Properties

Label 81.10.e.a.64.12
Level $81$
Weight $10$
Character 81.64
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 64.12
Character \(\chi\) \(=\) 81.64
Dual form 81.10.e.a.19.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.82322 - 1.75551i) q^{2} +(-372.033 - 312.173i) q^{4} +(-203.603 + 1154.69i) q^{5} +(-440.948 + 369.999i) q^{7} +(2560.36 + 4434.68i) q^{8} +(3009.09 - 5211.90i) q^{10} +(-12328.1 - 69916.4i) q^{11} +(-143827. + 52348.7i) q^{13} +(2776.32 - 1010.50i) q^{14} +(38614.5 + 218993. i) q^{16} +(-164482. + 284892. i) q^{17} +(140625. + 243570. i) q^{19} +(436210. - 366024. i) q^{20} +(-63277.4 + 358864. i) q^{22} +(-821687. - 689477. i) q^{23} +(543480. + 197811. i) q^{25} +785607. q^{26} +279551. q^{28} +(-1.62591e6 - 591785. i) q^{29} +(4.00947e6 + 3.36434e6i) q^{31} +(653471. - 3.70602e6i) q^{32} +(1.29346e6 - 1.08535e6i) q^{34} +(-337456. - 584492. i) q^{35} +(3.24063e6 - 5.61294e6i) q^{37} +(-250677. - 1.42166e6i) q^{38} +(-5.64198e6 + 2.05351e6i) q^{40} +(1.80717e7 - 6.57754e6i) q^{41} +(-5.74575e6 - 3.25858e7i) q^{43} +(-1.72395e7 + 2.98597e7i) q^{44} +(2.75279e6 + 4.76797e6i) q^{46} +(2.17446e7 - 1.82459e7i) q^{47} +(-6.94979e6 + 3.94142e7i) q^{49} +(-2.27407e6 - 1.90817e6i) q^{50} +(6.98503e7 + 2.54234e7i) q^{52} +5.03334e7 q^{53} +8.32418e7 q^{55} +(-2.76981e6 - 1.00813e6i) q^{56} +(6.80326e6 + 5.70861e6i) q^{58} +(1.89454e7 - 1.07445e8i) q^{59} +(-3.81453e7 + 3.20077e7i) q^{61} +(-1.34324e7 - 2.32656e7i) q^{62} +(4.72694e7 - 8.18730e7i) q^{64} +(-3.11630e7 - 1.76734e8i) q^{65} +(1.99585e8 - 7.26431e7i) q^{67} +(1.50128e8 - 5.46423e7i) q^{68} +(601546. + 3.41154e6i) q^{70} +(1.75242e8 - 3.03528e8i) q^{71} +(1.92455e8 + 3.33341e8i) q^{73} +(-2.54838e7 + 2.13835e7i) q^{74} +(2.37187e7 - 1.34516e8i) q^{76} +(3.13051e7 + 2.62681e7i) q^{77} +(4.56193e7 + 1.66041e7i) q^{79} -2.60732e8 q^{80} -9.87104e7 q^{82} +(1.67411e8 + 6.09326e7i) q^{83} +(-2.95473e8 - 2.47931e8i) q^{85} +(-2.94916e7 + 1.67255e8i) q^{86} +(2.78492e8 - 2.33682e8i) q^{88} +(3.40131e8 + 5.89124e8i) q^{89} +(4.40512e7 - 7.62990e7i) q^{91} +(9.04587e7 + 5.13017e8i) q^{92} +(-1.36910e8 + 4.98311e7i) q^{94} +(-3.09880e8 + 1.12787e8i) q^{95} +(2.16877e8 + 1.22997e9i) q^{97} +(1.02712e8 - 1.77903e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.82322 1.75551i −0.213158 0.0775832i 0.233234 0.972421i \(-0.425069\pi\)
−0.446392 + 0.894837i \(0.647291\pi\)
\(3\) 0 0
\(4\) −372.033 312.173i −0.726627 0.609713i
\(5\) −203.603 + 1154.69i −0.145687 + 0.826230i 0.821127 + 0.570746i \(0.193346\pi\)
−0.966813 + 0.255484i \(0.917765\pi\)
\(6\) 0 0
\(7\) −440.948 + 369.999i −0.0694139 + 0.0582452i −0.676834 0.736135i \(-0.736649\pi\)
0.607421 + 0.794380i \(0.292204\pi\)
\(8\) 2560.36 + 4434.68i 0.221002 + 0.382787i
\(9\) 0 0
\(10\) 3009.09 5211.90i 0.0951558 0.164815i
\(11\) −12328.1 69916.4i −0.253881 1.43983i −0.798928 0.601426i \(-0.794599\pi\)
0.545047 0.838405i \(-0.316512\pi\)
\(12\) 0 0
\(13\) −143827. + 52348.7i −1.39667 + 0.508348i −0.927190 0.374592i \(-0.877783\pi\)
−0.469485 + 0.882940i \(0.655560\pi\)
\(14\) 2776.32 1010.50i 0.0193150 0.00703008i
\(15\) 0 0
\(16\) 38614.5 + 218993.i 0.147302 + 0.835394i
\(17\) −164482. + 284892.i −0.477639 + 0.827294i −0.999671 0.0256311i \(-0.991840\pi\)
0.522033 + 0.852925i \(0.325174\pi\)
\(18\) 0 0
\(19\) 140625. + 243570.i 0.247555 + 0.428779i 0.962847 0.270048i \(-0.0870394\pi\)
−0.715292 + 0.698826i \(0.753706\pi\)
\(20\) 436210. 366024.i 0.609622 0.511534i
\(21\) 0 0
\(22\) −63277.4 + 358864.i −0.0575899 + 0.326609i
\(23\) −821687. 689477.i −0.612253 0.513741i 0.283105 0.959089i \(-0.408636\pi\)
−0.895358 + 0.445348i \(0.853080\pi\)
\(24\) 0 0
\(25\) 543480. + 197811.i 0.278262 + 0.101279i
\(26\) 785607. 0.337152
\(27\) 0 0
\(28\) 279551. 0.0859508
\(29\) −1.62591e6 591785.i −0.426881 0.155372i 0.119640 0.992817i \(-0.461826\pi\)
−0.546521 + 0.837445i \(0.684048\pi\)
\(30\) 0 0
\(31\) 4.00947e6 + 3.36434e6i 0.779756 + 0.654293i 0.943187 0.332262i \(-0.107812\pi\)
−0.163431 + 0.986555i \(0.552256\pi\)
\(32\) 653471. 3.70602e6i 0.110167 0.624788i
\(33\) 0 0
\(34\) 1.29346e6 1.08535e6i 0.165997 0.139288i
\(35\) −337456. 584492.i −0.0380112 0.0658373i
\(36\) 0 0
\(37\) 3.24063e6 5.61294e6i 0.284264 0.492360i −0.688167 0.725553i \(-0.741584\pi\)
0.972430 + 0.233193i \(0.0749175\pi\)
\(38\) −250677. 1.42166e6i −0.0195024 0.110604i
\(39\) 0 0
\(40\) −5.64198e6 + 2.05351e6i −0.348467 + 0.126832i
\(41\) 1.80717e7 6.57754e6i 0.998781 0.363527i 0.209667 0.977773i \(-0.432762\pi\)
0.789114 + 0.614246i \(0.210540\pi\)
\(42\) 0 0
\(43\) −5.74575e6 3.25858e7i −0.256294 1.45352i −0.792728 0.609575i \(-0.791340\pi\)
0.536434 0.843942i \(-0.319771\pi\)
\(44\) −1.72395e7 + 2.98597e7i −0.693407 + 1.20102i
\(45\) 0 0
\(46\) 2.75279e6 + 4.76797e6i 0.0906490 + 0.157009i
\(47\) 2.17446e7 1.82459e7i 0.649996 0.545412i −0.257073 0.966392i \(-0.582758\pi\)
0.907070 + 0.420980i \(0.138314\pi\)
\(48\) 0 0
\(49\) −6.94979e6 + 3.94142e7i −0.172222 + 0.976722i
\(50\) −2.27407e6 1.90817e6i −0.0514562 0.0431769i
\(51\) 0 0
\(52\) 6.98503e7 + 2.54234e7i 1.32481 + 0.482191i
\(53\) 5.03334e7 0.876223 0.438112 0.898921i \(-0.355647\pi\)
0.438112 + 0.898921i \(0.355647\pi\)
\(54\) 0 0
\(55\) 8.32418e7 1.22662
\(56\) −2.76981e6 1.00813e6i −0.0376361 0.0136984i
\(57\) 0 0
\(58\) 6.80326e6 + 5.70861e6i 0.0789389 + 0.0662376i
\(59\) 1.89454e7 1.07445e8i 0.203549 1.15438i −0.696158 0.717889i \(-0.745109\pi\)
0.899707 0.436495i \(-0.143780\pi\)
\(60\) 0 0
\(61\) −3.81453e7 + 3.20077e7i −0.352742 + 0.295985i −0.801890 0.597472i \(-0.796172\pi\)
0.449148 + 0.893457i \(0.351728\pi\)
\(62\) −1.34324e7 2.32656e7i −0.115449 0.199964i
\(63\) 0 0
\(64\) 4.72694e7 8.18730e7i 0.352184 0.610001i
\(65\) −3.11630e7 1.76734e8i −0.216535 1.22803i
\(66\) 0 0
\(67\) 1.99585e8 7.26431e7i 1.21002 0.440411i 0.343308 0.939223i \(-0.388453\pi\)
0.866710 + 0.498812i \(0.166230\pi\)
\(68\) 1.50128e8 5.46423e7i 0.851477 0.309912i
\(69\) 0 0
\(70\) 601546. + 3.41154e6i 0.00299452 + 0.0169828i
\(71\) 1.75242e8 3.03528e8i 0.818419 1.41754i −0.0884276 0.996083i \(-0.528184\pi\)
0.906847 0.421461i \(-0.138482\pi\)
\(72\) 0 0
\(73\) 1.92455e8 + 3.33341e8i 0.793186 + 1.37384i 0.923984 + 0.382430i \(0.124913\pi\)
−0.130798 + 0.991409i \(0.541754\pi\)
\(74\) −2.54838e7 + 2.13835e7i −0.0987920 + 0.0828963i
\(75\) 0 0
\(76\) 2.37187e7 1.34516e8i 0.0815512 0.462500i
\(77\) 3.13051e7 + 2.62681e7i 0.101486 + 0.0851569i
\(78\) 0 0
\(79\) 4.56193e7 + 1.66041e7i 0.131773 + 0.0479615i 0.407065 0.913399i \(-0.366552\pi\)
−0.275292 + 0.961361i \(0.588774\pi\)
