Properties

Label 81.10.e.a.10.5
Level $81$
Weight $10$
Character 81.10
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 10.5
Character \(\chi\) \(=\) 81.10
Dual form 81.10.e.a.73.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.21254 - 35.2331i) q^{2} +(-721.652 + 262.660i) q^{4} +(1770.10 + 1485.29i) q^{5} +(1506.43 + 548.294i) q^{7} +(4578.80 + 7930.71i) q^{8} +(41334.5 - 71593.4i) q^{10} +(-27997.7 + 23492.8i) q^{11} +(21795.3 - 123608. i) q^{13} +(9959.36 - 56482.3i) q^{14} +(-50230.1 + 42148.1i) q^{16} +(-224900. + 389539. i) q^{17} +(-27210.8 - 47130.6i) q^{19} +(-1.66752e6 - 606928. i) q^{20} +(1.00166e6 + 840494. i) q^{22} +(313324. - 114041. i) q^{23} +(588008. + 3.33476e6i) q^{25} -4.49048e6 q^{26} -1.23113e6 q^{28} +(564465. + 3.20124e6i) q^{29} +(-8.22217e6 + 2.99262e6i) q^{31} +(5.38881e6 + 4.52175e6i) q^{32} +(1.51218e7 + 5.50390e6i) q^{34} +(1.85215e6 + 3.20801e6i) q^{35} +(-8.86390e6 + 1.53527e7i) q^{37} +(-1.49151e6 + 1.25152e6i) q^{38} +(-3.67447e6 + 2.08390e7i) q^{40} +(-815267. + 4.62361e6i) q^{41} +(2.43510e7 - 2.04329e7i) q^{43} +(1.40340e7 - 2.43075e7i) q^{44} +(-5.96454e6 - 1.03309e7i) q^{46} +(-2.53795e7 - 9.23739e6i) q^{47} +(-2.89440e7 - 2.42869e7i) q^{49} +(1.13841e8 - 4.14347e7i) q^{50} +(1.67381e7 + 9.49264e7i) q^{52} -9.26556e7 q^{53} -8.44523e7 q^{55} +(2.54926e6 + 1.44576e7i) q^{56} +(1.09283e8 - 3.97757e7i) q^{58} +(6.23558e7 + 5.23227e7i) q^{59} +(1.19412e8 + 4.34624e7i) q^{61} +(1.56520e8 + 2.71100e8i) q^{62} +(1.09051e8 - 1.88882e8i) q^{64} +(2.22173e8 - 1.86425e8i) q^{65} +(-7.54148e6 + 4.27699e7i) q^{67} +(5.99835e7 - 3.40184e8i) q^{68} +(1.01522e8 - 8.51868e7i) q^{70} +(1.89260e7 - 3.27808e7i) q^{71} +(1.68954e8 + 2.92637e8i) q^{73} +(5.95992e8 + 2.16923e8i) q^{74} +(3.20161e7 + 2.68647e7i) q^{76} +(-5.50574e7 + 2.00393e7i) q^{77} +(6.04918e7 + 3.43066e8i) q^{79} -1.51514e8 q^{80} +1.67969e8 q^{82} +(1.22302e8 + 6.93609e8i) q^{83} +(-9.76672e8 + 3.55480e8i) q^{85} +(-8.71197e8 - 7.31021e8i) q^{86} +(-3.14511e8 - 1.14473e8i) q^{88} +(-3.09414e8 - 5.35921e8i) q^{89} +(1.00606e8 - 1.74255e8i) q^{91} +(-1.96157e8 + 1.64595e8i) q^{92} +(-1.67790e8 + 9.51587e8i) q^{94} +(2.18366e7 - 1.23842e8i) q^{95} +(4.97155e8 - 4.17163e8i) q^{97} +(-6.75886e8 + 1.17067e9i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.21254 35.2331i −0.274558 1.55710i −0.740362 0.672209i \(-0.765346\pi\)
0.465803 0.884888i \(-0.345765\pi\)
\(3\) 0 0
\(4\) −721.652 + 262.660i −1.40948 + 0.513008i
\(5\) 1770.10 + 1485.29i 1.26658 + 1.06279i 0.994949 + 0.100384i \(0.0320072\pi\)
0.271630 + 0.962402i \(0.412437\pi\)
\(6\) 0 0
\(7\) 1506.43 + 548.294i 0.237141 + 0.0863123i 0.457857 0.889026i \(-0.348617\pi\)
−0.220716 + 0.975338i \(0.570839\pi\)
\(8\) 4578.80 + 7930.71i 0.395227 + 0.684553i
\(9\) 0 0
\(10\) 41334.5 71593.4i 1.30711 2.26398i
\(11\) −27997.7 + 23492.8i −0.576574 + 0.483803i −0.883820 0.467827i \(-0.845037\pi\)
0.307246 + 0.951630i \(0.400593\pi\)
\(12\) 0 0
\(13\) 21795.3 123608.i 0.211650 1.20033i −0.674976 0.737840i \(-0.735846\pi\)
0.886626 0.462488i \(-0.153043\pi\)
\(14\) 9959.36 56482.3i 0.0692876 0.392949i
\(15\) 0 0
\(16\) −50230.1 + 42148.1i −0.191613 + 0.160782i
\(17\) −224900. + 389539.i −0.653085 + 1.13118i 0.329285 + 0.944230i \(0.393192\pi\)
−0.982370 + 0.186946i \(0.940141\pi\)
\(18\) 0 0
\(19\) −27210.8 47130.6i −0.0479017 0.0829681i 0.841080 0.540910i \(-0.181920\pi\)
−0.888982 + 0.457942i \(0.848587\pi\)
\(20\) −1.66752e6 606928.i −2.33043 0.848207i
\(21\) 0 0
\(22\) 1.00166e6 + 840494.i 0.911631 + 0.764949i
\(23\) 313324. 114041.i 0.233463 0.0849736i −0.222639 0.974901i \(-0.571467\pi\)
0.456103 + 0.889927i \(0.349245\pi\)
\(24\) 0 0
\(25\) 588008. + 3.33476e6i 0.301060 + 1.70740i
\(26\) −4.49048e6 −1.92714
\(27\) 0 0
\(28\) −1.23113e6 −0.378524
\(29\) 564465. + 3.20124e6i 0.148199 + 0.840480i 0.964742 + 0.263196i \(0.0847765\pi\)
−0.816543 + 0.577284i \(0.804112\pi\)
\(30\) 0 0
\(31\) −8.22217e6 + 2.99262e6i −1.59904 + 0.582002i −0.979230 0.202752i \(-0.935011\pi\)
−0.619807 + 0.784754i \(0.712789\pi\)
\(32\) 5.38881e6 + 4.52175e6i 0.908485 + 0.762310i
\(33\) 0 0
\(34\) 1.51218e7 + 5.50390e6i 1.94066 + 0.706343i
\(35\) 1.85215e6 + 3.20801e6i 0.208626 + 0.361351i
\(36\) 0 0
\(37\) −8.86390e6 + 1.53527e7i −0.777530 + 1.34672i 0.155831 + 0.987784i \(0.450194\pi\)
−0.933361 + 0.358938i \(0.883139\pi\)
\(38\) −1.49151e6 + 1.25152e6i −0.116038 + 0.0973671i
\(39\) 0 0
\(40\) −3.67447e6 + 2.08390e7i −0.226947 + 1.28708i
\(41\) −815267. + 4.62361e6i −0.0450581 + 0.255537i −0.999013 0.0444120i \(-0.985859\pi\)
0.953955 + 0.299949i \(0.0969697\pi\)
\(42\) 0 0
\(43\) 2.43510e7 2.04329e7i 1.08620 0.911428i 0.0897774 0.995962i \(-0.471384\pi\)
0.996421 + 0.0845335i \(0.0269400\pi\)
\(44\) 1.40340e7 2.43075e7i 0.564473 0.977696i
\(45\) 0 0
\(46\) −5.96454e6 1.03309e7i −0.196411 0.340195i
\(47\) −2.53795e7 9.23739e6i −0.758653 0.276127i −0.0664108 0.997792i \(-0.521155\pi\)
−0.692242 + 0.721665i \(0.743377\pi\)
\(48\) 0 0
\(49\) −2.89440e7 2.42869e7i −0.717258 0.601851i
\(50\) 1.13841e8 4.14347e7i 2.57592 0.937560i
\(51\) 0 0
\(52\) 1.67381e7 + 9.49264e7i 0.317461 + 1.80041i
\(53\) −9.26556e7 −1.61298 −0.806492 0.591245i \(-0.798637\pi\)
−0.806492 + 0.591245i \(0.798637\pi\)
\(54\) 0 0
