Properties

Label 81.10.e.a.19.12
Level $81$
Weight $10$
Character 81.19
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 19.12
Character \(\chi\) \(=\) 81.19
Dual form 81.10.e.a.64.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.82322 + 1.75551i) q^{2} +(-372.033 + 312.173i) q^{4} +(-203.603 - 1154.69i) q^{5} +(-440.948 - 369.999i) q^{7} +(2560.36 - 4434.68i) q^{8} +(3009.09 + 5211.90i) q^{10} +(-12328.1 + 69916.4i) q^{11} +(-143827. - 52348.7i) q^{13} +(2776.32 + 1010.50i) q^{14} +(38614.5 - 218993. i) q^{16} +(-164482. - 284892. i) q^{17} +(140625. - 243570. i) q^{19} +(436210. + 366024. i) q^{20} +(-63277.4 - 358864. i) q^{22} +(-821687. + 689477. i) q^{23} +(543480. - 197811. i) q^{25} +785607. q^{26} +279551. q^{28} +(-1.62591e6 + 591785. i) q^{29} +(4.00947e6 - 3.36434e6i) q^{31} +(653471. + 3.70602e6i) q^{32} +(1.29346e6 + 1.08535e6i) q^{34} +(-337456. + 584492. i) q^{35} +(3.24063e6 + 5.61294e6i) q^{37} +(-250677. + 1.42166e6i) q^{38} +(-5.64198e6 - 2.05351e6i) q^{40} +(1.80717e7 + 6.57754e6i) q^{41} +(-5.74575e6 + 3.25858e7i) q^{43} +(-1.72395e7 - 2.98597e7i) q^{44} +(2.75279e6 - 4.76797e6i) q^{46} +(2.17446e7 + 1.82459e7i) q^{47} +(-6.94979e6 - 3.94142e7i) q^{49} +(-2.27407e6 + 1.90817e6i) q^{50} +(6.98503e7 - 2.54234e7i) q^{52} +5.03334e7 q^{53} +8.32418e7 q^{55} +(-2.76981e6 + 1.00813e6i) q^{56} +(6.80326e6 - 5.70861e6i) q^{58} +(1.89454e7 + 1.07445e8i) q^{59} +(-3.81453e7 - 3.20077e7i) q^{61} +(-1.34324e7 + 2.32656e7i) q^{62} +(4.72694e7 + 8.18730e7i) q^{64} +(-3.11630e7 + 1.76734e8i) q^{65} +(1.99585e8 + 7.26431e7i) q^{67} +(1.50128e8 + 5.46423e7i) q^{68} +(601546. - 3.41154e6i) q^{70} +(1.75242e8 + 3.03528e8i) q^{71} +(1.92455e8 - 3.33341e8i) q^{73} +(-2.54838e7 - 2.13835e7i) q^{74} +(2.37187e7 + 1.34516e8i) q^{76} +(3.13051e7 - 2.62681e7i) q^{77} +(4.56193e7 - 1.66041e7i) q^{79} -2.60732e8 q^{80} -9.87104e7 q^{82} +(1.67411e8 - 6.09326e7i) q^{83} +(-2.95473e8 + 2.47931e8i) q^{85} +(-2.94916e7 - 1.67255e8i) q^{86} +(2.78492e8 + 2.33682e8i) q^{88} +(3.40131e8 - 5.89124e8i) q^{89} +(4.40512e7 + 7.62990e7i) q^{91} +(9.04587e7 - 5.13017e8i) q^{92} +(-1.36910e8 - 4.98311e7i) q^{94} +(-3.09880e8 - 1.12787e8i) q^{95} +(2.16877e8 - 1.22997e9i) q^{97} +(1.02712e8 + 1.77903e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.82322 + 1.75551i −0.213158 + 0.0775832i −0.446392 0.894837i \(-0.647291\pi\)
0.233234 + 0.972421i \(0.425069\pi\)
\(3\) 0 0
\(4\) −372.033 + 312.173i −0.726627 + 0.609713i
\(5\) −203.603 1154.69i −0.145687 0.826230i −0.966813 0.255484i \(-0.917765\pi\)
0.821127 0.570746i \(-0.193346\pi\)
\(6\) 0 0
\(7\) −440.948 369.999i −0.0694139 0.0582452i 0.607421 0.794380i \(-0.292204\pi\)
−0.676834 + 0.736135i \(0.736649\pi\)
\(8\) 2560.36 4434.68i 0.221002 0.382787i
\(9\) 0 0
\(10\) 3009.09 + 5211.90i 0.0951558 + 0.164815i
\(11\) −12328.1 + 69916.4i −0.253881 + 1.43983i 0.545047 + 0.838405i \(0.316512\pi\)
−0.798928 + 0.601426i \(0.794599\pi\)
\(12\) 0 0
\(13\) −143827. 52348.7i −1.39667 0.508348i −0.469485 0.882940i \(-0.655560\pi\)
−0.927190 + 0.374592i \(0.877783\pi\)
\(14\) 2776.32 + 1010.50i 0.0193150 + 0.00703008i
\(15\) 0 0
\(16\) 38614.5 218993.i 0.147302 0.835394i
\(17\) −164482. 284892.i −0.477639 0.827294i 0.522033 0.852925i \(-0.325174\pi\)
−0.999671 + 0.0256311i \(0.991840\pi\)
\(18\) 0 0
\(19\) 140625. 243570.i 0.247555 0.428779i −0.715292 0.698826i \(-0.753706\pi\)
0.962847 + 0.270048i \(0.0870394\pi\)
\(20\) 436210. + 366024.i 0.609622 + 0.511534i
\(21\) 0 0
\(22\) −63277.4 358864.i −0.0575899 0.326609i
\(23\) −821687. + 689477.i −0.612253 + 0.513741i −0.895358 0.445348i \(-0.853080\pi\)
0.283105 + 0.959089i \(0.408636\pi\)
\(24\) 0 0
\(25\) 543480. 197811.i 0.278262 0.101279i
\(26\) 785607. 0.337152
\(27\) 0 0
\(28\) 279551. 0.0859508
\(29\) −1.62591e6 + 591785.i −0.426881 + 0.155372i −0.546521 0.837445i \(-0.684048\pi\)
0.119640 + 0.992817i \(0.461826\pi\)
\(30\) 0 0
\(31\) 4.00947e6 3.36434e6i 0.779756 0.654293i −0.163431 0.986555i \(-0.552256\pi\)
0.943187 + 0.332262i \(0.107812\pi\)
\(32\) 653471. + 3.70602e6i 0.110167 + 0.624788i
\(33\) 0 0
\(34\) 1.29346e6 + 1.08535e6i 0.165997 + 0.139288i
\(35\) −337456. + 584492.i −0.0380112 + 0.0658373i
\(36\) 0 0
\(37\) 3.24063e6 + 5.61294e6i 0.284264 + 0.492360i 0.972430 0.233193i \(-0.0749175\pi\)
−0.688167 + 0.725553i \(0.741584\pi\)
\(38\) −250677. + 1.42166e6i −0.0195024 + 0.110604i
\(39\) 0 0
\(40\) −5.64198e6 2.05351e6i −0.348467 0.126832i
\(41\) 1.80717e7 + 6.57754e6i 0.998781 + 0.363527i 0.789114 0.614246i \(-0.210540\pi\)
0.209667 + 0.977773i \(0.432762\pi\)
\(42\) 0 0
\(43\) −5.74575e6 + 3.25858e7i −0.256294 + 1.45352i 0.536434 + 0.843942i \(0.319771\pi\)
−0.792728 + 0.609575i \(0.791340\pi\)
\(44\) −1.72395e7 2.98597e7i −0.693407 1.20102i
\(45\) 0 0
\(46\) 2.75279e6 4.76797e6i 0.0906490 0.157009i
\(47\) 2.17446e7 + 1.82459e7i 0.649996 + 0.545412i 0.907070 0.420980i \(-0.138314\pi\)
−0.257073 + 0.966392i \(0.582758\pi\)
\(48\) 0 0
\(49\) −6.94979e6 3.94142e7i −0.172222 0.976722i
\(50\) −2.27407e6 + 1.90817e6i −0.0514562 + 0.0431769i
\(51\) 0 0
\(52\) 6.98503e7 2.54234e7i 1.32481 0.482191i
\(53\) 5.03334e7 0.876223 0.438112 0.898921i \(-0.355647\pi\)
0.438112 + 0.898921i \(0.355647\pi\)
\(54\) 0 0
\(55\) 8.32418e7 1.22662
\(56\) −2.76981e6 + 1.00813e6i −0.0376361 + 0.0136984i
\(57\) 0 0
\(58\) 6.80326e6 5.70861e6i 0.0789389 0.0662376i
\(59\) 1.89454e7 + 1.07445e8i 0.203549 + 1.15438i 0.899707 + 0.436495i \(0.143780\pi\)
−0.696158 + 0.717889i \(0.745109\pi\)
\(60\) 0 0
\(61\) −3.81453e7 3.20077e7i −0.352742 0.295985i 0.449148 0.893457i \(-0.351728\pi\)
−0.801890 + 0.597472i \(0.796172\pi\)
\(62\) −1.34324e7 + 2.32656e7i −0.115449 + 0.199964i
\(63\) 0 0
\(64\) 4.72694e7 + 8.18730e7i 0.352184 + 0.610001i
\(65\) −3.11630e7 + 1.76734e8i −0.216535 + 1.22803i
\(66\) 0 0
\(67\) 1.99585e8 + 7.26431e7i 1.21002 + 0.440411i 0.866710 0.498812i \(-0.166230\pi\)
0.343308 + 0.939223i \(0.388453\pi\)
\(68\) 1.50128e8 + 5.46423e7i 0.851477 + 0.309912i
\(69\) 0 0
\(70\) 601546. 3.41154e6i 0.00299452 0.0169828i
\(71\) 1.75242e8 + 3.03528e8i 0.818419 + 1.41754i 0.906847 + 0.421461i \(0.138482\pi\)
−0.0884276 + 0.996083i \(0.528184\pi\)
\(72\) 0 0
\(73\) 1.92455e8 3.33341e8i 0.793186 1.37384i −0.130798 0.991409i \(-0.541754\pi\)
0.923984 0.382430i \(-0.124913\pi\)
\(74\) −2.54838e7 2.13835e7i −0.0987920 0.0828963i
\(75\) 0 0
\(76\) 2.37187e7 + 1.34516e8i 0.0815512 + 0.462500i
\(77\) 3.13051e7 2.62681e7i 0.101486 0.0851569i
\(78\) 0 0
\(79\) 4.56193e7 1.66041e7i 0.131773 0.0479615i −0.275292 0.961361i \(-0.588774\pi\)