\(80\) −2.60732e8 −0.711687
\(81\) 0 0
\(82\) −9.87104e7 −0.241102
\(83\) 1.67411e8 + 6.09326e7i 0.387197 + 0.140928i 0.528281 0.849069i \(-0.322837\pi\)
−0.141084 + 0.989998i \(0.545059\pi\)
\(84\) 0 0
\(85\) −2.95473e8 2.47931e8i −0.613949 0.515165i
\(86\) −2.94916e7 + 1.67255e8i −0.0581373 + 0.329713i
\(87\) 0 0
\(88\) 2.78492e8 2.33682e8i 0.495040 0.415388i
\(89\) 3.40131e8 + 5.89124e8i 0.574634 + 0.995295i 0.996081 + 0.0884419i \(0.0281887\pi\)
−0.421448 + 0.906853i \(0.638478\pi\)
\(90\) 0 0
\(91\) 4.40512e7 7.62990e7i 0.0673398 0.116636i
\(92\) 9.04587e7 + 5.13017e8i 0.131645 + 0.746597i
\(93\) 0 0
\(94\) −1.36910e8 + 4.98311e7i −0.180867 + 0.0658301i
\(95\) −3.09880e8 + 1.12787e8i −0.390335 + 0.142070i
\(96\) 0 0
\(97\) 2.16877e8 + 1.22997e9i 0.248737 + 1.41066i 0.811650 + 0.584144i \(0.198569\pi\)
−0.562913 + 0.826516i \(0.690319\pi\)
\(98\) 1.02712e8 1.77903e8i 0.112488 0.194835i
\(99\) 0 0
\(100\) −1.40442e8 2.43252e8i −0.140442 0.243252i
\(101\) 1.70877e8 1.43383e8i 0.163395 0.137104i −0.557424 0.830228i \(-0.688210\pi\)
0.720819 + 0.693123i \(0.243766\pi\)
\(102\) 0 0
\(103\) 1.03428e8 5.86567e8i 0.0905460 0.513512i −0.905476 0.424399i \(-0.860486\pi\)
0.996021 0.0891133i \(-0.0284033\pi\)
\(104\) −6.00399e8 5.03794e8i −0.503257 0.422283i
\(105\) 0 0
\(106\) −2.42769e8 8.83606e7i −0.186774 0.0679802i
\(107\) −1.08574e9 −0.800754 −0.400377 0.916351i \(-0.631121\pi\)
−0.400377 + 0.916351i \(0.631121\pi\)
\(108\) 0 0
\(109\) −1.86453e9 −1.26517 −0.632587 0.774489i \(-0.718007\pi\)
−0.632587 + 0.774489i \(0.718007\pi\)
\(110\) −4.01493e8 1.46132e8i −0.261464 0.0951650i
\(111\) 0 0
\(112\) −9.80544e7 8.22774e7i −0.0588825 0.0494083i
\(113\) 2.47881e8 1.40580e9i 0.143018 0.811095i −0.825919 0.563788i \(-0.809343\pi\)
0.968937 0.247307i \(-0.0795455\pi\)
\(114\) 0 0
\(115\) 9.63431e8 8.08414e8i 0.513665 0.431016i
\(116\) 4.20155e8 + 7.27730e8i 0.215451 + 0.373172i
\(117\) 0 0
\(118\) −2.79997e8 + 4.84970e8i −0.132949 + 0.230274i
\(119\) −3.28816e7 1.86481e8i −0.0150311 0.0852458i
\(120\) 0 0
\(121\) −2.52057e9 + 9.17412e8i −1.06897 + 0.389072i
\(122\) 2.40173e8 8.74158e7i 0.0981532 0.0357249i
\(123\) 0 0
\(124\) −4.41398e8 2.50329e9i −0.167661 0.950855i
\(125\) −1.48409e9 + 2.57052e9i −0.543707 + 0.941727i
\(126\) 0 0
\(127\) 2.21753e9 + 3.84088e9i 0.756402 + 1.31013i 0.944674 + 0.328010i \(0.106378\pi\)
−0.188272 + 0.982117i \(0.560289\pi\)
\(128\) −1.84770e9 + 1.55040e9i −0.608396 + 0.510505i
\(129\) 0 0
\(130\) −1.59952e8 + 9.07134e8i −0.0491185 + 0.278565i
\(131\) 1.64912e9 + 1.38378e9i 0.489251 + 0.410530i 0.853758 0.520671i \(-0.174318\pi\)
−0.364507 + 0.931201i \(0.618763\pi\)
\(132\) 0 0
\(133\) −1.52129e8 5.53705e7i −0.0421580 0.0153443i
\(134\) −1.09017e9 −0.292094
\(135\) 0 0
\(136\) −1.68454e9 −0.422236
\(137\) −3.56983e9 1.29931e9i −0.865775 0.315116i −0.129320 0.991603i \(-0.541279\pi\)
−0.736455 + 0.676487i \(0.763502\pi\)
\(138\) 0 0
\(139\) −4.78102e9 4.01175e9i −1.08631 0.911523i −0.0898811 0.995953i \(-0.528649\pi\)
−0.996429 + 0.0844297i \(0.973093\pi\)
\(140\) −5.69175e7 + 3.22795e8i −0.0125219 + 0.0710151i
\(141\) 0 0
\(142\) −1.37808e9 + 1.15634e9i −0.284430 + 0.238665i
\(143\) 5.43315e9 + 9.41050e9i 1.08653 + 1.88192i
\(144\) 0 0
\(145\) 1.01437e9 1.75694e9i 0.190564 0.330066i
\(146\) −3.43067e8 1.94563e9i −0.0624873 0.354383i
\(147\) 0 0
\(148\) −2.95783e9 + 1.07656e9i −0.506752 + 0.184443i
\(149\) 4.70352e9 1.71194e9i 0.781780 0.284545i 0.0798651 0.996806i \(-0.474551\pi\)
0.701915 + 0.712261i \(0.252329\pi\)
\(150\) 0 0
\(151\) −5.60010e8 3.17597e9i −0.0876595 0.497142i −0.996751 0.0805453i \(-0.974334\pi\)
0.909091 0.416597i \(-0.136777\pi\)
\(152\) −7.20103e8 + 1.24726e9i −0.109421 + 0.189522i
\(153\) 0 0
\(154\) −1.04877e8 1.81653e8i −0.0150258 0.0260255i
\(155\) −4.70111e9 + 3.94470e9i −0.654196 + 0.548936i
\(156\) 0 0
\(157\) 8.02176e8 4.54936e9i 0.105371 0.597589i −0.885701 0.464257i \(-0.846321\pi\)
0.991071 0.133332i \(-0.0425675\pi\)
\(158\) −1.90883e8 1.60170e8i −0.0243675 0.0204468i
\(159\) 0 0
\(160\) 4.14626e9 + 1.50911e9i 0.500169 + 0.182047i
\(161\) 6.17427e8 0.0724218
\(162\) 0 0
\(163\) 4.02954e9 0.447107 0.223553 0.974692i \(-0.428234\pi\)
0.223553 + 0.974692i \(0.428234\pi\)
\(164\) −8.77658e9 3.19442e9i −0.947389 0.344821i
\(165\) 0 0
\(166\) −7.00491e8 5.87782e8i −0.0716006 0.0600800i
\(167\) 1.78494e9 1.01229e10i 0.177583 1.00712i −0.757538 0.652791i \(-0.773598\pi\)
0.935120 0.354330i \(-0.115291\pi\)
\(168\) 0 0
\(169\) 9.82229e9 8.24188e9i 0.926238 0.777206i
\(170\) 9.89885e8 + 1.71453e9i 0.0909002 + 0.157444i
\(171\) 0 0
\(172\) −8.03479e9 + 1.39167e10i −0.699997 + 1.21243i
\(173\) −1.57684e9 8.94273e9i −0.133839 0.759037i −0.975661 0.219283i \(-0.929628\pi\)
0.841823 0.539754i \(-0.181483\pi\)
\(174\) 0 0
\(175\) −3.12836e8 + 1.13863e8i −0.0252143 + 0.00917724i
\(176\) 1.48352e10 5.39956e9i 1.16543 0.424182i
\(177\) 0 0
\(178\) −6.06314e8 3.43857e9i −0.0452697 0.256737i
\(179\) 9.77182e9 1.69253e10i 0.711438 1.23225i −0.252880 0.967498i \(-0.581378\pi\)
0.964318 0.264748i \(-0.0852889\pi\)
\(180\) 0 0
\(181\) 1.29853e10 + 2.24912e10i 0.899289 + 1.55761i 0.828405 + 0.560129i \(0.189248\pi\)
0.0708832 + 0.997485i \(0.477418\pi\)
\(182\) −3.46412e8 + 2.90674e8i −0.0234030 + 0.0196375i
\(183\) 0 0
\(184\) 9.53792e8 5.40922e9i 0.0613442 0.347900i
\(185\) 5.82140e9 + 4.88474e9i 0.365389 + 0.306597i
\(186\) 0 0
\(187\) 2.19464e10 + 7.98783e9i 1.31243 + 0.477685i
\(188\) −1.37856e10 −0.804850
\(189\) 0 0
\(190\) 1.69262e9 0.0942253
\(191\) −1.30602e10 4.75351e9i −0.710065 0.258443i −0.0383631 0.999264i \(-0.512214\pi\)
−0.671702 + 0.740821i \(0.734437\pi\)
\(192\) 0 0
\(193\) −3.44582e8 2.89139e8i −0.0178766 0.0150002i 0.633806 0.773492i \(-0.281492\pi\)
−0.651682 + 0.758492i \(0.725936\pi\)
\(194\) 1.11318e9 6.31315e9i 0.0564231 0.319991i
\(195\) 0 0
\(196\) 1.48896e10 1.24939e10i 0.720661 0.604706i
\(197\) 1.48978e10 + 2.58038e10i 0.704734 + 1.22063i 0.966788 + 0.255581i \(0.0822668\pi\)
−0.262054 + 0.965053i \(0.584400\pi\)
\(198\) 0 0
\(199\) −1.10366e10 + 1.91160e10i −0.498881 + 0.864086i −0.999999 0.00129214i \(-0.999589\pi\)
0.501119 + 0.865379i \(0.332922\pi\)
\(200\) 5.14280e8 + 2.91663e9i 0.0227282 + 0.128898i
\(201\) 0 0
\(202\) −1.07589e9 + 3.91591e8i −0.0454659 + 0.0165482i
\(203\) 9.35904e8 3.40641e8i 0.0386811 0.0140788i
\(204\) 0 0
\(205\) 3.91558e9 + 2.22064e10i 0.154847 + 0.878184i
\(206\) −1.52858e9 + 2.64757e9i −0.0591405 + 0.102434i
\(207\) 0 0
\(208\) −1.70178e10 2.94758e10i −0.630404 1.09189i
\(209\) 1.52959e10 1.28348e10i 0.554519 0.465297i
