Properties

Label 81.10.e.a.10.9
Level $81$
Weight $10$
Character 81.10
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 10.9
Character \(\chi\) \(=\) 81.10
Dual form 81.10.e.a.73.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.47036 - 19.6814i) q^{2} +(105.808 - 38.5110i) q^{4} +(245.404 + 205.919i) q^{5} +(4352.22 + 1584.08i) q^{7} +(-6241.31 - 10810.3i) q^{8} +(3201.13 - 5544.51i) q^{10} +(-15391.2 + 12914.7i) q^{11} +(1492.45 - 8464.09i) q^{13} +(16073.1 - 91155.2i) q^{14} +(-146939. + 123296. i) q^{16} +(90872.5 - 157396. i) q^{17} +(91487.2 + 158461. i) q^{19} +(33895.9 + 12337.1i) q^{20} +(307593. + 258101. i) q^{22} +(2.02036e6 - 735350. i) q^{23} +(-321336. - 1.82239e6i) q^{25} -171765. q^{26} +521505. q^{28} +(174760. + 991116. i) q^{29} +(4.04575e6 - 1.47253e6i) q^{31} +(-1.95929e6 - 1.64404e6i) q^{32} +(-3.41313e6 - 1.24228e6i) q^{34} +(741862. + 1.28494e6i) q^{35} +(3.91332e6 - 6.77807e6i) q^{37} +(2.80123e6 - 2.35051e6i) q^{38} +(694391. - 3.93809e6i) q^{40} +(-1.14770e6 + 6.50891e6i) q^{41} +(2.33766e7 - 1.96153e7i) q^{43} +(-1.13115e6 + 1.95921e6i) q^{44} +(-2.14841e7 - 3.72115e7i) q^{46} +(-2.61315e6 - 951111. i) q^{47} +(-1.44801e7 - 1.21503e7i) q^{49} +(-3.47520e7 + 1.26487e7i) q^{50} +(-168048. - 953046. i) q^{52} -5.07132e7 q^{53} -6.43644e6 q^{55} +(-1.00392e7 - 5.69354e7i) q^{56} +(1.89001e7 - 6.87906e6i) q^{58} +(-1.21065e8 - 1.01585e8i) q^{59} +(-1.97095e7 - 7.17368e6i) q^{61} +(-4.30217e7 - 7.45158e7i) q^{62} +(-7.46622e7 + 1.29319e8i) q^{64} +(2.10917e6 - 1.76980e6i) q^{65} +(-801013. + 4.54277e6i) q^{67} +(3.55358e6 - 2.01534e7i) q^{68} +(2.27149e7 - 1.90601e7i) q^{70} +(-2.95764e7 + 5.12277e7i) q^{71} +(-1.49276e8 - 2.58554e8i) q^{73} +(-1.46982e8 - 5.34973e7i) q^{74} +(1.57826e7 + 1.32432e7i) q^{76} +(-8.74437e7 + 3.18269e7i) q^{77} +(-9.91742e7 - 5.62445e8i) q^{79} -6.14484e7 q^{80} +1.32087e8 q^{82} +(-1.22408e7 - 6.94213e7i) q^{83} +(5.47112e7 - 1.99133e7i) q^{85} +(-4.67181e8 - 3.92012e8i) q^{86} +(2.35673e8 + 8.57778e7i) q^{88} +(3.85185e8 + 6.67159e8i) q^{89} +(1.99032e7 - 3.44734e7i) q^{91} +(1.85451e8 - 1.55612e8i) q^{92} +(-9.65060e6 + 5.47313e7i) q^{94} +(-1.01786e7 + 5.77258e7i) q^{95} +(1.22147e9 - 1.02493e9i) q^{97} +(-1.88883e8 + 3.27155e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.47036 19.6814i −0.153370 0.869804i −0.960261 0.279103i \(-0.909963\pi\)
0.806891 0.590700i \(-0.201148\pi\)
\(3\) 0 0
\(4\) 105.808 38.5110i 0.206657 0.0752169i
\(5\) 245.404 + 205.919i 0.175597 + 0.147343i 0.726350 0.687325i \(-0.241215\pi\)
−0.550753 + 0.834668i \(0.685660\pi\)
\(6\) 0 0
\(7\) 4352.22 + 1584.08i 0.685125 + 0.249365i 0.661046 0.750345i \(-0.270113\pi\)
0.0240785 + 0.999710i \(0.492335\pi\)
\(8\) −6241.31 10810.3i −0.538730 0.933107i
\(9\) 0 0
\(10\) 3201.13 5544.51i 0.101228 0.175333i
\(11\) −15391.2 + 12914.7i −0.316960 + 0.265961i −0.787362 0.616491i \(-0.788553\pi\)
0.470402 + 0.882452i \(0.344109\pi\)
\(12\) 0 0
\(13\) 1492.45 8464.09i 0.0144929 0.0821931i −0.976703 0.214593i \(-0.931157\pi\)
0.991196 + 0.132400i \(0.0422685\pi\)
\(14\) 16073.1 91155.2i 0.111821 0.634169i
\(15\) 0 0
\(16\) −146939. + 123296.i −0.560527 + 0.470338i
\(17\) 90872.5 157396.i 0.263884 0.457060i −0.703387 0.710807i \(-0.748330\pi\)
0.967271 + 0.253747i \(0.0816632\pi\)
\(18\) 0 0
\(19\) 91487.2 + 158461.i 0.161053 + 0.278952i 0.935247 0.353997i \(-0.115178\pi\)
−0.774193 + 0.632949i \(0.781844\pi\)
\(20\) 33895.9 + 12337.1i 0.0473710 + 0.0172416i
\(21\) 0 0
\(22\) 307593. + 258101.i 0.279946 + 0.234902i
\(23\) 2.02036e6 735350.i 1.50540 0.547922i 0.547950 0.836511i \(-0.315408\pi\)
0.957453 + 0.288589i \(0.0931862\pi\)
\(24\) 0 0
\(25\) −321336. 1.82239e6i −0.164524 0.933062i
\(26\) −171765. −0.0737146
\(27\) 0 0
\(28\) 521505. 0.160342
\(29\) 174760. + 991116.i 0.0458830 + 0.260216i 0.999117 0.0420182i \(-0.0133787\pi\)
−0.953234 + 0.302234i \(0.902268\pi\)
\(30\) 0 0
\(31\) 4.04575e6 1.47253e6i 0.786813 0.286376i 0.0828023 0.996566i \(-0.473613\pi\)
0.704010 + 0.710190i \(0.251391\pi\)
\(32\) −1.95929e6 1.64404e6i −0.330312 0.277165i
\(33\) 0 0
\(34\) −3.41313e6 1.24228e6i −0.438024 0.159428i
\(35\) 741862. + 1.28494e6i 0.0835635 + 0.144736i
\(36\) 0 0
\(37\) 3.91332e6 6.77807e6i 0.343271 0.594563i −0.641767 0.766900i \(-0.721798\pi\)
0.985038 + 0.172337i \(0.0551317\pi\)
\(38\) 2.80123e6 2.35051e6i 0.217933 0.182868i
\(39\) 0 0
\(40\) 694391. 3.93809e6i 0.0428878 0.243229i
\(41\) −1.14770e6 + 6.50891e6i −0.0634307 + 0.359734i 0.936527 + 0.350594i \(0.114020\pi\)
−0.999958 + 0.00913945i \(0.997091\pi\)
\(42\) 0 0
\(43\) 2.33766e7 1.96153e7i 1.04273 0.874956i 0.0504214 0.998728i \(-0.483944\pi\)
0.992311 + 0.123772i \(0.0394991\pi\)
\(44\) −1.13115e6 + 1.95921e6i −0.0454971 + 0.0788033i
\(45\) 0 0
\(46\) −2.14841e7 3.72115e7i −0.707468 1.22537i
\(47\) −2.61315e6 951111.i −0.0781133 0.0284309i 0.302668 0.953096i \(-0.402123\pi\)
−0.380781 + 0.924665i \(0.624345\pi\)
\(48\) 0 0
\(49\) −1.44801e7 1.21503e7i −0.358831 0.301095i
\(50\) −3.47520e7 + 1.26487e7i −0.786347 + 0.286207i
\(51\) 0 0
\(52\) −168048. 953046.i −0.00318726 0.0180759i
\(53\) −5.07132e7 −0.882834 −0.441417 0.897302i \(-0.645524\pi\)
−0.441417 + 0.897302i \(0.645524\pi\)
\(54\) 0 0
\(55\) −6.43644e6 −0.0948447
\(56\) −1.00392e7 5.69354e7i −0.136413 0.773635i
\(57\) 0 0
\(58\) 1.89001e7 6.87906e6i 0.219299 0.0798185i
\(59\) −1.21065e8 1.01585e8i −1.30072 1.09143i −0.990021 0.140923i \(-0.954993\pi\)
−0.310697 0.950509i \(-0.600562\pi\)
\(60\) 0 0
\(61\) −1.97095e7 7.17368e6i −0.182260 0.0663373i 0.249278 0.968432i \(-0.419807\pi\)
−0.431538 + 0.902095i \(0.642029\pi\)
\(62\) −4.30217e7 7.45158e7i −0.369765 0.640451i
\(63\) 0 0
\(64\) −7.46622e7 + 1.29319e8i −0.556277 + 0.963500i
\(65\) 2.10917e6 1.76980e6i 0.0146555 0.0122974i
\(66\) 0 0
\(67\) −801013. + 4.54277e6i −0.00485627 + 0.0275413i −0.987140 0.159861i \(-0.948896\pi\)
0.982283 + 0.187402i \(0.0600067\pi\)
\(68\) 3.55358e6 2.01534e7i 0.0201547 0.114303i
\(69\) 0 0
\(70\) 2.27149e7 1.90601e7i 0.113076 0.0948821i
\(71\) −2.95764e7 + 5.12277e7i −0.138128 + 0.239245i −0.926788 0.375585i \(-0.877442\pi\)
0.788660 + 0.614830i \(0.210775\pi\)
\(72\) 0 0
\(73\) −1.49276e8 2.58554e8i −0.615231 1.06561i −0.990344 0.138632i \(-0.955729\pi\)
0.375113 0.926979i \(-0.377604\pi\)
\(74\) −1.46982e8 5.34973e7i −0.569801 0.207390i
\(75\) 0 0
\(76\) 1.57826e7 + 1.32432e7i 0.0542646 + 0.0455334i
\(77\) −8.74437e7 + 3.18269e7i −0.283478 + 0.103178i
\(78\) 0 0
\(79\) −9.91742e7 5.62445e8i −0.286469 1.62464i −0.699992 0.714151i \(-0.746813\pi\)
0.413524 0.910493i \(-0.364298\pi\)
