Properties

Label 81.10.e.a.64.17
Level $81$
Weight $10$
Character 81.64
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 64.17
Character \(\chi\) \(=\) 81.64
Dual form 81.10.e.a.19.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(12.9570 + 4.71595i) q^{2} +(-246.572 - 206.898i) q^{4} +(222.415 - 1261.38i) q^{5} +(-4998.24 + 4194.02i) q^{7} +(-5748.96 - 9957.50i) q^{8} +(8830.42 - 15294.7i) q^{10} +(-4387.44 - 24882.4i) q^{11} +(14554.5 - 5297.40i) q^{13} +(-84540.9 + 30770.4i) q^{14} +(1087.25 + 6166.10i) q^{16} +(-187103. + 324072. i) q^{17} +(-331545. - 574253. i) q^{19} +(-315818. + 265003. i) q^{20} +(60496.3 - 343092. i) q^{22} +(1.82158e6 + 1.52849e6i) q^{23} +(293733. + 106910. i) q^{25} +213564. q^{26} +2.10016e6 q^{28} +(-2.27688e6 - 828718. i) q^{29} +(4.94152e6 + 4.14643e6i) q^{31} +(-1.03725e6 + 5.88253e6i) q^{32} +(-3.95260e6 + 3.31663e6i) q^{34} +(4.17856e6 + 7.23748e6i) q^{35} +(-8.89215e6 + 1.54017e7i) q^{37} +(-1.58767e6 - 9.00413e6i) q^{38} +(-1.38388e7 + 5.03692e6i) q^{40} +(-3.98972e6 + 1.45214e6i) q^{41} +(-2.25330e6 - 1.27791e7i) q^{43} +(-4.06631e6 + 7.04305e6i) q^{44} +(1.63939e7 + 2.83951e7i) q^{46} +(1.91163e6 - 1.60405e6i) q^{47} +(385257. - 2.18490e6i) q^{49} +(3.30171e6 + 2.77047e6i) q^{50} +(-4.68475e6 - 1.70511e6i) q^{52} +9.09978e6 q^{53} -3.23619e7 q^{55} +(7.04967e7 + 2.56587e7i) q^{56} +(-2.55933e7 - 2.14754e7i) q^{58} +(-2.51267e7 + 1.42501e8i) q^{59} +(-1.76413e6 + 1.48028e6i) q^{61} +(4.44728e7 + 7.70291e7i) q^{62} +(-3.95784e7 + 6.85519e7i) q^{64} +(-3.44489e6 - 1.95369e7i) q^{65} +(-2.75317e8 + 1.00207e8i) q^{67} +(1.13184e8 - 4.11957e7i) q^{68} +(2.00099e7 + 1.13482e8i) q^{70} +(-3.55199e7 + 6.15222e7i) q^{71} +(-2.15747e8 - 3.73685e8i) q^{73} +(-1.87849e8 + 1.57624e8i) q^{74} +(-3.70623e7 + 2.10191e8i) q^{76} +(1.26287e8 + 1.05967e8i) q^{77} +(3.19548e8 + 1.16306e8i) q^{79} +8.01960e6 q^{80} -5.85430e7 q^{82} +(1.63239e8 + 5.94141e7i) q^{83} +(3.67163e8 + 3.08086e8i) q^{85} +(3.10697e7 - 1.76205e8i) q^{86} +(-2.22543e8 + 1.86736e8i) q^{88} +(2.35605e8 + 4.08079e8i) q^{89} +(-5.05294e7 + 8.75195e7i) q^{91} +(-1.32909e8 - 7.53763e8i) q^{92} +(3.23336e7 - 1.17685e7i) q^{94} +(-7.98090e8 + 2.90481e8i) q^{95} +(1.26743e8 + 7.18794e8i) q^{97} +(1.52957e7 - 2.64928e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 12.9570 + 4.71595i 0.572623 + 0.208418i 0.612070 0.790804i \(-0.290337\pi\)
−0.0394465 + 0.999222i \(0.512559\pi\)
\(3\) 0 0
\(4\) −246.572 206.898i −0.481585 0.404098i
\(5\) 222.415 1261.38i 0.159147 0.902568i −0.795749 0.605627i \(-0.792922\pi\)
0.954896 0.296941i \(-0.0959665\pi\)
\(6\) 0 0
\(7\) −4998.24 + 4194.02i −0.786821 + 0.660221i −0.944956 0.327196i \(-0.893896\pi\)
0.158135 + 0.987417i \(0.449452\pi\)
\(8\) −5748.96 9957.50i −0.496232 0.859499i
\(9\) 0 0
\(10\) 8830.42 15294.7i 0.279242 0.483662i
\(11\) −4387.44 24882.4i −0.0903533 0.512419i −0.996073 0.0885409i \(-0.971780\pi\)
0.905719 0.423878i \(-0.139332\pi\)
\(12\) 0 0
\(13\) 14554.5 5297.40i 0.141336 0.0514420i −0.270384 0.962753i \(-0.587151\pi\)
0.411719 + 0.911311i \(0.364928\pi\)
\(14\) −84540.9 + 30770.4i −0.588154 + 0.214070i
\(15\) 0 0
\(16\) 1087.25 + 6166.10i 0.00414753 + 0.0235218i
\(17\) −187103. + 324072.i −0.543326 + 0.941069i 0.455384 + 0.890295i \(0.349502\pi\)
−0.998710 + 0.0507737i \(0.983831\pi\)
\(18\) 0 0
\(19\) −331545. 574253.i −0.583649 1.01091i −0.995042 0.0994513i \(-0.968291\pi\)
0.411394 0.911458i \(-0.365042\pi\)
\(20\) −315818. + 265003.i −0.441369 + 0.370352i
\(21\) 0 0
\(22\) 60496.3 343092.i 0.0550588 0.312254i
\(23\) 1.82158e6 + 1.52849e6i 1.35729 + 1.13890i 0.976809 + 0.214114i \(0.0686865\pi\)
0.380483 + 0.924788i \(0.375758\pi\)
\(24\) 0 0
\(25\) 293733. + 106910.i 0.150391 + 0.0547380i
\(26\) 213564. 0.0916535
\(27\) 0 0
\(28\) 2.10016e6 0.645715
\(29\) −2.27688e6 828718.i −0.597792 0.217578i 0.0253612 0.999678i \(-0.491926\pi\)
−0.623153 + 0.782100i \(0.714149\pi\)
\(30\) 0 0
\(31\) 4.94152e6 + 4.14643e6i 0.961021 + 0.806392i 0.981119 0.193406i \(-0.0619534\pi\)
−0.0200981 + 0.999798i \(0.506398\pi\)
\(32\) −1.03725e6 + 5.88253e6i −0.174867 + 0.991720i
\(33\) 0 0
\(34\) −3.95260e6 + 3.31663e6i −0.507257 + 0.425639i
\(35\) 4.17856e6 + 7.23748e6i 0.470674 + 0.815232i
\(36\) 0 0
\(37\) −8.89215e6 + 1.54017e7i −0.780008 + 1.35101i 0.151928 + 0.988392i \(0.451452\pi\)
−0.931936 + 0.362622i \(0.881882\pi\)
\(38\) −1.58767e6 9.00413e6i −0.123519 0.700512i
\(39\) 0 0
\(40\) −1.38388e7 + 5.03692e6i −0.854730 + 0.311096i
\(41\) −3.98972e6 + 1.45214e6i −0.220503 + 0.0802567i −0.449910 0.893074i \(-0.648544\pi\)
0.229406 + 0.973331i \(0.426322\pi\)
\(42\) 0 0
\(43\) −2.25330e6 1.27791e7i −0.100510 0.570023i −0.992919 0.118795i \(-0.962097\pi\)
0.892408 0.451229i \(-0.149014\pi\)
\(44\) −4.06631e6 + 7.04305e6i −0.163555 + 0.283285i
\(45\) 0 0
\(46\) 1.63939e7 + 2.83951e7i 0.539849 + 0.935045i
\(47\) 1.91163e6 1.60405e6i 0.0571432 0.0479488i −0.613769 0.789486i \(-0.710347\pi\)
0.670912 + 0.741537i \(0.265903\pi\)
\(48\) 0 0
\(49\) 385257. 2.18490e6i 0.00954702 0.0541439i
\(50\) 3.30171e6 + 2.77047e6i 0.0747092 + 0.0626885i
\(51\) 0 0
\(52\) −4.68475e6 1.70511e6i −0.0888528 0.0323398i
\(53\) 9.09978e6 0.158412 0.0792062 0.996858i \(-0.474761\pi\)
0.0792062 + 0.996858i \(0.474761\pi\)
\(54\) 0 0
\(55\) −3.23619e7 −0.476872
\(56\) 7.04967e7 + 2.56587e7i 0.957905 + 0.348649i
\(57\) 0 0
\(58\) −2.55933e7 2.14754e7i −0.296962 0.249181i
\(59\) −2.51267e7 + 1.42501e8i −0.269961 + 1.53103i 0.484564 + 0.874756i \(0.338978\pi\)
−0.754525 + 0.656271i \(0.772133\pi\)
\(60\) 0 0
\(61\) −1.76413e6 + 1.48028e6i −0.0163135 + 0.0136886i −0.650908 0.759157i \(-0.725612\pi\)
0.634594 + 0.772845i \(0.281167\pi\)
\(62\) 4.44728e7 + 7.70291e7i 0.382236 + 0.662052i
\(63\) 0 0
\(64\) −3.95784e7 + 6.85519e7i −0.294882 + 0.510751i
\(65\) −3.44489e6 1.95369e7i −0.0239367 0.135752i
\(66\) 0 0
\(67\) −2.75317e8 + 1.00207e8i −1.66916 + 0.607523i −0.991762 0.128097i \(-0.959113\pi\)
−0.677394 + 0.735620i \(0.736891\pi\)
\(68\) 1.13184e8 4.11957e7i 0.641942 0.233648i
\(69\) 0 0
\(70\) 2.00099e7 + 1.13482e8i 0.0996101 + 0.564917i
\(71\) −3.55199e7 + 6.15222e7i −0.165886 + 0.287322i −0.936969 0.349411i \(-0.886382\pi\)
0.771084 + 0.636734i \(0.219715\pi\)
\(72\) 0 0
\(73\) −2.15747e8 3.73685e8i −0.889186 1.54011i −0.840840 0.541284i \(-0.817938\pi\)
−0.0483457 0.998831i \(-0.515395\pi\)
\(74\) −1.87849e8 + 1.57624e8i −0.728226 + 0.611054i
\(75\) 0 0
\(76\) −3.70623e7 + 2.10191e8i −0.127430 + 0.722690i
\(77\) 1.26287e8 + 1.05967e8i 0.409402 + 0.343529i
\(78\) 0 0
\(79\) 3.19548e8 + 1.16306e8i 0.923025 + 0.335954i 0.759441 0.650576i \(-0.225472\pi\)