0.407065 + 0.913399i \(0.366552\pi\)
\(80\) −2.60732e8 −0.711687
\(81\) 0 0
\(82\) −9.87104e7 −0.241102
\(83\) 1.67411e8 6.09326e7i 0.387197 0.140928i −0.141084 0.989998i \(-0.545059\pi\)
0.528281 + 0.849069i \(0.322837\pi\)
\(84\) 0 0
\(85\) −2.95473e8 + 2.47931e8i −0.613949 + 0.515165i
\(86\) −2.94916e7 1.67255e8i −0.0581373 0.329713i
\(87\) 0 0
\(88\) 2.78492e8 + 2.33682e8i 0.495040 + 0.415388i
\(89\) 3.40131e8 5.89124e8i 0.574634 0.995295i −0.421448 0.906853i \(-0.638478\pi\)
0.996081 0.0884419i \(-0.0281887\pi\)
\(90\) 0 0
\(91\) 4.40512e7 + 7.62990e7i 0.0673398 + 0.116636i
\(92\) 9.04587e7 5.13017e8i 0.131645 0.746597i
\(93\) 0 0
\(94\) −1.36910e8 4.98311e7i −0.180867 0.0658301i
\(95\) −3.09880e8 1.12787e8i −0.390335 0.142070i
\(96\) 0 0
\(97\) 2.16877e8 1.22997e9i 0.248737 1.41066i −0.562913 0.826516i \(-0.690319\pi\)
0.811650 0.584144i \(-0.198569\pi\)
\(98\) 1.02712e8 + 1.77903e8i 0.112488 + 0.194835i
\(99\) 0 0
\(100\) −1.40442e8 + 2.43252e8i −0.140442 + 0.243252i
\(101\) 1.70877e8 + 1.43383e8i 0.163395 + 0.137104i 0.720819 0.693123i \(-0.243766\pi\)
−0.557424 + 0.830228i \(0.688210\pi\)
\(102\) 0 0
\(103\) 1.03428e8 + 5.86567e8i 0.0905460 + 0.513512i 0.996021 + 0.0891133i \(0.0284033\pi\)
−0.905476 + 0.424399i \(0.860486\pi\)
\(104\) −6.00399e8 + 5.03794e8i −0.503257 + 0.422283i
\(105\) 0 0
\(106\) −2.42769e8 + 8.83606e7i −0.186774 + 0.0679802i
\(107\) −1.08574e9 −0.800754 −0.400377 0.916351i \(-0.631121\pi\)
−0.400377 + 0.916351i \(0.631121\pi\)
\(108\) 0 0
\(109\) −1.86453e9 −1.26517 −0.632587 0.774489i \(-0.718007\pi\)
−0.632587 + 0.774489i \(0.718007\pi\)
\(110\) −4.01493e8 + 1.46132e8i −0.261464 + 0.0951650i
\(111\) 0 0
\(112\) −9.80544e7 + 8.22774e7i −0.0588825 + 0.0494083i
\(113\) 2.47881e8 + 1.40580e9i 0.143018 + 0.811095i 0.968937 + 0.247307i \(0.0795455\pi\)
−0.825919 + 0.563788i \(0.809343\pi\)
\(114\) 0 0
\(115\) 9.63431e8 + 8.08414e8i 0.513665 + 0.431016i
\(116\) 4.20155e8 7.27730e8i 0.215451 0.373172i
\(117\) 0 0
\(118\) −2.79997e8 4.84970e8i −0.132949 0.230274i
\(119\) −3.28816e7 + 1.86481e8i −0.0150311 + 0.0852458i
\(120\) 0 0
\(121\) −2.52057e9 9.17412e8i −1.06897 0.389072i
\(122\) 2.40173e8 + 8.74158e7i 0.0981532 + 0.0357249i
\(123\) 0 0
\(124\) −4.41398e8 + 2.50329e9i −0.167661 + 0.950855i
\(125\) −1.48409e9 2.57052e9i −0.543707 0.941727i
\(126\) 0 0
\(127\) 2.21753e9 3.84088e9i 0.756402 1.31013i −0.188272 0.982117i \(-0.560289\pi\)
0.944674 0.328010i \(-0.106378\pi\)
\(128\) −1.84770e9 1.55040e9i −0.608396 0.510505i
\(129\) 0 0
\(130\) −1.59952e8 9.07134e8i −0.0491185 0.278565i
\(131\) 1.64912e9 1.38378e9i 0.489251 0.410530i −0.364507 0.931201i \(-0.618763\pi\)
0.853758 + 0.520671i \(0.174318\pi\)
\(132\) 0 0
\(133\) −1.52129e8 + 5.53705e7i −0.0421580 + 0.0153443i
\(134\) −1.09017e9 −0.292094
\(135\) 0 0
\(136\) −1.68454e9 −0.422236
\(137\) −3.56983e9 + 1.29931e9i −0.865775 + 0.315116i −0.736455 0.676487i \(-0.763502\pi\)
−0.129320 + 0.991603i \(0.541279\pi\)
\(138\) 0 0
\(139\) −4.78102e9 + 4.01175e9i −1.08631 + 0.911523i −0.996429 0.0844297i \(-0.973093\pi\)
−0.0898811 + 0.995953i \(0.528649\pi\)
\(140\) −5.69175e7 3.22795e8i −0.0125219 0.0710151i
\(141\) 0 0
\(142\) −1.37808e9 1.15634e9i −0.284430 0.238665i
\(143\) 5.43315e9 9.41050e9i 1.08653 1.88192i
\(144\) 0 0
\(145\) 1.01437e9 + 1.75694e9i 0.190564 + 0.330066i
\(146\) −3.43067e8 + 1.94563e9i −0.0624873 + 0.354383i
\(147\) 0 0
\(148\) −2.95783e9 1.07656e9i −0.506752 0.184443i
\(149\) 4.70352e9 + 1.71194e9i 0.781780 + 0.284545i 0.701915 0.712261i \(-0.252329\pi\)
0.0798651 + 0.996806i \(0.474551\pi\)
\(150\) 0 0
\(151\) −5.60010e8 + 3.17597e9i −0.0876595 + 0.497142i 0.909091 + 0.416597i \(0.136777\pi\)
−0.996751 + 0.0805453i \(0.974334\pi\)
\(152\) −7.20103e8 1.24726e9i −0.109421 0.189522i
\(153\) 0 0
\(154\) −1.04877e8 + 1.81653e8i −0.0150258 + 0.0260255i
\(155\) −4.70111e9 3.94470e9i −0.654196 0.548936i
\(156\) 0 0
\(157\) 8.02176e8 + 4.54936e9i 0.105371 + 0.597589i 0.991071 + 0.133332i \(0.0425675\pi\)
−0.885701 + 0.464257i \(0.846321\pi\)
\(158\) −1.90883e8 + 1.60170e8i −0.0243675 + 0.0204468i
\(159\) 0 0
\(160\) 4.14626e9 1.50911e9i 0.500169 0.182047i
\(161\) 6.17427e8 0.0724218
\(162\) 0 0
\(163\) 4.02954e9 0.447107 0.223553 0.974692i \(-0.428234\pi\)
0.223553 + 0.974692i \(0.428234\pi\)
\(164\) −8.77658e9 + 3.19442e9i −0.947389 + 0.344821i
\(165\) 0 0
\(166\) −7.00491e8 + 5.87782e8i −0.0716006 + 0.0600800i
\(167\) 1.78494e9 + 1.01229e10i 0.177583 + 1.00712i 0.935120 + 0.354330i \(0.115291\pi\)
−0.757538 + 0.652791i \(0.773598\pi\)
\(168\) 0 0
\(169\) 9.82229e9 + 8.24188e9i 0.926238 + 0.777206i
\(170\) 9.89885e8 1.71453e9i 0.0909002 0.157444i
\(171\) 0 0
\(172\) −8.03479e9 1.39167e10i −0.699997 1.21243i
\(173\) −1.57684e9 + 8.94273e9i −0.133839 + 0.759037i 0.841823 + 0.539754i \(0.181483\pi\)
−0.975661 + 0.219283i \(0.929628\pi\)
\(174\) 0 0
\(175\) −3.12836e8 1.13863e8i −0.0252143 0.00917724i
\(176\) 1.48352e10 + 5.39956e9i 1.16543 + 0.424182i
\(177\) 0 0
\(178\) −6.06314e8 + 3.43857e9i −0.0452697 + 0.256737i
\(179\) 9.77182e9 + 1.69253e10i 0.711438 + 1.23225i 0.964318 + 0.264748i \(0.0852889\pi\)
−0.252880 + 0.967498i \(0.581378\pi\)
\(180\) 0 0
\(181\) 1.29853e10 2.24912e10i 0.899289 1.55761i 0.0708832 0.997485i \(-0.477418\pi\)
0.828405 0.560129i \(-0.189248\pi\)
\(182\) −3.46412e8 2.90674e8i −0.0234030 0.0196375i
\(183\) 0 0
\(184\) 9.53792e8 + 5.40922e9i 0.0613442 + 0.347900i
\(185\) 5.82140e9 4.88474e9i 0.365389 0.306597i
\(186\) 0 0
\(187\) 2.19464e10 7.98783e9i 1.31243 0.477685i
\(188\) −1.37856e10 −0.804850
\(189\) 0 0
\(190\) 1.69262e9 0.0942253
\(191\) −1.30602e10 + 4.75351e9i −0.710065 + 0.258443i −0.671702 0.740821i \(-0.734437\pi\)
−0.0383631 + 0.999264i \(0.512214\pi\)
\(192\) 0 0
\(193\) −3.44582e8 + 2.89139e8i −0.0178766 + 0.0150002i −0.651682 0.758492i \(-0.725936\pi\)
0.633806 + 0.773492i \(0.281492\pi\)
\(194\) 1.11318e9 + 6.31315e9i 0.0564231 + 0.319991i
\(195\) 0 0
\(196\) 1.48896e10 + 1.24939e10i 0.720661 + 0.604706i
\(197\) 1.48978e10 2.58038e10i 0.704734 1.22063i −0.262054 0.965053i \(-0.584400\pi\)
0.966788 0.255581i \(-0.0822668\pi\)
\(198\) 0 0
\(199\) −1.10366e10 1.91160e10i −0.498881 0.864086i 0.501119 0.865379i \(-0.332922\pi\)
−0.999999 + 0.00129214i \(0.999589\pi\)
\(200\) 5.14280e8 2.91663e9i 0.0227282 0.128898i
\(201\) 0 0
\(202\) −1.07589e9 3.91591e8i −0.0454659 0.0165482i
\(203\) 9.35904e8 + 3.40641e8i 0.0386811 + 0.0140788i
\(204\) 0 0
\(205\) 3.91558e9 2.22064e10i 0.154847 0.878184i
\(206\) −1.52858e9 2.64757e9i −0.0591405 0.102434i
\(207\) 0 0
\(208\) −1.70178e10 + 2.94758e10i −0.630404 + 1.09189i