\(210\) 0 0
\(211\) 1.04654e9 5.93525e9i 0.0363485 0.206143i −0.961225 0.275766i \(-0.911069\pi\)
0.997573 + 0.0696232i \(0.0221797\pi\)
\(212\) −1.87257e10 1.57127e10i −0.636688 0.534244i
\(213\) 0 0
\(214\) 5.23676e9 + 1.90602e9i 0.170687 + 0.0621250i
\(215\) 3.87964e10 1.23828
\(216\) 0 0
\(217\) −3.01277e9 −0.0922353
\(218\) 8.99303e9 + 3.27320e9i 0.269682 + 0.0981562i
\(219\) 0 0
\(220\) −3.09687e10 2.59858e10i −0.891294 0.747885i
\(221\) 8.74328e9 4.95856e10i 0.246552 1.39827i
\(222\) 0 0
\(223\) 4.79845e10 4.02638e10i 1.29936 1.09029i 0.309104 0.951028i \(-0.399971\pi\)
0.990255 0.139264i \(-0.0444736\pi\)
\(224\) 1.08308e9 + 1.87595e9i 0.0287438 + 0.0497857i
\(225\) 0 0
\(226\) −3.66348e9 + 6.34534e9i −0.0934128 + 0.161796i
\(227\) −2.56021e9 1.45197e10i −0.0639969 0.362944i −0.999942 0.0107977i \(-0.996563\pi\)
0.935945 0.352147i \(-0.114548\pi\)
\(228\) 0 0
\(229\) 4.91315e9 1.78824e9i 0.118059 0.0429701i −0.282315 0.959322i \(-0.591102\pi\)
0.400374 + 0.916352i \(0.368880\pi\)
\(230\) −6.06601e9 + 2.20785e9i −0.142932 + 0.0520228i
\(231\) 0 0
\(232\) −1.53856e9 8.72559e9i −0.0348672 0.197742i
\(233\) −3.50624e10 + 6.07298e10i −0.779363 + 1.34990i 0.152947 + 0.988234i \(0.451124\pi\)
−0.932310 + 0.361661i \(0.882210\pi\)
\(234\) 0 0
\(235\) 1.66411e10 + 2.88232e10i 0.355940 + 0.616505i
\(236\) −4.05896e10 + 3.40587e10i −0.851747 + 0.714700i
\(237\) 0 0
\(238\) −1.68774e8 + 9.57162e8i −0.00340964 + 0.0193370i
\(239\) 4.76010e10 + 3.99420e10i 0.943681 + 0.791842i 0.978222 0.207561i \(-0.0665525\pi\)
−0.0345410 + 0.999403i \(0.510997\pi\)
\(240\) 0 0
\(241\) −1.98105e10 7.21044e9i −0.378285 0.137684i 0.145878 0.989303i \(-0.453399\pi\)
−0.524163 + 0.851618i \(0.675622\pi\)
\(242\) 1.37678e10 0.258045
\(243\) 0 0
\(244\) 2.41832e10 0.436778
\(245\) −4.40963e10 1.60497e10i −0.781906 0.284590i
\(246\) 0 0
\(247\) −3.29763e10 2.76704e10i −0.563723 0.473020i
\(248\) −4.65408e9 + 2.63946e10i −0.0781271 + 0.443081i
\(249\) 0 0
\(250\) 1.16706e10 9.79283e9i 0.188958 0.158554i
\(251\) −2.25558e10 3.90679e10i −0.358697 0.621281i 0.629047 0.777368i \(-0.283445\pi\)
−0.987743 + 0.156087i \(0.950112\pi\)
\(252\) 0 0
\(253\) −3.80758e10 + 6.59493e10i −0.584261 + 1.01197i
\(254\) −3.95295e9 2.24183e10i −0.0595894 0.337948i
\(255\) 0 0
\(256\) −3.38512e10 + 1.23208e10i −0.492599 + 0.179291i
\(257\) 7.93532e10 2.88822e10i 1.13466 0.412982i 0.294678 0.955597i \(-0.404788\pi\)
0.839982 + 0.542614i \(0.182565\pi\)
\(258\) 0 0
\(259\) 6.47833e8 + 3.67404e9i 0.00894570 + 0.0507336i
\(260\) −4.35779e10 + 7.54792e10i −0.591407 + 1.02435i
\(261\) 0 0
\(262\) −5.52483e9 9.56929e9i −0.0724375 0.125465i
\(263\) −4.66786e10 + 3.91680e10i −0.601612 + 0.504812i −0.891963 0.452108i \(-0.850672\pi\)
0.290351 + 0.956920i \(0.406228\pi\)
\(264\) 0 0
\(265\) −1.02480e10 + 5.81195e10i −0.127654 + 0.723961i
\(266\) 6.36549e8 + 5.34128e8i 0.00779587 + 0.00654151i
\(267\) 0 0
\(268\) −9.69295e10 3.52795e10i −1.14776 0.417749i
\(269\) 1.46201e10 0.170242 0.0851209 0.996371i \(-0.472872\pi\)
0.0851209 + 0.996371i \(0.472872\pi\)
\(270\) 0 0
\(271\) 2.22347e10 0.250420 0.125210 0.992130i \(-0.460039\pi\)
0.125210 + 0.992130i \(0.460039\pi\)
\(272\) −6.87409e10 2.50196e10i −0.761474 0.277154i
\(273\) 0 0
\(274\) 1.49371e10 + 1.25337e10i 0.160099 + 0.134339i
\(275\) 7.13010e9 4.04368e10i 0.0751794 0.426363i
\(276\) 0 0
\(277\) −1.16713e11 + 9.79335e10i −1.19113 + 0.999476i −0.191290 + 0.981534i \(0.561267\pi\)
−0.999839 + 0.0179427i \(0.994288\pi\)
\(278\) 1.60172e10 + 2.77427e10i 0.160837 + 0.278578i
\(279\) 0 0
\(280\) 1.72802e9 2.99302e9i 0.0168011 0.0291004i
\(281\) 8.09146e9 + 4.58890e10i 0.0774192 + 0.439066i 0.998736 + 0.0502543i \(0.0160032\pi\)
−0.921317 + 0.388812i \(0.872886\pi\)
\(282\) 0 0
\(283\) −1.08318e11 + 3.94245e10i −1.00383 + 0.365365i −0.791061 0.611737i \(-0.790471\pi\)
−0.212771 + 0.977102i \(0.568249\pi\)
\(284\) −1.59949e11 + 5.82167e10i −1.45898 + 0.531025i
\(285\) 0 0
\(286\) −9.68508e9 5.49268e10i −0.0855965 0.485442i
\(287\) −5.53497e9 + 9.58685e9i −0.0481556 + 0.0834080i
\(288\) 0 0
\(289\) 5.18499e9 + 8.98066e9i 0.0437227 + 0.0757300i
\(290\) −7.97685e9 + 6.69337e9i −0.0662278 + 0.0555717i
\(291\) 0 0
\(292\) 3.24606e10 1.84093e11i 0.261296 1.48188i
\(293\) −1.29042e10 1.08279e10i −0.102288 0.0858299i 0.590209 0.807250i \(-0.299045\pi\)
−0.692497 + 0.721420i \(0.743490\pi\)
\(294\) 0 0
\(295\) 1.20208e11 + 4.37521e10i 0.924132 + 0.336356i
\(296\) 3.31887e10 0.251292
\(297\) 0 0
\(298\) −2.56914e10 −0.188719
\(299\) 1.54274e11 + 5.61511e10i 1.11628 + 0.406292i
\(300\) 0 0
\(301\) 1.45903e10 + 1.22427e10i 0.102451 + 0.0859664i
\(302\) −2.87440e9 + 1.63015e10i −0.0198845 + 0.112771i
\(303\) 0 0
\(304\) −4.79101e10 + 4.02014e10i −0.321733 + 0.269966i
\(305\) −2.91925e10 5.05629e10i −0.193162 0.334567i
\(306\) 0 0
\(307\) 1.28073e11 2.21829e11i 0.822878 1.42527i −0.0806528 0.996742i \(-0.525701\pi\)
0.903531 0.428524i \(-0.140966\pi\)
\(308\) −3.44634e9 1.95452e10i −0.0218213 0.123755i
\(309\) 0 0
\(310\) 2.95995e10 1.07733e10i 0.182035 0.0662555i
\(311\) −6.65416e10 + 2.42192e10i −0.403340 + 0.146804i −0.535721 0.844395i \(-0.679960\pi\)
0.132381 + 0.991199i \(0.457738\pi\)
\(312\) 0 0
\(313\) 3.00272e9 + 1.70293e10i 0.0176834 + 0.100287i 0.992372 0.123279i \(-0.0393411\pi\)
−0.974689 + 0.223567i \(0.928230\pi\)
\(314\) −1.18555e10 + 2.05343e10i −0.0688235 + 0.119206i
\(315\) 0 0
\(316\) −1.17886e10 2.04184e10i −0.0665072 0.115194i
\(317\) 1.80799e11 1.51709e11i 1.00561 0.843807i 0.0178587 0.999841i \(-0.494315\pi\)
0.987752 + 0.156033i \(0.0498706\pi\)
\(318\) 0 0
\(319\) −2.13309e10 + 1.20974e11i −0.115332 + 0.654083i
\(320\) 8.49138e10 + 7.12511e10i 0.452693 + 0.379854i
\(321\) 0 0
\(322\) −2.97799e9 1.08390e9i −0.0154373 0.00561871i
\(323\) −9.25216e10 −0.472968
\(324\) 0 0
\(325\) −8.85223e10 −0.440127
\(326\) −1.94353e10 7.07389e9i −0.0953044 0.0346880i
\(327\) 0 0
\(328\) 7.54392e10 + 6.33010e10i 0.359886 + 0.301980i
\(329\) −2.83727e9 + 1.60910e10i −0.0133512 + 0.0757183i
\(330\) 0 0
\(331\) 1.82248e11 1.52924e11i 0.834519 0.700244i −0.121805 0.992554i \(-0.538868\pi\)
0.956324 + 0.292310i \(0.0944238\pi\)
\(332\) −4.32609e10 7.49301e10i −0.195422 0.338481i
\(333\) 0 0
\(334\) −2.63800e10 + 4.56916e10i −0.115989 + 0.200899i
\(335\) 4.32441e10 + 2.45250e11i 0.187597 + 1.06391i
\(336\) 0 0
\(337\) 3.87477e11 1.41030e11i 1.63648 0.595631i 0.650064 0.759879i \(-0.274742\pi\)
0.986419 + 0.164248i \(0.0525197\pi\)
\(338\) −6.18437e10 + 2.25093e10i −0.257733 + 0.0938072i
\(339\) 0 0
\(340\) 3.25283e10 + 1.84477e11i 0.132010 + 0.748665i