\(80\) −6.14484e7 −0.167728
\(81\) 0 0
\(82\) 1.32087e8 0.322626
\(83\) −1.22408e7 6.94213e7i −0.0283113 0.160561i 0.967374 0.253351i \(-0.0815327\pi\)
−0.995686 + 0.0927895i \(0.970422\pi\)
\(84\) 0 0
\(85\) 5.47112e7 1.99133e7i 0.113682 0.0413768i
\(86\) −4.67181e8 3.92012e8i −0.920964 0.772780i
\(87\) 0 0
\(88\) 2.35673e8 + 8.57778e7i 0.418926 + 0.152477i
\(89\) 3.85185e8 + 6.67159e8i 0.650749 + 1.12713i 0.982941 + 0.183919i \(0.0588785\pi\)
−0.332192 + 0.943212i \(0.607788\pi\)
\(90\) 0 0
\(91\) 1.99032e7 3.44734e7i 0.0304255 0.0526985i
\(92\) 1.85451e8 1.55612e8i 0.269889 0.226463i
\(93\) 0 0
\(94\) −9.65060e6 + 5.47313e7i −0.0127491 + 0.0723036i
\(95\) −1.01786e7 + 5.77258e7i −0.0128213 + 0.0727133i
\(96\) 0 0
\(97\) 1.22147e9 1.02493e9i 1.40091 1.17550i 0.440212 0.897894i \(-0.354903\pi\)
0.960695 0.277607i \(-0.0895413\pi\)
\(98\) −1.88883e8 + 3.27155e8i −0.206860 + 0.358292i
\(99\) 0 0
\(100\) −1.04182e8 1.80448e8i −0.104182 0.180448i
\(101\) 1.43854e9 + 5.23588e8i 1.37555 + 0.500660i 0.920827 0.389971i \(-0.127515\pi\)
0.454726 + 0.890632i \(0.349737\pi\)
\(102\) 0 0
\(103\) 2.89639e8 + 2.43036e8i 0.253565 + 0.212766i 0.760706 0.649097i \(-0.224853\pi\)
−0.507141 + 0.861863i \(0.669297\pi\)
\(104\) −1.00814e8 + 3.66933e7i −0.0845027 + 0.0307565i
\(105\) 0 0
\(106\) 1.75993e8 + 9.98106e8i 0.135400 + 0.767892i
\(107\) 1.72565e9 1.27270 0.636348 0.771402i \(-0.280444\pi\)
0.636348 + 0.771402i \(0.280444\pi\)
\(108\) 0 0
\(109\) −1.80263e9 −1.22317 −0.611585 0.791179i \(-0.709468\pi\)
−0.611585 + 0.791179i \(0.709468\pi\)
\(110\) 2.23368e7 + 1.26678e8i 0.0145463 + 0.0824963i
\(111\) 0 0
\(112\) −8.34821e8 + 3.03850e8i −0.501317 + 0.182464i
\(113\) −1.01650e9 8.52941e8i −0.586479 0.492114i 0.300589 0.953754i \(-0.402817\pi\)
−0.887068 + 0.461640i \(0.847261\pi\)
\(114\) 0 0
\(115\) 6.47226e8 + 2.35571e8i 0.345077 + 0.125598i
\(116\) 5.66600e7 + 9.81380e7i 0.0290546 + 0.0503241i
\(117\) 0 0
\(118\) −1.57920e9 + 2.73526e9i −0.749840 + 1.29876i
\(119\) 6.44825e8 5.41072e8i 0.294768 0.247340i
\(120\) 0 0
\(121\) −3.39355e8 + 1.92458e9i −0.143920 + 0.816210i
\(122\) −7.27889e7 + 4.12806e8i −0.0297472 + 0.168705i
\(123\) 0 0
\(124\) 3.71365e8 3.11612e8i 0.141060 0.118363i
\(125\) 6.09250e8 1.05525e9i 0.223203 0.386599i
\(126\) 0 0
\(127\) 2.38598e9 + 4.13264e9i 0.813861 + 1.40965i 0.910143 + 0.414295i \(0.135972\pi\)
−0.0962817 + 0.995354i \(0.530695\pi\)
\(128\) 1.57373e9 + 5.72789e8i 0.518184 + 0.188604i
\(129\) 0 0
\(130\) −4.21517e7 3.53695e7i −0.0129441 0.0108614i
\(131\) −5.68996e8 + 2.07097e8i −0.168806 + 0.0614404i −0.425041 0.905174i \(-0.639740\pi\)
0.256235 + 0.966615i \(0.417518\pi\)
\(132\) 0 0
\(133\) 1.47159e8 + 8.34578e8i 0.0407806 + 0.231278i
\(134\) 9.21880e7 0.0247003
\(135\) 0 0
\(136\) −2.26866e9 −0.568648
\(137\) 8.37424e8 + 4.74927e9i 0.203097 + 1.15182i 0.900407 + 0.435049i \(0.143269\pi\)
−0.697310 + 0.716770i \(0.745620\pi\)
\(138\) 0 0
\(139\) 1.04982e9 3.82103e8i 0.238533 0.0868188i −0.219988 0.975503i \(-0.570602\pi\)
0.458521 + 0.888684i \(0.348380\pi\)
\(140\) 1.27980e8 + 1.07388e8i 0.0281556 + 0.0236253i
\(141\) 0 0
\(142\) 1.11087e9 + 4.04325e8i 0.229281 + 0.0834514i
\(143\) 8.63409e7 + 1.49547e8i 0.0172665 + 0.0299064i
\(144\) 0 0
\(145\) −1.61202e8 + 2.79210e8i −0.0302841 + 0.0524536i
\(146\) −4.57067e9 + 3.83525e9i −0.832515 + 0.698563i
\(147\) 0 0
\(148\) 1.53031e8 8.67881e8i 0.0262181 0.148690i
\(149\) 8.28387e8 4.69802e9i 0.137688 0.780866i −0.835263 0.549851i \(-0.814684\pi\)
0.972950 0.231015i \(-0.0742045\pi\)
\(150\) 0 0
\(151\) 2.80492e7 2.35361e7i 0.00439061 0.00368416i −0.640590 0.767883i \(-0.721310\pi\)
0.644980 + 0.764199i \(0.276866\pi\)
\(152\) 1.14200e9 1.97800e9i 0.173528 0.300560i
\(153\) 0 0
\(154\) 9.29859e8 + 1.61056e9i 0.133221 + 0.230746i
\(155\) 1.29607e9 + 4.71729e8i 0.180358 + 0.0656448i
\(156\) 0 0
\(157\) −1.02379e10 8.59064e9i −1.34482 1.12844i −0.980360 0.197216i \(-0.936810\pi\)
−0.364458 0.931220i \(-0.618746\pi\)
\(158\) −1.07255e10 + 3.90378e9i −1.36919 + 0.498343i
\(159\) 0 0
\(160\) −1.42280e8 8.06910e8i −0.0171634 0.0973386i
\(161\) 9.95789e9 1.16802
\(162\) 0 0
\(163\) 3.18897e9 0.353840 0.176920 0.984225i \(-0.443387\pi\)
0.176920 + 0.984225i \(0.443387\pi\)
\(164\) 1.29229e8 + 7.32895e8i 0.0139497 + 0.0791124i
\(165\) 0 0
\(166\) −1.32383e9 + 4.81834e8i −0.135315 + 0.0492506i
\(167\) 2.36925e9 + 1.98804e9i 0.235715 + 0.197789i 0.752992 0.658030i \(-0.228610\pi\)
−0.517277 + 0.855818i \(0.673054\pi\)
\(168\) 0 0
\(169\) 9.89556e9 + 3.60169e9i 0.933147 + 0.339638i
\(170\) −5.81789e8 1.00769e9i −0.0534251 0.0925350i
\(171\) 0 0
\(172\) 1.71803e9 2.97571e9i 0.149676 0.259247i
\(173\) −5.34677e9 + 4.48647e9i −0.453820 + 0.380800i −0.840851 0.541266i \(-0.817945\pi\)
0.387031 + 0.922067i \(0.373501\pi\)
\(174\) 0 0
\(175\) 1.48828e9 8.44045e9i 0.119954 0.680290i
\(176\) 6.69222e8 3.79535e9i 0.0525730 0.298157i
\(177\) 0 0
\(178\) 1.17939e10 9.89626e9i 0.880577 0.738892i
\(179\) 1.24806e10 2.16171e10i 0.908654 1.57383i 0.0927174 0.995692i \(-0.470445\pi\)
0.815936 0.578142i \(-0.196222\pi\)
\(180\) 0 0
\(181\) 5.17947e9 + 8.97110e9i 0.358700 + 0.621287i 0.987744 0.156083i \(-0.0498867\pi\)
−0.629044 + 0.777370i \(0.716553\pi\)
\(182\) −7.47557e8 2.72089e8i −0.0505037 0.0183818i
\(183\) 0 0
\(184\) −2.05590e10 1.72511e10i −1.32228 1.10952i
\(185\) 2.35607e9 8.57541e8i 0.147882 0.0538247i
\(186\) 0 0
\(187\) 6.34089e8 + 3.59610e9i 0.0379195 + 0.215052i
\(188\) −3.13121e8 −0.0182811
\(189\) 0 0
\(190\) 1.17145e9 0.0652127
\(191\) 2.47186e9 + 1.40186e10i 0.134392 + 0.762176i 0.975281 + 0.220968i \(0.0709216\pi\)
−0.840889 + 0.541208i \(0.817967\pi\)
\(192\) 0 0
\(193\) 8.94285e9 3.25493e9i 0.463947 0.168863i −0.0994617 0.995041i \(-0.531712\pi\)
0.563408 + 0.826179i \(0.309490\pi\)
\(194\) −2.44111e10 2.04833e10i −1.23731 1.03823i
\(195\) 0 0
\(196\) −2.00004e9 7.27954e8i −0.0968023 0.0352332i
\(197\) −1.52971e10 2.64954e10i −0.723622 1.25335i −0.959539 0.281576i \(-0.909143\pi\)
0.235917 0.971773i \(-0.424191\pi\)
\(198\) 0 0
\(199\) −1.42302e10 + 2.46475e10i −0.643240 + 1.11412i 0.341466 + 0.939894i \(0.389077\pi\)
−0.984705 + 0.174229i \(0.944257\pi\)
\(200\) −1.76949e10 + 1.48478e10i −0.782013 + 0.656186i
\(201\) 0 0
\(202\) 5.31267e9 3.01296e10i 0.224508 1.27325i
\(203\) −8.09410e8 + 4.59039e9i −0.0334531 + 0.189722i
\(204\) 0 0
\(205\) −1.62195e9 + 1.36098e9i −0.0641426 + 0.0538220i
\(206\) 3.77814e9 6.54393e9i 0.146176 0.253184i
\(207\) 0 0
\(208\) 8.24292e8 + 1.42772e9i 0.0305349 + 0.0528880i
\(209\) −3.45457e9 1.25736e9i −0.125238 0.0455828i
\(210\) 0 0