\(209\) 1.52959e10 + 1.28348e10i 0.554519 + 0.465297i
\(210\) 0 0
\(211\) 1.04654e9 + 5.93525e9i 0.0363485 + 0.206143i 0.997573 0.0696232i \(-0.0221797\pi\)
−0.961225 + 0.275766i \(0.911069\pi\)
\(212\) −1.87257e10 + 1.57127e10i −0.636688 + 0.534244i
\(213\) 0 0
\(214\) 5.23676e9 1.90602e9i 0.170687 0.0621250i
\(215\) 3.87964e10 1.23828
\(216\) 0 0
\(217\) −3.01277e9 −0.0922353
\(218\) 8.99303e9 3.27320e9i 0.269682 0.0981562i
\(219\) 0 0
\(220\) −3.09687e10 + 2.59858e10i −0.891294 + 0.747885i
\(221\) 8.74328e9 + 4.95856e10i 0.246552 + 1.39827i
\(222\) 0 0
\(223\) 4.79845e10 + 4.02638e10i 1.29936 + 1.09029i 0.990255 + 0.139264i \(0.0444736\pi\)
0.309104 + 0.951028i \(0.399971\pi\)
\(224\) 1.08308e9 1.87595e9i 0.0287438 0.0497857i
\(225\) 0 0
\(226\) −3.66348e9 6.34534e9i −0.0934128 0.161796i
\(227\) −2.56021e9 + 1.45197e10i −0.0639969 + 0.362944i 0.935945 + 0.352147i \(0.114548\pi\)
−0.999942 + 0.0107977i \(0.996563\pi\)
\(228\) 0 0
\(229\) 4.91315e9 + 1.78824e9i 0.118059 + 0.0429701i 0.400374 0.916352i \(-0.368880\pi\)
−0.282315 + 0.959322i \(0.591102\pi\)
\(230\) −6.06601e9 2.20785e9i −0.142932 0.0520228i
\(231\) 0 0
\(232\) −1.53856e9 + 8.72559e9i −0.0348672 + 0.197742i
\(233\) −3.50624e10 6.07298e10i −0.779363 1.34990i −0.932310 0.361661i \(-0.882210\pi\)
0.152947 0.988234i \(-0.451124\pi\)
\(234\) 0 0
\(235\) 1.66411e10 2.88232e10i 0.355940 0.616505i
\(236\) −4.05896e10 3.40587e10i −0.851747 0.714700i
\(237\) 0 0
\(238\) −1.68774e8 9.57162e8i −0.00340964 0.0193370i
\(239\) 4.76010e10 3.99420e10i 0.943681 0.791842i −0.0345410 0.999403i \(-0.510997\pi\)
0.978222 + 0.207561i \(0.0665525\pi\)
\(240\) 0 0
\(241\) −1.98105e10 + 7.21044e9i −0.378285 + 0.137684i −0.524163 0.851618i \(-0.675622\pi\)
0.145878 + 0.989303i \(0.453399\pi\)
\(242\) 1.37678e10 0.258045
\(243\) 0 0
\(244\) 2.41832e10 0.436778
\(245\) −4.40963e10 + 1.60497e10i −0.781906 + 0.284590i
\(246\) 0 0
\(247\) −3.29763e10 + 2.76704e10i −0.563723 + 0.473020i
\(248\) −4.65408e9 2.63946e10i −0.0781271 0.443081i
\(249\) 0 0
\(250\) 1.16706e10 + 9.79283e9i 0.188958 + 0.158554i
\(251\) −2.25558e10 + 3.90679e10i −0.358697 + 0.621281i −0.987743 0.156087i \(-0.950112\pi\)
0.629047 + 0.777368i \(0.283445\pi\)
\(252\) 0 0
\(253\) −3.80758e10 6.59493e10i −0.584261 1.01197i
\(254\) −3.95295e9 + 2.24183e10i −0.0595894 + 0.337948i
\(255\) 0 0
\(256\) −3.38512e10 1.23208e10i −0.492599 0.179291i
\(257\) 7.93532e10 + 2.88822e10i 1.13466 + 0.412982i 0.839982 0.542614i \(-0.182565\pi\)
0.294678 + 0.955597i \(0.404788\pi\)
\(258\) 0 0
\(259\) 6.47833e8 3.67404e9i 0.00894570 0.0507336i
\(260\) −4.35779e10 7.54792e10i −0.591407 1.02435i
\(261\) 0 0
\(262\) −5.52483e9 + 9.56929e9i −0.0724375 + 0.125465i
\(263\) −4.66786e10 3.91680e10i −0.601612 0.504812i 0.290351 0.956920i \(-0.406228\pi\)
−0.891963 + 0.452108i \(0.850672\pi\)
\(264\) 0 0
\(265\) −1.02480e10 5.81195e10i −0.127654 0.723961i
\(266\) 6.36549e8 5.34128e8i 0.00779587 0.00654151i
\(267\) 0 0
\(268\) −9.69295e10 + 3.52795e10i −1.14776 + 0.417749i
\(269\) 1.46201e10 0.170242 0.0851209 0.996371i \(-0.472872\pi\)
0.0851209 + 0.996371i \(0.472872\pi\)
\(270\) 0 0
\(271\) 2.22347e10 0.250420 0.125210 0.992130i \(-0.460039\pi\)
0.125210 + 0.992130i \(0.460039\pi\)
\(272\) −6.87409e10 + 2.50196e10i −0.761474 + 0.277154i
\(273\) 0 0
\(274\) 1.49371e10 1.25337e10i 0.160099 0.134339i
\(275\) 7.13010e9 + 4.04368e10i 0.0751794 + 0.426363i
\(276\) 0 0
\(277\) −1.16713e11 9.79335e10i −1.19113 0.999476i −0.999839 0.0179427i \(-0.994288\pi\)
−0.191290 0.981534i \(-0.561267\pi\)
\(278\) 1.60172e10 2.77427e10i 0.160837 0.278578i
\(279\) 0 0
\(280\) 1.72802e9 + 2.99302e9i 0.0168011 + 0.0291004i
\(281\) 8.09146e9 4.58890e10i 0.0774192 0.439066i −0.921317 0.388812i \(-0.872886\pi\)
0.998736 0.0502543i \(-0.0160032\pi\)
\(282\) 0 0
\(283\) −1.08318e11 3.94245e10i −1.00383 0.365365i −0.212771 0.977102i \(-0.568249\pi\)
−0.791061 + 0.611737i \(0.790471\pi\)
\(284\) −1.59949e11 5.82167e10i −1.45898 0.531025i
\(285\) 0 0
\(286\) −9.68508e9 + 5.49268e10i −0.0855965 + 0.485442i
\(287\) −5.53497e9 9.58685e9i −0.0481556 0.0834080i
\(288\) 0 0
\(289\) 5.18499e9 8.98066e9i 0.0437227 0.0757300i
\(290\) −7.97685e9 6.69337e9i −0.0662278 0.0555717i
\(291\) 0 0
\(292\) 3.24606e10 + 1.84093e11i 0.261296 + 1.48188i
\(293\) −1.29042e10 + 1.08279e10i −0.102288 + 0.0858299i −0.692497 0.721420i \(-0.743490\pi\)
0.590209 + 0.807250i \(0.299045\pi\)
\(294\) 0 0
\(295\) 1.20208e11 4.37521e10i 0.924132 0.336356i
\(296\) 3.31887e10 0.251292
\(297\) 0 0
\(298\) −2.56914e10 −0.188719
\(299\) 1.54274e11 5.61511e10i 1.11628 0.406292i
\(300\) 0 0
\(301\) 1.45903e10 1.22427e10i 0.102451 0.0859664i
\(302\) −2.87440e9 1.63015e10i −0.0198845 0.112771i
\(303\) 0 0
\(304\) −4.79101e10 4.02014e10i −0.321733 0.269966i
\(305\) −2.91925e10 + 5.05629e10i −0.193162 + 0.334567i
\(306\) 0 0
\(307\) 1.28073e11 + 2.21829e11i 0.822878 + 1.42527i 0.903531 + 0.428524i \(0.140966\pi\)
−0.0806528 + 0.996742i \(0.525701\pi\)
\(308\) −3.44634e9 + 1.95452e10i −0.0218213 + 0.123755i
\(309\) 0 0
\(310\) 2.95995e10 + 1.07733e10i 0.182035 + 0.0662555i
\(311\) −6.65416e10 2.42192e10i −0.403340 0.146804i 0.132381 0.991199i \(-0.457738\pi\)
−0.535721 + 0.844395i \(0.679960\pi\)
\(312\) 0 0
\(313\) 3.00272e9 1.70293e10i 0.0176834 0.100287i −0.974689 0.223567i \(-0.928230\pi\)
0.992372 + 0.123279i \(0.0393411\pi\)
\(314\) −1.18555e10 2.05343e10i −0.0688235 0.119206i
\(315\) 0 0
\(316\) −1.17886e10 + 2.04184e10i −0.0665072 + 0.115194i
\(317\) 1.80799e11 + 1.51709e11i 1.00561 + 0.843807i 0.987752 0.156033i \(-0.0498706\pi\)
0.0178587 + 0.999841i \(0.494315\pi\)
\(318\) 0 0
\(319\) −2.13309e10 1.20974e11i −0.115332 0.654083i
\(320\) 8.49138e10 7.12511e10i 0.452693 0.379854i
\(321\) 0 0
\(322\) −2.97799e9 + 1.08390e9i −0.0154373 + 0.00561871i
\(323\) −9.25216e10 −0.472968
\(324\) 0 0
\(325\) −8.85223e10 −0.440127
\(326\) −1.94353e10 + 7.07389e9i −0.0953044 + 0.0346880i
\(327\) 0 0
\(328\) 7.54392e10 6.33010e10i 0.359886 0.301980i
\(329\) −2.83727e9 1.60910e10i −0.0133512 0.0757183i
\(330\) 0 0
\(331\) 1.82248e11 + 1.52924e11i 0.834519 + 0.700244i 0.956324 0.292310i \(-0.0944238\pi\)
−0.121805 + 0.992554i \(0.538868\pi\)
\(332\) −4.32609e10 + 7.49301e10i −0.195422 + 0.338481i
\(333\) 0 0
\(334\) −2.63800e10 4.56916e10i −0.115989 0.200899i
\(335\) 4.32441e10 2.45250e11i 0.187597 1.06391i
\(336\) 0 0
\(337\) 3.87477e11 + 1.41030e11i 1.63648 + 0.595631i 0.986419 0.164248i \(-0.0525197\pi\)
0.650064 + 0.759879i \(0.274742\pi\)
\(338\) −6.18437e10 2.25093e10i −0.257733 0.0938072i
\(339\) 0 0