0.163584 + 0.986529i \(0.447695\pi\)
\(80\) 8.01960e6 0.0218901
\(81\) 0 0
\(82\) −5.85430e7 −0.142992
\(83\) 1.63239e8 + 5.94141e7i 0.377548 + 0.137416i 0.523822 0.851828i \(-0.324506\pi\)
−0.146274 + 0.989244i \(0.546728\pi\)
\(84\) 0 0
\(85\) 3.67163e8 + 3.08086e8i 0.762910 + 0.640157i
\(86\) 3.10697e7 1.76205e8i 0.0612483 0.347357i
\(87\) 0 0
\(88\) −2.22543e8 + 1.86736e8i −0.395587 + 0.331937i
\(89\) 2.35605e8 + 4.08079e8i 0.398042 + 0.689429i 0.993484 0.113969i \(-0.0363566\pi\)
−0.595443 + 0.803398i \(0.703023\pi\)
\(90\) 0 0
\(91\) −5.05294e7 + 8.75195e7i −0.0772428 + 0.133788i
\(92\) −1.32909e8 7.53763e8i −0.193423 1.09696i
\(93\) 0 0
\(94\) 3.23336e7 1.17685e7i 0.0427149 0.0155469i
\(95\) −7.98090e8 + 2.90481e8i −1.00530 + 0.365899i
\(96\) 0 0
\(97\) 1.26743e8 + 7.18794e8i 0.145362 + 0.824389i 0.967076 + 0.254488i \(0.0819070\pi\)
−0.821714 + 0.569900i \(0.806982\pi\)
\(98\) 1.52957e7 2.64928e7i 0.0167514 0.0290142i
\(99\) 0 0
\(100\) −5.03068e7 8.71339e7i −0.0503068 0.0871339i
\(101\) 9.00064e7 7.55243e7i 0.0860651 0.0722172i −0.598740 0.800943i \(-0.704332\pi\)
0.684805 + 0.728726i \(0.259887\pi\)
\(102\) 0 0
\(103\) 2.01766e8 1.14427e9i 0.176637 1.00176i −0.759601 0.650389i \(-0.774606\pi\)
0.936238 0.351367i \(-0.114283\pi\)
\(104\) −1.36422e8 1.14472e8i −0.114350 0.0959507i
\(105\) 0 0
\(106\) 1.17906e8 + 4.29141e7i 0.0907106 + 0.0330160i
\(107\) 1.71487e8 0.126475 0.0632373 0.997999i \(-0.479858\pi\)
0.0632373 + 0.997999i \(0.479858\pi\)
\(108\) 0 0
\(109\) −1.54312e8 −0.104708 −0.0523539 0.998629i \(-0.516672\pi\)
−0.0523539 + 0.998629i \(0.516672\pi\)
\(110\) −4.19313e8 1.52617e8i −0.273068 0.0993887i
\(111\) 0 0
\(112\) −3.12951e7 2.62597e7i −0.0187930 0.0157692i
\(113\) −1.57576e8 + 8.93656e8i −0.0909151 + 0.515605i 0.905008 + 0.425395i \(0.139865\pi\)
−0.995923 + 0.0902099i \(0.971246\pi\)
\(114\) 0 0
\(115\) 2.33315e9 1.95774e9i 1.24395 1.04379i
\(116\) 3.89955e8 + 6.75422e8i 0.199965 + 0.346349i
\(117\) 0 0
\(118\) −9.97593e8 + 1.72788e9i −0.473679 + 0.820436i
\(119\) −4.23979e8 2.40450e9i −0.193813 1.09917i
\(120\) 0 0
\(121\) 1.61586e9 5.88126e8i 0.685283 0.249423i
\(122\) −2.98387e7 + 1.08604e7i −0.0121944 + 0.00443841i
\(123\) 0 0
\(124\) −3.60550e8 2.04478e9i −0.136952 0.776693i
\(125\) 1.45100e9 2.51321e9i 0.531585 0.920732i
\(126\) 0 0
\(127\) −2.53672e9 4.39373e9i −0.865279 1.49871i −0.866769 0.498709i \(-0.833808\pi\)
0.00148997 0.999999i \(-0.499526\pi\)
\(128\) 1.50670e9 1.26427e9i 0.496115 0.416290i
\(129\) 0 0
\(130\) 4.74999e7 2.69385e8i 0.0145864 0.0827235i
\(131\) 1.39004e9 + 1.16638e9i 0.412388 + 0.346035i 0.825259 0.564755i \(-0.191029\pi\)
−0.412870 + 0.910790i \(0.635474\pi\)
\(132\) 0 0
\(133\) 4.06557e9 + 1.47975e9i 1.12665 + 0.410067i
\(134\) −4.03985e9 −1.08242
\(135\) 0 0
\(136\) 4.30260e9 1.07846
\(137\) −5.71529e9 2.08019e9i −1.38610 0.504500i −0.462080 0.886838i \(-0.652897\pi\)
−0.924023 + 0.382338i \(0.875119\pi\)
\(138\) 0 0
\(139\) −6.07364e9 5.09639e9i −1.38001 1.15797i −0.969208 0.246242i \(-0.920804\pi\)
−0.410802 0.911724i \(-0.634751\pi\)
\(140\) 4.67107e8 2.64909e9i 0.102764 0.582802i
\(141\) 0 0
\(142\) −7.50366e8 + 6.29632e8i −0.154873 + 0.129954i
\(143\) −1.95669e8 3.38909e8i −0.0391300 0.0677751i
\(144\) 0 0
\(145\) −1.55174e9 + 2.68769e9i −0.291516 + 0.504921i
\(146\) −1.03315e9 5.85929e9i −0.188181 1.06723i
\(147\) 0 0
\(148\) 5.37913e9 1.95784e9i 0.921582 0.335429i
\(149\) 9.88175e9 3.59666e9i 1.64246 0.597808i 0.654996 0.755632i \(-0.272670\pi\)
0.987467 + 0.157824i \(0.0504479\pi\)
\(150\) 0 0
\(151\) 6.60043e8 + 3.74329e9i 0.103318 + 0.585945i 0.991879 + 0.127186i \(0.0405947\pi\)
−0.888561 + 0.458759i \(0.848294\pi\)
\(152\) −3.81208e9 + 6.60272e9i −0.579250 + 1.00329i
\(153\) 0 0
\(154\) 1.13656e9 + 1.96858e9i 0.162835 + 0.282039i
\(155\) 6.32927e9 5.31089e9i 0.880767 0.739052i
\(156\) 0 0
\(157\) 8.69173e7 4.92933e8i 0.0114172 0.0647499i −0.978567 0.205929i \(-0.933978\pi\)
0.989984 + 0.141179i \(0.0450894\pi\)
\(158\) 3.59188e9 + 3.01394e9i 0.458527 + 0.384750i
\(159\) 0 0
\(160\) 7.18938e9 + 2.61672e9i 0.867265 + 0.315659i
\(161\) −1.55152e10 −1.81987
\(162\) 0 0
\(163\) −1.47137e10 −1.63259 −0.816295 0.577635i \(-0.803976\pi\)
−0.816295 + 0.577635i \(0.803976\pi\)
\(164\) 1.28420e9 + 4.67410e8i 0.138623 + 0.0504545i
\(165\) 0 0
\(166\) 1.83489e9 + 1.53965e9i 0.187553 + 0.157375i
\(167\) −9.07130e7 + 5.14459e8i −0.00902496 + 0.0511831i −0.988988 0.147998i \(-0.952717\pi\)
0.979963 + 0.199181i \(0.0638282\pi\)
\(168\) 0 0
\(169\) −7.93975e9 + 6.66224e9i −0.748715 + 0.628246i
\(170\) 3.30440e9 + 5.72339e9i 0.303440 + 0.525573i
\(171\) 0 0
\(172\) −2.08837e9 + 3.61717e9i −0.181941 + 0.315131i
\(173\) 2.60634e9 + 1.47813e10i 0.221219 + 1.25460i 0.869782 + 0.493436i \(0.164259\pi\)
−0.648563 + 0.761161i \(0.724630\pi\)
\(174\) 0 0
\(175\) −1.91653e9 + 6.97561e8i −0.154470 + 0.0562226i
\(176\) 1.48657e8 5.41068e7i 0.0116783 0.00425055i
\(177\) 0 0
\(178\) 1.12824e9 + 6.39857e9i 0.0842387 + 0.477742i
\(179\) −7.83220e9 + 1.35658e10i −0.570224 + 0.987656i 0.426319 + 0.904573i \(0.359810\pi\)
−0.996543 + 0.0830834i \(0.973523\pi\)
\(180\) 0 0
\(181\) 7.25470e9 + 1.25655e10i 0.502419 + 0.870215i 0.999996 + 0.00279503i \(0.000889686\pi\)
−0.497577 + 0.867420i \(0.665777\pi\)
\(182\) −1.06745e9 + 8.95694e8i −0.0721149 + 0.0605116i
\(183\) 0 0
\(184\) 4.74771e9 2.69256e10i 0.305354 1.73175i
\(185\) 1.74496e10 + 1.46419e10i 1.09525 + 0.919020i
\(186\) 0 0
\(187\) 8.88460e9 + 3.23373e9i 0.531313 + 0.193382i
\(188\) −8.03230e8 −0.0468953
\(189\) 0 0
\(190\) −1.17107e10 −0.651918
\(191\) −5.33447e9 1.94159e9i −0.290029 0.105562i 0.192909 0.981217i \(-0.438208\pi\)
−0.482937 + 0.875655i \(0.660430\pi\)
\(192\) 0 0
\(193\) −6.22322e9 5.22191e9i −0.322855 0.270908i 0.466926 0.884296i \(-0.345361\pi\)
−0.789781 + 0.613389i \(0.789806\pi\)
\(194\) −1.74760e9 + 9.91112e9i −0.0885796 + 0.502360i
\(195\) 0 0
\(196\) −5.47045e8 + 4.59026e8i −0.0264771 + 0.0222170i
\(197\) 9.16280e9 + 1.58704e10i 0.433441 + 0.750743i 0.997167 0.0752196i \(-0.0239658\pi\)
−0.563726 + 0.825962i \(0.690632\pi\)
\(198\) 0 0
\(199\) −1.25288e10 + 2.17006e10i −0.566333 + 0.980918i 0.430591 + 0.902547i \(0.358305\pi\)
−0.996924 + 0.0783710i \(0.975028\pi\)
\(200\) −6.24105e8 3.53947e9i −0.0275818 0.156424i
\(201\) 0 0
\(202\) 1.52238e9 5.54101e8i 0.0643342 0.0234157i
\(203\) 1.48561e10 5.40717e9i 0.614005 0.223480i
\(204\) 0 0
\(205\) 9.44323e8 + 5.35552e9i 0.0373446 + 0.211792i
\(206\) 8.01061e9 1.38748e10i 0.309930 0.536814i
\(207\) 0 0