\(55\) −8.44523e7 −1.24446
\(56\) 2.54926e6 + 1.44576e7i 0.0346392 + 0.196449i
\(57\) 0 0
\(58\) 1.09283e8 3.97757e7i 1.26802 0.461521i
\(59\) 6.23558e7 + 5.23227e7i 0.669950 + 0.562155i 0.913051 0.407846i \(-0.133720\pi\)
−0.243100 + 0.970001i \(0.578164\pi\)
\(60\) 0 0
\(61\) 1.19412e8 + 4.34624e7i 1.10424 + 0.401910i 0.828877 0.559431i \(-0.188980\pi\)
0.275362 + 0.961341i \(0.411202\pi\)
\(62\) 1.56520e8 + 2.71100e8i 1.34526 + 2.33006i
\(63\) 0 0
\(64\) 1.09051e8 1.88882e8i 0.812492 1.40728i
\(65\) 2.22173e8 1.86425e8i 1.54376 1.29537i
\(66\) 0 0
\(67\) −7.54148e6 + 4.27699e7i −0.0457215 + 0.259299i −0.999097 0.0424871i \(-0.986472\pi\)
0.953376 + 0.301786i \(0.0975830\pi\)
\(68\) 5.99835e7 3.40184e8i 0.340206 1.92940i
\(69\) 0 0
\(70\) 1.01522e8 8.51868e7i 0.505379 0.424063i
\(71\) 1.89260e7 3.27808e7i 0.0883885 0.153093i −0.818442 0.574590i \(-0.805162\pi\)
0.906830 + 0.421496i \(0.138495\pi\)
\(72\) 0 0
\(73\) 1.68954e8 + 2.92637e8i 0.696331 + 1.20608i 0.969730 + 0.244180i \(0.0785186\pi\)
−0.273399 + 0.961901i \(0.588148\pi\)
\(74\) 5.95992e8 + 2.16923e8i 2.31045 + 0.840937i
\(75\) 0 0
\(76\) 3.20161e7 + 2.68647e7i 0.110080 + 0.0923677i
\(77\) −5.50574e7 + 2.00393e7i −0.178487 + 0.0649641i
\(78\) 0 0
\(79\) 6.04918e7 + 3.43066e8i 0.174733 + 0.990959i 0.938452 + 0.345410i \(0.112260\pi\)
−0.763719 + 0.645549i \(0.776629\pi\)
\(80\) −1.51514e8 −0.413570
\(81\) 0 0
\(82\) 1.67969e8 0.410267
\(83\) 1.22302e8 + 6.93609e8i 0.282867 + 1.60422i 0.712807 + 0.701360i \(0.247424\pi\)
−0.429940 + 0.902857i \(0.641465\pi\)
\(84\) 0 0
\(85\) −9.76672e8 + 3.55480e8i −2.02938 + 0.738635i
\(86\) −8.71197e8 7.31021e8i −1.71741 1.44108i
\(87\) 0 0
\(88\) −3.14511e8 1.14473e8i −0.559067 0.203484i
\(89\) −3.09414e8 5.35921e8i −0.522739 0.905411i −0.999650 0.0264590i \(-0.991577\pi\)
0.476911 0.878952i \(-0.341756\pi\)
\(90\) 0 0
\(91\) 1.00606e8 1.74255e8i 0.153794 0.266379i
\(92\) −1.96157e8 + 1.64595e8i −0.285469 + 0.239537i
\(93\) 0 0
\(94\) −1.67790e8 + 9.51587e8i −0.221662 + 1.25711i
\(95\) 2.18366e7 1.23842e8i 0.0275061 0.155995i
\(96\) 0 0
\(97\) 4.97155e8 4.17163e8i 0.570190 0.478446i −0.311519 0.950240i \(-0.600838\pi\)
0.881709 + 0.471794i \(0.156393\pi\)
\(98\) −6.75886e8 + 1.17067e9i −0.740212 + 1.28208i
\(99\) 0 0
\(100\) −1.30024e9 2.25209e9i −1.30024 2.25209i
\(101\) −7.78395e8 2.83313e8i −0.744310 0.270907i −0.0581007 0.998311i \(-0.518504\pi\)
−0.686209 + 0.727404i \(0.740727\pi\)
\(102\) 0 0
\(103\) 1.00555e9 + 8.43755e8i 0.880309 + 0.738667i 0.966243 0.257634i \(-0.0829428\pi\)
−0.0859333 + 0.996301i \(0.527387\pi\)
\(104\) 1.08009e9 3.93121e8i 0.905338 0.329516i
\(105\) 0 0
\(106\) 5.75627e8 + 3.26454e9i 0.442858 + 2.51157i
\(107\) −1.37213e8 −0.101197 −0.0505984 0.998719i \(-0.516113\pi\)
−0.0505984 + 0.998719i \(0.516113\pi\)
\(108\) 0 0
\(109\) −1.10795e9 −0.751797 −0.375899 0.926661i \(-0.622666\pi\)
−0.375899 + 0.926661i \(0.622666\pi\)
\(110\) 5.24664e8 + 2.97551e9i 0.341675 + 1.93774i
\(111\) 0 0
\(112\) −9.87775e7 + 3.59521e7i −0.0593167 + 0.0215895i
\(113\) 1.95291e8 + 1.63868e8i 0.112675 + 0.0945458i 0.697385 0.716697i \(-0.254347\pi\)
−0.584709 + 0.811243i \(0.698791\pi\)
\(114\) 0 0
\(115\) 7.23997e8 + 2.63513e8i 0.386008 + 0.140496i
\(116\) −1.24818e9 2.16192e9i −0.640056 1.10861i
\(117\) 0 0
\(118\) 1.45610e9 2.52204e9i 0.691390 1.19752i
\(119\) −5.52377e8 + 4.63500e8i −0.252508 + 0.211879i
\(120\) 0 0
\(121\) −1.77497e8 + 1.00663e9i −0.0752760 + 0.426911i
\(122\) 7.89462e8 4.47726e9i 0.322635 1.82976i
\(123\) 0 0
\(124\) 5.14750e9 4.31927e9i 1.95523 1.64064i
\(125\) −1.65571e9 + 2.86777e9i −0.606580 + 1.05063i
\(126\) 0 0
\(127\) −1.73158e9 2.99918e9i −0.590644 1.02302i −0.994146 0.108046i \(-0.965541\pi\)
0.403502 0.914979i \(-0.367793\pi\)
\(128\) −3.94786e9 1.43690e9i −1.29992 0.473133i
\(129\) 0 0
\(130\) −7.94859e9 6.66966e9i −2.44087 2.04813i
\(131\) −8.94172e8 + 3.25452e8i −0.265277 + 0.0965531i −0.471235 0.882008i \(-0.656191\pi\)
0.205957 + 0.978561i \(0.433969\pi\)
\(132\) 0 0
\(133\) −1.51497e7 8.59182e7i −0.00419828 0.0238096i
\(134\) 1.55377e9 0.416307
\(135\) 0 0
\(136\) −4.11909e9 −1.03247
\(137\) 6.93712e8 + 3.93423e9i 0.168243 + 0.954152i 0.945658 + 0.325164i \(0.105419\pi\)
−0.777415 + 0.628988i \(0.783469\pi\)
\(138\) 0 0
\(139\) 3.34375e9 1.21703e9i 0.759744 0.276524i 0.0670437 0.997750i \(-0.478643\pi\)
0.692700 + 0.721226i \(0.256421\pi\)
\(140\) −2.17922e9 1.82858e9i −0.479430 0.402289i
\(141\) 0 0
\(142\) −1.27255e9 4.63169e8i −0.262649 0.0955964i
\(143\) 2.29367e9 + 3.97276e9i 0.458690 + 0.794475i
\(144\) 0 0
\(145\) −3.75561e9 + 6.50490e9i −0.705544 + 1.22204i
\(146\) 9.26087e9 7.77079e9i 1.68680 1.41539i
\(147\) 0 0
\(148\) 2.36411e9 1.34075e10i 0.405032 2.29705i
\(149\) 4.40515e7 2.49829e8i 0.00732188 0.0415245i −0.980928 0.194372i \(-0.937733\pi\)
0.988250 + 0.152847i \(0.0488443\pi\)
\(150\) 0 0
\(151\) −2.73163e9 + 2.29211e9i −0.427589 + 0.358790i −0.831041 0.556211i \(-0.812255\pi\)
0.403452 + 0.915001i \(0.367810\pi\)
\(152\) 2.49186e8 4.31603e8i 0.0378641 0.0655825i
\(153\) 0 0
\(154\) 1.04809e9 + 1.81535e9i 0.150161 + 0.260086i
\(155\) −1.89989e10 6.91505e9i −2.64385 0.962283i
\(156\) 0 0
\(157\) 3.49262e9 + 2.93066e9i 0.458778 + 0.384961i 0.842681 0.538413i \(-0.180976\pi\)