\(341\) 1.85793e11 3.21803e11i 0.744107 1.28883i
\(342\) 0 0
\(343\) −2.31329e10 4.00673e10i −0.0902414 0.156303i
\(344\) 1.29796e11 1.08912e11i 0.499746 0.419336i
\(345\) 0 0
\(346\) −8.09357e9 + 4.59009e10i −0.0303597 + 0.172178i
\(347\) 8.58760e8 + 7.20585e8i 0.00317972 + 0.00266810i 0.644376 0.764709i \(-0.277117\pi\)
−0.641196 + 0.767377i \(0.721562\pi\)
\(348\) 0 0
\(349\) −2.74997e11 1.00091e11i −0.992231 0.361143i −0.205647 0.978626i \(-0.565930\pi\)
−0.786584 + 0.617484i \(0.788152\pi\)
\(350\) 1.70877e9 0.00608662
\(351\) 0 0
\(352\) −2.67168e11 −0.927559
\(353\) 4.45541e11 + 1.62164e11i 1.52722 + 0.555862i 0.962939 0.269721i \(-0.0869314\pi\)
0.564281 + 0.825583i \(0.309154\pi\)
\(354\) 0 0
\(355\) 3.14801e11 + 2.64150e11i 1.05198 + 0.882719i
\(356\) 5.73686e10 3.25353e11i 0.189299 1.07357i
\(357\) 0 0
\(358\) −7.68441e10 + 6.44798e10i −0.247250 + 0.207468i
\(359\) −2.51241e11 4.35163e11i −0.798300 1.38270i −0.920722 0.390218i \(-0.872400\pi\)
0.122422 0.992478i \(-0.460934\pi\)
\(360\) 0 0
\(361\) 1.21793e11 2.10951e11i 0.377433 0.653733i
\(362\) −2.31475e10 1.31276e11i −0.0708460 0.401788i
\(363\) 0 0
\(364\) −4.02070e10 + 1.46341e10i −0.120045 + 0.0436929i
\(365\) −4.24090e11 + 1.54356e11i −1.25066 + 0.455204i
\(366\) 0 0
\(367\) 8.92505e10 + 5.06165e11i 0.256811 + 1.45645i 0.791382 + 0.611323i \(0.209362\pi\)
−0.534571 + 0.845124i \(0.679527\pi\)
\(368\) 1.19262e11 2.06568e11i 0.338990 0.587148i
\(369\) 0 0
\(370\) −1.95027e10 3.37797e10i −0.0540987 0.0937017i
\(371\) −2.21944e10 + 1.86233e10i −0.0608220 + 0.0510357i
\(372\) 0 0
\(373\) −3.61006e10 + 2.04737e11i −0.0965661 + 0.547653i 0.897690 + 0.440627i \(0.145244\pi\)
−0.994256 + 0.107026i \(0.965867\pi\)
\(374\) −9.18294e10 7.70540e10i −0.242694 0.203645i
\(375\) 0 0
\(376\) 1.36589e11 + 4.97142e10i 0.352427 + 0.128273i
\(377\) 2.64830e11 0.675197
\(378\) 0 0
\(379\) 5.11931e11 1.27449 0.637243 0.770663i \(-0.280075\pi\)
0.637243 + 0.770663i \(0.280075\pi\)
\(380\) 1.50495e11 + 5.47756e10i 0.370250 + 0.134760i
\(381\) 0 0
\(382\) 5.46472e10 + 4.58544e10i 0.131305 + 0.110178i
\(383\) −6.18978e10 + 3.51040e11i −0.146988 + 0.833608i 0.818762 + 0.574133i \(0.194661\pi\)
−0.965750 + 0.259475i \(0.916450\pi\)
\(384\) 0 0
\(385\) −3.67053e10 + 3.07994e10i −0.0851443 + 0.0714446i
\(386\) 1.15441e9 + 1.99950e9i 0.00264677 + 0.00458435i
\(387\) 0 0
\(388\) 3.03278e11 5.25293e11i 0.679358 1.17668i
\(389\) −6.84736e10 3.88333e11i −0.151618 0.859866i −0.961813 0.273707i \(-0.911750\pi\)
0.810196 0.586160i \(-0.199361\pi\)
\(390\) 0 0
\(391\) 3.31579e11 1.20685e11i 0.717451 0.261131i
\(392\) −1.92583e11 + 7.00946e10i −0.411938 + 0.149933i
\(393\) 0 0
\(394\) −2.65567e10 1.50611e11i −0.0555190 0.314864i
\(395\) −2.84608e10 + 4.92955e10i −0.0588248 + 0.101887i
\(396\) 0 0
\(397\) −6.50349e10 1.12644e11i −0.131398 0.227588i 0.792818 0.609459i \(-0.208613\pi\)
−0.924216 + 0.381871i \(0.875280\pi\)
\(398\) 8.67901e10 7.28256e10i 0.173379 0.145482i
\(399\) 0 0
\(400\) −2.23331e10 + 1.26657e11i −0.0436192 + 0.247377i
\(401\) 7.62899e11 + 6.40148e11i 1.47339 + 1.23632i 0.912917 + 0.408145i \(0.133824\pi\)
0.560471 + 0.828174i \(0.310620\pi\)
\(402\) 0 0
\(403\) −7.52788e11 2.73993e11i −1.42167 0.517447i
\(404\) −1.08332e11 −0.202321
\(405\) 0 0
\(406\) −5.11207e9 −0.00933747
\(407\) −4.32387e11 1.57376e11i −0.781084 0.284291i
\(408\) 0 0
\(409\) −1.81185e11 1.52032e11i −0.320160 0.268646i 0.468516 0.883455i \(-0.344789\pi\)
−0.788676 + 0.614809i \(0.789233\pi\)
\(410\) 2.00978e10 1.13980e11i 0.0351253 0.199206i
\(411\) 0 0
\(412\) −2.21589e11 + 1.85935e11i −0.378888 + 0.317925i
\(413\) 3.14005e10 + 5.43872e10i 0.0531081 + 0.0919860i
\(414\) 0 0
\(415\) −1.04444e11 + 1.80902e11i −0.172849 + 0.299382i
\(416\) 1.00019e11 + 5.67234e11i 0.163742 + 0.928629i
\(417\) 0 0
\(418\) −9.63070e10 + 3.50529e10i −0.154300 + 0.0561604i
\(419\) −5.69703e11 + 2.07355e11i −0.902995 + 0.328663i −0.751452 0.659787i \(-0.770646\pi\)
−0.151543 + 0.988451i \(0.548424\pi\)
\(420\) 0 0
\(421\) −1.59940e11 9.07063e11i −0.248134 1.40724i −0.813100 0.582124i \(-0.802222\pi\)
0.564966 0.825114i \(-0.308889\pi\)
\(422\) −1.54671e10 + 2.67898e10i −0.0237412 + 0.0411209i
\(423\) 0 0
\(424\) 1.28872e11 + 2.23212e11i 0.193647 + 0.335407i
\(425\) −1.45748e11 + 1.22297e11i −0.216696 + 0.181830i
\(426\) 0 0
\(427\) 4.97726e9 2.82275e10i 0.00724545 0.0410910i
\(428\) 4.03931e11 + 3.38939e11i 0.581849 + 0.488230i
\(429\) 0 0
\(430\) −1.87123e11 6.81073e10i −0.263949 0.0960695i
\(431\) −1.12321e12 −1.56788 −0.783941 0.620836i \(-0.786793\pi\)
−0.783941 + 0.620836i \(0.786793\pi\)
\(432\) 0 0
\(433\) −2.33971e11 −0.319864 −0.159932 0.987128i \(-0.551128\pi\)
−0.159932 + 0.987128i \(0.551128\pi\)
\(434\) 1.45312e10 + 5.28894e9i 0.0196607 + 0.00715591i
\(435\) 0 0
\(436\) 6.93667e11 + 5.82056e11i 0.919310 + 0.771392i
\(437\) 5.23861e10 2.97096e11i 0.0687147 0.389700i
\(438\) 0 0
\(439\) −9.14258e11 + 7.67153e11i −1.17484 + 0.985807i −0.174839 + 0.984597i \(0.555941\pi\)
−0.999999 + 0.00120975i \(0.999615\pi\)
\(440\) 2.13129e11 + 3.69151e11i 0.271085 + 0.469533i
\(441\) 0 0
\(442\) −1.29219e11 + 2.23813e11i −0.161037 + 0.278924i
\(443\) 6.46091e10 + 3.66417e11i 0.0797035 + 0.452021i 0.998374 + 0.0569970i \(0.0181525\pi\)
−0.918671 + 0.395024i \(0.870736\pi\)
\(444\) 0 0
\(445\) −7.49508e11 + 2.72798e11i −0.906058 + 0.329778i
\(446\) −3.02123e11 + 1.09964e11i −0.361557 + 0.131596i
\(447\) 0 0
\(448\) 9.44961e9 + 5.35914e10i 0.0110831 + 0.0628556i
\(449\) 5.94911e11 1.03042e12i 0.690786 1.19648i −0.280794 0.959768i \(-0.590598\pi\)
0.971581 0.236709i \(-0.0760689\pi\)
\(450\) 0 0
\(451\) −6.82668e11 1.18242e12i −0.776989 1.34578i
\(452\) −5.31074e11 + 4.45624e11i −0.598456 + 0.502164i
\(453\) 0 0
\(454\) −1.31409e10 + 7.45260e10i −0.0145169 + 0.0823296i
\(455\) 7.91327e10 + 6.64003e10i 0.0865575 + 0.0726304i
\(456\) 0 0
\(457\) 4.38390e11 + 1.59561e11i 0.470151 + 0.171121i 0.566221 0.824254i \(-0.308405\pi\)
−0.0960696 + 0.995375i \(0.530627\pi\)
\(458\) −2.68365e10 −0.0284991
\(459\) 0 0
\(460\) −6.10793e11 −0.636039
\(461\) 4.28880e11 + 1.56100e11i 0.442264 + 0.160971i 0.553547 0.832818i \(-0.313274\pi\)
−0.111283 + 0.993789i \(0.535496\pi\)
\(462\) 0 0
\(463\) −6.66831e11 5.59538e11i −0.674375 0.565868i 0.239982 0.970777i \(-0.422859\pi\)
−0.914357 + 0.404909i \(0.867303\pi\)
\(464\) 6.68131e10 3.78916e11i 0.0669161 0.379500i
\(465\) 0 0
\(466\) 2.75725e11 2.31361e11i 0.270857 0.227276i
\(467\) 6.42551e11 + 1.11293e12i 0.625146 + 1.08279i 0.988513 + 0.151139i \(0.0482940\pi\)