\(340\) 3.25283e10 1.84477e11i 0.132010 0.748665i
\(341\) 1.85793e11 + 3.21803e11i 0.744107 + 1.28883i
\(342\) 0 0
\(343\) −2.31329e10 + 4.00673e10i −0.0902414 + 0.156303i
\(344\) 1.29796e11 + 1.08912e11i 0.499746 + 0.419336i
\(345\) 0 0
\(346\) −8.09357e9 4.59009e10i −0.0303597 0.172178i
\(347\) 8.58760e8 7.20585e8i 0.00317972 0.00266810i −0.641196 0.767377i \(-0.721562\pi\)
0.644376 + 0.764709i \(0.277117\pi\)
\(348\) 0 0
\(349\) −2.74997e11 + 1.00091e11i −0.992231 + 0.361143i −0.786584 0.617484i \(-0.788152\pi\)
−0.205647 + 0.978626i \(0.565930\pi\)
\(350\) 1.70877e9 0.00608662
\(351\) 0 0
\(352\) −2.67168e11 −0.927559
\(353\) 4.45541e11 1.62164e11i 1.52722 0.555862i 0.564281 0.825583i \(-0.309154\pi\)
0.962939 + 0.269721i \(0.0869314\pi\)
\(354\) 0 0
\(355\) 3.14801e11 2.64150e11i 1.05198 0.882719i
\(356\) 5.73686e10 + 3.25353e11i 0.189299 + 1.07357i
\(357\) 0 0
\(358\) −7.68441e10 6.44798e10i −0.247250 0.207468i
\(359\) −2.51241e11 + 4.35163e11i −0.798300 + 1.38270i 0.122422 + 0.992478i \(0.460934\pi\)
−0.920722 + 0.390218i \(0.872400\pi\)
\(360\) 0 0
\(361\) 1.21793e11 + 2.10951e11i 0.377433 + 0.653733i
\(362\) −2.31475e10 + 1.31276e11i −0.0708460 + 0.401788i
\(363\) 0 0
\(364\) −4.02070e10 1.46341e10i −0.120045 0.0436929i
\(365\) −4.24090e11 1.54356e11i −1.25066 0.455204i
\(366\) 0 0
\(367\) 8.92505e10 5.06165e11i 0.256811 1.45645i −0.534571 0.845124i \(-0.679527\pi\)
0.791382 0.611323i \(-0.209362\pi\)
\(368\) 1.19262e11 + 2.06568e11i 0.338990 + 0.587148i
\(369\) 0 0
\(370\) −1.95027e10 + 3.37797e10i −0.0540987 + 0.0937017i
\(371\) −2.21944e10 1.86233e10i −0.0608220 0.0510357i
\(372\) 0 0
\(373\) −3.61006e10 2.04737e11i −0.0965661 0.547653i −0.994256 0.107026i \(-0.965867\pi\)
0.897690 0.440627i \(-0.145244\pi\)
\(374\) −9.18294e10 + 7.70540e10i −0.242694 + 0.203645i
\(375\) 0 0
\(376\) 1.36589e11 4.97142e10i 0.352427 0.128273i
\(377\) 2.64830e11 0.675197
\(378\) 0 0
\(379\) 5.11931e11 1.27449 0.637243 0.770663i \(-0.280075\pi\)
0.637243 + 0.770663i \(0.280075\pi\)
\(380\) 1.50495e11 5.47756e10i 0.370250 0.134760i
\(381\) 0 0
\(382\) 5.46472e10 4.58544e10i 0.131305 0.110178i
\(383\) −6.18978e10 3.51040e11i −0.146988 0.833608i −0.965750 0.259475i \(-0.916450\pi\)
0.818762 0.574133i \(-0.194661\pi\)
\(384\) 0 0
\(385\) −3.67053e10 3.07994e10i −0.0851443 0.0714446i
\(386\) 1.15441e9 1.99950e9i 0.00264677 0.00458435i
\(387\) 0 0
\(388\) 3.03278e11 + 5.25293e11i 0.679358 + 1.17668i
\(389\) −6.84736e10 + 3.88333e11i −0.151618 + 0.859866i 0.810196 + 0.586160i \(0.199361\pi\)
−0.961813 + 0.273707i \(0.911750\pi\)
\(390\) 0 0
\(391\) 3.31579e11 + 1.20685e11i 0.717451 + 0.261131i
\(392\) −1.92583e11 7.00946e10i −0.411938 0.149933i
\(393\) 0 0
\(394\) −2.65567e10 + 1.50611e11i −0.0555190 + 0.314864i
\(395\) −2.84608e10 4.92955e10i −0.0588248 0.101887i
\(396\) 0 0
\(397\) −6.50349e10 + 1.12644e11i −0.131398 + 0.227588i −0.924216 0.381871i \(-0.875280\pi\)
0.792818 + 0.609459i \(0.208613\pi\)
\(398\) 8.67901e10 + 7.28256e10i 0.173379 + 0.145482i
\(399\) 0 0
\(400\) −2.23331e10 1.26657e11i −0.0436192 0.247377i
\(401\) 7.62899e11 6.40148e11i 1.47339 1.23632i 0.560471 0.828174i \(-0.310620\pi\)
0.912917 0.408145i \(-0.133824\pi\)
\(402\) 0 0
\(403\) −7.52788e11 + 2.73993e11i −1.42167 + 0.517447i
\(404\) −1.08332e11 −0.202321
\(405\) 0 0
\(406\) −5.11207e9 −0.00933747
\(407\) −4.32387e11 + 1.57376e11i −0.781084 + 0.284291i
\(408\) 0 0
\(409\) −1.81185e11 + 1.52032e11i −0.320160 + 0.268646i −0.788676 0.614809i \(-0.789233\pi\)
0.468516 + 0.883455i \(0.344789\pi\)
\(410\) 2.00978e10 + 1.13980e11i 0.0351253 + 0.199206i
\(411\) 0 0
\(412\) −2.21589e11 1.85935e11i −0.378888 0.317925i
\(413\) 3.14005e10 5.43872e10i 0.0531081 0.0919860i
\(414\) 0 0
\(415\) −1.04444e11 1.80902e11i −0.172849 0.299382i
\(416\) 1.00019e11 5.67234e11i 0.163742 0.928629i
\(417\) 0 0
\(418\) −9.63070e10 3.50529e10i −0.154300 0.0561604i
\(419\) −5.69703e11 2.07355e11i −0.902995 0.328663i −0.151543 0.988451i \(-0.548424\pi\)
−0.751452 + 0.659787i \(0.770646\pi\)
\(420\) 0 0
\(421\) −1.59940e11 + 9.07063e11i −0.248134 + 1.40724i 0.564966 + 0.825114i \(0.308889\pi\)
−0.813100 + 0.582124i \(0.802222\pi\)
\(422\) −1.54671e10 2.67898e10i −0.0237412 0.0411209i
\(423\) 0 0
\(424\) 1.28872e11 2.23212e11i 0.193647 0.335407i
\(425\) −1.45748e11 1.22297e11i −0.216696 0.181830i
\(426\) 0 0
\(427\) 4.97726e9 + 2.82275e10i 0.00724545 + 0.0410910i
\(428\) 4.03931e11 3.38939e11i 0.581849 0.488230i
\(429\) 0 0
\(430\) −1.87123e11 + 6.81073e10i −0.263949 + 0.0960695i
\(431\) −1.12321e12 −1.56788 −0.783941 0.620836i \(-0.786793\pi\)
−0.783941 + 0.620836i \(0.786793\pi\)
\(432\) 0 0
\(433\) −2.33971e11 −0.319864 −0.159932 0.987128i \(-0.551128\pi\)
−0.159932 + 0.987128i \(0.551128\pi\)
\(434\) 1.45312e10 5.28894e9i 0.0196607 0.00715591i
\(435\) 0 0
\(436\) 6.93667e11 5.82056e11i 0.919310 0.771392i
\(437\) 5.23861e10 + 2.97096e11i 0.0687147 + 0.389700i
\(438\) 0 0
\(439\) −9.14258e11 7.67153e11i −1.17484 0.985807i −0.999999 0.00120975i \(-0.999615\pi\)
−0.174839 0.984597i \(-0.555941\pi\)
\(440\) 2.13129e11 3.69151e11i 0.271085 0.469533i
\(441\) 0 0
\(442\) −1.29219e11 2.23813e11i −0.161037 0.278924i
\(443\) 6.46091e10 3.66417e11i 0.0797035 0.452021i −0.918671 0.395024i \(-0.870736\pi\)
0.998374 0.0569970i \(-0.0181525\pi\)
\(444\) 0 0
\(445\) −7.49508e11 2.72798e11i −0.906058 0.329778i
\(446\) −3.02123e11 1.09964e11i −0.361557 0.131596i
\(447\) 0 0
\(448\) 9.44961e9 5.35914e10i 0.0110831 0.0628556i
\(449\) 5.94911e11 + 1.03042e12i 0.690786 + 1.19648i 0.971581 + 0.236709i \(0.0760689\pi\)
−0.280794 + 0.959768i \(0.590598\pi\)
\(450\) 0 0
\(451\) −6.82668e11 + 1.18242e12i −0.776989 + 1.34578i
\(452\) −5.31074e11 4.45624e11i −0.598456 0.502164i
\(453\) 0 0
\(454\) −1.31409e10 7.45260e10i −0.0145169 0.0823296i
\(455\) 7.91327e10 6.64003e10i 0.0865575 0.0726304i
\(456\) 0 0
\(457\) 4.38390e11 1.59561e11i 0.470151 0.171121i −0.0960696 0.995375i \(-0.530627\pi\)
0.566221 + 0.824254i \(0.308405\pi\)
\(458\) −2.68365e10 −0.0284991
\(459\) 0 0
\(460\) −6.10793e11 −0.636039
\(461\) 4.28880e11 1.56100e11i 0.442264 0.160971i −0.111283 0.993789i \(-0.535496\pi\)
0.553547 + 0.832818i \(0.313274\pi\)
\(462\) 0 0
\(463\) −6.66831e11 + 5.59538e11i −0.674375 + 0.565868i −0.914357 0.404909i \(-0.867303\pi\)
0.239982 + 0.970777i \(0.422859\pi\)
\(464\) 6.68131e10 + 3.78916e11i 0.0669161 + 0.379500i
\(465\) 0 0
\(466\) 2.75725e11 + 2.31361e11i 0.270857 + 0.227276i
\(467\) 6.42551e11 1.11293e12i 0.625146 1.08279i −0.363366 0.931646i \(-0.618373\pi\)
0.988513 0.151139i \(-0.0482940\pi\)
\(468\) 0 0