−0.383903 + 0.923373i \(0.625420\pi\)
\(158\) 1.17115e10 4.26262e9i 1.49505 0.544152i
\(159\) 0 0
\(160\) 2.82262e9 + 1.60079e10i 0.340496 + 1.93105i
\(161\) 5.34527e8 0.0626980
\(162\) 0 0
\(163\) −1.97696e9 −0.219358 −0.109679 0.993967i \(-0.534982\pi\)
−0.109679 + 0.993967i \(0.534982\pi\)
\(164\) −6.26098e8 3.55078e9i −0.0675841 0.383289i
\(165\) 0 0
\(166\) 2.36782e10 8.61815e9i 2.42026 0.880902i
\(167\) 5.59234e9 + 4.69253e9i 0.556377 + 0.466856i 0.877094 0.480320i \(-0.159479\pi\)
−0.320717 + 0.947175i \(0.603924\pi\)
\(168\) 0 0
\(169\) −4.83881e9 1.76118e9i −0.456298 0.166079i
\(170\) 1.85923e10 + 3.22027e10i 1.70731 + 2.95715i
\(171\) 0 0
\(172\) −1.22060e10 + 2.11415e10i −1.06340 + 1.84186i
\(173\) −1.18102e10 + 9.90995e9i −1.00242 + 0.841132i −0.987318 0.158754i \(-0.949252\pi\)
−0.0151035 + 0.999886i \(0.504808\pi\)
\(174\) 0 0
\(175\) −9.42639e8 + 5.34597e9i −0.0759756 + 0.430879i
\(176\) 4.16149e8 2.36010e9i 0.0326920 0.185406i
\(177\) 0 0
\(178\) −1.69599e10 + 1.42310e10i −1.26629 + 1.06254i
\(179\) 7.75125e9 1.34256e10i 0.564330 0.977448i −0.432782 0.901499i \(-0.642468\pi\)
0.997112 0.0759492i \(-0.0241987\pi\)
\(180\) 0 0
\(181\) 7.67302e9 + 1.32901e10i 0.531389 + 0.920393i 0.999329 + 0.0366324i \(0.0116630\pi\)
−0.467940 + 0.883760i \(0.655004\pi\)
\(182\) −6.76458e9 2.46210e9i −0.457003 0.166336i
\(183\) 0 0
\(184\) 2.33907e9 + 1.96271e9i 0.150440 + 0.126234i
\(185\) −3.84932e10 + 1.40104e10i −2.41608 + 0.879381i
\(186\) 0 0
\(187\) −2.85468e9 1.61897e10i −0.170715 0.968171i
\(188\) 2.07415e10 1.21096
\(189\) 0 0
\(190\) −4.49898e9 −0.250451
\(191\) −3.29981e8 1.87142e9i −0.0179407 0.101747i 0.974523 0.224290i \(-0.0720062\pi\)
−0.992463 + 0.122543i \(0.960895\pi\)
\(192\) 0 0
\(193\) 2.57704e10 9.37966e9i 1.33694 0.486608i 0.428095 0.903734i \(-0.359185\pi\)
0.908849 + 0.417126i \(0.136963\pi\)
\(194\) −1.77865e10 1.49247e10i −0.901537 0.756480i
\(195\) 0 0
\(196\) 2.72667e10 + 9.92425e9i 1.31971 + 0.480336i
\(197\) −1.12282e10 1.94478e10i −0.531144 0.919968i −0.999339 0.0363435i \(-0.988429\pi\)
0.468195 0.883625i \(-0.344904\pi\)
\(198\) 0 0
\(199\) 6.95778e9 1.20512e10i 0.314508 0.544744i −0.664825 0.746999i \(-0.731494\pi\)
0.979333 + 0.202255i \(0.0648271\pi\)
\(200\) −2.37546e10 + 1.99325e10i −1.04982 + 0.880901i
\(201\) 0 0
\(202\) −5.14617e9 + 2.91854e10i −0.217472 + 1.23334i
\(203\) −9.04897e8 + 5.13193e9i −0.0373996 + 0.212104i
\(204\) 0 0
\(205\) −8.31050e9 + 6.97334e9i −0.328651 + 0.275771i
\(206\) 2.34811e10 4.06704e10i 0.908480 1.57353i
\(207\) 0 0
\(208\) 4.11504e9 + 7.12745e9i 0.152436 + 0.264028i
\(209\) 1.86907e9 + 6.80286e8i 0.0677591 + 0.0246623i
\(210\) 0 0
\(211\) −4.03052e10 3.38201e10i −1.39988 1.17464i −0.961154 0.276013i \(-0.910987\pi\)
−0.438723 0.898622i \(-0.644569\pi\)
\(212\) 6.68651e10 2.43369e10i 2.27346 0.827473i
\(213\) 0 0
\(214\) 8.52439e8 + 4.83442e9i 0.0277844 + 0.157573i
\(215\) 7.34525e10 2.34441
\(216\) 0 0
\(217\) −1.40269e10 −0.429431
\(218\) 6.88319e9 + 3.90365e10i 0.206412 + 1.17062i
\(219\) 0 0
\(220\) 6.09452e10 2.21822e10i 1.75403 0.638415i
\(221\) 4.32481e10 + 3.62895e10i 1.21956 + 1.02333i
\(222\) 0 0
\(223\) −5.34246e8 1.94450e8i −0.0144667 0.00526545i 0.334777 0.942298i \(-0.391339\pi\)
−0.349243 + 0.937032i \(0.613561\pi\)
\(224\) 5.63859e9 + 9.76633e9i 0.149642 + 0.259188i
\(225\) 0 0
\(226\) 4.56034e9 7.89874e9i 0.116281 0.201405i
\(227\) 3.12318e10 2.62066e10i 0.780695 0.655081i −0.162729 0.986671i \(-0.552030\pi\)
0.943424 + 0.331590i \(0.107585\pi\)
\(228\) 0 0
\(229\) 5.47423e9 3.10459e10i 0.131542 0.746010i −0.845664 0.533715i \(-0.820795\pi\)
0.977206 0.212294i \(-0.0680935\pi\)
\(230\) 4.78653e9 2.71457e10i 0.112783 0.639627i
\(231\) 0 0
\(232\) −2.28035e10 + 1.91344e10i −0.516781 + 0.433631i
\(233\) −3.33632e10 + 5.77867e10i −0.741593 + 1.28448i 0.210177 + 0.977663i \(0.432596\pi\)
−0.951770 + 0.306813i \(0.900737\pi\)
\(234\) 0 0
\(235\) −3.12041e10 5.40470e10i −0.667430 1.15602i
\(236\) −5.87423e10 2.13804e10i −1.23267 0.448655i
\(237\) 0 0
\(238\) 1.97622e10 + 1.65824e10i 0.399244 + 0.335006i
\(239\) 4.43780e9 1.61523e9i 0.0879786 0.0320216i −0.297656 0.954673i \(-0.596205\pi\)
0.385635 + 0.922652i \(0.373983\pi\)
\(240\) 0 0
\(241\) −2.83407e9 1.60728e10i −0.0541171 0.306913i 0.945720 0.324984i \(-0.105359\pi\)
−0.999837 + 0.0180703i \(0.994248\pi\)
\(242\) 3.65696e10 0.685410
\(243\) 0 0
\(244\) −9.75896e10 −1.76258
\(245\) −1.51606e10 8.59803e10i −0.268825 1.52458i
\(246\) 0 0
\(247\) −6.41876e9 + 2.33624e9i −0.109727 + 0.0399375i
\(248\) −6.13813e10 5.15050e10i −1.03039 0.864603i
\(249\) 0 0
\(250\) 1.11326e11 + 4.05195e10i 1.80247 + 0.656046i
\(251\) −5.89048e9 1.02026e10i −0.0936740 0.162248i 0.815380 0.578926i \(-0.196528\pi\)
−0.909054 + 0.416677i \(0.863194\pi\)
\(252\) 0 0
\(253\) −6.09321e9 + 1.05537e10i −0.0934983 + 0.161944i
\(254\) −9.49129e10 + 7.96414e10i −1.43078 + 1.20057i
\(255\) 0 0
\(256\) −6.70935e9 + 3.80506e10i −0.0976339 + 0.553710i
\(257\) 1.09492e10 6.20960e10i 0.156561 0.887900i −0.800784 0.598953i \(-0.795584\pi\)
0.957345 0.288947i \(-0.0933053\pi\)
\(258\) 0 0
\(259\) −2.17706e10 + 1.82677e10i −0.300623 + 0.252253i
\(260\) −1.11365e11 + 1.92890e11i −1.51136 + 2.61776i
\(261\) 0 0
\(262\) 1.70218e10 + 2.94826e10i 0.223177 + 0.386553i