−0.363366 + 0.931646i \(0.618373\pi\)
\(468\) 0 0
\(469\) −6.11288e10 + 1.05878e11i −0.0583403 + 0.101048i
\(470\) −2.96642e10 1.68234e11i −0.0280409 0.159028i
\(471\) 0 0
\(472\) 5.24989e11 1.91080e11i 0.486868 0.177205i
\(473\) −2.20745e12 + 8.03444e11i −2.02775 + 0.738041i
\(474\) 0 0
\(475\) 2.82463e10 + 1.60193e11i 0.0254590 + 0.144385i
\(476\) −4.59812e10 + 7.96418e10i −0.0410534 + 0.0711066i
\(477\) 0 0
\(478\) −1.59471e11 2.76213e11i −0.139720 0.242001i
\(479\) 9.49325e11 7.96578e11i 0.823958 0.691383i −0.129937 0.991522i \(-0.541478\pi\)
0.953895 + 0.300139i \(0.0970332\pi\)
\(480\) 0 0
\(481\) −1.72260e11 + 9.76935e11i −0.146734 + 0.832171i
\(482\) 8.28924e10 + 6.95550e10i 0.0699525 + 0.0586971i
\(483\) 0 0
\(484\) 1.22413e12 + 4.45546e11i 1.01396 + 0.369052i
\(485\) −1.46439e12 −1.20177
\(486\) 0 0
\(487\) 1.32515e12 1.06754 0.533769 0.845630i \(-0.320775\pi\)
0.533769 + 0.845630i \(0.320775\pi\)
\(488\) −2.39610e11 8.72107e10i −0.191256 0.0696115i
\(489\) 0 0
\(490\) 1.84510e11 + 1.54823e11i 0.144590 + 0.121326i
\(491\) 3.50397e11 1.98720e12i 0.272078 1.54303i −0.476015 0.879437i \(-0.657919\pi\)
0.748093 0.663594i \(-0.230970\pi\)
\(492\) 0 0
\(493\) 4.36029e11 3.65872e11i 0.332433 0.278945i
\(494\) 1.10476e11 + 1.91351e11i 0.0834637 + 0.144563i
\(495\) 0 0
\(496\) −5.81945e11 + 1.00796e12i −0.431732 + 0.747783i
\(497\) 3.50326e10 + 1.98680e11i 0.0257554 + 0.146066i
\(498\) 0 0
\(499\) −4.82759e11 + 1.75710e11i −0.348560 + 0.126865i −0.510366 0.859957i \(-0.670490\pi\)
0.161806 + 0.986823i \(0.448268\pi\)
\(500\) 1.35458e12 4.93025e11i 0.969255 0.352780i
\(501\) 0 0
\(502\) 4.02078e10 + 2.28030e11i 0.0282581 + 0.160260i
\(503\) −7.16695e11 + 1.24135e12i −0.499204 + 0.864647i −1.00000 0.000918437i \(-0.999708\pi\)
0.500795 + 0.865566i \(0.333041\pi\)
\(504\) 0 0
\(505\) 1.30772e11 + 2.26503e11i 0.0894753 + 0.154976i
\(506\) 2.99423e11 2.51245e11i 0.203052 0.170381i
\(507\) 0 0
\(508\) 3.74022e11 2.12119e12i 0.249179 1.41316i
\(509\) 7.35298e11 + 6.16988e11i 0.485549 + 0.407424i 0.852428 0.522845i \(-0.175129\pi\)
−0.366879 + 0.930269i \(0.619574\pi\)
\(510\) 0 0
\(511\) −2.08198e11 7.57780e10i −0.135078 0.0491642i
\(512\) 1.41984e12 0.913116
\(513\) 0 0
\(514\) −4.33441e11 −0.273902
\(515\) 6.56246e11 + 2.38854e11i 0.411087 + 0.149624i
\(516\) 0 0
\(517\) −1.54376e12 1.29537e12i −0.950323 0.797416i
\(518\) 3.32517e9 1.88580e10i 0.00202923 0.0115083i
\(519\) 0 0
\(520\) 7.03970e11 5.90701e11i 0.422220 0.354285i
\(521\) −1.14586e12 1.98469e12i −0.681336 1.18011i −0.974573 0.224069i \(-0.928066\pi\)
0.293238 0.956040i \(-0.405267\pi\)
\(522\) 0 0
\(523\) −4.98633e11 + 8.63657e11i −0.291422 + 0.504759i −0.974146 0.225918i \(-0.927462\pi\)
0.682724 + 0.730677i \(0.260795\pi\)
\(524\) −1.81550e11 1.02962e12i −0.105197 0.596604i
\(525\) 0 0
\(526\) 2.93900e11 1.06971e11i 0.167403 0.0609299i
\(527\) −1.61796e12 + 5.88889e11i −0.913735 + 0.332572i
\(528\) 0 0
\(529\) −1.12976e11 6.40721e11i −0.0627245 0.355728i
\(530\) 1.51458e11 2.62332e11i 0.0833777 0.144414i
\(531\) 0 0
\(532\) 3.93120e10 + 6.80903e10i 0.0212776 + 0.0368539i
\(533\) −2.25486e12 + 1.89206e12i −1.21017 + 1.01546i
\(534\) 0 0
\(535\) 2.21060e11 1.25369e12i 0.116659 0.661606i
\(536\) 8.33159e11 + 6.99103e11i 0.436000 + 0.365847i
\(537\) 0 0
\(538\) −7.05161e10 2.56658e10i −0.0362884 0.0132079i
\(539\) 2.84138e12 1.45004
\(540\) 0 0
\(541\) 2.03546e11 0.102159 0.0510794 0.998695i \(-0.483734\pi\)
0.0510794 + 0.998695i \(0.483734\pi\)
\(542\) −1.07243e11 3.90332e10i −0.0533791 0.0194284i
\(543\) 0 0
\(544\) 9.48331e11 + 7.95744e11i 0.464264 + 0.389564i
\(545\) 3.79624e11 2.15296e12i 0.184319 1.04532i
\(546\) 0 0
\(547\) 5.09924e11 4.27877e11i 0.243536 0.204351i −0.512847 0.858480i \(-0.671409\pi\)
0.756383 + 0.654129i \(0.226965\pi\)
\(548\) 9.22485e11 + 1.59779e12i 0.436965 + 0.756846i
\(549\) 0 0
\(550\) −1.05377e11 + 1.82519e11i −0.0491037 + 0.0850501i
\(551\) −8.45037e10 4.79244e11i −0.0390565 0.221501i
\(552\) 0 0
\(553\) −2.62592e10 + 9.55758e9i −0.0119404 + 0.00434595i
\(554\) 7.34853e11 2.67465e11i 0.331441 0.120635i
\(555\) 0 0
\(556\) 5.26338e11 + 2.98501e12i 0.233576 + 1.32467i
\(557\) −4.51240e11 + 7.81571e11i −0.198637 + 0.344049i −0.948087 0.318012i \(-0.896985\pi\)
0.749450 + 0.662061i \(0.230318\pi\)
\(558\) 0 0
\(559\) 2.53222e12 + 4.38593e12i 1.09685 + 1.89980i
\(560\) 1.14969e11 9.64706e10i 0.0494009 0.0414523i
\(561\) 0 0
\(562\) 4.15315e10 2.35537e11i 0.0175616 0.0995969i
\(563\) 3.00202e12 + 2.51899e12i 1.25929 + 1.05667i 0.995757 + 0.0920186i \(0.0293319\pi\)
0.263532 + 0.964651i \(0.415113\pi\)
\(564\) 0 0
\(565\) 1.57280e12 + 5.72452e11i 0.649315 + 0.236331i
\(566\) 5.91651e11 0.242321
\(567\) 0 0
\(568\) 1.79473e12 0.723489
\(569\) −3.73460e12 1.35928e12i −1.49361 0.543631i −0.539216 0.842168i \(-0.681279\pi\)
−0.954398 + 0.298536i \(0.903502\pi\)
\(570\) 0 0
\(571\) −7.88821e11 6.61899e11i −0.310539 0.260573i 0.474176 0.880430i \(-0.342746\pi\)
−0.784715 + 0.619857i \(0.787191\pi\)
\(572\) 9.16389e11 5.19710e12i 0.357930 2.02992i
\(573\) 0 0
\(574\) 4.35262e10 3.65228e10i 0.0167358 0.0140430i
\(575\) −3.10185e11 5.37256e11i −0.118335 0.204963i
\(576\) 0 0
\(577\) 8.29829e11 1.43731e12i 0.311672 0.539832i −0.667053 0.745011i \(-0.732444\pi\)
0.978724 + 0.205179i \(0.0657777\pi\)
\(578\) −9.24270e9 5.24180e10i −0.00344448 0.0195346i
\(579\) 0 0
\(580\) −9.25848e11 + 3.36981e11i −0.339714 + 0.123646i
\(581\) −9.63645e10 + 3.50738e10i −0.0350852 + 0.0127700i
\(582\) 0 0
\(583\) −6.20517e11 3.51913e12i −0.222457 1.26161i
\(584\) −9.85506e11 + 1.70695e12i −0.350592 + 0.607243i
\(585\) 0 0
\(586\) 4.32311e10 + 7.48785e10i 0.0151446 + 0.0262312i
\(587\) 2.56726e12 2.15418e12i 0.892478 0.748878i −0.0762274 0.997090i \(-0.524287\pi\)
0.968706 + 0.248212i \(0.0798430\pi\)
\(588\) 0 0
\(589\) −2.55621e11 + 1.44970e12i −0.0875140 + 0.496317i
\(590\) −5.02982e11 4.22052e11i −0.170891 0.143394i
\(591\) 0 0
\(592\) 1.35433e12 + 4.92936e11i 0.453187 + 0.164947i
\(593\) −1.51807e11 −0.0504135 −0.0252067 0.999682i \(-0.508024\pi\)
−0.0252067 + 0.999682i \(0.508024\pi\)
\(594\) 0 0
\(595\) 2.22023e11 0.0726225
\(596\) −2.28428e12 8.31412e11i −0.741553 0.269903i
\(597\) 0 0
\(598\) −6.45523e11 5.41658e11i −0.206422 0.173209i
\(599\) 9.76595e11 5.53854e12i 0.309951 1.75782i −0.289278 0.957245i \(-0.593415\pi\)
0.599230 0.800577i \(-0.295474\pi\)
\(600\) 0 0
\(601\) 3.63412e12 3.04939e12i 1.13622 0.953405i 0.136915 0.990583i \(-0.456281\pi\)
0.999309 + 0.0371781i \(0.0118369\pi\)
\(602\) −4.88800e10 8.46627e10i −0.0151687 0.0262729i
\(603\) 0 0