\(211\) −3.38931e10 2.84397e10i −1.17717 0.987766i −0.999994 0.00358737i \(-0.998858\pi\)
−0.177180 0.984178i \(-0.556697\pi\)
\(212\) −5.36587e9 + 1.95302e9i −0.182444 + 0.0664040i
\(213\) 0 0
\(214\) −5.98862e9 3.39632e10i −0.195193 1.10700i
\(215\) 9.77586e9 0.312019
\(216\) 0 0
\(217\) 1.99406e10 0.610477
\(218\) 6.25577e9 + 3.54782e10i 0.187597 + 1.06392i
\(219\) 0 0
\(220\) −6.81028e8 + 2.47874e8i −0.0196003 + 0.00713393i
\(221\) −1.19659e9 1.00406e9i −0.0337427 0.0283135i
\(222\) 0 0
\(223\) 3.70559e10 + 1.34872e10i 1.00343 + 0.365217i 0.790905 0.611939i \(-0.209610\pi\)
0.212521 + 0.977156i \(0.431832\pi\)
\(224\) −5.92298e9 1.02589e10i −0.157190 0.272261i
\(225\) 0 0
\(226\) −1.32595e10 + 2.29661e10i −0.338095 + 0.585597i
\(227\) −3.32667e10 + 2.79141e10i −0.831560 + 0.697762i −0.955649 0.294509i \(-0.904844\pi\)
0.124088 + 0.992271i \(0.460399\pi\)
\(228\) 0 0
\(229\) −8.40748e9 + 4.76812e10i −0.202025 + 1.14574i 0.700027 + 0.714117i \(0.253171\pi\)
−0.902052 + 0.431627i \(0.857940\pi\)
\(230\) 2.39026e9 1.35558e10i 0.0563209 0.319412i
\(231\) 0 0
\(232\) 9.62349e9 8.07507e9i 0.218091 0.183000i
\(233\) −1.91260e9 + 3.31272e9i −0.0425130 + 0.0736347i −0.886499 0.462731i \(-0.846870\pi\)
0.843986 + 0.536365i \(0.180203\pi\)
\(234\) 0 0
\(235\) −4.45428e8 7.71503e8i −0.00952734 0.0165018i
\(236\) −1.67218e10 6.08623e9i −0.350896 0.127716i
\(237\) 0 0
\(238\) −1.28868e10 1.08133e10i −0.260346 0.218456i
\(239\) −2.31142e10 + 8.41288e9i −0.458235 + 0.166784i −0.560816 0.827941i \(-0.689512\pi\)
0.102580 + 0.994725i \(0.467290\pi\)
\(240\) 0 0
\(241\) 9.59917e9 + 5.44396e10i 0.183298 + 1.03953i 0.928123 + 0.372273i \(0.121422\pi\)
−0.744825 + 0.667259i \(0.767467\pi\)
\(242\) 3.90561e10 0.732015
\(243\) 0 0
\(244\) −2.36169e9 −0.0426549
\(245\) −1.05152e9 5.96346e9i −0.0186453 0.105743i
\(246\) 0 0
\(247\) 1.47776e9 5.37862e8i 0.0252621 0.00919464i
\(248\) −4.11693e10 3.45451e10i −0.691099 0.579901i
\(249\) 0 0
\(250\) −2.28832e10 8.32879e9i −0.370498 0.134850i
\(251\) 3.40271e10 + 5.89367e10i 0.541120 + 0.937247i 0.998840 + 0.0481509i \(0.0153329\pi\)
−0.457720 + 0.889096i \(0.651334\pi\)
\(252\) 0 0
\(253\) −2.15988e10 + 3.74102e10i −0.331427 + 0.574048i
\(254\) 7.30560e10 6.13012e10i 1.10130 0.924097i
\(255\) 0 0
\(256\) −7.46422e9 + 4.23317e10i −0.108619 + 0.616007i
\(257\) −4.61848e9 + 2.61927e10i −0.0660389 + 0.374525i 0.933820 + 0.357742i \(0.116453\pi\)
−0.999859 + 0.0167826i \(0.994658\pi\)
\(258\) 0 0
\(259\) 2.77686e10 2.33006e10i 0.383447 0.321750i
\(260\) 1.55010e8 2.68486e8i 0.00210368 0.00364369i
\(261\) 0 0
\(262\) 6.05059e9 + 1.04799e10i 0.0793308 + 0.137405i
\(263\) 1.04298e11 + 3.79613e10i 1.34423 + 0.489260i 0.911143 0.412091i \(-0.135202\pi\)
0.433089 + 0.901351i \(0.357424\pi\)
\(264\) 0 0
\(265\) −1.24452e10 1.04428e10i −0.155023 0.130080i
\(266\) 1.59150e10 5.79258e9i 0.194912 0.0709422i
\(267\) 0 0
\(268\) 9.01931e7 + 5.11511e8i 0.00106799 + 0.00605687i
\(269\) 1.15400e11 1.34375 0.671877 0.740663i \(-0.265488\pi\)
0.671877 + 0.740663i \(0.265488\pi\)
\(270\) 0 0
\(271\) −7.26689e10 −0.818440 −0.409220 0.912436i \(-0.634199\pi\)
−0.409220 + 0.912436i \(0.634199\pi\)
\(272\) 6.05362e9 + 3.43318e10i 0.0670587 + 0.380309i
\(273\) 0 0
\(274\) 9.05661e10 3.29634e10i 0.970707 0.353309i
\(275\) 2.84813e10 + 2.38987e10i 0.300305 + 0.251986i
\(276\) 0 0
\(277\) 8.90994e10 + 3.24295e10i 0.909318 + 0.330965i 0.753980 0.656897i \(-0.228131\pi\)
0.155337 + 0.987861i \(0.450354\pi\)
\(278\) −1.11636e10 1.93359e10i −0.112099 0.194161i
\(279\) 0 0
\(280\) 9.26038e9 1.60395e10i 0.0900363 0.155947i
\(281\) 5.24844e10 4.40396e10i 0.502171 0.421372i −0.356193 0.934412i \(-0.615925\pi\)
0.858364 + 0.513041i \(0.171481\pi\)
\(282\) 0 0
\(283\) −3.13332e10 + 1.77700e11i −0.290380 + 1.64683i 0.395030 + 0.918668i \(0.370734\pi\)
−0.685410 + 0.728158i \(0.740377\pi\)
\(284\) −1.15659e9 + 6.55933e9i −0.0105498 + 0.0598311i
\(285\) 0 0
\(286\) 2.64366e9 2.21829e9i 0.0233646 0.0196052i
\(287\) −1.53057e10 + 2.65102e10i −0.133163 + 0.230645i
\(288\) 0 0
\(289\) 4.27783e10 + 7.40942e10i 0.360731 + 0.624804i
\(290\) 6.05468e9 + 2.20372e9i 0.0502690 + 0.0182964i
\(291\) 0 0
\(292\) −2.57519e10 2.16084e10i −0.207294 0.173940i
\(293\) 3.69540e10 1.34502e10i 0.292926 0.106616i −0.191377 0.981517i \(-0.561295\pi\)
0.484303 + 0.874900i \(0.339073\pi\)
\(294\) 0 0
\(295\) −8.79146e9 4.98589e10i −0.0675868 0.383304i
\(296\) −9.76969e10 −0.739721
\(297\) 0 0
\(298\) −9.53384e10 −0.700317
\(299\) −3.20879e9 1.81980e10i −0.0232178 0.131675i
\(300\) 0 0
\(301\) 1.32812e11 4.83397e10i 0.932585 0.339433i
\(302\) −5.60565e8 4.70370e8i −0.00387788 0.00325393i
\(303\) 0 0
\(304\) −3.29806e10 1.20040e10i −0.221477 0.0806109i
\(305\) −3.35960e9 5.81900e9i −0.0222300 0.0385034i
\(306\) 0 0
\(307\) 5.83914e10 1.01137e11i 0.375169 0.649811i −0.615184 0.788384i \(-0.710918\pi\)
0.990352 + 0.138573i \(0.0442515\pi\)
\(308\) −8.02657e9 + 6.73509e9i −0.0508220 + 0.0426447i
\(309\) 0 0
\(310\) 4.78648e9 2.71455e10i 0.0294367 0.166944i
\(311\) −8.69989e9 + 4.93396e10i −0.0527342 + 0.299070i −0.999756 0.0220995i \(-0.992965\pi\)
0.947022 + 0.321170i \(0.104076\pi\)
\(312\) 0 0
\(313\) −5.13524e10 + 4.30898e10i −0.302420 + 0.253761i −0.781351 0.624092i \(-0.785469\pi\)
0.478930 + 0.877853i \(0.341025\pi\)
\(314\) −1.33547e11 + 2.31309e11i −0.775263 + 1.34280i
\(315\) 0 0
\(316\) −3.21538e10 5.56920e10i −0.181401 0.314196i
\(317\) −1.52494e10 5.55033e9i −0.0848177 0.0308711i 0.299263 0.954171i \(-0.403259\pi\)
−0.384081 + 0.923300i \(0.625481\pi\)
\(318\) 0 0
\(319\) −1.54898e10 1.29974e10i −0.0837503 0.0702748i
\(320\) −4.49516e10 + 1.63610e10i −0.239646 + 0.0872239i
\(321\) 0 0
\(322\) −3.45575e10 1.95985e11i −0.179139 1.01595i
\(323\) 3.32547e10 0.169997
\(324\) 0 0
\(325\) −1.59044e10 −0.0790756
\(326\) −1.10669e10 6.27635e10i −0.0542684 0.307771i
\(327\) 0 0
\(328\) 7.75262e10 2.82172e10i 0.369842 0.134611i
\(329\) −9.86639e9 8.27889e9i −0.0464277 0.0389574i
\(330\) 0 0
\(331\) −1.08408e11 3.94572e10i −0.496404 0.180676i 0.0816721 0.996659i \(-0.473974\pi\)
−0.578076 + 0.815983i \(0.696196\pi\)
\(332\) −3.96867e9 6.87393e9i −0.0179276 0.0310516i
\(333\) 0 0
\(334\) 3.09053e10 5.35295e10i 0.135886 0.235361i
\(335\) −1.13201e9 + 9.49872e8i −0.00491077 + 0.00412063i
\(336\) 0 0
\(337\) −6.26852e10 + 3.55506e11i −0.264747 + 1.50145i 0.505009 + 0.863114i \(0.331489\pi\)
−0.769755 + 0.638339i \(0.779622\pi\)
\(338\) 3.65451e10 2.07258e11i 0.152302 0.863745i
\(339\) 0 0
\(340\) 5.02202e9 4.21397e9i 0.0203809 0.0171016i
\(341\) −4.32514e10 + 7.49137e10i −0.173223 + 0.300031i