\(208\) 4.84887e7 + 8.39849e7i 0.00179620 + 0.00311111i
\(209\) −1.28342e10 + 1.07691e10i −0.465274 + 0.390412i
\(210\) 0 0
\(211\) 2.99464e9 1.69835e10i 0.104010 0.589868i −0.887602 0.460612i \(-0.847630\pi\)
0.991611 0.129256i \(-0.0412589\pi\)
\(212\) −2.24375e9 1.88273e9i −0.0762891 0.0640142i
\(213\) 0 0
\(214\) 2.22195e9 + 8.08723e8i 0.0724222 + 0.0263595i
\(215\) −1.66204e10 −0.530481
\(216\) 0 0
\(217\) −4.20891e10 −1.28855
\(218\) −1.99941e9 7.27727e8i −0.0599581 0.0218230i
\(219\) 0 0
\(220\) 7.97954e9 + 6.69562e9i 0.229655 + 0.192703i
\(221\) −1.00645e9 + 5.70786e9i −0.0283810 + 0.160956i
\(222\) 0 0
\(223\) −3.04226e10 + 2.55276e10i −0.823804 + 0.691254i −0.953860 0.300253i \(-0.902929\pi\)
0.130056 + 0.991507i \(0.458484\pi\)
\(224\) −1.94870e10 3.37525e10i −0.517165 0.895757i
\(225\) 0 0
\(226\) −6.25614e9 + 1.08360e10i −0.159521 + 0.276299i
\(227\) −1.16503e10 6.60722e10i −0.291220 1.65159i −0.682181 0.731183i \(-0.738968\pi\)
0.390961 0.920407i \(-0.372143\pi\)
\(228\) 0 0
\(229\) 8.92141e9 3.24713e9i 0.214375 0.0780261i −0.232600 0.972572i \(-0.574723\pi\)
0.446975 + 0.894546i \(0.352501\pi\)
\(230\) 3.94631e10 1.43634e10i 0.929857 0.338440i
\(231\) 0 0
\(232\) 4.83777e9 + 2.74363e10i 0.109635 + 0.621771i
\(233\) −3.72517e10 + 6.45218e10i −0.828027 + 1.43418i 0.0715572 + 0.997437i \(0.477203\pi\)
−0.899584 + 0.436748i \(0.856130\pi\)
\(234\) 0 0
\(235\) −1.59814e9 2.76806e9i −0.0341829 0.0592065i
\(236\) 3.56787e10 2.99380e10i 0.748694 0.628229i
\(237\) 0 0
\(238\) 5.84605e9 3.31546e10i 0.118104 0.669803i
\(239\) 4.24492e10 + 3.56191e10i 0.841548 + 0.706142i 0.957911 0.287064i \(-0.0926794\pi\)
−0.116364 + 0.993207i \(0.537124\pi\)
\(240\) 0 0
\(241\) 4.96719e10 + 1.80791e10i 0.948493 + 0.345223i 0.769514 0.638630i \(-0.220498\pi\)
0.178979 + 0.983853i \(0.442721\pi\)
\(242\) 2.37103e10 0.444393
\(243\) 0 0
\(244\) 7.41252e8 0.0133879
\(245\) −2.67030e9 9.71908e8i −0.0473491 0.0172337i
\(246\) 0 0
\(247\) −7.86752e9 6.60163e9i −0.134494 0.112853i
\(248\) 1.28794e10 7.30428e10i 0.216204 1.22615i
\(249\) 0 0
\(250\) 3.06528e10 2.57207e10i 0.496295 0.416441i
\(251\) 2.08476e10 + 3.61091e10i 0.331531 + 0.574229i 0.982812 0.184607i \(-0.0591014\pi\)
−0.651281 + 0.758837i \(0.725768\pi\)
\(252\) 0 0
\(253\) 3.00404e10 5.20314e10i 0.460960 0.798405i
\(254\) −1.21476e10 6.88926e10i −0.183122 1.03853i
\(255\) 0 0
\(256\) 6.35687e10 2.31371e10i 0.925047 0.336689i
\(257\) −9.68995e10 + 3.52685e10i −1.38555 + 0.504299i −0.923856 0.382740i \(-0.874981\pi\)
−0.461694 + 0.887039i \(0.652758\pi\)
\(258\) 0 0
\(259\) −2.01498e10 1.14275e11i −0.278241 1.57798i
\(260\) −3.19274e9 + 5.52999e9i −0.0433295 + 0.0750489i
\(261\) 0 0
\(262\) 1.25101e10 + 2.16681e10i 0.164023 + 0.284097i
\(263\) −2.32813e10 + 1.95354e10i −0.300059 + 0.251780i −0.780369 0.625319i \(-0.784969\pi\)
0.480310 + 0.877099i \(0.340524\pi\)
\(264\) 0 0
\(265\) 2.02393e9 1.14783e10i 0.0252109 0.142978i
\(266\) 4.56991e10 + 3.83461e10i 0.559681 + 0.469628i
\(267\) 0 0
\(268\) 8.86182e10 + 3.22544e10i 1.04934 + 0.381928i
\(269\) −1.06100e11 −1.23546 −0.617732 0.786388i \(-0.711948\pi\)
−0.617732 + 0.786388i \(0.711948\pi\)
\(270\) 0 0
\(271\) −5.16724e10 −0.581965 −0.290982 0.956728i \(-0.593982\pi\)
−0.290982 + 0.956728i \(0.593982\pi\)
\(272\) −2.20169e9 8.01349e8i −0.0243891 0.00887691i
\(273\) 0 0
\(274\) −6.42427e10 5.39061e10i −0.688568 0.577777i
\(275\) 1.37145e9 7.77785e9i 0.0144604 0.0820092i
\(276\) 0 0
\(277\) 1.47446e10 1.23722e10i 0.150478 0.126266i −0.564441 0.825474i \(-0.690908\pi\)
0.714919 + 0.699207i \(0.246464\pi\)
\(278\) −5.46617e10 9.46768e10i −0.548885 0.950697i
\(279\) 0 0
\(280\) 4.80448e10 8.32160e10i 0.467127 0.809088i
\(281\) 4.53849e9 + 2.57391e10i 0.0434243 + 0.246271i 0.998791 0.0491497i \(-0.0156511\pi\)
−0.955367 + 0.295421i \(0.904540\pi\)
\(282\) 0 0
\(283\) −1.56995e11 + 5.71417e10i −1.45495 + 0.529559i −0.943969 0.330033i \(-0.892940\pi\)
−0.510981 + 0.859592i \(0.670718\pi\)
\(284\) 2.14870e10 7.82064e9i 0.195994 0.0713362i
\(285\) 0 0
\(286\) −9.37001e8 5.31400e9i −0.00828119 0.0469650i
\(287\) 1.38513e10 2.39911e10i 0.120510 0.208729i
\(288\) 0 0
\(289\) −1.07212e10 1.85697e10i −0.0904072 0.156590i
\(290\) −3.27809e10 + 2.75064e10i −0.272163 + 0.228372i
\(291\) 0 0
\(292\) −2.41176e10 + 1.36778e11i −0.194139 + 1.10101i
\(293\) −1.34724e11 1.13047e11i −1.06792 0.896094i −0.0730601 0.997328i \(-0.523276\pi\)
−0.994863 + 0.101234i \(0.967721\pi\)
\(294\) 0 0
\(295\) 1.74158e11 + 6.33885e10i 1.33889 + 0.487317i
\(296\) 2.04483e11 1.54826
\(297\) 0 0
\(298\) 1.44999e11 1.06511
\(299\) 3.46092e10 + 1.25967e10i 0.250421 + 0.0911458i
\(300\) 0 0
\(301\) 6.48584e10 + 5.44227e10i 0.455425 + 0.382147i
\(302\) −9.10102e9 + 5.16144e10i −0.0629591 + 0.357059i
\(303\) 0 0
\(304\) 3.18043e9 2.66870e9i 0.0213577 0.0179212i
\(305\) 1.47482e9 + 2.55447e9i 0.00975868 + 0.0169025i
\(306\) 0 0
\(307\) −6.84591e10 + 1.18575e11i −0.439854 + 0.761850i −0.997678 0.0681098i \(-0.978303\pi\)
0.557824 + 0.829959i \(0.311637\pi\)
\(308\) −9.21432e9 5.22570e10i −0.0583425 0.330877i
\(309\) 0 0
\(310\) 1.07054e11 3.89645e10i 0.658379 0.239630i
\(311\) −8.66299e10 + 3.15307e10i −0.525105 + 0.191123i −0.590951 0.806707i \(-0.701247\pi\)
0.0658464 + 0.997830i \(0.479025\pi\)
\(312\) 0 0
\(313\) −1.13520e10 6.43802e10i −0.0668531 0.379143i −0.999816 0.0191709i \(-0.993897\pi\)
0.932963 0.359972i \(-0.117214\pi\)
\(314\) 3.45083e9 5.97702e9i 0.0200328 0.0346978i
\(315\) 0 0
\(316\) −5.47279e10 9.47916e10i −0.308757 0.534783i
\(317\) 1.34809e11 1.13118e11i 0.749810 0.629166i −0.185642 0.982617i \(-0.559437\pi\)
0.935453 + 0.353452i \(0.114992\pi\)
\(318\) 0 0
\(319\) −1.06308e10 + 6.02903e10i −0.0574789 + 0.325979i
\(320\) 7.76669e10 + 6.51703e10i 0.414058 + 0.347436i
\(321\) 0 0
\(322\) −2.01030e11 7.31690e10i −1.04210 0.379294i
\(323\) 2.48132e11 1.26845
\(324\) 0 0
\(325\) 4.84148e9 0.0240715
\(326\) −1.90645e11 6.93891e10i −0.934859 0.340261i
\(327\) 0 0
\(328\) 3.73964e10 + 3.13793e10i 0.178401 + 0.149696i
\(329\) −2.82738e9 + 1.60349e10i −0.0133046 + 0.0754542i
\(330\) 0 0
\(331\) −2.89334e11 + 2.42780e11i −1.32487 + 1.11170i −0.339624 + 0.940561i \(0.610300\pi\)
−0.985247 + 0.171138i \(0.945256\pi\)
\(332\) −2.79574e10 4.84236e10i −0.126292 0.218744i
\(333\) 0 0
\(334\) −3.60153e9 + 6.23803e9i −0.0158354 + 0.0274276i
\(335\) 6.51645e10 + 3.69567e11i 0.282690 + 1.60321i
\(336\) 0 0
\(337\) 4.53479e10 1.65053e10i 0.191524 0.0697090i −0.244478 0.969655i \(-0.578616\pi\)
0.436002 + 0.899946i \(0.356394\pi\)
\(338\) −1.34294e11 + 4.88790e10i −0.559669 + 0.203703i
\(339\) 0 0
