75468e12i 0.0448768 0.254509i
\(789\) 0 0
\(790\) −1.29543e13 + 1.08700e13i −1.18330 + 0.992903i
\(791\) −7.89219e11 1.36697e12i −0.0716809 0.124155i
\(792\) 0 0
\(793\) −5.51741e12 + 9.55643e12i −0.495457 + 0.858156i
\(794\) −1.78838e12 1.01424e13i −0.159686 0.905625i
\(795\) 0 0
\(796\) 4.49696e12 1.63676e12i 0.397018 0.144503i
\(797\) −1.89101e13 + 6.88272e12i −1.66009 + 0.604223i −0.990377 0.138396i \(-0.955805\pi\)
−0.669713 + 0.742620i \(0.733583\pi\)
\(798\) 0 0
\(799\) −4.86522e11 2.75920e12i −0.0422320 0.239510i
\(800\) −1.20336e12 + 2.08428e12i −0.103870 + 0.179908i
\(801\) 0 0
\(802\) 9.03715e11 + 1.56528e12i 0.0771342 + 0.133600i
\(803\) −9.09321e12 + 7.63011e12i −0.771786 + 0.647606i
\(804\) 0 0
\(805\) −5.73255e8 + 3.25109e9i −4.81134e−5 + 0.000272865i
\(806\) 8.62150e12 + 7.23429e12i 0.719573 + 0.603794i
\(807\) 0 0
\(808\) −1.71835e12 6.25428e11i −0.141827 0.0516209i
\(809\) 1.35819e12 0.111479 0.0557395 0.998445i \(-0.482248\pi\)
0.0557395 + 0.998445i \(0.482248\pi\)
\(810\) 0 0
\(811\) 6.18683e12 0.502197 0.251099 0.967962i \(-0.419208\pi\)
0.251099 + 0.967962i \(0.419208\pi\)
\(812\) −5.18940e11 1.88879e11i −0.0418905 0.0152469i
\(813\) 0 0
\(814\) −1.12525e12 9.44200e11i −0.0898340 0.0753797i
\(815\) 4.15290e12 2.35523e13i 0.329718 1.86992i
\(816\) 0 0
\(817\) 5.17816e12 4.34500e12i 0.406609 0.341185i
\(818\) −2.85593e12 4.94661e12i −0.223027 0.386294i
\(819\) 0 0
\(820\) 3.15541e12 5.46533e12i 0.243721 0.422138i
\(821\) 4.48393e12 + 2.54296e13i 0.344441 + 1.95342i 0.298251 + 0.954488i \(0.403597\pi\)
0.0461901 + 0.998933i \(0.485292\pi\)
\(822\) 0 0
\(823\) −6.41370e12 + 2.33440e12i −0.487315 + 0.177368i −0.573980 0.818869i \(-0.694601\pi\)
0.0866652 + 0.996237i \(0.472379\pi\)
\(824\) 1.68095e13 6.11815e12i 1.27023 0.462326i
\(825\) 0 0
\(826\) −4.45969e11 2.52921e12i −0.0333345 0.189049i
\(827\) −6.35461e12 + 1.10065e13i −0.472404 + 0.818229i −0.999501 0.0315767i \(-0.989947\pi\)
0.527097 + 0.849805i \(0.323281\pi\)
\(828\) 0 0
\(829\) 8.41727e12 + 1.45791e13i 0.618979 + 1.07210i 0.989672 + 0.143347i \(0.0457866\pi\)
−0.370694 + 0.928755i \(0.620880\pi\)
\(830\) −1.53857e12 + 1.29101e12i −0.112529 + 0.0944232i
\(831\) 0 0
\(832\) −2.84094e12 + 1.61118e13i −0.205545 + 1.16570i
\(833\) −3.90980e12 3.28071e12i −0.281353 0.236084i
\(834\) 0 0
\(835\) −2.68908e13 9.78746e12i −1.91432 0.696756i
\(836\) −1.51679e12 −0.107398
\(837\) 0 0
\(838\) 1.47625e13 1.03410
\(839\) 2.09727e13 + 7.63342e12i 1.46125 + 0.531852i 0.945709 0.325013i \(-0.105369\pi\)
0.515541 + 0.856865i \(0.327591\pi\)
\(840\) 0 0
\(841\) 2.13183e12 + 1.78882e12i 0.146951 + 0.123306i