\(469\) −6.11288e10 1.05878e11i −0.0583403 0.101048i
\(470\) −2.96642e10 + 1.68234e11i −0.0280409 + 0.159028i
\(471\) 0 0
\(472\) 5.24989e11 + 1.91080e11i 0.486868 + 0.177205i
\(473\) −2.20745e12 8.03444e11i −2.02775 0.738041i
\(474\) 0 0
\(475\) 2.82463e10 1.60193e11i 0.0254590 0.144385i
\(476\) −4.59812e10 7.96418e10i −0.0410534 0.0711066i
\(477\) 0 0
\(478\) −1.59471e11 + 2.76213e11i −0.139720 + 0.242001i
\(479\) 9.49325e11 + 7.96578e11i 0.823958 + 0.691383i 0.953895 0.300139i \(-0.0970332\pi\)
−0.129937 + 0.991522i \(0.541478\pi\)
\(480\) 0 0
\(481\) −1.72260e11 9.76935e11i −0.146734 0.832171i
\(482\) 8.28924e10 6.95550e10i 0.0699525 0.0586971i
\(483\) 0 0
\(484\) 1.22413e12 4.45546e11i 1.01396 0.369052i
\(485\) −1.46439e12 −1.20177
\(486\) 0 0
\(487\) 1.32515e12 1.06754 0.533769 0.845630i \(-0.320775\pi\)
0.533769 + 0.845630i \(0.320775\pi\)
\(488\) −2.39610e11 + 8.72107e10i −0.191256 + 0.0696115i
\(489\) 0 0
\(490\) 1.84510e11 1.54823e11i 0.144590 0.121326i
\(491\) 3.50397e11 + 1.98720e12i 0.272078 + 1.54303i 0.748093 + 0.663594i \(0.230970\pi\)
−0.476015 + 0.879437i \(0.657919\pi\)
\(492\) 0 0
\(493\) 4.36029e11 + 3.65872e11i 0.332433 + 0.278945i
\(494\) 1.10476e11 1.91351e11i 0.0834637 0.144563i
\(495\) 0 0
\(496\) −5.81945e11 1.00796e12i −0.431732 0.747783i
\(497\) 3.50326e10 1.98680e11i 0.0257554 0.146066i
\(498\) 0 0
\(499\) −4.82759e11 1.75710e11i −0.348560 0.126865i 0.161806 0.986823i \(-0.448268\pi\)
−0.510366 + 0.859957i \(0.670490\pi\)
\(500\) 1.35458e12 + 4.93025e11i 0.969255 + 0.352780i
\(501\) 0 0
\(502\) 4.02078e10 2.28030e11i 0.0282581 0.160260i
\(503\) −7.16695e11 1.24135e12i −0.499204 0.864647i 0.500795 0.865566i \(-0.333041\pi\)
−1.00000 0.000918437i \(0.999708\pi\)
\(504\) 0 0
\(505\) 1.30772e11 2.26503e11i 0.0894753 0.154976i
\(506\) 2.99423e11 + 2.51245e11i 0.203052 + 0.170381i
\(507\) 0 0
\(508\) 3.74022e11 + 2.12119e12i 0.249179 + 1.41316i
\(509\) 7.35298e11 6.16988e11i 0.485549 0.407424i −0.366879 0.930269i \(-0.619574\pi\)
0.852428 + 0.522845i \(0.175129\pi\)
\(510\) 0 0
\(511\) −2.08198e11 + 7.57780e10i −0.135078 + 0.0491642i
\(512\) 1.41984e12 0.913116
\(513\) 0 0
\(514\) −4.33441e11 −0.273902
\(515\) 6.56246e11 2.38854e11i 0.411087 0.149624i
\(516\) 0 0
\(517\) −1.54376e12 + 1.29537e12i −0.950323 + 0.797416i
\(518\) 3.32517e9 + 1.88580e10i 0.00202923 + 0.0115083i
\(519\) 0 0
\(520\) 7.03970e11 + 5.90701e11i 0.422220 + 0.354285i
\(521\) −1.14586e12 + 1.98469e12i −0.681336 + 1.18011i 0.293238 + 0.956040i \(0.405267\pi\)
−0.974573 + 0.224069i \(0.928066\pi\)
\(522\) 0 0
\(523\) −4.98633e11 8.63657e11i −0.291422 0.504759i 0.682724 0.730677i \(-0.260795\pi\)
−0.974146 + 0.225918i \(0.927462\pi\)
\(524\) −1.81550e11 + 1.02962e12i −0.105197 + 0.596604i
\(525\) 0 0
\(526\) 2.93900e11 + 1.06971e11i 0.167403 + 0.0609299i
\(527\) −1.61796e12 5.88889e11i −0.913735 0.332572i
\(528\) 0 0
\(529\) −1.12976e11 + 6.40721e11i −0.0627245 + 0.355728i
\(530\) 1.51458e11 + 2.62332e11i 0.0833777 + 0.144414i
\(531\) 0 0
\(532\) 3.93120e10 6.80903e10i 0.0212776 0.0368539i
\(533\) −2.25486e12 1.89206e12i −1.21017 1.01546i
\(534\) 0 0
\(535\) 2.21060e11 + 1.25369e12i 0.116659 + 0.661606i
\(536\) 8.33159e11 6.99103e11i 0.436000 0.365847i
\(537\) 0 0
\(538\) −7.05161e10 + 2.56658e10i −0.0362884 + 0.0132079i
\(539\) 2.84138e12 1.45004
\(540\) 0 0
\(541\) 2.03546e11 0.102159 0.0510794 0.998695i \(-0.483734\pi\)
0.0510794 + 0.998695i \(0.483734\pi\)
\(542\) −1.07243e11 + 3.90332e10i −0.0533791 + 0.0194284i
\(543\) 0 0
\(544\) 9.48331e11 7.95744e11i 0.464264 0.389564i
\(545\) 3.79624e11 + 2.15296e12i 0.184319 + 1.04532i
\(546\) 0 0
\(547\) 5.09924e11 + 4.27877e11i 0.243536 + 0.204351i 0.756383 0.654129i \(-0.226965\pi\)
−0.512847 + 0.858480i \(0.671409\pi\)
\(548\) 9.22485e11 1.59779e12i 0.436965 0.756846i
\(549\) 0 0
\(550\) −1.05377e11 1.82519e11i −0.0491037 0.0850501i
\(551\) −8.45037e10 + 4.79244e11i −0.0390565 + 0.221501i
\(552\) 0 0
\(553\) −2.62592e10 9.55758e9i −0.0119404 0.00434595i
\(554\) 7.34853e11 + 2.67465e11i 0.331441 + 0.120635i
\(555\) 0 0
\(556\) 5.26338e11 2.98501e12i 0.233576 1.32467i
\(557\) −4.51240e11 7.81571e11i −0.198637 0.344049i 0.749450 0.662061i \(-0.230318\pi\)
−0.948087 + 0.318012i \(0.896985\pi\)
\(558\) 0 0
\(559\) 2.53222e12 4.38593e12i 1.09685 1.89980i
\(560\) 1.14969e11 + 9.64706e10i 0.0494009 + 0.0414523i
\(561\) 0 0
\(562\) 4.15315e10 + 2.35537e11i 0.0175616 + 0.0995969i
\(563\) 3.00202e12 2.51899e12i 1.25929 1.05667i 0.263532 0.964651i \(-0.415113\pi\)
0.995757 0.0920186i \(-0.0293319\pi\)
\(564\) 0 0
\(565\) 1.57280e12 5.72452e11i 0.649315 0.236331i
\(566\) 5.91651e11 0.242321
\(567\) 0 0
\(568\) 1.79473e12 0.723489
\(569\) −3.73460e12 + 1.35928e12i −1.49361 + 0.543631i −0.954398 0.298536i \(-0.903502\pi\)
−0.539216 + 0.842168i \(0.681279\pi\)
\(570\) 0 0
\(571\) −7.88821e11 + 6.61899e11i −0.310539 + 0.260573i −0.784715 0.619857i \(-0.787191\pi\)
0.474176 + 0.880430i \(0.342746\pi\)
\(572\) 9.16389e11 + 5.19710e12i 0.357930 + 2.02992i
\(573\) 0 0
\(574\) 4.35262e10 + 3.65228e10i 0.0167358 + 0.0140430i
\(575\) −3.10185e11 + 5.37256e11i −0.118335 + 0.204963i
\(576\) 0 0
\(577\) 8.29829e11 + 1.43731e12i 0.311672 + 0.539832i 0.978724 0.205179i \(-0.0657777\pi\)
−0.667053 + 0.745011i \(0.732444\pi\)
\(578\) −9.24270e9 + 5.24180e10i −0.00344448 + 0.0195346i
\(579\) 0 0
\(580\) −9.25848e11 3.36981e11i −0.339714 0.123646i
\(581\) −9.63645e10 3.50738e10i −0.0350852 0.0127700i
\(582\) 0 0
\(583\) −6.20517e11 + 3.51913e12i −0.222457 + 1.26161i
\(584\) −9.85506e11 1.70695e12i −0.350592 0.607243i
\(585\) 0 0
\(586\) 4.32311e10 7.48785e10i 0.0151446 0.0262312i
\(587\) 2.56726e12 + 2.15418e12i 0.892478 + 0.748878i 0.968706 0.248212i \(-0.0798430\pi\)
−0.0762274 + 0.997090i \(0.524287\pi\)
\(588\) 0 0
\(589\) −2.55621e11 1.44970e12i −0.0875140 0.496317i
\(590\) −5.02982e11 + 4.22052e11i −0.170891 + 0.143394i
\(591\) 0 0
\(592\) 1.35433e12 4.92936e11i 0.453187 0.164947i
\(593\) −1.51807e11 −0.0504135 −0.0252067 0.999682i \(-0.508024\pi\)
−0.0252067 + 0.999682i \(0.508024\pi\)
\(594\) 0 0
\(595\) 2.22023e11 0.0726225
\(596\) −2.28428e12 + 8.31412e11i −0.741553 + 0.269903i
\(597\) 0 0
\(598\) −6.45523e11 + 5.41658e11i −0.206422 + 0.173209i
\(599\) 9.76595e11 + 5.53854e12i 0.309951 + 1.75782i 0.599230 + 0.800577i \(0.295474\pi\)
−0.289278 + 0.957245i \(0.593415\pi\)
\(600\) 0 0
\(601\) 3.63412e12 + 3.04939e12i 1.13622 + 0.953405i 0.999309 0.0371781i \(-0.0118369\pi\)
0.136915 + 0.990583i \(0.456281\pi\)
\(602\) −4.88800e10 + 8.46627e10i −0.0151687 + 0.0262729i
\(603\) 0 0