\(263\) 5.15504e10 + 1.87628e10i 0.664402 + 0.241823i 0.652136 0.758102i \(-0.273873\pi\)
0.0122665 + 0.999925i \(0.496095\pi\)
\(264\) 0 0
\(265\) −1.64009e11 1.37620e11i −2.04297 1.71426i
\(266\) −2.93305e9 + 1.06754e9i −0.0359213 + 0.0130743i
\(267\) 0 0
\(268\) −5.79160e9 3.28458e10i −0.0685792 0.388932i
\(269\) −1.43660e11 −1.67283 −0.836413 0.548100i \(-0.815351\pi\)
−0.836413 + 0.548100i \(0.815351\pi\)
\(270\) 0 0
\(271\) 4.30943e10 0.485353 0.242676 0.970107i \(-0.421975\pi\)
0.242676 + 0.970107i \(0.421975\pi\)
\(272\) −5.12154e9 2.90457e10i −0.0567336 0.321752i
\(273\) 0 0
\(274\) 1.34305e11 4.88832e10i 1.43951 0.523941i
\(275\) −9.48058e10 7.95515e10i −0.999627 0.838787i
\(276\) 0 0
\(277\) 5.48827e9 + 1.99757e9i 0.0560114 + 0.0203865i 0.369874 0.929082i \(-0.379401\pi\)
−0.313863 + 0.949468i \(0.601623\pi\)
\(278\) −6.36527e10 1.10250e11i −0.639169 1.10707i
\(279\) 0 0
\(280\) −1.69612e10 + 2.93777e10i −0.164910 + 0.285632i
\(281\) −5.79159e10 + 4.85972e10i −0.554139 + 0.464978i −0.876340 0.481693i \(-0.840022\pi\)
0.322200 + 0.946671i \(0.395578\pi\)
\(282\) 0 0
\(283\) −1.25055e10 + 7.09223e10i −0.115894 + 0.657270i 0.870409 + 0.492329i \(0.163854\pi\)
−0.986303 + 0.164941i \(0.947257\pi\)
\(284\) −5.04778e9 + 2.86274e10i −0.0460435 + 0.261126i
\(285\) 0 0
\(286\) 1.25723e11 1.05494e11i 1.11114 0.932355i
\(287\) −3.76324e9 + 6.51812e9i −0.0327411 + 0.0567093i
\(288\) 0 0
\(289\) −4.18662e10 7.25144e10i −0.353040 0.611483i
\(290\) 2.52520e11 + 9.19097e10i 2.09655 + 0.763080i
\(291\) 0 0
\(292\) −1.98790e11 1.66805e11i −1.60019 1.34272i
\(293\) −1.80961e11 + 6.58643e10i −1.43443 + 0.522091i −0.938198 0.346098i \(-0.887506\pi\)
−0.496234 + 0.868189i \(0.665284\pi\)
\(294\) 0 0
\(295\) 3.26615e10 + 1.85233e11i 0.251095 + 1.42403i
\(296\) −1.62344e11 −1.22920
\(297\) 0 0
\(298\) −9.07591e9 −0.0666679
\(299\) −7.26727e9 4.12148e10i −0.0525837 0.298217i
\(300\) 0 0
\(301\) 4.78863e10 1.74292e10i 0.336250 0.122385i
\(302\) 9.77286e10 + 8.20041e10i 0.676068 + 0.567289i
\(303\) 0 0
\(304\) 3.35327e9 + 1.22049e9i 0.0225184 + 0.00819601i
\(305\) 1.46817e11 + 2.54294e11i 0.971461 + 1.68262i
\(306\) 0 0
\(307\) 2.33740e10 4.04850e10i 0.150179 0.260118i −0.781114 0.624389i \(-0.785348\pi\)
0.931293 + 0.364270i \(0.118682\pi\)
\(308\) 3.44688e10 2.89228e10i 0.218247 0.183131i
\(309\) 0 0
\(310\) −1.25607e11 + 7.12352e11i −0.772477 + 4.38093i
\(311\) 3.53529e10 2.00496e11i 0.214291 1.21530i −0.667842 0.744303i \(-0.732782\pi\)
0.882133 0.471001i \(-0.156107\pi\)
\(312\) 0 0
\(313\) −1.80712e11 + 1.51636e11i −1.06424 + 0.893001i −0.994518 0.104566i \(-0.966655\pi\)
−0.0697191 + 0.997567i \(0.522210\pi\)
\(314\) 8.15580e10 1.41263e11i 0.473460 0.820057i
\(315\) 0 0
\(316\) −1.33764e11 2.31685e11i −0.754651 1.30709i
\(317\) 1.07735e11 + 3.92125e10i 0.599227 + 0.218101i 0.623783 0.781598i \(-0.285595\pi\)
−0.0245558 + 0.999698i \(0.507817\pi\)
\(318\) 0 0
\(319\) −9.10100e10 7.63664e10i −0.492075 0.412900i
\(320\) 4.73574e11 1.72367e11i 2.52472 0.918923i
\(321\) 0 0
\(322\) −3.32077e9 1.88330e10i −0.0172142 0.0976268i
\(323\) 2.44789e10 0.125135
\(324\) 0 0
\(325\) 4.25017e11 2.11316
\(326\) 1.22820e10 + 6.96545e10i 0.0602266 + 0.341562i
\(327\) 0 0
\(328\) −4.04015e10 + 1.47049e10i −0.192737 + 0.0701505i
\(329\) −3.31676e10 2.78309e10i −0.156075 0.130962i
\(330\) 0 0
\(331\) −1.71864e11 6.25534e10i −0.786972 0.286434i −0.0828952 0.996558i \(-0.526417\pi\)
−0.704077 + 0.710124i \(0.748639\pi\)
\(332\) −2.70443e11 4.68421e11i −1.22167 2.11599i
\(333\) 0 0
\(334\) 1.30590e11 2.26188e11i 0.574182 0.994512i
\(335\) −7.68748e10 + 6.45056e10i −0.333490 + 0.279831i
\(336\) 0 0
\(337\) 1.14090e9 6.47036e9i 0.00481851 0.0273271i −0.982304 0.187295i \(-0.940028\pi\)
0.987122 + 0.159968i \(0.0511391\pi\)
\(338\) −3.19906e10 + 1.81428e11i −0.133321 + 0.756099i
\(339\) 0 0
\(340\) 6.11447e11 5.13065e11i 2.48144 2.08218i
\(341\) 1.59896e11 2.76949e11i 0.640389 1.10919i
\(342\) 0 0
\(343\) −6.26311e10 1.08480e11i −0.244324 0.423182i
\(344\) 2.73546e11 + 9.95626e10i 1.05322 + 0.383339i
\(345\) 0 0
\(346\) 4.22530e11 + 3.54544e11i 1.58495 + 1.32993i
\(347\) −2.68610e11 + 9.77660e10i −0.994579 + 0.361997i −0.787492 0.616325i \(-0.788621\pi\)
−0.207088 + 0.978322i \(0.566398\pi\)
\(348\) 0 0
\(349\) −1.79070e10 1.01555e11i −0.0646112 0.366428i −0.999921 0.0125974i \(-0.995990\pi\)
0.935309 0.353831i \(-0.115121\pi\)
\(350\) 1.94211e11 0.691780
\(351\) 0 0
\(352\) −2.57103e11 −0.892616
\(353\) 8.25985e9 + 4.68439e10i 0.0283130 + 0.160571i 0.995686 0.0927847i \(-0.0295768\pi\)
−0.967373 + 0.253356i \(0.918466\pi\)
\(354\) 0 0
\(355\) 8.21897e10 2.99146e10i 0.274657 0.0999668i
\(356\) 3.64054e11 + 3.05478e11i 1.20127 + 1.00799i
\(357\) 0 0
\(358\) −5.21179e11 1.89694e11i −1.67692 0.610350i
\(359\) 1.99329e10 + 3.45248e10i 0.0633353 + 0.109700i 0.895954 0.444146i \(-0.146493\pi\)
−0.832619 + 0.553846i \(0.813160\pi\)
\(360\) 0 0
\(361\) 1.59863e11 2.76891e11i 0.495411 0.858077i
\(362\) 4.20581e11 3.52909e11i 1.28724 1.08013i
\(363\) 0 0
\(364\) −2.68329e10 + 1.52177e11i −0.0801146 + 0.454352i
\(365\) −1.35585e11 + 7.68941e11i −0.399847 + 2.26765i
\(366\) 0 0
\(367\) 6.15238e8 5.16246e8i 0.00177029 0.00148545i −0.641902 0.766787i \(-0.721854\pi\)