\(340\) −2.67895e10 1.51931e11i −0.108720 0.616581i
\(341\) 8.14924e10 1.41149e11i 0.326379 0.565306i
\(342\) 0 0
\(343\) −1.24410e11 2.15485e11i −0.485326 0.840609i
\(344\) −1.14294e11 + 9.59039e10i −0.440058 + 0.369252i
\(345\) 0 0
\(346\) −3.59375e10 + 2.03812e11i −0.134805 + 0.764517i
\(347\) −3.16547e10 2.65615e10i −0.117208 0.0983489i 0.582300 0.812974i \(-0.302153\pi\)
−0.699508 + 0.714625i \(0.746597\pi\)
\(348\) 0 0
\(349\) −3.17062e11 1.15401e11i −1.14401 0.416386i −0.300650 0.953735i \(-0.597204\pi\)
−0.843360 + 0.537349i \(0.819426\pi\)
\(350\) −2.81221e10 −0.100171
\(351\) 0 0
\(352\) 1.50922e11 0.523976
\(353\) 1.78882e11 + 6.51076e10i 0.613168 + 0.223175i 0.629889 0.776685i \(-0.283100\pi\)
−0.0167207 + 0.999860i \(0.505323\pi\)
\(354\) 0 0
\(355\) 6.97026e10 + 5.84874e10i 0.232928 + 0.195450i
\(356\) 2.63374e10 1.49367e11i 0.0869057 0.492867i
\(357\) 0 0
\(358\) −1.65457e11 + 1.38835e11i −0.532368 + 0.446710i
\(359\) 2.11214e11 + 3.65833e11i 0.671116 + 1.16241i 0.977588 + 0.210527i \(0.0675179\pi\)
−0.306473 + 0.951880i \(0.599149\pi\)
\(360\) 0 0
\(361\) −5.85005e10 + 1.01326e11i −0.181291 + 0.314006i
\(362\) 3.47406e10 + 1.97024e11i 0.106328 + 0.603018i
\(363\) 0 0
\(364\) 3.05667e10 1.11254e10i 0.0912626 0.0332169i
\(365\) −5.19343e11 + 1.89026e11i −1.53157 + 0.557446i
\(366\) 0 0
\(367\) −4.99129e10 2.83070e11i −0.143620 0.814511i −0.968465 0.249151i \(-0.919848\pi\)
0.824844 0.565360i \(-0.191263\pi\)
\(368\) −7.44430e9 + 1.28939e10i −0.0211596 + 0.0366496i
\(369\) 0 0
\(370\) 1.57043e11 + 2.72006e11i 0.435623 + 0.754521i
\(371\) −4.54829e10 + 3.81647e10i −0.124642 + 0.104587i
\(372\) 0 0
\(373\) −2.05333e10 + 1.16450e11i −0.0549247 + 0.311494i −0.999876 0.0157160i \(-0.994997\pi\)
0.944952 + 0.327210i \(0.106108\pi\)
\(374\) 9.98674e10 + 8.37987e10i 0.263938 + 0.221470i
\(375\) 0 0
\(376\) −2.69623e10 9.81346e9i −0.0695682 0.0253208i
\(377\) −3.75289e10 −0.0956820
\(378\) 0 0
\(379\) 4.22411e11 1.05162 0.525809 0.850602i \(-0.323763\pi\)
0.525809 + 0.850602i \(0.323763\pi\)
\(380\) 2.56886e11 + 9.34990e10i 0.631997 + 0.230028i
\(381\) 0 0
\(382\) −5.99622e10 5.03142e10i −0.144076 0.120894i
\(383\) 1.06688e11 6.05059e11i 0.253351 1.43682i −0.546920 0.837185i \(-0.684200\pi\)
0.800271 0.599639i \(-0.204689\pi\)
\(384\) 0 0
\(385\) 1.61753e11 1.35727e11i 0.375213 0.314841i
\(386\) −5.60079e10 9.70086e10i −0.128412 0.222417i
\(387\) 0 0
\(388\) 1.17466e11 2.03457e11i 0.263130 0.455754i
\(389\) 1.41597e11 + 8.03037e11i 0.313532 + 1.77813i 0.580338 + 0.814376i \(0.302921\pi\)
−0.266806 + 0.963750i \(0.585968\pi\)
\(390\) 0 0
\(391\) −8.36163e11 + 3.04339e11i −1.80924 + 0.658509i
\(392\) −2.39710e10 + 8.72472e9i −0.0512741 + 0.0186623i
\(393\) 0 0
\(394\) 4.38780e10 + 2.48844e11i 0.0917305 + 0.520229i
\(395\) 2.17778e11 3.77202e11i 0.450118 0.779627i
\(396\) 0 0
\(397\) 1.49240e11 + 2.58492e11i 0.301529 + 0.522264i 0.976482 0.215597i \(-0.0691697\pi\)
−0.674953 + 0.737860i \(0.735836\pi\)
\(398\) −2.64675e11 + 2.22089e11i −0.528736 + 0.443662i
\(399\) 0 0
\(400\) −3.39858e8 + 1.92743e9i −0.000663784 + 0.00376451i
\(401\) 2.63089e11 + 2.20758e11i 0.508104 + 0.426350i 0.860462 0.509515i \(-0.170175\pi\)
−0.352357 + 0.935866i \(0.614620\pi\)
\(402\) 0 0
\(403\) 9.38865e10 + 3.41719e10i 0.177309 + 0.0645352i
\(404\) −3.78189e10 −0.0706305
\(405\) 0 0
\(406\) 2.17990e11 0.398170
\(407\) 4.22244e11 + 1.53684e11i 0.762761 + 0.277622i
\(408\) 0 0
\(409\) 5.18351e11 + 4.34948e11i 0.915945 + 0.768569i 0.973241 0.229788i \(-0.0738034\pi\)
−0.0572959 + 0.998357i \(0.518248\pi\)
\(410\) −1.30208e10 + 7.38447e10i −0.0227568 + 0.129060i
\(411\) 0 0
\(412\) −2.86498e11 + 2.40400e11i −0.489873 + 0.411052i
\(413\) −4.72061e11 8.17634e11i −0.798405 1.38288i
\(414\) 0 0
\(415\) 1.11250e11 1.92691e11i 0.184113 0.318893i
\(416\) 1.60655e10 + 9.11119e10i 0.0263011 + 0.149161i
\(417\) 0 0
\(418\) −2.17079e11 + 7.90102e10i −0.347796 + 0.126587i
\(419\) −3.78288e11 + 1.37685e11i −0.599597 + 0.218235i −0.623945 0.781468i \(-0.714471\pi\)
0.0243484 + 0.999704i \(0.492249\pi\)
\(420\) 0 0
\(421\) −6.68416e10 3.79078e11i −0.103700 0.588110i −0.991732 0.128328i \(-0.959039\pi\)
0.888032 0.459782i \(-0.152072\pi\)
\(422\) 1.18895e11 2.05932e11i 0.182497 0.316095i
\(423\) 0 0
\(424\) −5.23143e10 9.06110e10i −0.0786093 0.136155i
\(425\) −8.96050e10 + 7.51876e10i −0.133224 + 0.111788i
\(426\) 0 0
\(427\) 2.60922e9 1.47976e10i 0.00379826 0.0215410i
\(428\) −4.22837e10 3.54803e10i −0.0609083 0.0511081i
\(429\) 0 0
\(430\) −2.15351e11 7.83813e10i −0.303765 0.110562i
\(431\) −7.95097e11 −1.10987 −0.554935 0.831894i \(-0.687257\pi\)
−0.554935 + 0.831894i \(0.687257\pi\)
\(432\) 0 0
\(433\) 6.46577e11 0.883945 0.441972 0.897029i \(-0.354279\pi\)
0.441972 + 0.897029i \(0.354279\pi\)
\(434\) −5.45347e11 1.98490e11i −0.737852 0.268556i
\(435\) 0 0
\(436\) 3.80489e10 + 3.19268e10i 0.0504258 + 0.0423123i
\(437\) 2.73802e11 1.55281e12i 0.359146 2.03682i
\(438\) 0 0
\(439\) 8.41026e11 7.05704e11i 1.08073 0.906844i 0.0847525 0.996402i \(-0.472990\pi\)
0.995982 + 0.0895585i \(0.0285456\pi\)
\(440\) 1.86048e11 + 3.22244e11i 0.236639 + 0.409871i
\(441\) 0 0
\(442\) −3.99586e10 + 6.92103e10i −0.0497978 + 0.0862522i
\(443\) −2.71358e11 1.53895e12i −0.334754 1.89849i −0.429645 0.902998i \(-0.641361\pi\)
0.0948913 0.995488i \(-0.469750\pi\)
\(444\) 0 0
\(445\) 5.67143e11 2.06423e11i 0.685603 0.249539i
\(446\) −5.14571e11 + 1.87289e11i −0.615799 + 0.224132i
\(447\) 0 0
\(448\) −8.96855e10 5.08632e11i −0.105189 0.596557i
\(449\) 3.60741e11 6.24821e11i 0.418877 0.725517i −0.576950 0.816780i \(-0.695757\pi\)
0.995827 + 0.0912631i \(0.0290904\pi\)
\(450\) 0 0
\(451\) 5.36374e10 + 9.29027e10i 0.0610482 + 0.105739i
\(452\) 2.23749e11 1.87748e11i 0.252138 0.211569i
\(453\) 0 0
\(454\) 1.60641e11 9.11038e11i 0.177461 1.00643i
\(455\) 9.91566e10 + 8.32023e10i 0.108460 + 0.0910089i
\(456\) 0 0
\(457\) −6.15961e11 2.24192e11i −0.660588 0.240434i −0.0100976 0.999949i \(-0.503214\pi\)
−0.650490 + 0.759515i \(0.725436\pi\)
\(458\) 1.30908e11 0.139018
\(459\) 0 0
\(460\) −9.80341e11 −1.02086
\(461\) 6.52984e11 + 2.37667e11i 0.673361 + 0.245083i 0.655994 0.754766i \(-0.272249\pi\)
0.0173669 + 0.999849i \(0.494472\pi\)
\(462\) 0 0
\(463\) −5.45783e11 4.57966e11i −0.551957 0.463147i 0.323646 0.946178i \(-0.395091\pi\)
−0.875603 + 0.483031i \(0.839536\pi\)
\(464\) 2.63442e9 1.49405e10i 0.00263848 0.0149636i
\(465\) 0 0
\(466\) −7.86951e11 + 6.60331e11i −0.773057 + 0.648671i
\(467\) 5.02439e11 + 8.70251e11i 0.488830 + 0.846678i 0.999917 0.0128505i \(-0.00409055\pi\)
−0.511088 + 0.859529i \(0.670757\pi\)