\(604\) −7.83110e11 + 1.35639e12i −0.239418 + 0.414684i
\(605\) −5.46131e11 3.09727e12i −0.165729 0.939895i
\(606\) 0 0
\(607\) −1.67977e12 + 6.11388e11i −0.502229 + 0.182796i −0.580696 0.814120i \(-0.697220\pi\)
0.0784673 + 0.996917i \(0.474997\pi\)
\(608\) 9.94571e11 3.61994e11i 0.295168 0.107432i
\(609\) 0 0
\(610\) 5.20382e10 + 2.95123e11i 0.0152173 + 0.0863017i
\(611\) −2.17231e12 + 3.76255e12i −0.630575 + 1.09219i
\(612\) 0 0
\(613\) 8.97771e11 + 1.55498e12i 0.256799 + 0.444789i 0.965383 0.260838i \(-0.0839988\pi\)
−0.708584 + 0.705627i \(0.750665\pi\)
\(614\) −1.00715e12 + 8.45097e11i −0.285980 + 0.239966i
\(615\) 0 0
\(616\) −3.63381e10 + 2.06084e11i −0.0101683 + 0.0576674i
\(617\) 4.09727e12 + 3.43802e12i 1.13818 + 0.955048i 0.999378 0.0352723i \(-0.0112298\pi\)
0.138804 + 0.990320i \(0.455674\pi\)
\(618\) 0 0
\(619\) 4.64841e11 + 1.69188e11i 0.127261 + 0.0463193i 0.404866 0.914376i \(-0.367318\pi\)
−0.277604 + 0.960695i \(0.589540\pi\)
\(620\) 2.98040e12 0.810050
\(621\) 0 0
\(622\) 3.63461e11 0.0973647
\(623\) −3.67955e11 1.33925e11i −0.0978586 0.0356176i
\(624\) 0 0
\(625\) −1.80065e12 1.51093e12i −0.472031 0.396081i
\(626\) 1.54122e10 8.74072e10i 0.00401126 0.0227490i
\(627\) 0 0
\(628\) −1.71862e12 + 1.44210e12i −0.440923 + 0.369978i
\(629\) 1.06605e12 + 1.84646e12i 0.271551 + 0.470340i
\(630\) 0 0
\(631\) −6.83547e11 + 1.18394e12i −0.171647 + 0.297301i −0.938996 0.343929i \(-0.888242\pi\)
0.767349 + 0.641230i \(0.221575\pi\)
\(632\) 4.31682e10 + 2.44819e11i 0.0107631 + 0.0610406i
\(633\) 0 0
\(634\) −1.13836e12 + 4.14329e11i −0.279819 + 0.101846i
\(635\) −4.88652e12 + 1.77855e12i −1.19266 + 0.434094i
\(636\) 0 0
\(637\) −1.06372e12 6.03264e12i −0.255976 1.45171i
\(638\) 3.15254e11 5.46036e11i 0.0753299 0.130475i
\(639\) 0 0
\(640\) −1.41404e12 2.44919e12i −0.333159 0.577048i
\(641\) −3.06971e12 + 2.57580e12i −0.718186 + 0.602630i −0.926883 0.375351i \(-0.877522\pi\)
0.208697 + 0.977980i \(0.433078\pi\)
\(642\) 0 0
\(643\) −1.68695e11 + 9.56716e11i −0.0389182 + 0.220716i −0.998064 0.0621965i \(-0.980189\pi\)
0.959146 + 0.282912i \(0.0913006\pi\)
\(644\) −2.29703e11 1.92744e11i −0.0526236 0.0441565i
\(645\) 0 0
\(646\) 4.46252e11 + 1.62422e11i 0.100817 + 0.0366944i
\(647\) −2.07885e12 −0.466395 −0.233198 0.972429i \(-0.574919\pi\)
−0.233198 + 0.972429i \(0.574919\pi\)
\(648\) 0 0
\(649\) −7.74569e12 −1.71380
\(650\) 4.26962e11 + 1.55402e11i 0.0938165 + 0.0341464i
\(651\) 0 0
\(652\) −1.49912e12 1.25791e12i −0.324880 0.272607i
\(653\) −3.38608e11 + 1.92034e12i −0.0728766 + 0.413304i 0.926443 + 0.376434i \(0.122850\pi\)
−0.999320 + 0.0368699i \(0.988261\pi\)
\(654\) 0 0
\(655\) −1.93360e12 + 1.62248e12i −0.410469 + 0.344425i
\(656\) 2.13827e12 + 3.70359e12i 0.450811 + 0.780827i
\(657\) 0 0
\(658\) 4.19326e10 7.26294e10i 0.00872038 0.0151041i
\(659\) 1.07304e12 + 6.08551e12i 0.221631 + 1.25693i 0.869021 + 0.494775i \(0.164750\pi\)
−0.647390 + 0.762159i \(0.724139\pi\)
\(660\) 0 0
\(661\) 1.19594e12 4.35288e11i 0.243671 0.0886891i −0.217298 0.976105i \(-0.569724\pi\)
0.460969 + 0.887416i \(0.347502\pi\)
\(662\) −1.14748e12 + 4.17648e11i −0.232212 + 0.0845181i
\(663\) 0 0
\(664\) 1.58416e11 + 8.98422e11i 0.0316259 + 0.179359i
\(665\) 9.49099e10 1.64389e11i 0.0188198 0.0325968i
\(666\) 0 0
\(667\) 9.27970e11 + 1.60729e12i 0.181538 + 0.314433i
\(668\) −3.82416e12 + 3.20885e12i −0.743091 + 0.623527i
\(669\) 0 0
\(670\) 2.21962e11 1.25881e12i 0.0425541 0.241336i
\(671\) 2.70812e12 + 2.27238e12i 0.515724 + 0.432743i
\(672\) 0 0
\(673\) 2.80815e11 + 1.02208e11i 0.0527658 + 0.0192052i 0.368268 0.929720i \(-0.379951\pi\)
−0.315502 + 0.948925i \(0.602173\pi\)
\(674\) −2.11647e12 −0.395041
\(675\) 0 0
\(676\) −6.22711e12 −1.14690
\(677\) 4.73930e12 + 1.72497e12i 0.867093 + 0.315596i 0.736989 0.675905i \(-0.236247\pi\)
0.130103 + 0.991500i \(0.458469\pi\)
\(678\) 0 0
\(679\) −5.50720e11 4.62109e11i −0.0994299 0.0834316i
\(680\) 3.42977e11 1.94512e12i 0.0615142 0.348864i
\(681\) 0 0
\(682\) −1.46105e12 + 1.22597e12i −0.258604 + 0.216995i
\(683\) −1.13832e12 1.97163e12i −0.200158 0.346683i 0.748422 0.663223i \(-0.230812\pi\)
−0.948579 + 0.316540i \(0.897479\pi\)
\(684\) 0 0
\(685\) 2.22713e12 3.85751e12i 0.386490 0.669421i
\(686\) 4.12364e10 + 2.33863e11i 0.00710922 + 0.0403184i
\(687\) 0 0
\(688\) 6.91421e12 2.51656e12i 1.17651 0.428213i
\(689\) −7.23930e12 + 2.63489e12i −1.22380 + 0.445426i
\(690\) 0 0
\(691\) 2.12817e11 + 1.20695e12i 0.0355104 + 0.201389i 0.997401 0.0720434i \(-0.0229520\pi\)
−0.961891 + 0.273433i \(0.911841\pi\)
\(692\) −2.20504e12 + 3.81924e12i −0.365543 + 0.633140i
\(693\) 0 0
\(694\) −2.87699e9 4.98310e9i −0.000470783 0.000815421i
\(695\) 5.60576e12 4.70379e12i 0.911388 0.764745i
\(696\) 0 0
\(697\) −1.09858e12 + 6.23036e12i −0.176313 + 0.999921i
\(698\) 1.15066e12 + 9.65517e11i 0.183484 + 0.153961i
\(699\) 0 0
\(700\) 1.51931e11 + 5.52982e10i 0.0239168 + 0.00870502i
\(701\) −1.15369e12 −0.180450 −0.0902252 0.995921i \(-0.528759\pi\)
−0.0902252 + 0.995921i \(0.528759\pi\)
\(702\) 0 0
\(703\) 1.82286e12 0.281484
\(704\) −6.30701e12 2.29556e12i −0.967712 0.352218i
\(705\) 0 0
\(706\) −1.86426e12 1.56430e12i −0.282414 0.236973i
\(707\) −2.22963e10 + 1.26449e11i −0.00335619 + 0.0190339i
\(708\) 0 0
\(709\) 4.61341e11 3.87111e11i 0.0685669 0.0575344i −0.607860 0.794044i \(-0.707972\pi\)
0.676427 + 0.736510i \(0.263527\pi\)
\(710\) −1.05464e12 1.82669e12i −0.155755 0.269775i
\(711\) 0 0
\(712\) −1.74172e12 + 3.01674e12i −0.253990 + 0.439924i
\(713\) −9.74889e11 5.52887e12i −0.141271 0.801186i
\(714\) 0 0
\(715\) −1.19724e13 + 4.35760e12i −1.71319 + 0.623549i
\(716\) −8.91906e12 + 3.24627e12i −1.26827 + 0.461611i
\(717\) 0 0
\(718\) 4.47860e11 + 2.53994e12i 0.0628901 + 0.356668i
\(719\) 6.43613e12 1.11477e13i 0.898141 1.55563i 0.0682726 0.997667i \(-0.478251\pi\)
0.829868 0.557959i \(-0.188415\pi\)
\(720\) 0 0
\(721\) 1.71423e11 + 2.96914e11i 0.0236244 + 0.0409187i
\(722\) −9.57760e11 + 8.03656e11i −0.131172 + 0.110066i
\(723\) 0 0
\(724\) 2.19018e12 1.24211e13i 0.296249 1.68011i
\(725\) −7.66592e11 6.43247e11i −0.103049 0.0864682i
\(726\) 0 0
\(727\) −1.65453e11 6.02198e10i −0.0219669 0.00799530i 0.331013 0.943626i \(-0.392609\pi\)
−0.352980 + 0.935631i \(0.614832\pi\)
\(728\) 4.51148e11 0.0595289
\(729\) 0 0
\(730\) 2.31645e12 0.301905
\(731\) 1.02285e13 + 3.72287e12i 1.32490 + 0.482225i
\(732\) 0 0
\(733\) 1.10709e13 + 9.28958e12i 1.41649 + 1.18858i 0.953187 + 0.302381i \(0.0977814\pi\)
0.463306 + 0.886198i \(0.346663\pi\)
\(734\) 4.58101e11 2.59802e12i 0.0582545 0.330378i
\(735\) 0 0