0.643672 + 0.765301i \(0.277410\pi\)
\(368\) −1.09317e10 + 1.89343e10i −0.0310723 + 0.0538187i
\(369\) 0 0
\(370\) 7.32770e11 + 1.26919e12i 2.03264 + 3.52063i
\(371\) −1.39579e11 5.08025e10i −0.382505 0.139220i
\(372\) 0 0
\(373\) −3.19686e11 2.68248e11i −0.855132 0.717541i 0.105782 0.994389i \(-0.466266\pi\)
−0.960914 + 0.276848i \(0.910710\pi\)
\(374\) −5.52679e11 + 2.01159e11i −1.46067 + 0.531639i
\(375\) 0 0
\(376\) −4.29487e10 2.43574e11i −0.110816 0.628471i
\(377\) 4.08000e11 1.04022
\(378\) 0 0
\(379\) 4.26116e11 1.06084 0.530422 0.847734i \(-0.322034\pi\)
0.530422 + 0.847734i \(0.322034\pi\)
\(380\) 1.67698e10 + 9.51062e10i 0.0412573 + 0.233982i
\(381\) 0 0
\(382\) −6.38858e10 + 2.32525e10i −0.153504 + 0.0558708i
\(383\) −1.13545e11 9.52756e10i −0.269633 0.226249i 0.497938 0.867213i \(-0.334091\pi\)
−0.767572 + 0.640963i \(0.778535\pi\)
\(384\) 0 0
\(385\) −1.27221e11 4.63047e10i −0.295111 0.107412i
\(386\) −4.90574e11 8.49699e11i −1.12476 1.94815i
\(387\) 0 0
\(388\) −2.49201e11 + 4.31629e11i −0.558223 + 0.966870i
\(389\) 2.01275e11 1.68890e11i 0.445674 0.373965i −0.392154 0.919900i \(-0.628270\pi\)
0.837828 + 0.545935i \(0.183825\pi\)
\(390\) 0 0
\(391\) −2.60434e10 + 1.47700e11i −0.0563511 + 0.319583i
\(392\) 6.00836e10 3.40751e11i 0.128519 0.728870i
\(393\) 0 0
\(394\) −6.15451e11 + 5.16425e11i −1.28665 + 1.07963i
\(395\) −4.02476e11 + 6.97108e11i −0.831864 + 1.44083i
\(396\) 0 0
\(397\) 2.56781e11 + 4.44758e11i 0.518807 + 0.898600i 0.999761 + 0.0218543i \(0.00695701\pi\)
−0.480954 + 0.876746i \(0.659710\pi\)
\(398\) −4.67827e11 1.70275e11i −0.934570 0.340156i
\(399\) 0 0
\(400\) −1.70089e11 1.42722e11i −0.332206 0.278754i
\(401\) −1.87326e11 + 6.81812e10i −0.361784 + 0.131679i −0.516515 0.856278i \(-0.672771\pi\)
0.154731 + 0.987957i \(0.450549\pi\)
\(402\) 0 0
\(403\) 1.90706e11 + 1.08155e12i 0.360157 + 2.04255i
\(404\) 6.36145e11 1.18807
\(405\) 0 0
\(406\) 1.86435e11 0.340534
\(407\) −1.12511e11 6.38079e11i −0.203244 1.15266i
\(408\) 0 0
\(409\) 6.99412e11 2.54565e11i 1.23589 0.449826i 0.360276 0.932846i \(-0.382682\pi\)
0.875609 + 0.483020i \(0.160460\pi\)
\(410\) 2.97322e11 + 2.49482e11i 0.519636 + 0.436026i
\(411\) 0 0
\(412\) −9.47276e11 3.44780e11i −1.61972 0.589529i
\(413\) 6.52461e10 + 1.13010e11i 0.110352 + 0.191135i
\(414\) 0 0
\(415\) −8.13723e11 + 1.40941e12i −1.34667 + 2.33250i
\(416\) 6.76373e11 5.67544e11i 1.10730 0.929137i
\(417\) 0 0
\(418\) 1.23569e10 7.00794e10i 0.0197978 0.112279i
\(419\) −1.72124e11 + 9.76164e11i −0.272821 + 1.54725i 0.472977 + 0.881075i \(0.343179\pi\)
−0.745798 + 0.666172i \(0.767932\pi\)
\(420\) 0 0
\(421\) −1.96202e11 + 1.64633e11i −0.304392 + 0.255415i −0.782170 0.623065i \(-0.785887\pi\)
0.477777 + 0.878481i \(0.341443\pi\)
\(422\) −9.41187e11 + 1.63018e12i −1.44467 + 2.50225i
\(423\) 0 0
\(424\) −4.24251e11 7.34825e11i −0.637495 1.10417i
\(425\) −1.43126e12 5.20936e11i −2.12798 0.774523i
\(426\) 0 0
\(427\) 1.56055e11 + 1.30946e11i 0.227171 + 0.190619i
\(428\) 9.90197e10 3.60402e10i 0.142635 0.0519147i
\(429\) 0 0
\(430\) −4.56327e11 2.58796e12i −0.643677 3.65047i
\(431\) 6.89668e11 0.962703 0.481351 0.876528i \(-0.340146\pi\)
0.481351 + 0.876528i \(0.340146\pi\)
\(432\) 0 0
\(433\) −1.44732e11 −0.197866 −0.0989328 0.995094i \(-0.531543\pi\)
−0.0989328 + 0.995094i \(0.531543\pi\)
\(434\) 8.71429e10 + 4.94212e11i 0.117904 + 0.668666i
\(435\) 0 0
\(436\) 7.99554e11 2.91014e11i 1.05964 0.385678i
\(437\) −1.39006e10 1.16640e10i −0.0182334 0.0152996i
\(438\) 0 0
\(439\) 3.38231e11 + 1.23106e11i 0.434633 + 0.158193i 0.550065 0.835122i \(-0.314603\pi\)
−0.115432 + 0.993315i \(0.536825\pi\)
\(440\) −3.86690e11 6.69767e11i −0.491842 0.851896i
\(441\) 0 0
\(442\) 1.00991e12 1.74921e12i 1.25858 2.17993i
\(443\) 6.27579e11 5.26601e11i 0.774197 0.649628i −0.167583 0.985858i \(-0.553596\pi\)
0.941780 + 0.336230i \(0.109152\pi\)
\(444\) 0 0
\(445\) 2.48304e11 1.40820e12i 0.300167 1.70233i
\(446\) −3.53203e9 + 2.00312e10i −0.00422686 + 0.0239717i
\(447\) 0 0
\(448\) 2.67840e11 2.24744e11i 0.314140 0.263595i
\(449\) 5.50978e11 9.54322e11i 0.639773 1.10812i −0.345709 0.938342i \(-0.612362\pi\)
0.985482 0.169778i \(-0.0543049\pi\)
\(450\) 0 0
\(451\) −8.57962e10 1.48603e11i −0.0976503 0.169135i
\(452\) −1.83974e11 6.69609e10i −0.207316 0.0754568i
\(453\) 0 0
\(454\) −1.11737e12 9.37584e11i −1.23437 1.03576i
\(455\) 4.36903e11 1.59020e11i 0.477896 0.173940i
\(456\) 0 0
\(457\) −3.59519e10 2.03894e11i −0.0385567 0.218666i 0.959442 0.281908i \(-0.0909672\pi\)
−0.997998 + 0.0632419i \(0.979856\pi\)
\(458\) −1.12785e12 −1.19773
\(459\) 0 0
\(460\) −5.91689e11 −0.616145
\(461\) −2.69174e10 1.52656e11i −0.0277574 0.157420i 0.967779 0.251803i \(-0.0810234\pi\)
−0.995536 + 0.0943826i \(0.969912\pi\)
\(462\) 0 0
\(463\) −1.65833e12 + 6.03581e11i −1.67709 + 0.610410i −0.992906 0.118903i \(-0.962062\pi\)
−0.684181 + 0.729312i \(0.739840\pi\)
\(464\) −1.63279e11 1.37008e11i −0.163531 0.137219i
\(465\) 0 0
\(466\) 2.24327e12 + 8.16485e11i 2.20367 + 0.802069i
\(467\) −8.73307e11 1.51261e12i −0.849652 1.47164i −0.881519 0.472149i \(-0.843479\pi\)
0.0318667 0.999492i \(-0.489855\pi\)
\(468\) 0 0
\(469\) −3.48112e10 + 6.02947e10i −0.0332231 + 0.0575442i
\(470\) −1.71039e12 + 1.43518e12i −1.61679 + 1.35665i
\(471\) 0 0