\(468\) 0 0
\(469\) 9.55830e11 1.65555e12i 0.912227 1.58002i
\(470\) −7.65301e9 4.34024e10i −0.00723422 0.0410273i
\(471\) 0 0
\(472\) 1.56340e12 5.69032e11i 1.44988 0.527713i
\(473\) −3.08089e11 + 1.12135e11i −0.283009 + 0.103007i
\(474\) 0 0
\(475\) −3.59924e10 2.04123e11i −0.0324406 0.183980i
\(476\) −3.92946e11 + 6.80603e11i −0.350834 + 0.607663i
\(477\) 0 0
\(478\) 3.82035e11 + 6.61704e11i 0.334717 + 0.579747i
\(479\) −5.42349e11 + 4.55085e11i −0.470727 + 0.394987i −0.847060 0.531498i \(-0.821629\pi\)
0.376333 + 0.926485i \(0.377185\pi\)
\(480\) 0 0
\(481\) −4.78320e10 + 2.71268e11i −0.0407442 + 0.231072i
\(482\) 5.58338e11 + 4.68501e11i 0.471178 + 0.395366i
\(483\) 0 0
\(484\) −5.20108e11 1.89304e11i −0.430813 0.156803i
\(485\) 9.34860e11 0.767201
\(486\) 0 0
\(487\) −7.20835e11 −0.580705 −0.290352 0.956920i \(-0.593772\pi\)
−0.290352 + 0.956920i \(0.593772\pi\)
\(488\) 2.48818e10 + 9.05625e9i 0.0198606 + 0.00722868i
\(489\) 0 0
\(490\) −3.00155e10 2.51860e10i −0.0235214 0.0197368i
\(491\) 8.41069e9 4.76994e10i 0.00653078 0.0370379i −0.981368 0.192136i \(-0.938458\pi\)
0.987899 + 0.155099i \(0.0495695\pi\)
\(492\) 0 0
\(493\) 6.94577e11 5.82819e11i 0.529552 0.444347i
\(494\) −7.08063e10 1.22640e11i −0.0534934 0.0926533i
\(495\) 0 0
\(496\) −2.01946e10 + 3.49781e10i −0.0149819 + 0.0259495i
\(497\) −8.04887e10 4.56474e11i −0.0591740 0.335592i
\(498\) 0 0
\(499\) −1.77993e9 + 6.47841e8i −0.00128514 + 0.000467752i −0.342663 0.939459i \(-0.611329\pi\)
0.341377 + 0.939926i \(0.389107\pi\)
\(500\) −8.77754e11 + 3.19476e11i −0.628070 + 0.228599i
\(501\) 0 0
\(502\) 9.98331e10 + 5.66182e11i 0.0701630 + 0.397914i
\(503\) 3.06799e11 5.31392e11i 0.213697 0.370134i −0.739172 0.673517i \(-0.764783\pi\)
0.952869 + 0.303383i \(0.0981161\pi\)
\(504\) 0 0
\(505\) −7.52459e10 1.30330e11i −0.0514839 0.0891728i
\(506\) 6.34610e11 5.32501e11i 0.430358 0.361113i
\(507\) 0 0
\(508\) −2.83572e11 + 1.60821e12i −0.188919 + 1.07141i
\(509\) 8.03082e11 + 6.73866e11i 0.530310 + 0.444983i 0.868208 0.496200i \(-0.165272\pi\)
−0.337898 + 0.941183i \(0.609716\pi\)
\(510\) 0 0
\(511\) 2.64560e12 + 9.62920e11i 1.71645 + 0.624735i
\(512\) −7.42595e10 −0.0477570
\(513\) 0 0
\(514\) −1.42185e12 −0.898503
\(515\) −1.39848e12 5.09006e11i −0.876041 0.318853i
\(516\) 0 0
\(517\) −4.82998e10 4.05284e10i −0.0297330 0.0249489i
\(518\) 2.77836e11 1.57568e12i 0.169552 0.961580i
\(519\) 0 0
\(520\) −1.74734e11 + 1.46619e11i −0.104800 + 0.0879380i
\(521\) −4.58453e11 7.94065e11i −0.272600 0.472157i 0.696927 0.717142i \(-0.254550\pi\)
−0.969527 + 0.244985i \(0.921217\pi\)
\(522\) 0 0
\(523\) −1.39425e12 + 2.41491e12i −0.814859 + 1.41138i 0.0945696 + 0.995518i \(0.469853\pi\)
−0.909429 + 0.415859i \(0.863481\pi\)
\(524\) −1.01422e11 5.75193e11i −0.0587681 0.333291i
\(525\) 0 0
\(526\) −3.93784e11 + 1.43326e11i −0.224296 + 0.0816372i
\(527\) −2.26831e12 + 8.25599e11i −1.28102 + 0.466253i
\(528\) 0 0
\(529\) 6.69114e11 + 3.79473e12i 0.371492 + 2.10684i
\(530\) 8.03549e10 1.39179e11i 0.0442355 0.0766181i
\(531\) 0 0
\(532\) −6.96298e11 1.20602e12i −0.376871 0.652760i
\(533\) −5.03758e10 + 4.22703e10i −0.0270364 + 0.0226863i
\(534\) 0 0
\(535\) 3.81411e10 2.16309e11i 0.0201280 0.114152i
\(536\) 2.58060e12 + 2.16538e12i 1.35045 + 1.13317i
\(537\) 0 0
\(538\) −1.37474e12 5.00363e11i −0.707455 0.257493i
\(539\) −5.60559e10 −0.0286069
\(540\) 0 0
\(541\) −7.18636e11 −0.360679 −0.180340 0.983604i \(-0.557720\pi\)
−0.180340 + 0.983604i \(0.557720\pi\)
\(542\) −6.69518e11 2.43685e11i −0.333246 0.121292i
\(543\) 0 0
\(544\) −1.71229e12 1.43678e12i −0.838267 0.703389i
\(545\) −3.43212e10 + 1.94645e11i −0.0166640 + 0.0945060i
\(546\) 0 0
\(547\) 2.56936e12 2.15595e12i 1.22711 1.02967i 0.228686 0.973500i \(-0.426557\pi\)
0.998421 0.0561655i \(-0.0178875\pi\)
\(548\) 9.78839e11 + 1.69540e12i 0.463659 + 0.803081i
\(549\) 0 0
\(550\) 5.44498e10 9.43098e10i 0.0253726 0.0439466i
\(551\) 2.78996e11 + 1.58227e12i 0.128948 + 0.731303i
\(552\) 0 0
\(553\) −2.08496e12 + 7.58865e11i −0.948059 + 0.345065i
\(554\) 2.49392e11 9.07712e10i 0.112483 0.0409406i
\(555\) 0 0
\(556\) 4.43154e11 + 2.51325e12i 0.196661 + 1.11532i
\(557\) −1.76719e12 + 3.06086e12i −0.777920 + 1.34740i 0.155219 + 0.987880i \(0.450392\pi\)
−0.933139 + 0.359517i \(0.882942\pi\)
\(558\) 0 0
\(559\) −1.00492e11 1.74057e11i −0.0435288 0.0753942i
\(560\) −4.00839e10 + 3.36344e10i −0.0172236 + 0.0144523i
\(561\) 0 0
\(562\) −6.25791e10 + 3.54904e11i −0.0264616 + 0.150071i
\(563\) 2.27381e12 + 1.90796e12i 0.953822 + 0.800351i 0.979937 0.199308i \(-0.0638693\pi\)
−0.0261154 + 0.999659i \(0.508314\pi\)
\(564\) 0 0
\(565\) 1.09219e12 + 3.97525e11i 0.450900 + 0.164114i
\(566\) −2.30366e12 −0.943507
\(567\) 0 0
\(568\) 8.16810e11 0.329271
\(569\) 1.81230e12 + 6.59623e11i 0.724811 + 0.263809i 0.677967 0.735093i \(-0.262861\pi\)
0.0468440 + 0.998902i \(0.485084\pi\)
\(570\) 0 0
\(571\) 1.10008e12 + 9.23075e11i 0.433073 + 0.363391i 0.833110 0.553108i \(-0.186558\pi\)
−0.400037 + 0.916499i \(0.631003\pi\)
\(572\) −2.18732e10 + 1.24049e11i −0.00854337 + 0.0484519i
\(573\) 0 0
\(574\) 2.92612e11 2.45530e11i 0.112509 0.0944065i
\(575\) 3.71648e11 + 6.43713e11i 0.141784 + 0.245577i
\(576\) 0 0
\(577\) −1.23593e12 + 2.14069e12i −0.464196 + 0.804011i −0.999165 0.0408609i \(-0.986990\pi\)
0.534969 + 0.844872i \(0.320323\pi\)
\(578\) −5.13407e10 2.91167e11i −0.0191331 0.108509i
\(579\) 0 0
\(580\) 9.38693e11 3.41656e11i 0.344427 0.125361i
\(581\) −1.06509e12 + 3.87661e11i −0.387788 + 0.141143i
\(582\) 0 0
\(583\) −3.99247e10 2.26424e11i −0.0143131 0.0811736i
\(584\) −2.48065e12 + 4.29661e12i −0.882485 + 1.52851i
\(585\) 0 0
\(586\) −1.21249e12 2.10009e12i −0.424755 0.735698i
\(587\) 4.16012e12 3.49076e12i 1.44622 1.21352i 0.510942 0.859615i \(-0.329297\pi\)
0.935280 0.353909i \(-0.115148\pi\)
\(588\) 0 0
\(589\) 7.42761e11 4.21241e12i 0.254291 1.44215i
\(590\) 1.95763e12 + 1.64265e12i 0.665115 + 0.558098i
\(591\) 0 0
\(592\) −1.04636e11 3.80845e10i −0.0350134 0.0127438i
\(593\) 1.89941e12 0.630771 0.315385 0.948964i \(-0.397866\pi\)
0.315385 + 0.948964i \(0.397866\pi\)
\(594\) 0 0
\(595\) −3.12729e12 −1.02292
\(596\) −3.18070e12 1.15768e12i −1.03256 0.375821i
\(597\) 0 0
\(598\) 3.89025e11 + 3.26431e11i 0.124400 + 0.104384i
\(599\) 7.76877e11 4.40589e12i 0.246565 1.39834i −0.570265 0.821461i \(-0.693159\pi\)
0.816830 0.576879i \(-0.195729\pi\)
\(600\) 0 0
\(601\) −1.00690e12 + 8.44891e11i −0.314813 + 0.264159i −0.786478 0.617619i \(-0.788098\pi\)
0.471665 + 0.881778i \(0.343653\pi\)
\(602\) 5.83714e11 + 1.01102e12i 0.181141 + 0.313745i