\(842\) −1.14285e12 + 6.48143e12i −0.0783584 + 0.444392i
\(843\) 0 0
\(844\) 1.35085e12 1.13349e12i 0.0916357 0.0768915i
\(845\) 1.73852e12 + 3.01121e12i 0.117307 + 0.203182i
\(846\) 0 0
\(847\) 6.72679e11 1.16511e12i 0.0449089 0.0777845i
\(848\) 2.09968e12 + 1.19079e13i 0.139435 + 0.790775i
\(849\) 0 0
\(850\) −1.46493e12 + 5.33192e11i −0.0962570 + 0.0350347i
\(851\) 7.36140e9 2.67933e9i 0.000481146 0.000175123i
\(852\) 0 0
\(853\) 1.19454e12 + 6.77458e12i 0.0772556 + 0.438139i 0.998761 + 0.0497720i \(0.0158495\pi\)
−0.921505 + 0.388367i \(0.873039\pi\)
\(854\) 7.23582e11 1.25328e12i 0.0465508 0.0806284i
\(855\) 0 0
\(856\) −1.43527e13 2.48596e13i −0.913697 1.58257i
\(857\) −9.37934e12 + 7.87020e12i −0.593962 + 0.498393i −0.889498 0.456938i \(-0.848946\pi\)
0.295537 + 0.955331i \(0.404502\pi\)
\(858\) 0 0
\(859\) 7.76449e11 4.40346e12i 0.0486568 0.275946i −0.950766 0.309909i \(-0.899702\pi\)
0.999423 + 0.0339623i \(0.0108126\pi\)
\(860\) 3.96057e12 + 3.32331e12i 0.246896 + 0.207171i
\(861\) 0 0
\(862\) −7.47609e12 2.72107e12i −0.461203 0.167864i
\(863\) 1.77022e13 1.08637 0.543185 0.839613i \(-0.317218\pi\)
0.543185 + 0.839613i \(0.317218\pi\)
\(864\) 0 0
\(865\) 1.93905e13 1.17765
\(866\) −2.20565e13 8.02790e12i −1.33262 0.485033i
\(867\) 0 0
\(868\) 5.45469e11 + 4.57702e11i 0.0326160 + 0.0273681i
\(869\) 2.53380e12 1.43699e13i 0.150724 0.854799i
\(870\) 0 0
\(871\) 2.00463e13 1.68209e13i 1.18019 0.990299i
\(872\) −4.77077e12 8.26322e12i −0.279424 0.483977i
\(873\) 0 0
\(874\) −8.38378e9 + 1.45211e10i −0.000486002 + 0.000841781i
\(875\) 2.90542e11 + 1.64775e12i 0.0167561 + 0.0950285i
\(876\) 0 0
\(877\) 1.81090e12 6.59112e11i 0.103370 0.0376237i −0.289817 0.957082i \(-0.593595\pi\)
0.393187 + 0.919458i \(0.371372\pi\)
\(878\) −1.55123e13 + 5.64601e12i −0.880948 + 0.320639i
\(879\) 0 0
\(880\) 1.08172e12 + 6.13471e12i 0.0608052 + 0.344844i
\(881\) 1.42842e13 2.47410e13i 0.798850 1.38365i −0.121515 0.992590i \(-0.538775\pi\)
0.920365 0.391059i \(-0.127891\pi\)
\(882\) 0 0
\(883\) −1.57308e11 2.72466e11i −0.00870821 0.0150831i 0.861638 0.507523i \(-0.169439\pi\)
−0.870347 + 0.492440i \(0.836105\pi\)
\(884\) 1.85265e12 1.55456e12i 0.102037 0.0856192i
\(885\) 0 0
\(886\) 7.69880e10 4.36621e11i 0.00419731 0.0238041i
\(887\) −6.42115e12 5.38798e12i −0.348302 0.292260i 0.451806 0.892116i \(-0.350780\pi\)
−0.800108 + 0.599856i \(0.795224\pi\)
\(888\) 0 0
\(889\) 2.90782e12 + 1.05836e12i 0.156138 + 0.0568297i
\(890\) −1.62659e13 −0.869007
\(891\) 0 0
\(892\) −1.07406e12 −0.0568049
\(893\) 7.20503e12 + 2.62242e12i 0.379144 + 0.137997i
\(894\) 0 0
\(895\) −2.66648e13 2.23744e13i −1.38910 1.16560i