\(604\) −7.83110e11 1.35639e12i −0.239418 0.414684i
\(605\) −5.46131e11 + 3.09727e12i −0.165729 + 0.939895i
\(606\) 0 0
\(607\) −1.67977e12 6.11388e11i −0.502229 0.182796i 0.0784673 0.996917i \(-0.474997\pi\)
−0.580696 + 0.814120i \(0.697220\pi\)
\(608\) 9.94571e11 + 3.61994e11i 0.295168 + 0.107432i
\(609\) 0 0
\(610\) 5.20382e10 2.95123e11i 0.0152173 0.0863017i
\(611\) −2.17231e12 3.76255e12i −0.630575 1.09219i
\(612\) 0 0
\(613\) 8.97771e11 1.55498e12i 0.256799 0.444789i −0.708584 0.705627i \(-0.750665\pi\)
0.965383 + 0.260838i \(0.0839988\pi\)
\(614\) −1.00715e12 8.45097e11i −0.285980 0.239966i
\(615\) 0 0
\(616\) −3.63381e10 2.06084e11i −0.0101683 0.0576674i
\(617\) 4.09727e12 3.43802e12i 1.13818 0.955048i 0.138804 0.990320i \(-0.455674\pi\)
0.999378 + 0.0352723i \(0.0112298\pi\)
\(618\) 0 0
\(619\) 4.64841e11 1.69188e11i 0.127261 0.0463193i −0.277604 0.960695i \(-0.589540\pi\)
0.404866 + 0.914376i \(0.367318\pi\)
\(620\) 2.98040e12 0.810050
\(621\) 0 0
\(622\) 3.63461e11 0.0973647
\(623\) −3.67955e11 + 1.33925e11i −0.0978586 + 0.0356176i
\(624\) 0 0
\(625\) −1.80065e12 + 1.51093e12i −0.472031 + 0.396081i
\(626\) 1.54122e10 + 8.74072e10i 0.00401126 + 0.0227490i
\(627\) 0 0
\(628\) −1.71862e12 1.44210e12i −0.440923 0.369978i
\(629\) 1.06605e12 1.84646e12i 0.271551 0.470340i
\(630\) 0 0
\(631\) −6.83547e11 1.18394e12i −0.171647 0.297301i 0.767349 0.641230i \(-0.221575\pi\)
−0.938996 + 0.343929i \(0.888242\pi\)
\(632\) 4.31682e10 2.44819e11i 0.0107631 0.0610406i
\(633\) 0 0
\(634\) −1.13836e12 4.14329e11i −0.279819 0.101846i
\(635\) −4.88652e12 1.77855e12i −1.19266 0.434094i
\(636\) 0 0
\(637\) −1.06372e12 + 6.03264e12i −0.255976 + 1.45171i
\(638\) 3.15254e11 + 5.46036e11i 0.0753299 + 0.130475i
\(639\) 0 0
\(640\) −1.41404e12 + 2.44919e12i −0.333159 + 0.577048i
\(641\) −3.06971e12 2.57580e12i −0.718186 0.602630i 0.208697 0.977980i \(-0.433078\pi\)
−0.926883 + 0.375351i \(0.877522\pi\)
\(642\) 0 0
\(643\) −1.68695e11 9.56716e11i −0.0389182 0.220716i 0.959146 0.282912i \(-0.0913006\pi\)
−0.998064 + 0.0621965i \(0.980189\pi\)
\(644\) −2.29703e11 + 1.92744e11i −0.0526236 + 0.0441565i
\(645\) 0 0
\(646\) 4.46252e11 1.62422e11i 0.100817 0.0366944i
\(647\) −2.07885e12 −0.466395 −0.233198 0.972429i \(-0.574919\pi\)
−0.233198 + 0.972429i \(0.574919\pi\)
\(648\) 0 0
\(649\) −7.74569e12 −1.71380
\(650\) 4.26962e11 1.55402e11i 0.0938165 0.0341464i
\(651\) 0 0
\(652\) −1.49912e12 + 1.25791e12i −0.324880 + 0.272607i
\(653\) −3.38608e11 1.92034e12i −0.0728766 0.413304i −0.999320 0.0368699i \(-0.988261\pi\)
0.926443 0.376434i \(-0.122850\pi\)
\(654\) 0 0
\(655\) −1.93360e12 1.62248e12i −0.410469 0.344425i
\(656\) 2.13827e12 3.70359e12i 0.450811 0.780827i
\(657\) 0 0
\(658\) 4.19326e10 + 7.26294e10i 0.00872038 + 0.0151041i
\(659\) 1.07304e12 6.08551e12i 0.221631 1.25693i −0.647390 0.762159i \(-0.724139\pi\)
0.869021 0.494775i \(-0.164750\pi\)
\(660\) 0 0
\(661\) 1.19594e12 + 4.35288e11i 0.243671 + 0.0886891i 0.460969 0.887416i \(-0.347502\pi\)
−0.217298 + 0.976105i \(0.569724\pi\)
\(662\) −1.14748e12 4.17648e11i −0.232212 0.0845181i
\(663\) 0 0
\(664\) 1.58416e11 8.98422e11i 0.0316259 0.179359i
\(665\) 9.49099e10 + 1.64389e11i 0.0188198 + 0.0325968i
\(666\) 0 0
\(667\) 9.27970e11 1.60729e12i 0.181538 0.314433i
\(668\) −3.82416e12 3.20885e12i −0.743091 0.623527i
\(669\) 0 0
\(670\) 2.21962e11 + 1.25881e12i 0.0425541 + 0.241336i
\(671\) 2.70812e12 2.27238e12i 0.515724 0.432743i
\(672\) 0 0
\(673\) 2.80815e11 1.02208e11i 0.0527658 0.0192052i −0.315502 0.948925i \(-0.602173\pi\)
0.368268 + 0.929720i \(0.379951\pi\)
\(674\) −2.11647e12 −0.395041
\(675\) 0 0
\(676\) −6.22711e12 −1.14690
\(677\) 4.73930e12 1.72497e12i 0.867093 0.315596i 0.130103 0.991500i \(-0.458469\pi\)
0.736989 + 0.675905i \(0.236247\pi\)
\(678\) 0 0
\(679\) −5.50720e11 + 4.62109e11i −0.0994299 + 0.0834316i
\(680\) 3.42977e11 + 1.94512e12i 0.0615142 + 0.348864i
\(681\) 0 0
\(682\) −1.46105e12 1.22597e12i −0.258604 0.216995i
\(683\) −1.13832e12 + 1.97163e12i −0.200158 + 0.346683i −0.948579 0.316540i \(-0.897479\pi\)
0.748422 + 0.663223i \(0.230812\pi\)
\(684\) 0 0
\(685\) 2.22713e12 + 3.85751e12i 0.386490 + 0.669421i
\(686\) 4.12364e10 2.33863e11i 0.00710922 0.0403184i
\(687\) 0 0
\(688\) 6.91421e12 + 2.51656e12i 1.17651 + 0.428213i
\(689\) −7.23930e12 2.63489e12i −1.22380 0.445426i
\(690\) 0 0
\(691\) 2.12817e11 1.20695e12i 0.0355104 0.201389i −0.961891 0.273433i \(-0.911841\pi\)
0.997401 + 0.0720434i \(0.0229520\pi\)
\(692\) −2.20504e12 3.81924e12i −0.365543 0.633140i
\(693\) 0 0
\(694\) −2.87699e9 + 4.98310e9i −0.000470783 + 0.000815421i
\(695\) 5.60576e12 + 4.70379e12i 0.911388 + 0.764745i
\(696\) 0 0
\(697\) −1.09858e12 6.23036e12i −0.176313 0.999921i
\(698\) 1.15066e12 9.65517e11i 0.183484 0.153961i
\(699\) 0 0
\(700\) 1.51931e11 5.52982e10i 0.0239168 0.00870502i
\(701\) −1.15369e12 −0.180450 −0.0902252 0.995921i \(-0.528759\pi\)
−0.0902252 + 0.995921i \(0.528759\pi\)
\(702\) 0 0
\(703\) 1.82286e12 0.281484
\(704\) −6.30701e12 + 2.29556e12i −0.967712 + 0.352218i
\(705\) 0 0
\(706\) −1.86426e12 + 1.56430e12i −0.282414 + 0.236973i
\(707\) −2.22963e10 1.26449e11i −0.00335619 0.0190339i
\(708\) 0 0
\(709\) 4.61341e11 + 3.87111e11i 0.0685669 + 0.0575344i 0.676427 0.736510i \(-0.263527\pi\)
−0.607860 + 0.794044i \(0.707972\pi\)
\(710\) −1.05464e12 + 1.82669e12i −0.155755 + 0.269775i
\(711\) 0 0
\(712\) −1.74172e12 3.01674e12i −0.253990 0.439924i
\(713\) −9.74889e11 + 5.52887e12i −0.141271 + 0.801186i
\(714\) 0 0
\(715\) −1.19724e13 4.35760e12i −1.71319 0.623549i
\(716\) −8.91906e12 3.24627e12i −1.26827 0.461611i
\(717\) 0 0
\(718\) 4.47860e11 2.53994e12i 0.0628901 0.356668i
\(719\) 6.43613e12 + 1.11477e13i 0.898141 + 1.55563i 0.829868 + 0.557959i \(0.188415\pi\)
0.0682726 + 0.997667i \(0.478251\pi\)
\(720\) 0 0
\(721\) 1.71423e11 2.96914e11i 0.0236244 0.0409187i
\(722\) −9.57760e11 8.03656e11i −0.131172 0.110066i
\(723\) 0 0
\(724\) 2.19018e12 + 1.24211e13i 0.296249 + 1.68011i
\(725\) −7.66592e11 + 6.43247e11i −0.103049 + 0.0864682i
\(726\) 0 0
\(727\) −1.65453e11 + 6.02198e10i −0.0219669 + 0.00799530i −0.352980 0.935631i \(-0.614832\pi\)
0.331013 + 0.943626i \(0.392609\pi\)
\(728\) 4.51148e11 0.0595289
\(729\) 0 0
\(730\) 2.31645e12 0.301905
\(731\) 1.02285e13 3.72287e12i 1.32490 0.482225i
\(732\) 0 0
\(733\) 1.10709e13 9.28958e12i 1.41649 1.18858i 0.463306 0.886198i \(-0.346663\pi\)
0.953187 0.302381i \(-0.0977814\pi\)
\(734\) 4.58101e11 + 2.59802e12i 0.0582545 + 0.330378i
\(735\) 0 0
\(736\) −3.09216e12 2.59463e12i −0.388430 0.325931i
\(737\) −7.53946e12 + 1.30587e13i −0.941318 + 1.63041i