\(603\) 0 0
\(604\) 6.11732e11 1.05955e12i 0.187023 0.323933i
\(605\) −3.82456e11 2.16902e12i −0.116060 0.658209i
\(606\) 0 0
\(607\) −1.80181e12 + 6.55806e11i −0.538717 + 0.196077i −0.597026 0.802222i \(-0.703651\pi\)
0.0583095 + 0.998299i \(0.481429\pi\)
\(608\) 3.72195e12 1.35468e12i 1.10460 0.402041i
\(609\) 0 0
\(610\) 7.06250e9 + 4.00534e10i 0.00206526 + 0.0117127i
\(611\) 1.93255e10 3.34728e10i 0.00560979 0.00971643i
\(612\) 0 0
\(613\) 2.95639e12 + 5.12062e12i 0.845648 + 1.46470i 0.885057 + 0.465482i \(0.154119\pi\)
−0.0394096 + 0.999223i \(0.512548\pi\)
\(614\) −1.44622e12 + 1.21352e12i −0.410654 + 0.344579i
\(615\) 0 0
\(616\) 3.29150e11 1.86670e12i 0.0921045 0.522350i
\(617\) 2.81691e12 + 2.36367e12i 0.782509 + 0.656603i 0.943879 0.330291i \(-0.107147\pi\)
−0.161370 + 0.986894i \(0.551591\pi\)
\(618\) 0 0
\(619\) −2.12668e12 7.74047e11i −0.582228 0.211914i 0.0340794 0.999419i \(-0.489150\pi\)
−0.616308 + 0.787505i \(0.711372\pi\)
\(620\) −2.65943e12 −0.722814
\(621\) 0 0
\(622\) −1.27116e12 −0.340520
\(623\) −2.88910e12 1.05155e12i −0.768363 0.279661i
\(624\) 0 0
\(625\) −2.37970e12 1.99680e12i −0.623823 0.523450i
\(626\) 1.56527e11 8.87708e11i 0.0407385 0.231039i
\(627\) 0 0
\(628\) −1.23418e11 + 1.03560e11i −0.0316637 + 0.0265690i
\(629\) −3.32750e12 5.76340e12i −0.847598 1.46808i
\(630\) 0 0
\(631\) −1.36584e12 + 2.36571e12i −0.342980 + 0.594058i −0.984985 0.172642i \(-0.944769\pi\)
0.642005 + 0.766700i \(0.278103\pi\)
\(632\) −6.78953e11 3.85053e12i −0.169283 0.960050i
\(633\) 0 0
\(634\) 2.28017e12 8.29915e11i 0.560488 0.204001i
\(635\) −6.10636e12 + 2.22253e12i −1.49039 + 0.542459i
\(636\) 0 0
\(637\) −5.96707e9 3.38410e10i −0.00143593 0.00814358i
\(638\) −4.22070e11 + 7.31046e11i −0.100853 + 0.174683i
\(639\) 0 0
\(640\) −1.25961e12 2.18171e12i −0.296775 0.514029i
\(641\) 1.28639e12 1.07941e12i 0.300962 0.252537i −0.479782 0.877387i \(-0.659284\pi\)
0.780745 + 0.624850i \(0.214840\pi\)
\(642\) 0 0
\(643\) 9.77213e11 5.54205e12i 0.225444 1.27856i −0.636389 0.771368i \(-0.719573\pi\)
0.861834 0.507191i \(-0.169316\pi\)
\(644\) 3.82561e12 + 3.21007e12i 0.876424 + 0.735407i
\(645\) 0 0
\(646\) 3.21505e12 + 1.17018e12i 0.726342 + 0.264367i
\(647\) 1.59682e12 0.358251 0.179125 0.983826i \(-0.442673\pi\)
0.179125 + 0.983826i \(0.442673\pi\)
\(648\) 0 0
\(649\) 3.65600e12 0.808919
\(650\) 6.27310e10 + 2.28322e10i 0.0137839 + 0.00501693i
\(651\) 0 0
\(652\) 3.62798e12 + 3.04424e12i 0.786232 + 0.659727i
\(653\) 1.01835e12 5.77536e12i 0.219174 1.24300i −0.654341 0.756199i \(-0.727054\pi\)
0.873515 0.486797i \(-0.161835\pi\)
\(654\) 0 0
\(655\) 1.78041e12 1.49394e12i 0.377950 0.317138i
\(656\) −1.32919e10 2.30222e10i −0.00280233 0.00485377i
\(657\) 0 0
\(658\) −1.12254e11 + 1.94430e11i −0.0233445 + 0.0404339i
\(659\) 7.78837e10 + 4.41701e11i 0.0160865 + 0.0912313i 0.991794 0.127846i \(-0.0408064\pi\)
−0.975707 + 0.219077i \(0.929695\pi\)
\(660\) 0 0
\(661\) 5.62012e12 2.04556e12i 1.14509 0.416778i 0.301341 0.953517i \(-0.402566\pi\)
0.843749 + 0.536738i \(0.180344\pi\)
\(662\) −4.89384e12 + 1.78121e12i −0.990350 + 0.360458i
\(663\) 0 0
\(664\) −3.46839e11 1.96702e12i −0.0692422 0.392692i
\(665\) 2.77076e12 4.79910e12i 0.549417 0.951618i
\(666\) 0 0
\(667\) −2.88084e12 4.98977e12i −0.563577 0.976144i
\(668\) 1.28808e11 1.08083e11i 0.0250293 0.0210021i
\(669\) 0 0
\(670\) −8.98523e11 + 5.09578e12i −0.172263 + 0.976954i
\(671\) 4.45730e10 + 3.74012e10i 0.00848829 + 0.00712252i
\(672\) 0 0
\(673\) −1.29754e12 4.72267e11i −0.243811 0.0887400i 0.217224 0.976122i \(-0.430300\pi\)
−0.461035 + 0.887382i \(0.652522\pi\)
\(674\) 6.65411e11 0.124200
\(675\) 0 0
\(676\) 3.33612e12 0.614443
\(677\) 3.95060e12 + 1.43790e12i 0.722794 + 0.263076i 0.677111 0.735880i \(-0.263231\pi\)
0.0456826 + 0.998956i \(0.485454\pi\)
\(678\) 0 0
\(679\) −3.64813e12 3.06114e12i −0.658653 0.552675i
\(680\) 9.56961e11 5.42720e12i 0.171634 0.973387i
\(681\) 0 0
\(682\) 1.72155e12 1.44455e12i 0.304712 0.255684i
\(683\) −1.96679e12 3.40657e12i −0.345831 0.598997i 0.639674 0.768647i \(-0.279070\pi\)
−0.985504 + 0.169650i \(0.945736\pi\)
\(684\) 0 0
\(685\) −3.89507e12 + 6.74647e12i −0.675940 + 1.17076i
\(686\) −5.95765e11 3.37875e12i −0.102711 0.582502i
\(687\) 0 0
\(688\) 7.63474e10 2.77882e10i 0.0129911 0.00472838i
\(689\) 1.32443e11 4.82052e10i 0.0223893 0.00814905i
\(690\) 0 0
\(691\) 1.28113e11 + 7.26566e11i 0.0213768 + 0.121234i 0.993629 0.112702i \(-0.0359506\pi\)
−0.972252 + 0.233936i \(0.924839\pi\)
\(692\) 2.41557e12 4.18389e12i 0.400444 0.693589i
\(693\) 0 0
\(694\) −2.84887e11 4.93439e11i −0.0466181 0.0807450i
\(695\) −7.77934e12 + 6.52764e12i −1.26477 + 1.06127i
\(696\) 0 0
\(697\) 2.75891e11 1.56466e12i 0.0442782 0.251114i
\(698\) −3.56394e12 2.99050e12i −0.568304 0.476864i
\(699\) 0 0
\(700\) 6.16887e11 + 2.24529e11i 0.0971101 + 0.0353452i
\(701\) −3.66781e12 −0.573688 −0.286844 0.957977i \(-0.592606\pi\)
−0.286844 + 0.957977i \(0.592606\pi\)
\(702\) 0 0
\(703\) 1.17926e13 1.82100
\(704\) 1.87938e12 + 6.84040e11i 0.288362 + 0.104955i
\(705\) 0 0
\(706\) 2.01072e12 + 1.68720e12i 0.304601 + 0.255590i
\(707\) −1.33123e11 + 7.54977e11i −0.0200385 + 0.113644i
\(708\) 0 0
\(709\) 1.18616e12 9.95307e11i 0.176293 0.147928i −0.550371 0.834920i \(-0.685514\pi\)
0.726665 + 0.686992i \(0.241069\pi\)
\(710\) 6.27311e11 + 1.08653e12i 0.0926446 + 0.160465i
\(711\) 0 0
\(712\) 2.70896e12 4.69206e12i 0.395042 0.684233i
\(713\) 2.66361e12 + 1.51061e13i 0.385983 + 2.18902i
\(714\) 0 0
\(715\) −4.71011e11 + 1.71434e11i −0.0673991 + 0.0245313i
\(716\) 4.73793e12 1.72447e12i 0.673721 0.245215i
\(717\) 0 0
\(718\) 1.01144e12 + 5.73617e12i 0.142030 + 0.805493i
\(719\) −3.82048e12 + 6.61726e12i −0.533136 + 0.923418i 0.466115 + 0.884724i \(0.345653\pi\)
−0.999251 + 0.0386944i \(0.987680\pi\)
\(720\) 0 0
\(721\) 3.79063e12 + 6.56556e12i 0.522399 + 0.904822i
\(722\) −1.23584e12 + 1.03699e12i −0.169256 + 0.142023i
\(723\) 0 0
\(724\) 8.10977e11 4.59928e12i 0.109695 0.622109i
\(725\) −5.80199e11 4.86844e11i −0.0779930 0.0654439i
\(726\) 0 0
\(727\) −7.54231e12 2.74518e12i −1.00138 0.364473i −0.211265 0.977429i \(-0.567758\pi\)
−0.790117 + 0.612956i \(0.789980\pi\)
\(728\) 1.16197e12 0.153321
\(729\) 0 0
\(730\) −7.62056e12 −0.993193
\(731\) 4.56295e12 + 1.66078e12i 0.591041 + 0.215121i
\(732\) 0 0
\(733\) −9.34072e11 7.83779e11i −0.119512 0.100283i 0.581073 0.813852i \(-0.302633\pi\)
−0.700585 + 0.713569i \(0.747078\pi\)
\(734\) 6.88226e11 3.90312e12i 0.0875182 0.496341i
\(735\) 0 0
\(736\) −1.08808e13 + 9.13007e12i −1.36682 + 1.14690i
\(737\) 3.70134e12 + 6.41090e12i 0.462120 + 0.800416i