\(472\) −1.29442e11 + 7.34101e11i −0.120043 + 0.680796i
\(473\) −2.01744e11 + 1.14415e12i −0.185322 + 1.05101i
\(474\) 0 0
\(475\) 1.41169e11 1.18455e11i 0.127238 0.106766i
\(476\) 2.76881e11 4.79573e11i 0.247208 0.428177i
\(477\) 0 0
\(478\) −8.44795e10 1.46323e11i −0.0740160 0.128199i
\(479\) 1.32543e12 + 4.82417e11i 1.15039 + 0.418709i 0.845657 0.533727i \(-0.179209\pi\)
0.304738 + 0.952436i \(0.401431\pi\)
\(480\) 0 0
\(481\) 1.70452e12 + 1.43026e12i 1.45194 + 1.21833i
\(482\) −5.48689e11 + 1.99706e11i −0.463036 + 0.168531i
\(483\) 0 0
\(484\) −1.36312e11 7.73061e11i −0.112909 0.640339i
\(485\) 1.49962e12 1.23068
\(486\) 0 0
\(487\) 1.38869e12 1.11873 0.559364 0.828922i \(-0.311045\pi\)
0.559364 + 0.828922i \(0.311045\pi\)
\(488\) 2.02075e11 + 1.14603e12i 0.161296 + 0.914756i
\(489\) 0 0
\(490\) −2.93516e12 + 1.06831e12i −2.30012 + 0.837174i
\(491\) −6.70416e11 5.62546e11i −0.520569 0.436809i 0.344261 0.938874i \(-0.388129\pi\)
−0.864830 + 0.502065i \(0.832574\pi\)
\(492\) 0 0
\(493\) −1.37395e12 5.00079e11i −1.04752 0.381265i
\(494\) 1.22190e11 + 2.11639e11i 0.0923131 + 0.159891i
\(495\) 0 0
\(496\) 2.86867e11 4.96868e11i 0.212820 0.368616i
\(497\) 4.64841e10 3.90048e10i 0.0341744 0.0286757i
\(498\) 0 0
\(499\) 2.97697e9 1.68832e10i 0.00214942 0.0121900i −0.983714 0.179740i \(-0.942474\pi\)
0.985864 + 0.167550i \(0.0535855\pi\)
\(500\) 4.41596e11 2.50442e12i 0.315981 1.79202i
\(501\) 0 0
\(502\) −3.22875e11 + 2.70924e11i −0.226917 + 0.190406i
\(503\) 9.25971e11 1.60383e12i 0.644973 1.11713i −0.339335 0.940666i \(-0.610202\pi\)
0.984308 0.176460i \(-0.0564646\pi\)
\(504\) 0 0
\(505\) −9.57035e11 1.65763e12i −0.654812 1.13417i
\(506\) 4.09695e11 + 1.49117e11i 0.277833 + 0.101123i
\(507\) 0 0
\(508\) 2.03736e12 + 1.70955e12i 1.35732 + 1.13892i
\(509\) 1.12381e12 4.09035e11i 0.742103 0.270104i 0.0568244 0.998384i \(-0.481902\pi\)
0.685279 + 0.728281i \(0.259680\pi\)
\(510\) 0 0
\(511\) 9.40656e10 + 5.33472e11i 0.0610291 + 0.346113i
\(512\) −7.68704e11 −0.494361
\(513\) 0 0
\(514\) −2.25585e12 −1.42553
\(515\) 5.26699e11 + 2.98706e12i 0.329936 + 1.87116i
\(516\) 0 0
\(517\) 9.27581e11 3.37612e11i 0.571011 0.207831i
\(518\) 7.78879e11 + 6.53557e11i 0.475320 + 0.398841i
\(519\) 0 0
\(520\) 2.49577e12 + 9.08385e11i 1.49689 + 0.544823i
\(521\) 1.15462e12 + 1.99985e12i 0.686544 + 1.18913i 0.972949 + 0.231020i \(0.0742062\pi\)
−0.286406 + 0.958108i \(0.592460\pi\)
\(522\) 0 0
\(523\) 1.17646e12 2.03769e12i 0.687574 1.19091i −0.285047 0.958514i \(-0.592009\pi\)
0.972621 0.232399i \(-0.0746574\pi\)
\(524\) 5.59798e11 4.69726e11i 0.324370 0.272179i
\(525\) 0 0
\(526\) 3.40813e11 1.93284e12i 0.194124 1.10093i
\(527\) 6.83424e11 3.87589e12i 0.385960 2.18889i
\(528\) 0 0
\(529\) −1.29460e12 + 1.08630e12i −0.718760 + 0.603111i
\(530\) −3.82987e12 + 6.63353e12i −2.10835 + 3.65177i
\(531\) 0 0
\(532\) 3.35001e10 + 5.80239e10i 0.0181319 + 0.0314054i
\(533\) 5.53744e11 + 2.01546e11i 0.297192 + 0.108169i
\(534\) 0 0
\(535\) −2.42880e11 2.03800e11i −0.128174 0.107551i
\(536\) −3.73727e11 + 1.36025e11i −0.195575 + 0.0711833i
\(537\) 0 0
\(538\) 8.92494e11 + 5.06159e12i 0.459288 + 2.60475i
\(539\) 1.38093e12 0.704730
\(540\) 0 0
\(541\) 9.16468e11 0.459970 0.229985 0.973194i \(-0.426132\pi\)
0.229985 + 0.973194i \(0.426132\pi\)
\(542\) −2.67725e11 1.51834e12i −0.133258 0.755742i
\(543\) 0 0
\(544\) −2.97334e12 + 1.08221e12i −1.45562 + 0.529804i
\(545\) −1.96118e12 1.64562e12i −0.952211 0.799000i
\(546\) 0 0
\(547\) 2.66271e12 + 9.69146e11i 1.27169 + 0.462856i 0.887675 0.460471i \(-0.152320\pi\)
0.384013 + 0.923328i \(0.374542\pi\)
\(548\) −1.53398e12 2.65694e12i −0.726621 1.25855i
\(549\) 0 0
\(550\) −2.21386e12 + 3.83452e12i −1.03162 + 1.78681i
\(551\) 1.35517e11 1.13712e11i 0.0626341 0.0525562i
\(552\) 0 0
\(553\) −9.69747e10 + 5.49971e11i −0.0440956 + 0.250079i
\(554\) 3.62843e10 2.05779e11i 0.0163653 0.0928125i
\(555\) 0 0
\(556\) −2.09336e12 + 1.75654e12i −0.928982 + 0.779508i
\(557\) −4.19856e11 + 7.27212e11i −0.184821 + 0.320120i −0.943516 0.331326i \(-0.892504\pi\)
0.758695 + 0.651446i \(0.225837\pi\)
\(558\) 0 0
\(559\) −1.99493e12 3.45531e12i −0.864119 1.49670i
\(560\) −2.28245e11 8.30744e10i −0.0980743 0.0356961i
\(561\) 0 0
\(562\) 2.07203e12 + 1.73864e12i 0.876160 + 0.735185i
\(563\) 2.09958e10 7.64184e9i 0.00880733 0.00320561i −0.337613 0.941285i \(-0.609619\pi\)
0.346420 + 0.938079i \(0.387397\pi\)
\(564\) 0 0
\(565\) 1.02292e11 + 5.80126e11i 0.0422302 + 0.239500i
\(566\) 2.57650e12 1.05525
\(567\) 0 0
\(568\) 3.46633e11 0.139734
\(569\) −4.20191e11 2.38302e12i −0.168051 0.953065i −0.945863 0.324567i \(-0.894781\pi\)
0.777812 0.628497i \(-0.216330\pi\)
\(570\) 0 0
\(571\) 1.43334e12 5.21692e11i 0.564268 0.205377i −0.0441063 0.999027i \(-0.514044\pi\)
0.608375 + 0.793650i \(0.291822\pi\)
\(572\) −2.69872e12 2.26449e12i −1.05408 0.884482i
\(573\) 0 0
\(574\) 2.53033e11 + 9.20964e10i 0.0972912 + 0.0354111i
\(575\) 5.64535e11 + 9.77803e11i 0.215370 + 0.373032i
\(576\) 0 0
\(577\) −2.13078e12 + 3.69061e12i −0.800289 + 1.38614i 0.119137 + 0.992878i \(0.461987\pi\)
−0.919426 + 0.393263i \(0.871346\pi\)
\(578\) −2.29481e12 + 1.92558e12i −0.855208 + 0.717605i
\(579\) 0 0
\(580\) 1.00166e12 5.68072e12i 0.367533 2.08438i