\(342\) 0 0
\(343\) −1.37223e11 2.37678e11i −0.535309 0.927182i
\(344\) −3.57947e11 1.30282e11i −1.37818 0.501616i
\(345\) 0 0
\(346\) 1.06855e11 + 8.96622e10i 0.400824 + 0.336331i
\(347\) −8.66972e10 + 3.15552e10i −0.321013 + 0.116839i −0.497500 0.867464i \(-0.665749\pi\)
0.176487 + 0.984303i \(0.443526\pi\)
\(348\) 0 0
\(349\) 5.76627e10 + 3.27022e11i 0.208056 + 1.17995i 0.892557 + 0.450934i \(0.148909\pi\)
−0.684501 + 0.729012i \(0.739980\pi\)
\(350\) −1.71285e11 −0.610116
\(351\) 0 0
\(352\) 5.13881e10 0.178411
\(353\) −8.40751e10 4.76814e11i −0.288192 1.63442i −0.693657 0.720305i \(-0.744002\pi\)
0.405466 0.914110i \(-0.367109\pi\)
\(354\) 0 0
\(355\) −1.78069e10 + 6.48118e9i −0.0595060 + 0.0216584i
\(356\) 6.64487e10 + 5.57571e10i 0.219261 + 0.183982i
\(357\) 0 0
\(358\) −4.68768e11 1.70617e11i −1.50829 0.548971i
\(359\) −2.10059e11 3.63834e11i −0.667448 1.15605i −0.978615 0.205698i \(-0.934054\pi\)
0.311168 0.950355i \(-0.399280\pi\)
\(360\) 0 0
\(361\) 1.44604e11 2.50462e11i 0.448124 0.776173i
\(362\) 1.58589e11 1.33072e11i 0.485384 0.407285i
\(363\) 0 0
\(364\) 7.78319e8 4.41407e9i 0.00232381 0.0131790i
\(365\) 1.66081e10 9.41891e10i 0.0489780 0.277768i
\(366\) 0 0
\(367\) 3.59527e10 3.01679e10i 0.103451 0.0868057i −0.589595 0.807699i \(-0.700713\pi\)
0.693046 + 0.720893i \(0.256268\pi\)
\(368\) −2.06203e11 + 3.57154e11i −0.586111 + 1.01517i
\(369\) 0 0
\(370\) −2.50540e10 4.33949e10i −0.0694976 0.120373i
\(371\) −2.20715e11 8.03336e10i −0.604852 0.220148i
\(372\) 0 0
\(373\) −2.65307e11 2.22619e11i −0.709675 0.595488i 0.214833 0.976651i \(-0.431079\pi\)
−0.924508 + 0.381163i \(0.875524\pi\)
\(374\) 6.85758e10 2.49595e10i 0.181238 0.0659651i
\(375\) 0 0
\(376\) 6.02775e9 + 3.41851e10i 0.0155529 + 0.0882046i
\(377\) 8.64972e9 0.0220529
\(378\) 0 0
\(379\) 6.32637e11 1.57499 0.787496 0.616320i \(-0.211377\pi\)
0.787496 + 0.616320i \(0.211377\pi\)
\(380\) 1.14610e9 + 6.49985e9i 0.00281966 + 0.0159911i
\(381\) 0 0
\(382\) 2.67328e11 9.72994e10i 0.642332 0.233790i
\(383\) 6.38415e11 + 5.35694e11i 1.51603 + 1.27210i 0.850831 + 0.525440i \(0.176099\pi\)
0.665203 + 0.746663i \(0.268345\pi\)
\(384\) 0 0
\(385\) −2.80128e10 1.01958e10i −0.0649805 0.0236510i
\(386\) −9.50965e10 1.64712e11i −0.218033 0.377644i
\(387\) 0 0
\(388\) 8.97701e10 1.55486e11i 0.201089 0.348297i
\(389\) −2.36074e11 + 1.98090e11i −0.522727 + 0.438620i −0.865581 0.500768i \(-0.833051\pi\)
0.342854 + 0.939389i \(0.388606\pi\)
\(390\) 0 0
\(391\) 6.78540e10 3.84819e11i 0.146818 0.832647i
\(392\) −4.09727e10 + 2.32368e11i −0.0876410 + 0.497037i
\(393\) 0 0
\(394\) −4.68380e11 + 3.93017e11i −0.979186 + 0.821635i
\(395\) 9.14801e10 1.58448e11i 0.189077 0.327492i
\(396\) 0 0
\(397\) −2.86481e11 4.96200e11i −0.578813 1.00253i −0.995616 0.0935371i \(-0.970183\pi\)
0.416802 0.908997i \(-0.363151\pi\)
\(398\) 5.34481e11 + 1.94535e11i 1.06772 + 0.388619i
\(399\) 0 0
\(400\) 2.71910e11 + 2.28160e11i 0.531074 + 0.445624i
\(401\) 7.15077e11 2.60267e11i 1.38103 0.502654i 0.458539 0.888674i \(-0.348373\pi\)
0.922490 + 0.386021i \(0.126151\pi\)
\(402\) 0 0
\(403\) −6.42558e9 3.64413e10i −0.0121350 0.0688210i
\(404\) 1.72374e11 0.321925
\(405\) 0 0
\(406\) 9.31543e10 0.170151
\(407\) 2.73063e10 + 1.54862e11i 0.0493274 + 0.279749i
\(408\) 0 0
\(409\) 4.70124e11 1.71111e11i 0.830725 0.302359i 0.108569 0.994089i \(-0.465373\pi\)
0.722156 + 0.691730i \(0.243151\pi\)
\(410\) 3.24148e10 + 2.71993e10i 0.0566521 + 0.0475368i
\(411\) 0 0
\(412\) 4.00058e10 + 1.45609e10i 0.0684046 + 0.0248972i
\(413\) −3.65981e11 6.33897e11i −0.618989 1.07212i
\(414\) 0 0
\(415\) 1.12912e10 1.95569e10i 0.0186863 0.0323656i
\(416\) −1.68395e10 + 1.41300e10i −0.0275682 + 0.0231325i
\(417\) 0 0
\(418\) −1.27580e10 + 7.23543e10i −0.0204404 + 0.115923i
\(419\) −1.66310e11 + 9.43189e11i −0.263605 + 1.49498i 0.509372 + 0.860547i \(0.329878\pi\)
−0.772977 + 0.634434i \(0.781233\pi\)
\(420\) 0 0
\(421\) −3.95028e11 + 3.31468e11i −0.612856 + 0.514248i −0.895549 0.444963i \(-0.853217\pi\)
0.282693 + 0.959211i \(0.408772\pi\)
\(422\) −4.42112e11 + 7.65760e11i −0.678619 + 1.17540i
\(423\) 0 0
\(424\) 3.16517e11 + 5.48223e11i 0.475609 + 0.823779i
\(425\) −3.16037e11 1.15028e11i −0.469880 0.171022i
\(426\) 0 0
\(427\) −7.44165e10 6.24428e10i −0.108329 0.0908986i
\(428\) 1.82588e11 6.64564e10i 0.263011 0.0957283i
\(429\) 0 0
\(430\) −3.39258e10 1.92403e11i −0.0478544 0.271396i
\(431\) 4.87168e11 0.680035 0.340017 0.940419i \(-0.389567\pi\)
0.340017 + 0.940419i \(0.389567\pi\)
\(432\) 0 0
\(433\) 2.17825e11 0.297792 0.148896 0.988853i \(-0.452428\pi\)
0.148896 + 0.988853i \(0.452428\pi\)
\(434\) −6.92011e10 3.92459e11i −0.0936288 0.530995i
\(435\) 0 0
\(436\) −1.90733e11 + 6.94210e10i −0.252776 + 0.0920030i
\(437\) 3.01361e11 + 2.52872e11i 0.395294 + 0.331691i
\(438\) 0 0
\(439\) 3.59861e10 + 1.30979e10i 0.0462428 + 0.0168310i 0.365038 0.930993i \(-0.381056\pi\)
−0.318795 + 0.947824i \(0.603278\pi\)
\(440\) 4.01718e10 + 6.95796e10i 0.0510957 + 0.0885003i
\(441\) 0 0
\(442\) −1.56087e10 + 2.70350e10i −0.0194521 + 0.0336920i
\(443\) 2.35836e11 1.97890e11i 0.290933 0.244122i −0.485626 0.874167i \(-0.661408\pi\)
0.776558 + 0.630045i \(0.216964\pi\)
\(444\) 0 0
\(445\) −4.28546e10 + 2.43040e11i −0.0518056 + 0.293804i
\(446\) 1.36851e11 7.76118e11i 0.163772 0.928797i
\(447\) 0 0
\(448\) −5.29798e11 + 4.44553e11i −0.621382 + 0.521402i
\(449\) −3.56406e11 + 6.17314e11i −0.413844 + 0.716799i −0.995306 0.0967743i \(-0.969148\pi\)
0.581462 + 0.813573i \(0.302481\pi\)
\(450\) 0 0
\(451\) −6.63964e10 1.15002e11i −0.0755701 0.130891i
\(452\) −1.40401e11 5.11019e10i −0.158215 0.0575856i
\(453\) 0 0
\(454\) 6.64836e11 + 5.57864e11i 0.734452 + 0.616278i
\(455\) 1.19831e10 4.36148e9i 0.0131074 0.00477070i
\(456\) 0 0
\(457\) 1.73926e11 + 9.86382e11i 0.186527 + 1.05785i 0.923978 + 0.382445i \(0.124918\pi\)
−0.737452 + 0.675400i \(0.763971\pi\)
\(458\) 9.67610e11 1.02756
\(459\) 0 0
\(460\) 7.75539e10 0.0807595
\(461\) 1.21689e9 + 6.90135e9i 0.00125487 + 0.00711672i 0.985429 0.170089i \(-0.0544054\pi\)
−0.984174 + 0.177205i \(0.943294\pi\)
\(462\) 0 0
\(463\) −1.24329e12 + 4.52520e11i −1.25735 + 0.457639i −0.882880 0.469599i \(-0.844398\pi\)
−0.374473 + 0.927238i \(0.622176\pi\)
\(464\) −1.47880e11 1.24086e11i −0.148108 0.124277i
\(465\) 0 0
\(466\) 7.18363e10 + 2.61463e10i 0.0705679 + 0.0256846i
\(467\) −2.79444e11 4.84011e11i −0.271875 0.470901i 0.697467 0.716617i \(-0.254310\pi\)
−0.969342 + 0.245716i \(0.920977\pi\)
\(468\) 0 0
\(469\) −1.06823e10 + 1.85023e10i −0.0101950 + 0.0176582i