\(738\) 0 0
\(739\) 5.43105e12 9.40686e12i 0.669860 1.16023i −0.308083 0.951359i \(-0.599688\pi\)
0.977943 0.208872i \(-0.0669791\pi\)
\(740\) −1.27318e12 7.22056e12i −0.156080 0.885173i
\(741\) 0 0
\(742\) −7.69303e11 + 2.80004e11i −0.0931709 + 0.0339114i
\(743\) −1.39701e13 + 5.08470e12i −1.68171 + 0.612091i −0.993542 0.113464i \(-0.963805\pi\)
−0.688164 + 0.725555i \(0.741583\pi\)
\(744\) 0 0
\(745\) −2.33890e12 1.32646e13i −0.278169 1.57757i
\(746\) −8.15221e11 + 1.41200e12i −0.0963720 + 0.166921i
\(747\) 0 0
\(748\) −1.52164e12 2.63555e12i −0.177727 0.307833i
\(749\) −8.57131e11 + 7.19218e11i −0.0995128 + 0.0835011i
\(750\) 0 0
\(751\) −1.87953e12 + 1.06593e13i −0.215610 + 1.22279i 0.664234 + 0.747525i \(0.268758\pi\)
−0.879844 + 0.475262i \(0.842353\pi\)
\(752\) 1.19692e10 + 1.00433e10i 0.00136485 + 0.00114524i
\(753\) 0 0
\(754\) −4.86262e11 1.76985e11i −0.0547897 0.0199418i
\(755\) 4.86850e12 0.545298
\(756\) 0 0
\(757\) −7.14231e12 −0.790509 −0.395255 0.918572i \(-0.629344\pi\)
−0.395255 + 0.918572i \(0.629344\pi\)
\(758\) 5.47316e12 + 1.99207e12i 0.602181 + 0.219176i
\(759\) 0 0
\(760\) 7.48066e12 + 6.27702e12i 0.813352 + 0.682483i
\(761\) −1.46504e11 + 8.30866e11i −0.0158350 + 0.0898050i −0.991701 0.128565i \(-0.958963\pi\)
0.975866 + 0.218370i \(0.0700740\pi\)
\(762\) 0 0
\(763\) 7.71286e11 6.47186e11i 0.0823863 0.0691304i
\(764\) 9.13618e11 + 1.58243e12i 0.0970163 + 0.168037i
\(765\) 0 0
\(766\) 4.23579e12 7.33660e12i 0.444534 0.769955i
\(767\) 3.89177e11 + 2.20713e12i 0.0406039 + 0.230276i
\(768\) 0 0
\(769\) −8.68614e12 + 3.16150e12i −0.895692 + 0.326005i −0.748525 0.663107i \(-0.769238\pi\)
−0.147167 + 0.989112i \(0.547015\pi\)
\(770\) 2.73591e12 9.95788e11i 0.280474 0.102084i
\(771\) 0 0
\(772\) 4.54068e11 + 2.57515e12i 0.0460090 + 0.260930i
\(773\) 8.26371e12 1.43132e13i 0.832467 1.44188i −0.0636087 0.997975i \(-0.520261\pi\)
0.896076 0.443901i \(-0.146406\pi\)
\(774\) 0 0
\(775\) 1.00819e12 + 1.74624e12i 0.100389 + 0.173879i
\(776\) 6.42876e12 5.39437e12i 0.636428 0.534026i
\(777\) 0 0
\(778\) −1.95242e12 + 1.10727e13i −0.191058 + 1.08354i
\(779\) 2.15667e12 + 1.80966e12i 0.209829 + 0.176067i
\(780\) 0 0
\(781\) 1.68666e12 + 6.13895e11i 0.162218 + 0.0590424i
\(782\) −1.22694e13 −1.17326
\(783\) 0 0
\(784\) 1.38912e10 0.00131316
\(785\) −6.02442e11 2.19271e11i −0.0566242 0.0206095i
\(786\) 0 0
\(787\) −9.13055e12 7.66144e12i −0.848419 0.711908i 0.111022 0.993818i \(-0.464588\pi\)
−0.959441 + 0.281910i \(0.909032\pi\)
\(788\) 1.02428e12 5.80897e12i 0.0946346 0.536699i
\(789\) 0 0
\(790\) 4.60061e12 3.86037e12i 0.420236 0.352620i
\(791\) −2.96041e12 5.12758e12i −0.268880 0.465713i
\(792\) 0 0
\(793\) −1.78344e10 + 3.08900e10i −0.00160151 + 0.00277389i
\(794\) 7.14668e11 + 4.05309e12i 0.0638135 + 0.361904i
\(795\) 0 0
\(796\) 7.57907e12 2.75856e12i 0.669125 0.243542i
\(797\) 2.81485e12 1.02452e12i 0.247111 0.0899412i −0.215495 0.976505i \(-0.569137\pi\)
0.462606 + 0.886564i \(0.346914\pi\)
\(798\) 0 0
\(799\) 1.62156e11 + 9.19630e11i 0.0140757 + 0.0798275i
\(800\) −9.33576e11 + 1.61700e12i −0.0805833 + 0.139574i
\(801\) 0 0
\(802\) 2.36775e12 + 4.10107e12i 0.202093 + 0.350036i
\(803\) −8.35161e12 + 7.00783e12i −0.708843 + 0.594790i
\(804\) 0 0
\(805\) −3.45081e12 + 1.95705e13i −0.289627 + 1.64256i
\(806\) 1.05533e12 + 8.85529e11i 0.0880809 + 0.0739086i
\(807\) 0 0
\(808\) −1.26948e12 4.62052e11i −0.104779 0.0381364i
\(809\) 1.91885e13 1.57497 0.787487 0.616332i \(-0.211382\pi\)
0.787487 + 0.616332i \(0.211382\pi\)
\(810\) 0 0
\(811\) 1.24781e12 0.101287 0.0506436 0.998717i \(-0.483873\pi\)
0.0506436 + 0.998717i \(0.483873\pi\)
\(812\) −4.78182e12 1.74044e12i −0.386003 0.140494i
\(813\) 0 0
\(814\) 4.74624e12 + 3.98257e12i 0.378913 + 0.317946i
\(815\) −3.27254e12 + 1.85595e13i −0.259822 + 1.47352i
\(816\) 0 0
\(817\) −6.59137e12 + 5.53082e12i −0.517579 + 0.434300i
\(818\) 4.66507e12 + 8.08014e12i 0.364308 + 0.630999i
\(819\) 0 0
\(820\) 8.75204e11 1.51590e12i 0.0676001 0.117087i
\(821\) 1.44793e12 + 8.21161e12i 0.111225 + 0.630789i 0.988550 + 0.150893i \(0.0482148\pi\)
−0.877325 + 0.479897i \(0.840674\pi\)
\(822\) 0 0
\(823\) −2.33039e13 + 8.48193e12i −1.77064 + 0.644460i −0.770664 + 0.637242i \(0.780075\pi\)
−0.999974 + 0.00721795i \(0.997702\pi\)
\(824\) −1.25540e13 + 4.56930e12i −0.948661 + 0.345284i
\(825\) 0 0
\(826\) −2.26056e12 1.28203e13i −0.168969 0.958269i
\(827\) 1.00616e13 1.74272e13i 0.747983 1.29554i −0.200805 0.979631i \(-0.564356\pi\)
0.948788 0.315913i \(-0.102311\pi\)
\(828\) 0 0
\(829\) 6.94330e12 + 1.20261e13i 0.510588 + 0.884364i 0.999925 + 0.0122690i \(0.00390544\pi\)
−0.489337 + 0.872095i \(0.662761\pi\)
\(830\) 2.35019e12 1.97204e12i 0.171890 0.144233i
\(831\) 0 0
\(832\) −2.12897e11 + 1.20740e12i −0.0154033 + 0.0873567i
\(833\) 6.35982e11 + 5.33652e11i 0.0457660 + 0.0384022i
\(834\) 0 0
\(835\) 6.28751e11 + 2.28846e11i 0.0447599 + 0.0162913i
\(836\) 5.39266e12 0.381834
\(837\) 0 0
\(838\) −5.55079e12 −0.388827
\(839\) −5.97583e12 2.17502e12i −0.416360 0.151543i 0.125341 0.992114i \(-0.459997\pi\)
−0.541701 + 0.840571i \(0.682220\pi\)
\(840\) 0 0
\(841\) −6.61569e12 5.55122e12i −0.456030 0.382654i
\(842\) 9.21647e11 5.22692e12i 0.0631917 0.358378i
\(843\) 0 0
\(844\) −4.25224e12 + 3.56805e12i −0.288454 + 0.242042i
\(845\) 6.63768e12 + 1.14968e13i 0.447879 + 0.775750i
\(846\) 0 0
\(847\) −5.60985e12 + 9.71655e12i −0.374521 + 0.648689i
\(848\) 9.89374e9 + 5.61102e10i 0.000657021 + 0.00372615i
\(849\) 0 0
\(850\) −1.51559e12 + 5.51630e11i −0.0995857 + 0.0362462i
\(851\) −3.97390e13 + 1.44638e13i −2.59737 + 0.945366i
\(852\) 0 0
\(853\) −3.54122e12 2.00833e13i −0.229025 1.29886i −0.854840 0.518892i \(-0.826345\pi\)
0.625815 0.779972i \(-0.284767\pi\)
\(854\) 1.03592e11 1.79427e11i 0.00666450 0.0115433i
\(855\) 0 0
\(856\) −9.85870e11 1.70758e12i −0.0627607 0.108705i
\(857\) 7.65823e12 6.42602e12i 0.484970 0.406938i −0.367250 0.930122i \(-0.619701\pi\)
0.852220 + 0.523184i \(0.175256\pi\)
\(858\) 0 0
\(859\) −3.02450e11 + 1.71528e12i −0.0189533 + 0.107489i −0.992817 0.119645i \(-0.961824\pi\)
0.973864 + 0.227134i \(0.0729356\pi\)
\(860\) 4.09813e12 + 3.43874e12i 0.255472 + 0.214366i
\(861\) 0 0
\(862\) −1.03021e13 3.74964e12i −0.635537 0.231317i
\(863\) 1.83269e12 0.112471 0.0562355 0.998418i \(-0.482090\pi\)
0.0562355 + 0.998418i \(0.482090\pi\)
\(864\) 0 0
\(865\) 1.92244e13 1.16756
\(866\) 8.37769e12 + 3.04923e12i 0.506167 + 0.184230i
\(867\) 0 0
\(868\) 1.03780e13 + 8.70816e12i 0.620546 + 0.520700i
\(869\) 1.49197e12 8.46140e12i 0.0887507 0.503330i
\(870\) 0 0