\(896\) 1.11303e11 6.31230e11i 0.00576926 0.0327191i
\(897\) 0 0
\(898\) 6.18853e12 5.19279e12i 0.317573 0.266476i
\(899\) −1.11468e13 1.93068e13i −0.569157 0.985809i
\(900\) 0 0
\(901\) 5.21157e12 9.02671e12i 0.263456 0.456318i
\(902\) −1.96003e12 1.11159e13i −0.0985900 0.559132i
\(903\) 0 0
\(904\) 2.34685e13 8.54184e12i 1.16877 0.425396i
\(905\) 3.33605e13 1.21422e13i 1.65316 0.601699i
\(906\) 0 0
\(907\) −1.54084e12 8.73856e12i −0.0756007 0.428753i −0.998992 0.0448924i \(-0.985705\pi\)
0.923391 0.383860i \(-0.125406\pi\)
\(908\) −2.53339e11 + 4.38796e11i −0.0123685 + 0.0214228i
\(909\) 0 0
\(910\) −1.35052e12 2.33916e12i −0.0652850 0.113077i
\(911\) 1.14696e13 9.62414e12i 0.551716 0.462945i −0.323805 0.946124i \(-0.604962\pi\)
0.875522 + 0.483179i \(0.160518\pi\)
\(912\) 0 0
\(913\) 3.00935e11 1.70669e12i 0.0143336 0.0812898i
\(914\) −1.56785e13 1.31558e13i −0.743099 0.623534i
\(915\) 0 0
\(916\) −2.75436e12 1.00251e12i −0.129268 0.0470497i
\(917\) −9.11092e11 −0.0425501
\(918\) 0 0
\(919\) −3.61739e13 −1.67292 −0.836461 0.548027i \(-0.815379\pi\)
−0.836461 + 0.548027i \(0.815379\pi\)
\(920\) −4.90835e10 1.78649e10i −0.00225886 0.000822159i
\(921\) 0 0
\(922\) −9.95201e11 8.35073e11i −0.0453546 0.0380570i
\(923\) −5.55203e12 + 3.14871e13i −0.251793 + 1.42799i
\(924\) 0 0
\(925\) −1.52689e12 + 1.28121e12i −0.0685757 + 0.0575418i
\(926\) 5.88259e12 + 1.01889e13i 0.262917 + 0.455386i
\(927\) 0 0
\(928\) 7.66513e12 1.32764e13i 0.339277 0.587644i
\(929\) −3.46775e12 1.96666e13i −0.152748 0.866280i −0.960815 0.277189i \(-0.910597\pi\)
0.808067 0.589091i \(-0.200514\pi\)
\(930\) 0 0
\(931\) 1.31251e13 4.77716e12i 0.572573 0.208399i
\(932\) 6.77444e11 2.46569e11i 0.0294104 0.0107045i
\(933\) 0 0
\(934\) 3.44141e12 + 1.95172e13i 0.147971 + 0.839184i
\(935\) 2.68490e12 4.65039e12i 0.114889 0.198993i
\(936\) 0 0
\(937\) 1.43376e13 + 2.48334e13i 0.607642 + 1.05247i 0.991628 + 0.129127i \(0.0412176\pi\)
−0.383986 + 0.923339i \(0.625449\pi\)
\(938\) −2.62898e12 + 2.20598e12i −0.110885 + 0.0930440i
\(939\) 0 0
\(940\) −1.01836e12 + 5.77542e12i −0.0425429 + 0.241273i
\(941\) −2.00326e13 1.68093e13i −0.832881 0.698870i 0.123069 0.992398i \(-0.460726\pi\)
−0.955951 + 0.293528i \(0.905171\pi\)
\(942\) 0 0
\(943\) 5.65660e10 + 2.05883e10i 0.00232945 + 0.000847850i
\(944\) 2.58450e13 1.05926
\(945\) 0 0
\(946\) 9.24719e12 0.375405
\(947\) −1.42502e13 5.18665e12i −0.575766 0.209562i 0.0376913 0.999289i \(-0.488000\pi\)
−0.613458 + 0.789728i \(0.710222\pi\)
\(948\) 0 0
\(949\) 3.96778e13 + 3.32936e13i 1.58800 + 1.33249i
\(950\) 7.40832e11 4.20147e12i 0.0295096 0.167357i
\(951\) 0 0
\(952\) −9.89562e11 + 8.30341e11i −0.0390460 + 0.0327635i