\(581\) −1.96063e11 + 1.11193e12i −0.0713843 + 0.404841i
\(582\) 0 0
\(583\) 2.59414e12 2.17674e12i 0.930004 0.780366i
\(584\) −1.54721e12 + 2.67985e12i −0.550417 + 0.953351i
\(585\) 0 0
\(586\) 3.44483e12 + 5.96662e12i 1.20678 + 2.09021i
\(587\) 2.90560e12 + 1.05755e12i 1.01010 + 0.367646i 0.793471 0.608608i \(-0.208272\pi\)
0.216628 + 0.976254i \(0.430494\pi\)
\(588\) 0 0
\(589\) 3.64776e11 + 3.06083e11i 0.124884 + 0.104790i
\(590\) 6.32341e12 2.30153e12i 2.14841 0.781957i
\(591\) 0 0
\(592\) −2.01853e11 1.14477e12i −0.0675442 0.383062i
\(593\) 3.07187e12 1.02013 0.510067 0.860135i \(-0.329621\pi\)
0.510067 + 0.860135i \(0.329621\pi\)
\(594\) 0 0
\(595\) −1.66619e12 −0.545003
\(596\) 3.38301e10 + 1.91860e11i 0.0109823 + 0.0622839i
\(597\) 0 0
\(598\) −1.40697e12 + 5.12097e11i −0.449916 + 0.163756i
\(599\) 2.64849e12 + 2.22235e12i 0.840577 + 0.705328i 0.957693 0.287790i \(-0.0929206\pi\)
−0.117116 + 0.993118i \(0.537365\pi\)
\(600\) 0 0
\(601\) 4.26406e11 + 1.55199e11i 0.133318 + 0.0485237i 0.407817 0.913063i \(-0.366290\pi\)
−0.274500 + 0.961587i \(0.588512\pi\)
\(602\) −9.11579e11 1.57890e12i −0.282885 0.489971i
\(603\) 0 0
\(604\) 1.36924e12 2.37160e12i 0.418615 0.725062i
\(605\) −1.80933e12 + 1.51821e12i −0.549059 + 0.460715i
\(606\) 0 0
\(607\) 1.02906e12 5.83607e12i 0.307673 1.74490i −0.302974 0.952999i \(-0.597979\pi\)
0.610647 0.791903i \(-0.290909\pi\)
\(608\) 6.64785e10 3.77018e11i 0.0197294 0.111891i
\(609\) 0 0
\(610\) 8.04745e12 6.75261e12i 2.35328 1.97464i
\(611\) −1.69497e12 + 2.93577e12i −0.492012 + 0.852190i
\(612\) 0 0
\(613\) 8.01686e11 + 1.38856e12i 0.229315 + 0.397185i 0.957605 0.288084i \(-0.0930181\pi\)
−0.728290 + 0.685269i \(0.759685\pi\)
\(614\) −1.57162e12 5.72024e11i −0.446263 0.162426i
\(615\) 0 0
\(616\) −4.11023e11 3.44889e11i −0.115014 0.0965086i
\(617\) −1.97987e12 + 7.20615e11i −0.549990 + 0.200180i −0.602042 0.798465i \(-0.705646\pi\)
0.0520523 + 0.998644i \(0.483424\pi\)
\(618\) 0 0
\(619\) 1.13726e12 + 6.44970e12i 0.311351 + 1.76576i 0.591988 + 0.805947i \(0.298343\pi\)
−0.280637 + 0.959814i \(0.590546\pi\)
\(620\) 1.55269e13 4.22010
\(621\) 0 0
\(622\) −7.28374e12 −1.95118
\(623\) −1.72267e11 9.76975e11i −0.0458148 0.259829i
\(624\) 0 0
\(625\) −9.75399e11 + 3.55016e11i −0.255695 + 0.0930654i
\(626\) 6.46528e12 + 5.42501e12i 1.68268 + 1.41194i
\(627\) 0 0
\(628\) −3.29022e12 1.19754e12i −0.844125 0.307236i
\(629\) −3.98699e12 6.90566e12i −1.01559 1.75905i
\(630\) 0 0
\(631\) 3.09557e12 5.36168e12i 0.777335 1.34638i −0.156138 0.987735i \(-0.549905\pi\)
0.933473 0.358648i \(-0.116762\pi\)
\(632\) −2.44378e12 + 2.05057e12i −0.609305 + 0.511268i
\(633\) 0 0
\(634\) 7.12265e11 4.03946e12i 0.175081 0.992936i
\(635\) 1.38959e12 7.88074e12i 0.339159 1.92347i
\(636\) 0 0
\(637\) −3.63288e12 + 3.04835e12i −0.874227 + 0.733563i
\(638\) −2.12522e12 + 3.68099e12i −0.507822 + 0.879573i
\(639\) 0 0
\(640\) −4.85388e12 8.40717e12i −1.14361 1.98080i
\(641\) −2.14078e12 7.79179e11i −0.500853 0.182296i 0.0792246 0.996857i \(-0.474756\pi\)
−0.580078 + 0.814561i \(0.696978\pi\)
\(642\) 0 0
\(643\) 2.03473e12 + 1.70734e12i 0.469416 + 0.393887i 0.846582 0.532259i \(-0.178657\pi\)
−0.377165 + 0.926146i \(0.623101\pi\)
\(644\) −3.85743e11 + 1.40399e11i −0.0883713 + 0.0321645i
\(645\) 0 0
\(646\) −1.52076e11 8.62467e11i −0.0343570 0.194848i
\(647\) −5.48535e12 −1.23065 −0.615325 0.788273i \(-0.710975\pi\)
−0.615325 + 0.788273i \(0.710975\pi\)
\(648\) 0 0
\(649\) −2.97503e12 −0.658248
\(650\) −2.64044e12 1.49747e13i −0.580184 3.29039i
\(651\) 0 0
\(652\) 1.42668e12 5.19268e11i 0.309180 0.112532i
\(653\) −1.85150e12 1.55359e12i −0.398486 0.334370i 0.421422 0.906865i \(-0.361531\pi\)
−0.819908 + 0.572495i \(0.805976\pi\)
\(654\) 0 0
\(655\) −2.06616e12 7.52021e11i −0.438610 0.159641i
\(656\) −1.53925e11 2.66606e11i −0.0324521 0.0562087i
\(657\) 0 0
\(658\) −7.74513e11 + 1.34150e12i −0.161069 + 0.278980i
\(659\) −4.63443e12 + 3.88875e12i −0.957221 + 0.803204i −0.980499 0.196525i \(-0.937034\pi\)
0.0232778 + 0.999729i \(0.492590\pi\)
\(660\) 0 0
\(661\) 2.40374e11 1.36323e12i 0.0489758 0.277755i −0.950478 0.310791i \(-0.899406\pi\)
0.999454 + 0.0330352i \(0.0105173\pi\)
\(662\) −1.13624e12 + 6.44392e12i −0.229936 + 1.30403i
\(663\) 0 0
\(664\) −4.94082e12 + 4.14584e12i −0.986376 + 0.827668i
\(665\) 1.00797e11 1.74585e11i 0.0199871 0.0346187i
\(666\) 0 0
\(667\) 5.41932e11 + 9.38654e11i 0.106018 + 0.183628i
\(668\) −5.26826e12 1.91749e12i −1.02370 0.372597i
\(669\) 0 0
\(670\) 2.75032e12 + 2.30779e12i 0.527286 + 0.442446i
\(671\) −4.36431e12 + 1.58848e12i −0.831121 + 0.302503i
\(672\) 0 0
\(673\) −2.07864e11 1.17886e12i −0.0390582 0.221510i 0.959031 0.283301i \(-0.0914297\pi\)
−0.998089 + 0.0617916i \(0.980319\pi\)
\(674\) −2.35059e11 −0.0438739
\(675\) 0 0
\(676\) 3.95453e12 0.728342
\(677\) 7.18714e11 + 4.07603e12i 0.131494 + 0.745741i 0.977237 + 0.212150i \(0.0680467\pi\)
−0.845743 + 0.533591i \(0.820842\pi\)
\(678\) 0 0
\(679\) 9.77656e11 3.55838e11i 0.176511 0.0642448i
\(680\) −7.29119e12 6.11804e12i −1.30770 1.09729i
\(681\) 0 0
\(682\) −1.07511e13 3.91309e12i −1.90293 0.692612i
\(683\) 1.02786e12 + 1.78031e12i 0.180735 + 0.313042i 0.942131 0.335245i \(-0.108819\pi\)
−0.761396 + 0.648287i \(0.775486\pi\)
\(684\) 0 0