\(470\) −1.36385e10 + 1.14440e10i −0.0128922 + 0.0108178i
\(471\) 0 0
\(472\) −3.42562e11 + 1.94277e12i −0.317688 + 1.80170i
\(473\) −1.06467e11 + 6.03804e11i −0.0978001 + 0.554652i
\(474\) 0 0
\(475\) 2.59378e11 2.17644e11i 0.233783 0.196167i
\(476\) 4.73905e10 8.20828e10i 0.0423117 0.0732860i
\(477\) 0 0
\(478\) 2.45792e11 + 4.25724e11i 0.215349 + 0.372995i
\(479\) 4.91701e11 + 1.78964e11i 0.426767 + 0.155331i 0.546469 0.837479i \(-0.315972\pi\)
−0.119702 + 0.992810i \(0.538194\pi\)
\(480\) 0 0
\(481\) −5.15297e10 4.32386e10i −0.0438940 0.0368314i
\(482\) 1.03814e12 3.77850e11i 0.876077 0.318866i
\(483\) 0 0
\(484\) 3.82110e10 + 2.16705e11i 0.0316508 + 0.179500i
\(485\) 5.10806e11 0.419197
\(486\) 0 0
\(487\) −1.73423e12 −1.39710 −0.698548 0.715563i \(-0.746170\pi\)
−0.698548 + 0.715563i \(0.746170\pi\)
\(488\) 4.54638e10 + 2.57838e11i 0.0362892 + 0.205806i
\(489\) 0 0
\(490\) −1.13720e11 + 4.13907e10i −0.0891158 + 0.0324355i
\(491\) −1.16225e12 9.75244e11i −0.902471 0.757263i 0.0682008 0.997672i \(-0.478274\pi\)
−0.970672 + 0.240409i \(0.922719\pi\)
\(492\) 0 0
\(493\) 1.71878e11 + 6.25587e10i 0.131042 + 0.0476954i
\(494\) −1.57143e10 2.72179e10i −0.0118720 0.0205629i
\(495\) 0 0
\(496\) −4.12920e11 + 7.15198e11i −0.306336 + 0.530590i
\(497\) −2.09872e11 + 1.76103e11i −0.154294 + 0.129468i
\(498\) 0 0
\(499\) 4.05103e11 2.29745e12i 0.292491 1.65880i −0.384737 0.923026i \(-0.625708\pi\)
0.677228 0.735773i \(-0.263181\pi\)
\(500\) 2.38248e10 1.35117e11i 0.0170476 0.0966820i
\(501\) 0 0
\(502\) 1.04187e12 8.74234e11i 0.732230 0.614414i
\(503\) −9.78309e11 + 1.69448e12i −0.681428 + 1.18027i 0.293117 + 0.956077i \(0.405308\pi\)
−0.974545 + 0.224192i \(0.928026\pi\)
\(504\) 0 0
\(505\) 2.45209e11 + 4.24714e11i 0.167774 + 0.290593i
\(506\) 8.11242e11 + 2.95268e11i 0.550140 + 0.200234i
\(507\) 0 0
\(508\) 4.11609e11 + 3.45381e11i 0.274219 + 0.230097i
\(509\) −2.33768e12 + 8.50845e11i −1.54367 + 0.561850i −0.966922 0.255072i \(-0.917901\pi\)
−0.576749 + 0.816922i \(0.695679\pi\)
\(510\) 0 0
\(511\) −2.40113e11 1.36175e12i −0.155784 0.883494i
\(512\) 1.71651e12 1.10390
\(513\) 0 0
\(514\) 5.31537e11 0.335892
\(515\) 2.10330e10 + 1.19284e11i 0.0131756 + 0.0747223i
\(516\) 0 0
\(517\) 5.25028e10 1.91095e10i 0.0323203 0.0117636i
\(518\) −5.54956e11 4.65664e11i −0.338669 0.284177i
\(519\) 0 0
\(520\) −3.22960e10 1.17548e10i −0.0193702 0.00705016i
\(521\) −1.03973e12 1.80086e12i −0.618231 1.07081i −0.989808 0.142405i \(-0.954516\pi\)
0.371578 0.928402i \(-0.378817\pi\)
\(522\) 0 0
\(523\) 1.47398e10 2.55301e10i 0.00861457 0.0149209i −0.861686 0.507442i \(-0.830591\pi\)
0.870301 + 0.492521i \(0.163925\pi\)
\(524\) −5.22289e10 + 4.38252e10i −0.0302636 + 0.0253941i
\(525\) 0 0
\(526\) 3.85180e11 2.18447e12i 0.219396 1.24425i
\(527\) 1.35877e11 7.70597e11i 0.0767359 0.435191i
\(528\) 0 0
\(529\) 2.16134e12 1.81358e12i 1.19998 1.00690i
\(530\) −1.62339e11 + 2.81180e11i −0.0893680 + 0.154790i
\(531\) 0 0
\(532\) 4.77111e10 + 8.26380e10i 0.0258236 + 0.0447278i
\(533\) 5.33791e10 + 1.94284e10i 0.0286483 + 0.0104271i
\(534\) 0 0
\(535\) 4.23481e11 + 3.55343e11i 0.223482 + 0.187523i
\(536\) 5.41080e10 1.96937e10i 0.0283152 0.0103059i
\(537\) 0 0
\(538\) −4.00479e11 2.27123e12i −0.206091 1.16880i
\(539\) 3.79784e11 0.193815
\(540\) 0 0
\(541\) −2.59028e12 −1.30005 −0.650023 0.759914i \(-0.725241\pi\)
−0.650023 + 0.759914i \(0.725241\pi\)
\(542\) 2.52187e11 + 1.43023e12i 0.125524 + 0.711882i
\(543\) 0 0
\(544\) −4.36811e11 + 1.58986e11i −0.213845 + 0.0778332i
\(545\) −4.42372e11 3.71194e11i −0.214785 0.180226i
\(546\) 0 0
\(547\) 2.29572e12 + 8.35572e11i 1.09642 + 0.399063i 0.825994 0.563679i \(-0.190615\pi\)
0.270422 + 0.962742i \(0.412837\pi\)
\(548\) 2.71506e11 + 4.70262e11i 0.128608 + 0.222755i
\(549\) 0 0
\(550\) 3.71519e11 6.43490e11i 0.173121 0.299854i
\(551\) −1.41064e11 + 1.18367e11i −0.0651982 + 0.0547078i
\(552\) 0 0
\(553\) 4.59329e11 2.60498e12i 0.208863 1.18452i
\(554\) 3.29051e11 1.86614e12i 0.148412 0.841688i
\(555\) 0 0
\(556\) 9.63643e10 8.08593e10i 0.0427641 0.0358834i
\(557\) 3.69543e11 6.40067e11i 0.162673 0.281758i −0.773153 0.634219i \(-0.781322\pi\)
0.935827 + 0.352461i \(0.114655\pi\)
\(558\) 0 0
\(559\) −1.31137e11 2.27136e11i −0.0568032 0.0983860i
\(560\) −2.67437e11 9.73391e10i −0.114915 0.0418255i
\(561\) 0 0
\(562\) −1.04890e12 8.80133e11i −0.443528 0.372165i
\(563\) −4.14841e12 + 1.50990e12i −1.74018 + 0.633373i −0.999269 0.0382313i \(-0.987828\pi\)
−0.740910 + 0.671605i \(0.765605\pi\)
\(564\) 0 0
\(565\) −7.38158e10 4.18630e11i −0.0304741 0.172827i
\(566\) 3.60612e12 1.47695
\(567\) 0 0
\(568\) 7.38381e11 0.297655
\(569\) 6.13062e10 + 3.47685e11i 0.0245188 + 0.139053i 0.994610 0.103688i \(-0.0330645\pi\)
−0.970091 + 0.242741i \(0.921953\pi\)
\(570\) 0 0
\(571\) −3.50994e12 + 1.27751e12i −1.38177 + 0.502925i −0.922716 0.385481i \(-0.874035\pi\)
−0.459059 + 0.888406i \(0.651813\pi\)
\(572\) 1.48948e10 + 1.24982e10i 0.00581771 + 0.00488163i
\(573\) 0 0
\(574\) 5.74874e11 + 2.09237e11i 0.221039 + 0.0804516i
\(575\) −1.98930e12 3.44558e12i −0.758920 1.31449i
\(576\) 0 0
\(577\) −1.05763e12 + 1.83187e12i −0.397230 + 0.688023i −0.993383 0.114848i \(-0.963362\pi\)
0.596153 + 0.802871i \(0.296695\pi\)
\(578\) 1.30982e12 1.09907e12i 0.488132 0.409591i
\(579\) 0 0
\(580\) −6.30383e9 + 3.57508e10i −0.00231302 + 0.0131178i
\(581\) 5.66939e10 3.21527e11i 0.0206416 0.117064i
\(582\) 0 0
\(583\) 7.80534e11 6.54946e11i 0.279823 0.234799i
\(584\) −1.86336e12 + 3.22743e12i −0.662886 + 1.14815i
\(585\) 0 0
\(586\) −3.92962e11 6.80630e11i −0.137661 0.238436i
\(587\) −2.55179e11 9.28776e10i −0.0887102 0.0322879i 0.297284 0.954789i \(-0.403919\pi\)
−0.385994 + 0.922501i \(0.626141\pi\)
\(588\) 0 0
\(589\) 6.03473e11 + 5.06374e11i 0.206604 + 0.173361i
\(590\) −9.50783e11 + 3.46057e11i −0.323033 + 0.117575i
\(591\) 0 0
\(592\) 2.60692e11 + 1.47846e12i 0.0872329 + 0.494722i
\(593\) 4.53303e12 1.50537 0.752684 0.658382i \(-0.228759\pi\)
0.752684 + 0.658382i \(0.228759\pi\)
\(594\) 0 0
\(595\) 2.69660e11 0.0882042
\(596\) −9.32754e10 5.28991e11i −0.0302802 0.171728i
\(597\) 0 0
\(598\) −3.47026e11 + 1.26307e11i −0.110970 + 0.0403898i
\(599\) −4.53366e12 3.80419e12i −1.43889 1.20737i −0.940212 0.340589i \(-0.889374\pi\)
−0.498680 0.866786i \(-0.666182\pi\)
\(600\) 0 0
\(601\) 5.01269e11 + 1.82447e11i 0.156724 + 0.0570429i 0.419191 0.907898i \(-0.362314\pi\)
−0.262467 + 0.964941i \(0.584536\pi\)
\(602\) −1.41230e12 2.44617e12i −0.438271 0.759107i
\(603\) 0 0
\(604\) 2.06144e9 3.57052e9i 0.000630238 0.00109160i
\(605\) −4.79586e11 + 4.02420e11i −0.145535 + 0.122118i