\(736\) −3.09216e12 + 2.59463e12i −0.388430 + 0.325931i
\(737\) −7.53946e12 1.30587e13i −0.941318 1.63041i
\(738\) 0 0
\(739\) −3.65737e11 + 6.33476e11i −0.0451096 + 0.0781322i −0.887699 0.460425i \(-0.847697\pi\)
0.842589 + 0.538557i \(0.181030\pi\)
\(740\) −6.40872e11 3.63457e12i −0.0785650 0.445564i
\(741\) 0 0
\(742\) 1.39742e11 5.08619e10i 0.0169242 0.00615991i
\(743\) 3.62672e12 1.32002e12i 0.436581 0.158902i −0.114374 0.993438i \(-0.536486\pi\)
0.550954 + 0.834535i \(0.314264\pi\)
\(744\) 0 0
\(745\) 1.01911e12 + 5.77966e12i 0.121204 + 0.687384i
\(746\) 5.33538e11 9.24114e11i 0.0630725 0.109245i
\(747\) 0 0
\(748\) −5.67120e12 9.82280e12i −0.662396 1.14730i
\(749\) 4.78755e11 4.01723e11i 0.0555834 0.0466400i
\(750\) 0 0
\(751\) −4.82128e11 + 2.73429e12i −0.0553074 + 0.313664i −0.999893 0.0146003i \(-0.995352\pi\)
0.944586 + 0.328264i \(0.106464\pi\)
\(752\) 4.83538e12 + 4.05737e12i 0.551380 + 0.462662i
\(753\) 0 0
\(754\) −1.27733e12 4.64910e11i −0.143924 0.0523839i
\(755\) 3.78129e12 0.423524
\(756\) 0 0
\(757\) 1.43220e13 1.58516 0.792581 0.609767i \(-0.208737\pi\)
0.792581 + 0.609767i \(0.208737\pi\)
\(758\) −2.46916e12 8.98699e11i −0.271667 0.0988787i
\(759\) 0 0
\(760\) −1.29358e12 1.08544e12i −0.140647 0.118017i
\(761\) −1.37154e12 + 7.77841e12i −0.148244 + 0.840736i 0.816460 + 0.577402i \(0.195933\pi\)
−0.964705 + 0.263334i \(0.915178\pi\)
\(762\) 0 0
\(763\) 8.22161e11 6.89875e11i 0.0878206 0.0736902i
\(764\) 3.37490e12 + 5.84549e12i 0.358377 + 0.620727i
\(765\) 0 0
\(766\) 9.14800e11 1.58448e12i 0.0960056 0.166287i
\(767\) 2.89973e12 + 1.64452e13i 0.302537 + 1.71577i
\(768\) 0 0
\(769\) 1.36410e13 4.96493e12i 1.40663 0.511970i 0.476489 0.879180i \(-0.341909\pi\)
0.930138 + 0.367210i \(0.119687\pi\)
\(770\) 2.31106e11 8.41158e10i 0.0236921 0.00862322i
\(771\) 0 0
\(772\) 3.79347e10 + 2.15138e11i 0.00384378 + 0.0217992i
\(773\) 1.96630e12 3.40574e12i 0.198081 0.343086i −0.749825 0.661636i \(-0.769862\pi\)
0.947906 + 0.318550i \(0.103196\pi\)
\(774\) 0 0
\(775\) 1.51356e12 + 2.62157e12i 0.150710 + 0.261038i
\(776\) −4.89924e12 + 4.11095e12i −0.485010 + 0.406972i
\(777\) 0 0
\(778\) −3.51458e11 + 1.99322e12i −0.0343927 + 0.195050i
\(779\) 4.14343e12 + 3.47675e12i 0.403126 + 0.338263i
\(780\) 0 0
\(781\) −2.33820e13 8.51035e12i −2.24881 0.818498i
\(782\) −1.81114e12 −0.173190
\(783\) 0 0
\(784\) −8.89982e12 −0.841316
\(785\) 5.08978e12 + 1.85253e12i 0.478394 + 0.174121i
\(786\) 0 0
\(787\) 1.19610e13 + 1.00364e13i 1.11143 + 0.932596i 0.998140 0.0609660i \(-0.0194181\pi\)
0.113285 + 0.993562i \(0.463863\pi\)
\(788\) 2.51276e12 1.42506e13i 0.232158 1.31663i
\(789\) 0 0
\(790\) 2.23811e11 1.87800e11i 0.0204437 0.0171543i
\(791\) 4.10844e11 + 7.11602e11i 0.0373149 + 0.0646313i
\(792\) 0 0
\(793\) 3.81076e12 6.60043e12i 0.342202 0.592711i
\(794\) 1.15931e11 + 6.57475e11i 0.0103516 + 0.0587066i
\(795\) 0 0
\(796\) 1.00735e13 3.66644e12i 0.889345 0.323695i
\(797\) −6.32997e12 + 2.30392e12i −0.555698 + 0.202258i −0.604576 0.796547i \(-0.706658\pi\)
0.0488781 + 0.998805i \(0.484435\pi\)
\(798\) 0 0
\(799\) 1.62150e12 + 9.19599e12i 0.140753 + 0.798248i
\(800\) 1.08824e12 1.88489e12i 0.0939333 0.162697i
\(801\) 0 0
\(802\) −2.55584e12 4.42685e12i −0.218147 0.377842i
\(803\) 2.09334e13 1.75652e13i 1.77672 1.49085i
\(804\) 0 0
\(805\) −1.25710e11 + 7.12937e11i −0.0105509 + 0.0598370i
\(806\) 3.14987e12 + 2.64305e12i 0.262896 + 0.220596i
\(807\) 0 0
\(808\) 1.07336e12 + 3.90673e11i 0.0885923 + 0.0322450i
\(809\) −8.17110e12 −0.670675 −0.335338 0.942098i \(-0.608850\pi\)
−0.335338 + 0.942098i \(0.608850\pi\)
\(810\) 0 0
\(811\) 2.07621e13 1.68530 0.842651 0.538460i \(-0.180994\pi\)
0.842651 + 0.538460i \(0.180994\pi\)
\(812\) −4.54526e11 1.65434e11i −0.0366908 0.0133543i
\(813\) 0 0
\(814\) 1.80922e12 + 1.51812e12i 0.144438 + 0.121198i
\(815\) −8.20427e11 + 4.65287e12i −0.0651375 + 0.369413i
\(816\) 0 0
\(817\) 7.12893e12 5.98188e12i 0.559790 0.469719i
\(818\) 6.07001e11 + 1.05136e12i 0.0474023 + 0.0821032i
\(819\) 0 0
\(820\) 5.47550e12 9.48385e12i 0.422923 0.732525i
\(821\) −3.56272e12 2.02052e13i −0.273676 1.55210i −0.743135 0.669142i \(-0.766662\pi\)
0.469458 0.882955i \(-0.344449\pi\)
\(822\) 0 0
\(823\) −1.30605e13 + 4.75362e12i −0.992336 + 0.361181i −0.786625 0.617432i \(-0.788173\pi\)
−0.205712 + 0.978613i \(0.565951\pi\)
\(824\) 2.86605e12 1.04316e12i 0.216576 0.0788274i
\(825\) 0 0
\(826\) −5.59742e10 3.17445e11i −0.00418386 0.0237279i
\(827\) 7.13700e12 1.23617e13i 0.530568 0.918971i −0.468796 0.883307i \(-0.655312\pi\)
0.999364 0.0356643i \(-0.0113547\pi\)
\(828\) 0 0
\(829\) −3.70442e12 6.41625e12i −0.272411 0.471830i 0.697067 0.717006i \(-0.254488\pi\)
−0.969479 + 0.245175i \(0.921154\pi\)
\(830\) 8.21329e11 6.89177e11i 0.0600711 0.0504056i
\(831\) 0 0
\(832\) −2.51267e12 + 1.42500e13i −0.181794 + 1.03101i
\(833\) −1.00857e13 8.46289e12i −0.725776 0.608999i
\(834\) 0 0
\(835\) 1.13254e13 + 4.12212e12i 0.806242 + 0.293448i
\(836\) −9.69725e12 −0.686626
\(837\) 0 0
\(838\) 3.11181e12 0.217979
\(839\) 1.28307e13 + 4.67001e12i 0.893970 + 0.325378i 0.747834 0.663886i \(-0.231094\pi\)
0.146136 + 0.989264i \(0.453316\pi\)
\(840\) 0 0
\(841\) −8.81973e12 7.40063e12i −0.607958 0.510137i
\(842\) −8.20932e11 + 4.65573e12i −0.0562863 + 0.319215i
\(843\) 0 0
\(844\) −2.24217e12 + 1.88141e12i −0.152100 + 0.127627i
\(845\) 7.51697e12 + 1.30198e13i 0.507210 + 0.878514i
\(846\) 0 0
\(847\) 7.71998e11 1.33714e12i 0.0515396 0.0892692i
\(848\) 1.94360e12 + 1.10227e13i 0.129070 + 0.731991i
\(849\) 0 0
\(850\) 9.17666e11 3.34003e11i 0.0602975 0.0219465i
\(851\) −6.53277e12 + 2.37773e12i −0.426987 + 0.155410i
\(852\) 0 0
\(853\) −3.48320e12 1.97542e13i −0.225272 1.27758i −0.862164 0.506628i \(-0.830892\pi\)
0.636892 0.770953i \(-0.280220\pi\)
\(854\) −7.35600e10 + 1.27410e11i −0.00473240 + 0.00819675i
\(855\) 0 0
\(856\) −2.77989e12 4.81491e12i −0.176968 0.306518i
\(857\) 1.19917e13 1.00623e13i 0.759396 0.637209i −0.178574 0.983927i \(-0.557148\pi\)
0.937970 + 0.346718i \(0.112704\pi\)
\(858\) 0 0
\(859\) −1.80369e12 + 1.02293e13i −0.113030 + 0.641025i 0.874677 + 0.484707i \(0.161074\pi\)
−0.987707 + 0.156318i \(0.950037\pi\)
\(860\) −1.44335e13 1.21112e13i −0.899766 0.754993i
\(861\) 0 0
\(862\) 5.41749e12 + 1.97180e12i 0.334207 + 0.121641i
\(863\) −1.57454e13 −0.966288 −0.483144 0.875541i \(-0.660505\pi\)
−0.483144 + 0.875541i \(0.660505\pi\)
\(864\) 0 0
\(865\) 1.06471e13 0.646637
\(866\) 1.12849e12 + 4.10737e11i 0.0681817 + 0.0248161i
\(867\) 0 0
\(868\) 1.12085e12 + 9.40505e11i 0.0670207 + 0.0562370i
\(869\) 5.98495e11 3.39423e12i 0.0356018 0.201908i