\(871\) −3.47626e12 + 2.91693e12i −0.204659 + 0.171729i
\(872\) 8.87132e11 + 1.53656e12i 0.0519594 + 0.0899963i
\(873\) 0 0
\(874\) 1.08706e13 1.88285e13i 0.630164 1.09148i
\(875\) 3.28799e12 + 1.86471e13i 0.189625 + 1.07541i
\(876\) 0 0
\(877\) 6.43018e12 2.34039e12i 0.367050 0.133595i −0.151909 0.988395i \(-0.548542\pi\)
0.518959 + 0.854799i \(0.326320\pi\)
\(878\) 1.42252e13 5.17756e12i 0.807855 0.294035i
\(879\) 0 0
\(880\) −3.51855e10 1.99547e11i −0.00197784 0.0112169i
\(881\) −2.12745e10 + 3.68485e10i −0.00118978 + 0.00206077i −0.866620 0.498969i \(-0.833712\pi\)
0.865430 + 0.501030i \(0.167045\pi\)
\(882\) 0 0
\(883\) −6.88601e12 1.19269e13i −0.381193 0.660245i 0.610040 0.792370i \(-0.291153\pi\)
−0.991233 + 0.132125i \(0.957820\pi\)
\(884\) 1.42911e12 1.19916e12i 0.0787100 0.0660456i
\(885\) 0 0
\(886\) 3.74163e12 2.12198e13i 0.203990 1.15688i
\(887\) −1.87682e13 1.57484e13i −1.01804 0.854239i −0.0286618 0.999589i \(-0.509125\pi\)
−0.989380 + 0.145350i \(0.953569\pi\)
\(888\) 0 0
\(889\) 3.11066e13 + 1.13219e13i 1.67030 + 0.607939i
\(890\) 8.32195e12 0.444601
\(891\) 0 0
\(892\) 1.27829e13 0.676066
\(893\) −1.55492e12 5.65946e11i −0.0818234 0.0297813i
\(894\) 0 0
\(895\) 1.53696e13 + 1.28966e13i 0.800677 + 0.671848i
\(896\) −2.22847e12 + 1.26383e13i −0.115510 + 0.655091i
\(897\) 0 0
\(898\) 7.62074e12 6.39456e12i 0.391069 0.328146i
\(899\) −7.81505e12 1.35361e13i −0.399037 0.691152i
\(900\) 0 0
\(901\) −1.70260e12 + 2.94898e12i −0.0860697 + 0.149077i
\(902\) 2.56854e11 + 1.45669e12i 0.0129198 + 0.0732719i
\(903\) 0 0
\(904\) 9.80447e12 3.56854e12i 0.488277 0.177718i
\(905\) 1.74634e13 6.35615e12i 0.865386 0.314975i
\(906\) 0 0
\(907\) −1.56173e12 8.85699e12i −0.0766253 0.434564i −0.998852 0.0479128i \(-0.984743\pi\)
0.922226 0.386651i \(-0.126368\pi\)
\(908\) −1.07976e13 + 1.87020e13i −0.527157 + 0.913063i
\(909\) 0 0
\(910\) 8.92392e11 + 1.54567e12i 0.0431389 + 0.0747188i
\(911\) −9.82893e12 + 8.24745e12i −0.472796 + 0.396723i −0.847813 0.530295i \(-0.822081\pi\)
0.375017 + 0.927018i \(0.377637\pi\)
\(912\) 0 0
\(913\) 7.62164e11 4.32245e12i 0.0363020 0.205879i
\(914\) −6.92372e12 5.80969e12i −0.328157 0.275356i
\(915\) 0 0
\(916\) −2.87159e12 1.04517e12i −0.134770 0.0490523i
\(917\) −1.18396e13 −0.552935
\(918\) 0 0
\(919\) −2.60634e13 −1.20535 −0.602673 0.797988i \(-0.705898\pi\)
−0.602673 + 0.797988i \(0.705898\pi\)
\(920\) −3.29074e13 1.19773e13i −1.51443 0.551206i
\(921\) 0 0
\(922\) 7.33987e12 + 6.15888e12i 0.334502 + 0.280681i
\(923\) −1.91066e11 + 1.08359e12i −0.00866513 + 0.0491424i
\(924\) 0 0
\(925\) −4.25852e12 + 3.57332e12i −0.191258 + 0.160485i
\(926\) −4.91195e12 8.50775e12i −0.219535 0.380246i
\(927\) 0 0
\(928\) 7.23665e12 1.25342e13i 0.320311 0.554795i
\(929\) −3.73400e12 2.11766e13i −0.164477 0.932793i −0.949602 0.313457i \(-0.898513\pi\)
0.785126 0.619336i \(-0.212598\pi\)
\(930\) 0 0
\(931\) −1.38242e12 + 5.03158e11i −0.0603066 + 0.0219498i
\(932\) 2.25347e13 8.20195e12i 0.978317 0.356078i
\(933\) 0 0
\(934\) 2.40603e12 + 1.36453e13i 0.103452 + 0.586708i
\(935\) 6.05502e12 1.04876e13i 0.259097 0.448770i
\(936\) 0 0
\(937\) −7.93720e12 1.37476e13i −0.336387 0.582639i 0.647363 0.762181i \(-0.275872\pi\)
−0.983750 + 0.179542i \(0.942538\pi\)
\(938\) 2.01922e13 1.69432e13i 0.851667 0.714634i
\(939\) 0 0
\(940\) −1.78650e11 + 1.01318e12i −0.00746325 + 0.0423262i
\(941\) −2.31783e13 1.94489e13i −0.963668 0.808614i 0.0178776 0.999840i \(-0.494309\pi\)
−0.981546 + 0.191226i \(0.938754\pi\)
\(942\) 0 0
\(943\) −9.48717e12 3.45305e12i −0.390692 0.142200i
\(944\) −9.05993e11 −0.0371322
\(945\) 0 0
\(946\) −4.52072e12 −0.183526
\(947\) 3.32281e13 + 1.20941e13i 1.34255 + 0.488649i 0.910615 0.413255i \(-0.135608\pi\)
0.431937 + 0.901904i \(0.357830\pi\)
\(948\) 0 0
\(949\) −5.11965e12 4.29590e12i −0.204900 0.171932i
\(950\) 4.96282e11 2.81455e12i 0.0197684 0.112112i
\(951\) 0 0
\(952\) −2.15054e13 + 1.80452e13i −0.848558 + 0.712025i
\(953\) −1.03871e13 1.79911e13i −0.407923 0.706543i 0.586734 0.809780i \(-0.300414\pi\)
−0.994657 + 0.103236i \(0.967080\pi\)
\(954\) 0 0
\(955\) −3.63554e12 + 6.29694e12i −0.141434 + 0.244971i
\(956\) −3.09724e12 1.75653e13i −0.119926 0.680135i
\(957\) 0 0
\(958\) −9.17336e12 + 3.33883e12i −0.351871 + 0.128071i
\(959\) 3.72908e13 1.35727e13i 1.42370 0.518183i
\(960\) 0 0
\(961\) 2.63456e12 + 1.49413e13i 0.0996444 + 0.565111i
\(962\) −1.89905e12 + 3.28925e12i −0.0714904 + 0.123825i
\(963\) 0 0
\(964\) −8.50716e12 1.47348e13i −0.317276 0.549539i
\(965\) −7.97093e12 + 6.68840e12i −0.295894 + 0.248284i
\(966\) 0 0
\(967\) 5.22949e12 2.96579e13i 0.192327 1.09074i −0.723847 0.689961i \(-0.757628\pi\)
0.916174 0.400781i \(-0.131261\pi\)
\(968\) −1.51458e13 1.27088e13i −0.554438 0.465229i
\(969\) 0 0
\(970\) 1.21130e13 + 4.40876e12i 0.439317 + 0.159898i
\(971\) −2.37260e13 −0.856519 −0.428260 0.903656i \(-0.640873\pi\)
−0.428260 + 0.903656i \(0.640873\pi\)
\(972\) 0 0
\(973\) 5.17319e13 1.85034
\(974\) −9.33984e12 3.39942e12i −0.332525 0.121029i
\(975\) 0 0
\(976\) −1.10456e10 9.26838e9i −0.000389642 0.000326949i
\(977\) −1.62850e12 + 9.23568e12i −0.0571824 + 0.324297i −0.999958 0.00912959i \(-0.997094\pi\)
0.942776 + 0.333427i \(0.108205\pi\)
\(978\) 0 0
\(979\) 9.12029e12 7.65283e12i 0.317312 0.266256i
\(980\) 4.57333e11 + 7.92124e11i 0.0158386 + 0.0274332i
\(981\) 0 0
\(982\) 3.33925e11 5.78376e11i 0.0114590 0.0198476i
\(983\) 5.48739e11 + 3.11206e12i 0.0187446 + 0.106306i 0.992745 0.120242i \(-0.0383671\pi\)
−0.974000 + 0.226548i \(0.927256\pi\)
\(984\) 0 0
\(985\) 2.20566e13 8.02793e12i 0.746577 0.271732i
\(986\) 1.17482e13 4.27598e12i 0.395844 0.144075i
\(987\) 0 0
\(988\) 5.74041e11 + 3.25555e12i 0.0191662 + 0.108697i
\(989\) 1.54281e13 2.67223e13i 0.512779 0.888159i
\(990\) 0 0
\(991\) 1.11313e12 + 1.92800e12i 0.0366619 + 0.0635002i 0.883774 0.467914i \(-0.154994\pi\)
−0.847112 + 0.531414i \(0.821661\pi\)
\(992\) −2.95170e13 + 2.47677e13i −0.967766 + 0.812052i
\(993\) 0 0
\(994\) 1.10982e12 6.29410e12i 0.0360590 0.204501i
\(995\) 2.45860e13 + 2.06301e13i 0.795215 + 0.667265i
\(996\) 0 0
\(997\) 4.38513e13 + 1.59606e13i 1.40558 + 0.511588i 0.929828 0.367994i \(-0.119955\pi\)
0.475748 + 0.879582i \(0.342178\pi\)
\(998\) −2.61177e10 −0.000833388
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.64.17 156
3.2 odd 2 27.10.e.a.4.10 156
27.7 even 9 inner 81.10.e.a.19.17 156
27.20 odd 18 27.10.e.a.7.10 yes 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.4.10 156 3.2 odd 2
27.10.e.a.7.10 yes 156 27.20 odd 18
81.10.e.a.19.17 156 27.7 even 9 inner
81.10.e.a.64.17 156 1.1 even 1 trivial