\(606\) 0 0
\(607\) 3.27407e10 1.85682e11i 0.00978902 0.0555163i −0.979522 0.201337i \(-0.935471\pi\)
0.989311 + 0.145821i \(0.0465824\pi\)
\(608\) 8.12655e10 4.60880e11i 0.0241179 0.136780i
\(609\) 0 0
\(610\) −1.02867e11 + 8.63158e10i −0.0300810 + 0.0252410i
\(611\) −1.19503e10 + 2.06985e10i −0.00346891 + 0.00600832i
\(612\) 0 0
\(613\) 6.23914e11 + 1.08065e12i 0.178465 + 0.309110i 0.941355 0.337418i \(-0.109554\pi\)
−0.762890 + 0.646528i \(0.776220\pi\)
\(614\) −2.19316e12 7.98244e11i −0.622747 0.226662i
\(615\) 0 0
\(616\) 8.89820e11 + 7.46648e11i 0.248994 + 0.208931i
\(617\) 2.09459e12 7.62369e11i 0.581856 0.211778i −0.0342875 0.999412i \(-0.510916\pi\)
0.616144 + 0.787634i \(0.288694\pi\)
\(618\) 0 0
\(619\) 3.66524e11 + 2.07866e12i 0.100345 + 0.569083i 0.992978 + 0.118300i \(0.0377443\pi\)
−0.892633 + 0.450784i \(0.851145\pi\)
\(620\) 1.55301e11 0.0422097
\(621\) 0 0
\(622\) 1.00126e12 0.268220
\(623\) 6.19575e11 + 3.51379e12i 0.164778 + 0.934500i
\(624\) 0 0
\(625\) −3.02948e12 + 1.10264e12i −0.794160 + 0.289051i
\(626\) 1.02628e12 + 8.61150e11i 0.267104 + 0.224127i
\(627\) 0 0
\(628\) −1.41409e12 5.14687e11i −0.362793 0.132046i
\(629\) −7.11226e11 1.23188e12i −0.181167 0.313791i
\(630\) 0 0
\(631\) −3.26317e12 + 5.65198e12i −0.819422 + 1.41928i 0.0866865 + 0.996236i \(0.472372\pi\)
−0.906109 + 0.423045i \(0.860961\pi\)
\(632\) −5.46120e12 + 4.58249e12i −1.36164 + 1.14255i
\(633\) 0 0
\(634\) −5.63174e10 + 3.19392e11i −0.0138433 + 0.0785095i
\(635\) −2.65458e11 + 1.50549e12i −0.0647908 + 0.367447i
\(636\) 0 0
\(637\) −1.24452e11 + 1.04428e11i −0.0299484 + 0.0251297i
\(638\) −2.02053e11 + 3.49966e11i −0.0482805 + 0.0836244i
\(639\) 0 0
\(640\) 2.68251e11 + 4.64624e11i 0.0632021 + 0.109469i
\(641\) 4.19369e12 + 1.52638e12i 0.981150 + 0.357109i 0.782287 0.622918i \(-0.214053\pi\)
0.198863 + 0.980027i \(0.436275\pi\)
\(642\) 0 0
\(643\) −2.62240e12 2.20045e12i −0.604991 0.507648i 0.288054 0.957614i \(-0.406992\pi\)
−0.893046 + 0.449966i \(0.851436\pi\)
\(644\) 1.05363e12 3.83489e11i 0.241379 0.0878549i
\(645\) 0 0
\(646\) −1.15406e11 6.54500e11i −0.0260725 0.147864i
\(647\) 1.27565e12 0.286195 0.143098 0.989709i \(-0.454294\pi\)
0.143098 + 0.989709i \(0.454294\pi\)
\(648\) 0 0
\(649\) 3.17527e12 0.702553
\(650\) 5.51941e10 + 3.13021e11i 0.0121278 + 0.0687803i
\(651\) 0 0
\(652\) 3.37420e11 1.22811e11i 0.0731234 0.0266147i
\(653\) 5.15112e12 + 4.32230e12i 1.10864 + 0.930263i 0.997976 0.0635939i \(-0.0202562\pi\)
0.110669 + 0.993857i \(0.464701\pi\)
\(654\) 0 0
\(655\) −1.82279e11 6.63442e10i −0.0386947 0.0140837i
\(656\) −6.33883e11 1.09792e12i −0.133642 0.231474i
\(657\) 0 0
\(658\) −1.28700e11 + 2.22915e11i −0.0267647 + 0.0463578i
\(659\) 3.06111e12 2.56857e12i 0.632258 0.530527i −0.269372 0.963036i \(-0.586816\pi\)
0.901630 + 0.432509i \(0.142372\pi\)
\(660\) 0 0
\(661\) 1.47780e12 8.38104e12i 0.301100 1.70762i −0.340219 0.940346i \(-0.610501\pi\)
0.641318 0.767275i \(-0.278388\pi\)
\(662\) −4.00359e11 + 2.27055e12i −0.0810194 + 0.459484i
\(663\) 0 0
\(664\) −6.74064e11 + 5.65607e11i −0.134569 + 0.112917i
\(665\) −1.35742e11 + 2.35112e11i −0.0269164 + 0.0466205i
\(666\) 0 0
\(667\) 1.08190e12 + 1.87390e12i 0.211650 + 0.366589i
\(668\) 3.27248e11 + 1.19109e11i 0.0635891 + 0.0231446i
\(669\) 0 0
\(670\) 2.26233e10 + 1.89832e10i 0.00433730 + 0.00363943i
\(671\) 3.95998e11 1.44132e11i 0.0754123 0.0274478i
\(672\) 0 0
\(673\) 8.88543e11 + 5.03918e12i 0.166959 + 0.946873i 0.947021 + 0.321171i \(0.104076\pi\)
−0.780062 + 0.625702i \(0.784813\pi\)
\(674\) 7.21439e12 1.34657
\(675\) 0 0
\(676\) 1.18574e12 0.218388
\(677\) 1.23990e12 + 7.03183e12i 0.226850 + 1.28653i 0.859118 + 0.511778i \(0.171013\pi\)
−0.632268 + 0.774750i \(0.717876\pi\)
\(678\) 0 0
\(679\) 6.93967e12 2.52584e12i 1.25293 0.456027i
\(680\) −5.56737e11 4.67158e11i −0.0998528 0.0837865i
\(681\) 0 0
\(682\) 1.62451e12 + 5.91272e11i 0.287536 + 0.104654i
\(683\) −3.48140e12 6.02996e12i −0.612153 1.06028i −0.990877 0.134771i \(-0.956970\pi\)
0.378723 0.925510i \(-0.376363\pi\)
\(684\) 0 0
\(685\) −7.72455e11 + 1.33793e12i −0.134050 + 0.232181i
\(686\) −4.20162e12 + 3.52558e12i −0.724366 + 0.607815i
\(687\) 0 0
\(688\) −1.01643e12 + 5.76449e12i −0.172954 + 0.980873i
\(689\) −7.56867e10 + 4.29241e11i −0.0127948 + 0.0725629i
\(690\) 0 0
\(691\) 1.53839e10 1.29086e10i 0.00256693 0.00215391i −0.641503 0.767120i \(-0.721689\pi\)
0.644070 + 0.764966i \(0.277244\pi\)
\(692\) −3.92953e11 + 6.80615e11i −0.0651424 + 0.112830i
\(693\) 0 0
\(694\) 9.21922e11 + 1.59682e12i 0.150861 + 0.261299i
\(695\) 3.36312e11 + 1.22408e11i 0.0546778 + 0.0199011i
\(696\) 0 0
\(697\) 9.20182e11 + 7.72124e11i 0.147681 + 0.123919i
\(698\) 6.23613e12 2.26977e12i 0.994411 0.361936i
\(699\) 0 0
\(700\) −1.67578e11 9.50384e11i −0.0263801 0.149609i
\(701\) 3.08521e12 0.482562 0.241281 0.970455i \(-0.422432\pi\)
0.241281 + 0.970455i \(0.422432\pi\)
\(702\) 0 0
\(703\) 1.43207e12 0.221140
\(704\) −5.20977e11 2.95461e12i −0.0799359 0.453339i
\(705\) 0 0
\(706\) −9.09259e12 + 3.30943e12i −1.37742 + 0.501340i
\(707\) 5.43146e12 + 4.55754e12i 0.817578 + 0.686030i
\(708\) 0 0
\(709\) 1.93379e12 + 7.03841e11i 0.287409 + 0.104608i 0.481702 0.876335i \(-0.340019\pi\)
−0.194293 + 0.980944i \(0.562241\pi\)
\(710\) 1.89355e11 + 3.27973e11i 0.0279650 + 0.0484368i
\(711\) 0 0
\(712\) 4.80811e12 8.32790e12i 0.701156 1.21444i
\(713\) 7.09103e12 5.95008e12i 1.02756 0.862224i
\(714\) 0 0
\(715\) −9.60604e9 + 5.44786e10i −0.00137457 + 0.00779558i
\(716\) 4.88057e11 2.76791e12i 0.0694004 0.393589i
\(717\) 0 0
\(718\) −6.43177e12 + 5.39690e12i −0.903173 + 0.757852i
\(719\) −2.06163e12 + 3.57084e12i −0.287693 + 0.498300i −0.973259 0.229711i \(-0.926222\pi\)
0.685565 + 0.728011i \(0.259555\pi\)
\(720\) 0 0
\(721\) 8.75585e11 + 1.51656e12i 0.120667 + 0.209002i
\(722\) −5.43126e12 1.97682e12i −0.743847 0.270738i
\(723\) 0 0
\(724\) 8.93517e11 + 7.49750e11i 0.120859 + 0.101413i
\(725\) 1.75004e12 6.36962e11i 0.235248 0.0856234i
\(726\) 0 0
\(727\) 2.53687e11 + 1.43873e12i 0.0336816 + 0.191018i 0.997006 0.0773207i \(-0.0246365\pi\)
−0.963325 + 0.268339i \(0.913525\pi\)
\(728\) −4.96889e11 −0.0655645
\(729\) 0 0
\(730\) −1.91141e12 −0.249116
\(731\) −9.63074e11 5.46187e12i −0.124747 0.707478i
\(732\) 0 0
\(733\) 3.33582e12 1.21414e12i 0.426810 0.155346i −0.119679 0.992813i \(-0.538186\pi\)
0.546488 + 0.837467i \(0.315964\pi\)
\(734\) −7.18517e11 6.02907e11i −0.0913702 0.0766687i
\(735\) 0 0
\(736\) −5.16742e12 1.88079e12i −0.649118 0.236259i
\(737\) −4.63401e10 8.02634e10i −0.00578567 0.0100211i
\(738\) 0 0