\(953\) 4.99811e12 + 8.65697e12i 0.196285 + 0.339976i 0.947321 0.320286i \(-0.103779\pi\)
−0.751036 + 0.660261i \(0.770446\pi\)
\(954\) 0 0
\(955\) 3.60917e12 6.25126e12i 0.140408 0.243194i
\(956\) −2.00132e12 1.13501e13i −0.0774919 0.439478i
\(957\) 0 0
\(958\) 1.30591e13 4.75314e12i 0.500921 0.182320i
\(959\) −2.33465e12 + 8.49744e11i −0.0891330 + 0.0324417i
\(960\) 0 0
\(961\) 4.00352e11 + 2.27051e12i 0.0151421 + 0.0858752i
\(962\) −3.20477e12 + 5.55082e12i −0.120645 + 0.208963i
\(963\) 0 0
\(964\) 2.77186e12 + 4.80099e12i 0.103377 + 0.179054i
\(965\) 3.49663e13 2.93402e13i 1.29801 1.08916i
\(966\) 0 0
\(967\) 2.08182e12 1.18066e13i 0.0765638 0.434215i −0.922296 0.386483i \(-0.873690\pi\)
0.998860 0.0477315i \(-0.0151992\pi\)
\(968\) 1.63066e13 + 1.36829e13i 0.596932 + 0.500885i
\(969\) 0 0
\(970\) 2.01295e12 + 7.32654e11i 0.0730063 + 0.0265721i
\(971\) 1.18164e13 0.426577 0.213289 0.976989i \(-0.431583\pi\)
0.213289 + 0.976989i \(0.431583\pi\)
\(972\) 0 0
\(973\) 1.27584e12 0.0456339
\(974\) −1.20135e13 4.37254e12i −0.427713 0.155675i
\(975\) 0 0
\(976\) 1.11562e13 + 9.36113e12i 0.393542 + 0.330221i
\(977\) −7.51419e12 + 4.26151e13i −0.263850 + 1.49637i 0.508441 + 0.861097i \(0.330222\pi\)
−0.772291 + 0.635269i \(0.780889\pi\)
\(978\) 0 0
\(979\) 1.07516e13 9.02166e12i 0.374068 0.313880i
\(980\) 5.34159e12 + 9.25190e12i 0.184992 + 0.320416i
\(981\) 0 0
\(982\) −1.91475e13 + 3.31644e13i −0.657067 + 1.13807i
\(983\) −5.72807e12 3.24855e13i −0.195667 1.10968i −0.911466 0.411375i \(-0.865049\pi\)
0.715799 0.698306i \(-0.246063\pi\)
\(984\) 0 0
\(985\) −2.54657e13 + 9.26876e12i −0.861971 + 0.313732i
\(986\) 9.33130e12 3.39632e12i 0.314410 0.114436i
\(987\) 0 0
\(988\) 1.14928e12 + 6.51790e12i 0.0383725 + 0.217621i
\(989\) −2.46580e10 + 4.27089e10i −0.000819548 + 0.00141950i
\(990\) 0 0
\(991\) 1.35439e12 + 2.34588e12i 0.0446080 + 0.0772634i 0.887467 0.460871i \(-0.152463\pi\)
−0.842859 + 0.538134i \(0.819129\pi\)
\(992\) −1.51422e13 + 1.27058e13i −0.496461 + 0.416580i
\(993\) 0 0
\(994\) 7.28122e11 4.12939e12i 0.0236573 0.134167i
\(995\) −3.55171e13 2.98024e13i −1.14877 0.963934i
\(996\) 0 0
\(997\) 3.57905e13 + 1.30267e13i 1.14720 + 0.417547i 0.844509 0.535541i \(-0.179892\pi\)
0.302692 + 0.953088i \(0.402115\pi\)
\(998\) −3.99473e13 −1.27468
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.64.9 156
3.2 odd 2 27.10.e.a.4.18 156
27.7 even 9 inner 81.10.e.a.19.9 156
27.20 odd 18 27.10.e.a.7.18 yes 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.4.18 156 3.2 odd 2
27.10.e.a.7.18 yes 156 27.20 odd 18
81.10.e.a.19.9 156 27.7 even 9 inner
81.10.e.a.64.9 156 1.1 even 1 trivial