\(738\) 0 0
\(739\) −3.65737e11 6.33476e11i −0.0451096 0.0781322i 0.842589 0.538557i \(-0.181030\pi\)
−0.887699 + 0.460425i \(0.847697\pi\)
\(740\) −6.40872e11 + 3.63457e12i −0.0785650 + 0.445564i
\(741\) 0 0
\(742\) 1.39742e11 + 5.08619e10i 0.0169242 + 0.00615991i
\(743\) 3.62672e12 + 1.32002e12i 0.436581 + 0.158902i 0.550954 0.834535i \(-0.314264\pi\)
−0.114374 + 0.993438i \(0.536486\pi\)
\(744\) 0 0
\(745\) 1.01911e12 5.77966e12i 0.121204 0.687384i
\(746\) 5.33538e11 + 9.24114e11i 0.0630725 + 0.109245i
\(747\) 0 0
\(748\) −5.67120e12 + 9.82280e12i −0.662396 + 1.14730i
\(749\) 4.78755e11 + 4.01723e11i 0.0555834 + 0.0466400i
\(750\) 0 0
\(751\) −4.82128e11 2.73429e12i −0.0553074 0.313664i 0.944586 0.328264i \(-0.106464\pi\)
−0.999893 + 0.0146003i \(0.995352\pi\)
\(752\) 4.83538e12 4.05737e12i 0.551380 0.462662i
\(753\) 0 0
\(754\) −1.27733e12 + 4.64910e11i −0.143924 + 0.0523839i
\(755\) 3.78129e12 0.423524
\(756\) 0 0
\(757\) 1.43220e13 1.58516 0.792581 0.609767i \(-0.208737\pi\)
0.792581 + 0.609767i \(0.208737\pi\)
\(758\) −2.46916e12 + 8.98699e11i −0.271667 + 0.0988787i
\(759\) 0 0
\(760\) −1.29358e12 + 1.08544e12i −0.140647 + 0.118017i
\(761\) −1.37154e12 7.77841e12i −0.148244 0.840736i −0.964705 0.263334i \(-0.915178\pi\)
0.816460 0.577402i \(-0.195933\pi\)
\(762\) 0 0
\(763\) 8.22161e11 + 6.89875e11i 0.0878206 + 0.0736902i
\(764\) 3.37490e12 5.84549e12i 0.358377 0.620727i
\(765\) 0 0
\(766\) 9.14800e11 + 1.58448e12i 0.0960056 + 0.166287i
\(767\) 2.89973e12 1.64452e13i 0.302537 1.71577i
\(768\) 0 0
\(769\) 1.36410e13 + 4.96493e12i 1.40663 + 0.511970i 0.930138 0.367210i \(-0.119687\pi\)
0.476489 + 0.879180i \(0.341909\pi\)
\(770\) 2.31106e11 + 8.41158e10i 0.0236921 + 0.00862322i
\(771\) 0 0
\(772\) 3.79347e10 2.15138e11i 0.00384378 0.0217992i
\(773\) 1.96630e12 + 3.40574e12i 0.198081 + 0.343086i 0.947906 0.318550i \(-0.103196\pi\)
−0.749825 + 0.661636i \(0.769862\pi\)
\(774\) 0 0
\(775\) 1.51356e12 2.62157e12i 0.150710 0.261038i
\(776\) −4.89924e12 4.11095e12i −0.485010 0.406972i
\(777\) 0 0
\(778\) −3.51458e11 1.99322e12i −0.0343927 0.195050i
\(779\) 4.14343e12 3.47675e12i 0.403126 0.338263i
\(780\) 0 0
\(781\) −2.33820e13 + 8.51035e12i −2.24881 + 0.818498i
\(782\) −1.81114e12 −0.173190
\(783\) 0 0
\(784\) −8.89982e12 −0.841316
\(785\) 5.08978e12 1.85253e12i 0.478394 0.174121i
\(786\) 0 0
\(787\) 1.19610e13 1.00364e13i 1.11143 0.932596i 0.113285 0.993562i \(-0.463863\pi\)
0.998140 + 0.0609660i \(0.0194181\pi\)
\(788\) 2.51276e12 + 1.42506e13i 0.232158 + 1.31663i
\(789\) 0 0
\(790\) 2.23811e11 + 1.87800e11i 0.0204437 + 0.0171543i
\(791\) 4.10844e11 7.11602e11i 0.0373149 0.0646313i
\(792\) 0 0
\(793\) 3.81076e12 + 6.60043e12i 0.342202 + 0.592711i
\(794\) 1.15931e11 6.57475e11i 0.0103516 0.0587066i
\(795\) 0 0
\(796\) 1.00735e13 + 3.66644e12i 0.889345 + 0.323695i
\(797\) −6.32997e12 2.30392e12i −0.555698 0.202258i 0.0488781 0.998805i \(-0.484435\pi\)
−0.604576 + 0.796547i \(0.706658\pi\)
\(798\) 0 0
\(799\) 1.62150e12 9.19599e12i 0.140753 0.798248i
\(800\) 1.08824e12 + 1.88489e12i 0.0939333 + 0.162697i
\(801\) 0 0
\(802\) −2.55584e12 + 4.42685e12i −0.218147 + 0.377842i
\(803\) 2.09334e13 + 1.75652e13i 1.77672 + 1.49085i
\(804\) 0 0
\(805\) −1.25710e11 7.12937e11i −0.0105509 0.0598370i
\(806\) 3.14987e12 2.64305e12i 0.262896 0.220596i
\(807\) 0 0
\(808\) 1.07336e12 3.90673e11i 0.0885923 0.0322450i
\(809\) −8.17110e12 −0.670675 −0.335338 0.942098i \(-0.608850\pi\)
−0.335338 + 0.942098i \(0.608850\pi\)
\(810\) 0 0
\(811\) 2.07621e13 1.68530 0.842651 0.538460i \(-0.180994\pi\)
0.842651 + 0.538460i \(0.180994\pi\)
\(812\) −4.54526e11 + 1.65434e11i −0.0366908 + 0.0133543i
\(813\) 0 0
\(814\) 1.80922e12 1.51812e12i 0.144438 0.121198i
\(815\) −8.20427e11 4.65287e12i −0.0651375 0.369413i
\(816\) 0 0
\(817\) 7.12893e12 + 5.98188e12i 0.559790 + 0.469719i
\(818\) 6.07001e11 1.05136e12i 0.0474023 0.0821032i
\(819\) 0 0
\(820\) 5.47550e12 + 9.48385e12i 0.422923 + 0.732525i
\(821\) −3.56272e12 + 2.02052e13i −0.273676 + 1.55210i 0.469458 + 0.882955i \(0.344449\pi\)
−0.743135 + 0.669142i \(0.766662\pi\)
\(822\) 0 0
\(823\) −1.30605e13 4.75362e12i −0.992336 0.361181i −0.205712 0.978613i \(-0.565951\pi\)
−0.786625 + 0.617432i \(0.788173\pi\)
\(824\) 2.86605e12 + 1.04316e12i 0.216576 + 0.0788274i
\(825\) 0 0
\(826\) −5.59742e10 + 3.17445e11i −0.00418386 + 0.0237279i
\(827\) 7.13700e12 + 1.23617e13i 0.530568 + 0.918971i 0.999364 + 0.0356643i \(0.0113547\pi\)
−0.468796 + 0.883307i \(0.655312\pi\)
\(828\) 0 0
\(829\) −3.70442e12 + 6.41625e12i −0.272411 + 0.471830i −0.969479 0.245175i \(-0.921154\pi\)
0.697067 + 0.717006i \(0.254488\pi\)
\(830\) 8.21329e11 + 6.89177e11i 0.0600711 + 0.0504056i
\(831\) 0 0
\(832\) −2.51267e12 1.42500e13i −0.181794 1.03101i
\(833\) −1.00857e13 + 8.46289e12i −0.725776 + 0.608999i
\(834\) 0 0
\(835\) 1.13254e13 4.12212e12i 0.806242 0.293448i
\(836\) −9.69725e12 −0.686626
\(837\) 0 0
\(838\) 3.11181e12 0.217979
\(839\) 1.28307e13 4.67001e12i 0.893970 0.325378i 0.146136 0.989264i \(-0.453316\pi\)
0.747834 + 0.663886i \(0.231094\pi\)
\(840\) 0 0
\(841\) −8.81973e12 + 7.40063e12i −0.607958 + 0.510137i
\(842\) −8.20932e11 4.65573e12i −0.0562863 0.319215i
\(843\) 0 0
\(844\) −2.24217e12 1.88141e12i −0.152100 0.127627i
\(845\) 7.51697e12 1.30198e13i 0.507210 0.878514i
\(846\) 0 0
\(847\) 7.71998e11 + 1.33714e12i 0.0515396 + 0.0892692i
\(848\) 1.94360e12 1.10227e13i 0.129070 0.731991i
\(849\) 0 0
\(850\) 9.17666e11 + 3.34003e11i 0.0602975 + 0.0219465i
\(851\) −6.53277e12 2.37773e12i −0.426987 0.155410i
\(852\) 0 0
\(853\) −3.48320e12 + 1.97542e13i −0.225272 + 1.27758i 0.636892 + 0.770953i \(0.280220\pi\)
−0.862164 + 0.506628i \(0.830892\pi\)
\(854\) −7.35600e10 1.27410e11i −0.00473240 0.00819675i
\(855\) 0 0
\(856\) −2.77989e12 + 4.81491e12i −0.176968 + 0.306518i
\(857\) 1.19917e13 + 1.00623e13i 0.759396 + 0.637209i 0.937970 0.346718i \(-0.112704\pi\)
−0.178574 + 0.983927i \(0.557148\pi\)
\(858\) 0 0
\(859\) −1.80369e12 1.02293e13i −0.113030 0.641025i −0.987707 0.156318i \(-0.950037\pi\)
0.874677 0.484707i \(-0.161074\pi\)
\(860\) −1.44335e13 + 1.21112e13i −0.899766 + 0.754993i
\(861\) 0 0
\(862\) 5.41749e12 1.97180e12i 0.334207 0.121641i
\(863\) −1.57454e13 −0.966288 −0.483144 0.875541i \(-0.660505\pi\)
−0.483144 + 0.875541i \(0.660505\pi\)
\(864\) 0 0
\(865\) 1.06471e13 0.646637
\(866\) 1.12849e12 4.10737e11i 0.0681817 0.0248161i
\(867\) 0 0
\(868\) 1.12085e12 9.40505e11i 0.0670207 0.0562370i
\(869\) 5.98495e11 + 3.39423e12i 0.0356018 + 0.201908i
\(870\) 0 0
\(871\) −2.49030e13 2.08961e13i −1.46612 1.23022i