\(739\) 8.83848e11 1.53087e12i 0.109013 0.188816i −0.806358 0.591428i \(-0.798564\pi\)
0.915371 + 0.402612i \(0.131898\pi\)
\(740\) 2.16267e11 1.81470e11i 0.0265123 0.0222465i
\(741\) 0 0
\(742\) −8.15118e11 + 4.62277e12i −0.0987195 + 0.559866i
\(743\) −8.25056e11 + 4.67912e12i −0.0993193 + 0.563268i 0.894019 + 0.448030i \(0.147874\pi\)
−0.993338 + 0.115238i \(0.963237\pi\)
\(744\) 0 0
\(745\) 1.17070e12 9.82333e11i 0.139233 0.116830i
\(746\) −3.46075e12 + 5.99419e12i −0.409115 + 0.708608i
\(747\) 0 0
\(748\) 2.05581e11 + 3.56077e11i 0.0240119 + 0.0415898i
\(749\) 7.51039e12 + 2.73356e12i 0.871956 + 0.317366i
\(750\) 0 0
\(751\) −1.44827e12 1.21524e12i −0.166138 0.139406i 0.555928 0.831230i \(-0.312363\pi\)
−0.722066 + 0.691824i \(0.756807\pi\)
\(752\) 5.01242e11 1.82437e11i 0.0571567 0.0208033i
\(753\) 0 0
\(754\) −3.00177e10 1.70239e11i −0.00338225 0.0191817i
\(755\) 1.17299e10 0.00131381
\(756\) 0 0
\(757\) −3.90031e12 −0.431686 −0.215843 0.976428i \(-0.569250\pi\)
−0.215843 + 0.976428i \(0.569250\pi\)
\(758\) −2.19548e12 1.24512e13i −0.241556 1.36993i
\(759\) 0 0
\(760\) 6.87559e11 2.50251e11i 0.0747565 0.0272091i
\(761\) −4.97467e12 4.17424e12i −0.537691 0.451177i 0.333056 0.942907i \(-0.391920\pi\)
−0.870748 + 0.491730i \(0.836365\pi\)
\(762\) 0 0
\(763\) −7.84543e12 2.85550e12i −0.838024 0.305016i
\(764\) 8.01415e11 + 1.38809e12i 0.0851015 + 0.147400i
\(765\) 0 0
\(766\) 8.32768e12 1.44240e13i 0.873966 1.51375i
\(767\) −1.04051e12 + 8.73091e11i −0.108559 + 0.0910920i
\(768\) 0 0
\(769\) −6.97962e11 + 3.95834e12i −0.0719720 + 0.408173i 0.927443 + 0.373965i \(0.122002\pi\)
−0.999415 + 0.0342082i \(0.989109\pi\)
\(770\) −1.03454e11 + 5.86714e11i −0.0106056 + 0.0601476i
\(771\) 0 0
\(772\) 8.20876e11 6.88797e11i 0.0831763 0.0697932i
\(773\) −3.67449e12 + 6.36440e12i −0.370160 + 0.641135i −0.989590 0.143916i \(-0.954030\pi\)
0.619430 + 0.785052i \(0.287364\pi\)
\(774\) 0 0
\(775\) −3.98357e12 6.89974e12i −0.396656 0.687029i
\(776\) −1.87034e13 6.80747e12i −1.85158 0.673919i
\(777\) 0 0
\(778\) 4.71795e12 + 3.95883e12i 0.461684 + 0.387399i
\(779\) −1.13641e12 + 4.13618e11i −0.110564 + 0.0402421i
\(780\) 0 0
\(781\) −2.06377e11 1.17042e12i −0.0198487 0.112568i
\(782\) −7.80926e12 −0.746757
\(783\) 0 0
\(784\) 3.62578e12 0.342751
\(785\) −7.43457e11 4.21636e12i −0.0698783 0.396300i
\(786\) 0 0
\(787\) 1.41522e13 5.15098e12i 1.31504 0.478634i 0.413171 0.910653i \(-0.364421\pi\)
0.901864 + 0.432019i \(0.142199\pi\)
\(788\) −2.63893e12 2.21432e12i −0.243814 0.204584i
\(789\) 0 0
\(790\) −3.43595e12 1.25058e12i −0.313852 0.114233i
\(791\) −3.07289e12 5.32240e12i −0.279095 0.483407i
\(792\) 0 0
\(793\) −9.01341e10 + 1.56117e11i −0.00809393 + 0.0140191i
\(794\) −8.77172e12 + 7.36034e12i −0.783235 + 0.657212i
\(795\) 0 0
\(796\) −5.56475e11 + 3.15592e12i −0.0491288 + 0.278624i
\(797\) −1.32140e12 + 7.49406e12i −0.116004 + 0.657892i 0.870244 + 0.492621i \(0.163961\pi\)
−0.986248 + 0.165271i \(0.947150\pi\)
\(798\) 0 0
\(799\) −3.87165e11 + 3.24870e11i −0.0336074 + 0.0282000i
\(800\) −2.36649e12 + 4.09888e12i −0.204268 + 0.353802i
\(801\) 0 0
\(802\) −7.60399e12 1.31705e13i −0.649018 1.12413i
\(803\) 5.63669e12 + 2.05159e12i 0.478415 + 0.174129i
\(804\) 0 0
\(805\) 2.44371e12 + 2.05051e12i 0.205101 + 0.172100i
\(806\) −6.94916e11 + 2.52929e11i −0.0579996 + 0.0211101i
\(807\) 0 0
\(808\) −3.31828e12 1.88189e13i −0.273881 1.55326i
\(809\) −1.55017e13 −1.27236 −0.636182 0.771539i \(-0.719487\pi\)
−0.636182 + 0.771539i \(0.719487\pi\)
\(810\) 0 0
\(811\) −2.15441e13 −1.74878 −0.874389 0.485225i \(-0.838738\pi\)
−0.874389 + 0.485225i \(0.838738\pi\)
\(812\) 9.11385e10 + 5.16872e11i 0.00735698 + 0.0417235i
\(813\) 0 0
\(814\) 2.95313e12 1.07485e12i 0.235762 0.0858102i
\(815\) 7.82587e11 + 6.56669e11i 0.0621332 + 0.0521359i
\(816\) 0 0
\(817\) 5.24691e12 + 1.90972e12i 0.412006 + 0.149958i
\(818\) −4.99921e12 8.65888e12i −0.390401 0.676195i
\(819\) 0 0
\(820\) −1.19203e11 + 2.06466e11i −0.00920717 + 0.0159473i
\(821\) 1.60433e13 1.34620e13i 1.23240 1.03410i 0.234318 0.972160i \(-0.424714\pi\)
0.998080 0.0619440i \(-0.0197300\pi\)
\(822\) 0 0
\(823\) −1.18996e12 + 6.74862e12i −0.0904138 + 0.512762i 0.905643 + 0.424041i \(0.139389\pi\)
−0.996057 + 0.0887206i \(0.971722\pi\)
\(824\) 8.19557e11 4.64794e12i 0.0619308 0.351227i
\(825\) 0 0
\(826\) −1.12059e13 + 9.40287e12i −0.837600 + 0.702830i
\(827\) −9.39045e12 + 1.62647e13i −0.698090 + 1.20913i 0.271037 + 0.962569i \(0.412633\pi\)
−0.969128 + 0.246559i \(0.920700\pi\)
\(828\) 0 0
\(829\) 5.37150e12 + 9.30372e12i 0.395003 + 0.684165i 0.993102 0.117257i \(-0.0374102\pi\)
−0.598098 + 0.801423i \(0.704077\pi\)
\(830\) −4.24092e11 1.54357e11i −0.0310176 0.0112895i
\(831\) 0 0
\(832\) 9.83136e11 + 8.24949e11i 0.0711310 + 0.0596860i
\(833\) −3.22825e12 + 1.17499e12i −0.232308 + 0.0845533i
\(834\) 0 0
\(835\) 1.72050e11 + 9.75747e11i 0.0122480 + 0.0694621i
\(836\) −4.13944e11 −0.0293098
\(837\) 0 0
\(838\) 1.91404e13 1.34077
\(839\) −1.85017e12 1.04928e13i −0.128909 0.731079i −0.978909 0.204297i \(-0.934509\pi\)
0.850000 0.526783i \(-0.176602\pi\)
\(840\) 0 0
\(841\) 1.26805e13 4.61532e12i 0.874086 0.318141i
\(842\) 7.89465e12 + 6.62440e12i 0.541288 + 0.454195i
\(843\) 0 0
\(844\) −4.68141e12 1.70389e12i −0.317567 0.115585i
\(845\) 1.68676e12 + 2.92155e12i 0.113814 + 0.197132i
\(846\) 0 0
\(847\) −4.52564e12 + 7.83863e12i −0.302137 + 0.523317i
\(848\) 7.45173e12 6.25274e12i 0.494852 0.415230i
\(849\) 0 0
\(850\) −1.16715e12 + 6.61924e12i −0.0766905 + 0.434933i
\(851\) 2.92205e12 1.65718e13i 0.190987 1.08314i
\(852\) 0 0
\(853\) 4.67333e12 3.92139e12i 0.302243 0.253612i −0.479034 0.877796i \(-0.659013\pi\)
0.781277 + 0.624184i \(0.214569\pi\)
\(854\) −9.70711e11 + 1.68132e12i −0.0624496 + 0.108166i
\(855\) 0 0
\(856\) −1.07703e13 1.86547e13i −0.685639 1.18756i
\(857\) 1.48084e13 + 5.38983e12i 0.937768 + 0.341319i 0.765284 0.643693i \(-0.222599\pi\)
0.172484 + 0.985012i \(0.444821\pi\)
\(858\) 0 0
\(859\) −1.64683e12 1.38186e12i −0.103200 0.0865951i 0.589728 0.807602i \(-0.299235\pi\)
−0.692928 + 0.721007i \(0.743680\pi\)
\(860\) 1.03437e12 3.76478e11i 0.0644809 0.0234691i
\(861\) 0 0
\(862\) −1.69065e12 9.58815e12i −0.104297 0.591497i
\(863\) 7.51767e11 0.0461354 0.0230677 0.999734i \(-0.492657\pi\)
0.0230677 + 0.999734i \(0.492657\pi\)
\(864\) 0 0
\(865\) −2.23597e12 −0.135798
\(866\) −7.55933e11 4.28711e12i −0.0456723 0.259021i
\(867\) 0 0
\(868\) 2.10988e12 7.67933e11i 0.126159 0.0459182i
\(869\) 8.79023e12 + 7.37588e12i 0.522891 + 0.438758i
\(870\) 0 0
\(871\) 3.72550e10 + 1.35597e10i 0.00219332 + 0.000798304i