\(870\) 0 0
\(871\) −2.49030e13 + 2.08961e13i −1.46612 + 1.23022i
\(872\) −4.77387e12 8.26859e12i −0.279606 0.484292i
\(873\) 0 0
\(874\) −7.74224e11 + 1.34100e12i −0.0448813 + 0.0777367i
\(875\) −2.96683e11 1.68258e12i −0.0171103 0.0970372i
\(876\) 0 0
\(877\) 1.03678e13 3.77357e12i 0.591818 0.215404i −0.0287108 0.999588i \(-0.509140\pi\)
0.620529 + 0.784184i \(0.286918\pi\)
\(878\) 5.75641e12 2.09516e12i 0.326908 0.118985i
\(879\) 0 0
\(880\) 3.21434e12 + 1.82294e13i 0.180684 + 1.02471i
\(881\) 6.34675e12 1.09929e13i 0.354944 0.614781i −0.632164 0.774834i \(-0.717833\pi\)
0.987108 + 0.160053i \(0.0511665\pi\)
\(882\) 0 0
\(883\) −6.78125e11 1.17455e12i −0.0375394 0.0650201i 0.846645 0.532158i \(-0.178619\pi\)
−0.884185 + 0.467138i \(0.845285\pi\)
\(884\) −1.87321e13 + 1.57181e13i −1.03169 + 0.865693i
\(885\) 0 0
\(886\) 3.31623e11 1.88073e12i 0.0180798 0.102536i
\(887\) 1.03849e13 + 8.71394e12i 0.563306 + 0.472670i 0.879417 0.476052i \(-0.157933\pi\)
−0.316111 + 0.948722i \(0.602377\pi\)
\(888\) 0 0
\(889\) −2.39894e12 8.73142e11i −0.128813 0.0468842i
\(890\) 4.09394e12 0.218719
\(891\) 0 0
\(892\) −3.04211e13 −1.60891
\(893\) 7.50199e12 + 2.73050e12i 0.394771 + 0.143685i
\(894\) 0 0
\(895\) 1.75539e13 + 1.47295e13i 0.914471 + 0.767332i
\(896\) 2.41091e11 1.36729e12i 0.0124967 0.0708722i
\(897\) 0 0
\(898\) −4.67829e12 + 3.92555e12i −0.240073 + 0.201445i
\(899\) −4.52808e12 7.84287e12i −0.231204 0.400458i
\(900\) 0 0
\(901\) −8.27896e12 + 1.43396e13i −0.418518 + 0.724894i
\(902\) 1.21692e12 + 6.90147e12i 0.0612112 + 0.347146i
\(903\) 0 0
\(904\) 6.86895e12 2.50009e12i 0.342084 0.124508i
\(905\) −2.86143e13 + 1.04147e13i −1.41796 + 0.516095i
\(906\) 0 0
\(907\) −4.77134e11 2.70596e12i −0.0234103 0.132766i 0.970863 0.239636i \(-0.0770282\pi\)
−0.994273 + 0.106870i \(0.965917\pi\)
\(908\) −3.58016e12 + 6.20102e12i −0.174790 + 0.302745i
\(909\) 0 0
\(910\) −2.65108e11 4.59181e11i −0.0128155 0.0221972i
\(911\) −1.61221e13 + 1.35280e13i −0.775512 + 0.650732i −0.942114 0.335292i \(-0.891165\pi\)
0.166602 + 0.986024i \(0.446720\pi\)
\(912\) 0 0
\(913\) 2.19632e12 1.24559e13i 0.104611 0.593278i
\(914\) −1.83434e12 1.53919e12i −0.0869404 0.0729517i
\(915\) 0 0
\(916\) −2.38610e12 8.68468e11i −0.111985 0.0407590i
\(917\) −1.23917e12 −0.0578721
\(918\) 0 0
\(919\) −2.55574e13 −1.18194 −0.590972 0.806692i \(-0.701256\pi\)
−0.590972 + 0.806692i \(0.701256\pi\)
\(920\) 6.05179e12 + 2.20267e12i 0.278508 + 0.101369i
\(921\) 0 0
\(922\) −1.79455e12 1.50581e12i −0.0817836 0.0686246i
\(923\) −9.31522e12 + 5.28292e13i −0.422460 + 2.39589i
\(924\) 0 0
\(925\) 2.87152e12 2.40949e12i 0.128966 0.108215i
\(926\) 2.23400e12 + 3.86940e12i 0.0998467 + 0.172940i
\(927\) 0 0
\(928\) −3.25565e12 + 5.63896e12i −0.144103 + 0.249593i
\(929\) 6.29727e12 + 3.57136e13i 0.277384 + 1.57312i 0.731285 + 0.682072i \(0.238921\pi\)
−0.453901 + 0.891052i \(0.649968\pi\)
\(930\) 0 0
\(931\) −1.05775e13 + 3.84988e12i −0.461432 + 0.167947i
\(932\) 3.20026e13 1.16480e13i 1.38935 0.505684i
\(933\) 0 0
\(934\) −1.14540e12 6.49591e12i −0.0492491 0.279305i
\(935\) −1.36918e13 + 2.37149e13i −0.585880 + 1.01477i
\(936\) 0 0
\(937\) −2.55461e12 4.42471e12i −0.108267 0.187524i 0.806801 0.590823i \(-0.201197\pi\)
−0.915068 + 0.403299i \(0.867863\pi\)
\(938\) 4.80708e11 4.03362e11i 0.0202753 0.0170130i
\(939\) 0 0
\(940\) 2.80679e12 1.59181e13i 0.117256 0.664990i
\(941\) 3.82223e12 + 3.20723e12i 0.158914 + 0.133345i 0.718778 0.695240i \(-0.244702\pi\)
−0.559863 + 0.828585i \(0.689146\pi\)
\(942\) 0 0
\(943\) −1.93843e13 7.05531e12i −0.798266 0.290545i
\(944\) 2.42612e13 0.994348
\(945\) 0 0
\(946\) 1.20574e13 0.489491
\(947\) −2.70313e13 9.83859e12i −1.09217 0.397519i −0.267749 0.963489i \(-0.586280\pi\)
−0.824426 + 0.565970i \(0.808502\pi\)
\(948\) 0 0
\(949\) −4.51301e13 3.78687e13i −1.80621 1.51559i
\(950\) 1.44982e11 8.22232e11i 0.00577506 0.0327520i
\(951\) 0 0
\(952\) 7.42794e11 6.23278e11i 0.0293091 0.0245932i
\(953\) −2.07896e13 3.60087e13i −0.816448 1.41413i −0.908284 0.418355i \(-0.862607\pi\)
0.0918357 0.995774i \(-0.470727\pi\)
\(954\) 0 0
\(955\) 8.14792e12 1.41126e13i 0.316980 0.549025i
\(956\) −5.24034e12 2.97195e13i −0.202908 1.15075i
\(957\) 0 0
\(958\) −5.97720e12 + 2.17552e12i −0.229273 + 0.0834486i
\(959\) 2.05485e12 7.47906e11i 0.0784508 0.0285537i
\(960\) 0 0
\(961\) 1.65832e11 + 9.40478e11i 0.00627209 + 0.0355708i
\(962\) 2.54586e12 4.40956e12i 0.0958401 0.166000i
\(963\) 0 0
\(964\) 5.11926e12 + 8.86683e12i 0.190924 + 0.330690i
\(965\) 4.04024e11 3.39016e11i 0.0149980 0.0125848i
\(966\) 0 0
\(967\) 3.55453e12 2.01588e13i 0.130726 0.741386i −0.847014 0.531570i \(-0.821602\pi\)
0.977741 0.209816i \(-0.0672866\pi\)
\(968\) −1.05220e13 8.82900e12i −0.385176 0.323201i
\(969\) 0 0
\(970\) 7.06309e12 + 2.57075e12i 0.256166 + 0.0932369i
\(971\) 2.70481e13 0.976451 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(972\) 0 0
\(973\) 3.59253e12 0.128497
\(974\) −6.39147e12 2.32630e12i −0.227554 0.0828230i
\(975\) 0 0
\(976\) −8.48244e12 7.11761e12i −0.299224 0.251079i
\(977\) 8.79943e11 4.99040e12i 0.0308979 0.175231i −0.965454 0.260575i \(-0.916088\pi\)
0.996352 + 0.0853443i \(0.0271990\pi\)
\(978\) 0 0
\(979\) 3.69962e13 3.10435e13i 1.28717 1.08006i
\(980\) 1.13950e13 + 1.97367e13i 0.394636 + 0.683529i
\(981\) 0 0
\(982\) −5.17858e12 + 8.96957e12i −0.177709 + 0.307801i
\(983\) −1.60186e12 9.08461e12i −0.0547185 0.310324i 0.945148 0.326641i \(-0.105917\pi\)
−0.999867 + 0.0163173i \(0.994806\pi\)
\(984\) 0 0
\(985\) −3.28287e13 + 1.19487e13i −1.11119 + 0.404442i
\(986\) −2.74535e12 + 9.99227e11i −0.0925022 + 0.0336681i
\(987\) 0 0
\(988\) 3.63033e12 + 2.05886e13i 0.121210 + 0.687418i
\(989\) −1.77459e13 + 3.07369e13i −0.589815 + 1.02159i
\(990\) 0 0
\(991\) 2.01024e13 + 3.48184e13i 0.662090 + 1.14677i 0.980065 + 0.198675i \(0.0636638\pi\)
−0.317975 + 0.948099i \(0.603003\pi\)
\(992\) 1.50884e13 1.26607e13i 0.494698 0.415101i
\(993\) 0 0
\(994\) 1.79814e11 1.01977e12i 0.00584231 0.0331334i
\(995\) −1.98259e13 1.66359e13i −0.641254 0.538076i
\(996\) 0 0
\(997\) −1.53940e13 5.60295e12i −0.493427 0.179593i 0.0833084 0.996524i \(-0.473451\pi\)
−0.576735 + 0.816931i \(0.695674\pi\)
\(998\) 2.63691e12 0.0841410
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.64.12 156
3.2 odd 2 27.10.e.a.4.15 156
27.7 even 9 inner 81.10.e.a.19.12 156
27.20 odd 18 27.10.e.a.7.15 yes 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.4.15 156 3.2 odd 2
27.10.e.a.7.15 yes 156 27.20 odd 18
81.10.e.a.19.12 156 27.7 even 9 inner
81.10.e.a.64.12 156 1.1 even 1 trivial