\(872\) −4.77387e12 + 8.26859e12i −0.279606 + 0.484292i
\(873\) 0 0
\(874\) −7.74224e11 1.34100e12i −0.0448813 0.0777367i
\(875\) −2.96683e11 + 1.68258e12i −0.0171103 + 0.0970372i
\(876\) 0 0
\(877\) 1.03678e13 + 3.77357e12i 0.591818 + 0.215404i 0.620529 0.784184i \(-0.286918\pi\)
−0.0287108 + 0.999588i \(0.509140\pi\)
\(878\) 5.75641e12 + 2.09516e12i 0.326908 + 0.118985i
\(879\) 0 0
\(880\) 3.21434e12 1.82294e13i 0.180684 1.02471i
\(881\) 6.34675e12 + 1.09929e13i 0.354944 + 0.614781i 0.987108 0.160053i \(-0.0511665\pi\)
−0.632164 + 0.774834i \(0.717833\pi\)
\(882\) 0 0
\(883\) −6.78125e11 + 1.17455e12i −0.0375394 + 0.0650201i −0.884185 0.467138i \(-0.845285\pi\)
0.846645 + 0.532158i \(0.178619\pi\)
\(884\) −1.87321e13 1.57181e13i −1.03169 0.865693i
\(885\) 0 0
\(886\) 3.31623e11 + 1.88073e12i 0.0180798 + 0.102536i
\(887\) 1.03849e13 8.71394e12i 0.563306 0.472670i −0.316111 0.948722i \(-0.602377\pi\)
0.879417 + 0.476052i \(0.157933\pi\)
\(888\) 0 0
\(889\) −2.39894e12 + 8.73142e11i −0.128813 + 0.0468842i
\(890\) 4.09394e12 0.218719
\(891\) 0 0
\(892\) −3.04211e13 −1.60891
\(893\) 7.50199e12 2.73050e12i 0.394771 0.143685i
\(894\) 0 0
\(895\) 1.75539e13 1.47295e13i 0.914471 0.767332i
\(896\) 2.41091e11 + 1.36729e12i 0.0124967 + 0.0708722i
\(897\) 0 0
\(898\) −4.67829e12 3.92555e12i −0.240073 0.201445i
\(899\) −4.52808e12 + 7.84287e12i −0.231204 + 0.400458i
\(900\) 0 0
\(901\) −8.27896e12 1.43396e13i −0.418518 0.724894i
\(902\) 1.21692e12 6.90147e12i 0.0612112 0.347146i
\(903\) 0 0
\(904\) 6.86895e12 + 2.50009e12i 0.342084 + 0.124508i
\(905\) −2.86143e13 1.04147e13i −1.41796 0.516095i
\(906\) 0 0
\(907\) −4.77134e11 + 2.70596e12i −0.0234103 + 0.132766i −0.994273 0.106870i \(-0.965917\pi\)
0.970863 + 0.239636i \(0.0770282\pi\)
\(908\) −3.58016e12 6.20102e12i −0.174790 0.302745i
\(909\) 0 0
\(910\) −2.65108e11 + 4.59181e11i −0.0128155 + 0.0221972i
\(911\) −1.61221e13 1.35280e13i −0.775512 0.650732i 0.166602 0.986024i \(-0.446720\pi\)
−0.942114 + 0.335292i \(0.891165\pi\)
\(912\) 0 0
\(913\) 2.19632e12 + 1.24559e13i 0.104611 + 0.593278i
\(914\) −1.83434e12 + 1.53919e12i −0.0869404 + 0.0729517i
\(915\) 0 0
\(916\) −2.38610e12 + 8.68468e11i −0.111985 + 0.0407590i
\(917\) −1.23917e12 −0.0578721
\(918\) 0 0
\(919\) −2.55574e13 −1.18194 −0.590972 0.806692i \(-0.701256\pi\)
−0.590972 + 0.806692i \(0.701256\pi\)
\(920\) 6.05179e12 2.20267e12i 0.278508 0.101369i
\(921\) 0 0
\(922\) −1.79455e12 + 1.50581e12i −0.0817836 + 0.0686246i
\(923\) −9.31522e12 5.28292e13i −0.422460 2.39589i
\(924\) 0 0
\(925\) 2.87152e12 + 2.40949e12i 0.128966 + 0.108215i
\(926\) 2.23400e12 3.86940e12i 0.0998467 0.172940i
\(927\) 0 0
\(928\) −3.25565e12 5.63896e12i −0.144103 0.249593i
\(929\) 6.29727e12 3.57136e13i 0.277384 1.57312i −0.453901 0.891052i \(-0.649968\pi\)
0.731285 0.682072i \(-0.238921\pi\)
\(930\) 0 0
\(931\) −1.05775e13 3.84988e12i −0.461432 0.167947i
\(932\) 3.20026e13 + 1.16480e13i 1.38935 + 0.505684i
\(933\) 0 0
\(934\) −1.14540e12 + 6.49591e12i −0.0492491 + 0.279305i
\(935\) −1.36918e13 2.37149e13i −0.585880 1.01477i
\(936\) 0 0
\(937\) −2.55461e12 + 4.42471e12i −0.108267 + 0.187524i −0.915068 0.403299i \(-0.867863\pi\)
0.806801 + 0.590823i \(0.201197\pi\)
\(938\) 4.80708e11 + 4.03362e11i 0.0202753 + 0.0170130i
\(939\) 0 0
\(940\) 2.80679e12 + 1.59181e13i 0.117256 + 0.664990i
\(941\) 3.82223e12 3.20723e12i 0.158914 0.133345i −0.559863 0.828585i \(-0.689146\pi\)
0.718778 + 0.695240i \(0.244702\pi\)
\(942\) 0 0
\(943\) −1.93843e13 + 7.05531e12i −0.798266 + 0.290545i
\(944\) 2.42612e13 0.994348
\(945\) 0 0
\(946\) 1.20574e13 0.489491
\(947\) −2.70313e13 + 9.83859e12i −1.09217 + 0.397519i −0.824426 0.565970i \(-0.808502\pi\)
−0.267749 + 0.963489i \(0.586280\pi\)
\(948\) 0 0
\(949\) −4.51301e13 + 3.78687e13i −1.80621 + 1.51559i
\(950\) 1.44982e11 + 8.22232e11i 0.00577506 + 0.0327520i
\(951\) 0 0
\(952\) 7.42794e11 + 6.23278e11i 0.0293091 + 0.0245932i
\(953\) −2.07896e13 + 3.60087e13i −0.816448 + 1.41413i 0.0918357 + 0.995774i \(0.470727\pi\)
−0.908284 + 0.418355i \(0.862607\pi\)
\(954\) 0 0
\(955\) 8.14792e12 + 1.41126e13i 0.316980 + 0.549025i
\(956\) −5.24034e12 + 2.97195e13i −0.202908 + 1.15075i
\(957\) 0 0
\(958\) −5.97720e12 2.17552e12i −0.229273 0.0834486i
\(959\) 2.05485e12 + 7.47906e11i 0.0784508 + 0.0285537i
\(960\) 0 0
\(961\) 1.65832e11 9.40478e11i 0.00627209 0.0355708i
\(962\) 2.54586e12 + 4.40956e12i 0.0958401 + 0.166000i
\(963\) 0 0
\(964\) 5.11926e12 8.86683e12i 0.190924 0.330690i
\(965\) 4.04024e11 + 3.39016e11i 0.0149980 + 0.0125848i
\(966\) 0 0
\(967\) 3.55453e12 + 2.01588e13i 0.130726 + 0.741386i 0.977741 + 0.209816i \(0.0672866\pi\)
−0.847014 + 0.531570i \(0.821602\pi\)
\(968\) −1.05220e13 + 8.82900e12i −0.385176 + 0.323201i
\(969\) 0 0
\(970\) 7.06309e12 2.57075e12i 0.256166 0.0932369i
\(971\) 2.70481e13 0.976451 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(972\) 0 0
\(973\) 3.59253e12 0.128497
\(974\) −6.39147e12 + 2.32630e12i −0.227554 + 0.0828230i
\(975\) 0 0
\(976\) −8.48244e12 + 7.11761e12i −0.299224 + 0.251079i
\(977\) 8.79943e11 + 4.99040e12i 0.0308979 + 0.175231i 0.996352 0.0853443i \(-0.0271990\pi\)
−0.965454 + 0.260575i \(0.916088\pi\)
\(978\) 0 0
\(979\) 3.69962e13 + 3.10435e13i 1.28717 + 1.08006i
\(980\) 1.13950e13 1.97367e13i 0.394636 0.683529i
\(981\) 0 0
\(982\) −5.17858e12 8.96957e12i −0.177709 0.307801i
\(983\) −1.60186e12 + 9.08461e12i −0.0547185 + 0.310324i −0.999867 0.0163173i \(-0.994806\pi\)
0.945148 + 0.326641i \(0.105917\pi\)
\(984\) 0 0
\(985\) −3.28287e13 1.19487e13i −1.11119 0.404442i
\(986\) −2.74535e12 9.99227e11i −0.0925022 0.0336681i
\(987\) 0 0
\(988\) 3.63033e12 2.05886e13i 0.121210 0.687418i
\(989\) −1.77459e13 3.07369e13i −0.589815 1.02159i
\(990\) 0 0
\(991\) 2.01024e13 3.48184e13i 0.662090 1.14677i −0.317975 0.948099i \(-0.603003\pi\)
0.980065 0.198675i \(-0.0636638\pi\)
\(992\) 1.50884e13 + 1.26607e13i 0.494698 + 0.415101i
\(993\) 0 0
\(994\) 1.79814e11 + 1.01977e12i 0.00584231 + 0.0331334i
\(995\) −1.98259e13 + 1.66359e13i −0.641254 + 0.538076i
\(996\) 0 0
\(997\) −1.53940e13 + 5.60295e12i −0.493427 + 0.179593i −0.576735 0.816931i \(-0.695674\pi\)
0.0833084 + 0.996524i \(0.473451\pi\)
\(998\) 2.63691e12 0.0841410
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.19.12 156
3.2 odd 2 27.10.e.a.7.15 yes 156
27.4 even 9 inner 81.10.e.a.64.12 156
27.23 odd 18 27.10.e.a.4.15 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.4.15 156 27.23 odd 18
27.10.e.a.7.15 yes 156 3.2 odd 2
81.10.e.a.19.12 156 1.1 even 1 trivial
81.10.e.a.64.12 156 27.4 even 9 inner