\(872\) 1.12508e13 + 1.94869e13i 0.658958 + 1.14135i
\(873\) 0 0
\(874\) 3.93104e12 6.80876e12i 0.227880 0.394700i
\(875\) 4.32319e12 3.62759e12i 0.249326 0.209210i
\(876\) 0 0
\(877\) −4.22948e12 + 2.39866e13i −0.241429 + 1.36921i 0.587214 + 0.809431i \(0.300225\pi\)
−0.828643 + 0.559778i \(0.810887\pi\)
\(878\) 1.32900e11 7.53711e11i 0.00754741 0.0428035i
\(879\) 0 0
\(880\) 9.45762e11 7.93589e11i 0.0531630 0.0446091i
\(881\) 1.20102e13 2.08023e13i 0.671674 1.16337i −0.305755 0.952110i \(-0.598909\pi\)
0.977429 0.211264i \(-0.0677579\pi\)
\(882\) 0 0
\(883\) −6.14230e12 1.06388e13i −0.340023 0.588937i 0.644414 0.764677i \(-0.277101\pi\)
−0.984437 + 0.175740i \(0.943768\pi\)
\(884\) −1.65276e11 6.01557e10i −0.00910282 0.00331315i
\(885\) 0 0
\(886\) −4.71318e12 3.95483e12i −0.256958 0.215614i
\(887\) −1.62535e13 + 5.91578e12i −0.881637 + 0.320890i −0.742870 0.669435i \(-0.766536\pi\)
−0.138767 + 0.990325i \(0.544314\pi\)
\(888\) 0 0
\(889\) 3.83789e12 + 2.17657e13i 0.206079 + 1.16873i
\(890\) 4.93210e12 0.263497
\(891\) 0 0
\(892\) 4.44023e12 0.234835
\(893\) −8.83568e10 5.01096e11i −0.00464952 0.0263688i
\(894\) 0 0
\(895\) 7.51417e12 2.73493e12i 0.391451 0.142476i
\(896\) 5.94186e12 + 4.98581e12i 0.307990 + 0.258434i
\(897\) 0 0
\(898\) 1.33865e13 + 4.87228e12i 0.686946 + 0.250028i
\(899\) 2.16649e12 + 3.75247e12i 0.110621 + 0.191601i
\(900\) 0 0
\(901\) −4.60843e12 + 7.98204e12i −0.232966 + 0.403508i
\(902\) −2.03298e12 + 1.70587e12i −0.102259 + 0.0858059i
\(903\) 0 0
\(904\) −2.87626e12 + 1.63121e13i −0.143242 + 0.812364i
\(905\) −5.76253e11 + 3.26809e12i −0.0285558 + 0.161948i
\(906\) 0 0
\(907\) 1.24654e13 1.04597e13i 0.611609 0.513201i −0.283544 0.958959i \(-0.591510\pi\)
0.895154 + 0.445758i \(0.147066\pi\)
\(908\) −2.44489e12 + 4.23468e12i −0.119364 + 0.206745i
\(909\) 0 0
\(910\) −1.27426e11 2.20708e11i −0.00615985 0.0106692i
\(911\) −6.34240e12 2.30845e12i −0.305085 0.111042i 0.184941 0.982750i \(-0.440791\pi\)
−0.490026 + 0.871708i \(0.663013\pi\)
\(912\) 0 0
\(913\) 1.08496e12 + 9.10387e11i 0.0516766 + 0.0433618i
\(914\) 1.88098e13 6.84620e12i 0.891510 0.324483i
\(915\) 0 0
\(916\) 9.46672e11 + 5.36884e12i 0.0444293 + 0.251971i
\(917\) −2.80445e12 −0.130974
\(918\) 0 0
\(919\) 3.46415e12 0.160205 0.0801026 0.996787i \(-0.474475\pi\)
0.0801026 + 0.996787i \(0.474475\pi\)
\(920\) −1.49295e12 8.46696e12i −0.0687070 0.389657i
\(921\) 0 0
\(922\) 1.31605e11 4.79004e10i 0.00599769 0.00218298i
\(923\) 3.89455e11 + 3.26792e11i 0.0176624 + 0.0148205i
\(924\) 0 0
\(925\) −1.36097e13 4.95354e12i −0.611240 0.222473i
\(926\) 1.32209e13 + 2.28992e13i 0.590896 + 1.02346i
\(927\) 0 0
\(928\) 1.28703e12 2.22920e12i 0.0569669 0.0986696i
\(929\) −2.03175e12 + 1.70484e12i −0.0894950 + 0.0750952i −0.686438 0.727189i \(-0.740826\pi\)
0.596943 + 0.802284i \(0.296382\pi\)
\(930\) 0 0
\(931\) 6.00592e11 3.40613e12i 0.0262003 0.148589i
\(932\) −7.47924e10 + 4.24169e11i −0.00324703 + 0.0184148i
\(933\) 0 0
\(934\) −8.55625e12 + 7.17955e12i −0.367894 + 0.308700i
\(935\) −5.84895e11 + 1.01307e12i −0.0250280 + 0.0433497i
\(936\) 0 0
\(937\) 2.01221e13 + 3.48526e13i 0.852797 + 1.47709i 0.878674 + 0.477423i \(0.158429\pi\)
−0.0258764 + 0.999665i \(0.508238\pi\)
\(938\) 4.01222e11 + 1.46033e11i 0.0169228 + 0.00615940i
\(939\) 0 0
\(940\) −7.68413e10 6.44775e10i −0.00321011 0.00269360i
\(941\) 2.28129e12 8.30320e11i 0.0948476 0.0345217i −0.294161 0.955756i \(-0.595040\pi\)
0.389008 + 0.921234i \(0.372818\pi\)
\(942\) 0 0
\(943\) 2.46757e12 + 1.39943e13i 0.101617 + 0.576299i
\(944\) 3.03142e13 1.24243
\(945\) 0 0
\(946\) 1.22532e13 0.497438
\(947\) 5.16420e12 + 2.92876e13i 0.208655 + 1.18334i 0.891584 + 0.452855i \(0.149594\pi\)
−0.682930 + 0.730484i \(0.739294\pi\)
\(948\) 0 0
\(949\) −2.41121e12 + 8.77610e11i −0.0965023 + 0.0351240i
\(950\) −5.18368e12 4.34962e12i −0.206482 0.173259i
\(951\) 0 0
\(952\) −9.87369e12 3.59373e12i −0.389595 0.141801i
\(953\) −2.80262e12 4.85429e12i −0.110064 0.190637i 0.805732 0.592281i \(-0.201772\pi\)
−0.915796 + 0.401644i \(0.868439\pi\)
\(954\) 0 0
\(955\) −2.28009e12 + 3.94923e12i −0.0887027 + 0.153638i
\(956\) −2.12168e12 + 1.78030e12i −0.0821524 + 0.0689340i
\(957\) 0 0
\(958\) 1.81589e12 1.02984e13i 0.0696538 0.395027i
\(959\) −3.87856e12 + 2.19964e13i −0.148077 + 0.839785i
\(960\) 0 0
\(961\) −6.05419e12 + 5.08007e12i −0.228982 + 0.192138i
\(962\) −6.72169e11 + 1.16423e12i −0.0253041 + 0.0438280i
\(963\) 0 0
\(964\) 3.11220e12 + 5.39048e12i 0.116070 + 0.201039i
\(965\) 2.86486e12 + 1.04272e12i 0.106348 + 0.0387076i
\(966\) 0 0
\(967\) −3.16313e13 2.65418e13i −1.16332 0.976138i −0.163370 0.986565i \(-0.552236\pi\)
−0.999946 + 0.0104270i \(0.996681\pi\)
\(968\) 2.29232e13 8.34338e12i 0.839145 0.305424i
\(969\) 0 0
\(970\) −1.77268e12 1.00534e13i −0.0642922 0.364619i
\(971\) −3.56316e13 −1.28632 −0.643160 0.765732i \(-0.722377\pi\)
−0.643160 + 0.765732i \(0.722377\pi\)
\(972\) 0 0
\(973\) 5.17433e12 0.185074
\(974\) 6.01841e12 + 3.41321e13i 0.214272 + 1.21520i
\(975\) 0 0
\(976\) 3.78058e12 1.37602e12i 0.133363 0.0485400i
\(977\) −5.90533e12 4.95516e12i −0.207357 0.173993i 0.533195 0.845993i \(-0.320991\pi\)
−0.740552 + 0.671999i \(0.765436\pi\)
\(978\) 0 0
\(979\) −1.45446e13 5.29381e12i −0.506034 0.184181i
\(980\) −3.40918e11 5.90488e11i −0.0118068 0.0204500i
\(981\) 0 0
\(982\) −1.51608e13 + 2.62592e13i −0.520258 + 0.901114i
\(983\) −3.64293e13 + 3.05678e13i −1.24440 + 1.04418i −0.247234 + 0.968956i \(0.579522\pi\)
−0.997167 + 0.0752202i \(0.976034\pi\)
\(984\) 0 0
\(985\) 1.70191e12 9.65204e12i 0.0576069 0.326705i
\(986\) 6.34762e11 3.59991e12i 0.0213877 0.121296i
\(987\) 0 0
\(988\) 1.35646e11 1.13820e11i 0.00452898 0.00380027i
\(989\) 3.28049e13 5.68198e13i 1.09032 1.88850i
\(990\) 0 0
\(991\) −3.16007e12 5.47341e12i −0.104080 0.180271i 0.809282 0.587420i \(-0.199856\pi\)
−0.913362 + 0.407149i \(0.866523\pi\)
\(992\) −1.03477e13 3.76626e12i −0.339267 0.123483i
\(993\) 0 0
\(994\) 4.19429e12 + 3.51943e12i 0.136276 + 0.114349i
\(995\) −8.56752e12 + 3.11832e12i −0.277110 + 0.100860i
\(996\) 0 0
\(997\) 4.99252e12 + 2.83140e13i 0.160026 + 0.907554i 0.954046 + 0.299662i \(0.0968738\pi\)
−0.794019 + 0.607893i \(0.792015\pi\)
\(998\) −4.66229e13 −1.48769
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.10.9 156
3.2 odd 2 27.10.e.a.13.18 156
27.2 odd 18 27.10.e.a.25.18 yes 156
27.25 even 9 inner 81.10.e.a.73.9 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.13.18 156 3.2 odd 2
27.10.e.a.25.18 yes 156 27.2 odd 18
81.10.e.a.10.9 156 1.1 even 1 trivial
81.10.e.a.73.9 156 27.25 even 9 inner