\(685\) −4.61553e12 + 7.99434e12i −0.800967 + 1.38731i
\(686\) −3.43300e12 + 2.88063e12i −0.591854 + 0.496625i
\(687\) 0 0
\(688\) −3.61946e11 + 2.05270e12i −0.0615879 + 0.349282i
\(689\) −2.01946e12 + 1.14529e13i −0.341388 + 1.93611i
\(690\) 0 0
\(691\) 2.83791e12 2.38129e12i 0.473530 0.397339i −0.374550 0.927207i \(-0.622203\pi\)
0.848080 + 0.529868i \(0.177758\pi\)
\(692\) 5.91992e12 1.02536e13i 0.981383 1.69981i
\(693\) 0 0
\(694\) 5.11335e12 + 8.85658e12i 0.836735 + 1.44927i
\(695\) 7.72640e12 + 2.81218e12i 1.25616 + 0.457205i
\(696\) 0 0
\(697\) −1.61772e12 1.35743e12i −0.259631 0.217856i
\(698\) −3.46686e12 + 1.26184e12i −0.552825 + 0.201212i
\(699\) 0 0
\(700\) −7.23915e11 4.10552e12i −0.113958 0.646290i
\(701\) 2.09874e12 0.328267 0.164134 0.986438i \(-0.447517\pi\)
0.164134 + 0.986438i \(0.447517\pi\)
\(702\) 0 0
\(703\) 9.64777e11 0.148980
\(704\) 1.38419e12 + 7.85016e12i 0.212383 + 1.20449i
\(705\) 0 0
\(706\) 1.59914e12 5.82040e11i 0.242251 0.0881722i
\(707\) −1.01726e12 8.53579e11i −0.153124 0.128486i
\(708\) 0 0
\(709\) −6.35854e12 2.31432e12i −0.945038 0.343966i −0.176885 0.984232i \(-0.556602\pi\)
−0.768153 + 0.640266i \(0.778824\pi\)
\(710\) −1.56459e12 2.70995e12i −0.231067 0.400220i
\(711\) 0 0
\(712\) 2.83349e12 4.90775e12i 0.413201 0.715686i
\(713\) −2.23492e12 + 1.87532e12i −0.323861 + 0.271752i
\(714\) 0 0
\(715\) −1.84067e12 + 1.04389e13i −0.263389 + 1.49375i
\(716\) −2.06735e12 + 1.17245e13i −0.293972 + 1.66720i
\(717\) 0 0
\(718\) 1.09258e12 9.16786e11i 0.153424 0.128738i
\(719\) 2.85974e12 4.95321e12i 0.399067 0.691204i −0.594544 0.804063i \(-0.702667\pi\)
0.993611 + 0.112859i \(0.0360007\pi\)
\(720\) 0 0
\(721\) 1.05216e12 + 1.82239e12i 0.145001 + 0.251150i
\(722\) −1.07489e13 3.91227e12i −1.47213 0.535811i
\(723\) 0 0
\(724\) −9.02801e12 7.57540e12i −1.22115 1.02467i
\(725\) −1.03435e13 + 3.76471e12i −1.39042 + 0.506070i
\(726\) 0 0
\(727\) −8.26875e10 4.68944e11i −0.0109783 0.0622610i 0.978826 0.204692i \(-0.0656192\pi\)
−0.989805 + 0.142431i \(0.954508\pi\)
\(728\) 1.84263e12 0.243134
\(729\) 0 0
\(730\) 2.79345e13 3.64073
\(731\) 2.48286e12 + 1.40810e13i 0.321607 + 1.82392i
\(732\) 0 0
\(733\) 5.14486e12 1.87258e12i 0.658273 0.239592i 0.00878244 0.999961i \(-0.497204\pi\)
0.649491 + 0.760370i \(0.274982\pi\)
\(734\) −2.20111e10 1.84695e10i −0.00279904 0.00234868i
\(735\) 0 0
\(736\) 2.20411e12 + 8.02229e11i 0.276874 + 0.100774i
\(737\) −7.93642e11 1.37463e12i −0.0990880 0.171625i
\(738\) 0 0
\(739\) −2.67157e12 + 4.62729e12i −0.329508 + 0.570725i −0.982414 0.186714i \(-0.940216\pi\)
0.652906 + 0.757439i \(0.273550\pi\)
\(740\) 2.40987e13 2.02212e13i 2.95428 2.47894i
\(741\) 0 0
\(742\) −9.22790e11 + 5.23340e12i −0.111760 + 0.633821i
\(743\) 2.53767e12 1.43918e13i 0.305481 1.73247i −0.315749 0.948843i \(-0.602256\pi\)
0.621230 0.783628i \(-0.286633\pi\)
\(744\) 0 0
\(745\) 4.49043e11 3.76792e11i 0.0534054 0.0448124i
\(746\) −7.46514e12 + 1.29300e13i −0.882498 + 1.52853i
\(747\) 0 0
\(748\) 6.31248e12 + 1.09335e13i 0.737297 + 1.27704i
\(749\) −2.06701e11 7.52328e10i −0.0239979 0.00873452i
\(750\) 0 0
\(751\) 1.19906e13 + 1.00613e13i 1.37550 + 1.15418i 0.970845 + 0.239710i \(0.0770523\pi\)
0.404654 + 0.914470i \(0.367392\pi\)
\(752\) 1.66415e12 6.05703e11i 0.189764 0.0690684i
\(753\) 0 0
\(754\) −2.53472e12 1.43751e13i −0.285600 1.61972i
\(755\) −8.23971e12 −0.922892
\(756\) 0 0
\(757\) −1.63526e13 −1.80990 −0.904951 0.425517i \(-0.860092\pi\)
−0.904951 + 0.425517i \(0.860092\pi\)
\(758\) −2.64726e12 1.50134e13i −0.291263 1.65184i
\(759\) 0 0
\(760\) 1.08214e12 3.93866e11i 0.117658 0.0428240i
\(761\) 4.02816e12 + 3.38003e12i 0.435388 + 0.365334i 0.833980 0.551794i \(-0.186057\pi\)
−0.398592 + 0.917128i \(0.630501\pi\)
\(762\) 0 0
\(763\) −1.66904e12 6.07482e11i −0.178282 0.0648893i
\(764\) 7.29678e11 + 1.26384e12i 0.0774838 + 0.134206i
\(765\) 0 0
\(766\) −2.65145e12 + 4.59245e12i −0.278262 + 0.481964i
\(767\) 7.82655e12 6.56725e12i 0.816566 0.685180i
\(768\) 0 0
\(769\) 1.68291e12 9.54424e12i 0.173537 0.984176i −0.766282 0.642504i \(-0.777896\pi\)
0.939819 0.341672i \(-0.110993\pi\)
\(770\) −8.41091e11 + 4.77006e12i −0.0862253 + 0.489008i
\(771\) 0 0
\(772\) −1.61336e13 + 1.35377e13i −1.63476 + 1.37172i
\(773\) 2.53754e12 4.39516e12i 0.255627 0.442758i −0.709439 0.704767i \(-0.751052\pi\)
0.965066 + 0.262009i \(0.0843849\pi\)
\(774\) 0 0
\(775\) −1.48144e13 2.56593e13i −1.47511 2.55497i
\(776\) 5.58477e12 + 2.03269e12i 0.552876 + 0.201230i
\(777\) 0 0
\(778\) −7.20095e12 6.04231e12i −0.704663 0.591282i
\(779\) 2.40097e11 8.73883e10i 0.0233598 0.00850227i
\(780\) 0 0
\(781\) 2.40230e11 + 1.36241e12i 0.0231045 + 0.131032i
\(782\) 5.36571e12 0.513093
\(783\) 0 0
\(784\) 2.47750e12 0.234203
\(785\) 1.82941e12 + 1.03751e13i 0.171948 + 0.975166i
\(786\) 0 0
\(787\) −1.25621e12 + 4.57222e11i −0.116728 + 0.0424855i −0.399724 0.916636i \(-0.630894\pi\)
0.282996 + 0.959121i \(0.408672\pi\)
\(788\) 1.32110e13 + 1.10854e13i 1.22059 + 1.02419i
\(789\) 0 0
\(790\) 2.70617e13 + 9.84964e12i 2.47191 + 0.899702i
\(791\) 2.04343e11 + 3.53933e11i 0.0185595 + 0.0321460i
\(792\) 0 0
\(793\) 7.97490e12 1.38129e13i 0.716136 1.24038i
\(794\) 1.40749e13 1.18103e13i 1.25676 1.05455i
\(795\) 0 0
\(796\) −1.85572e12 + 1.05243e13i −0.163834 + 0.929149i
\(797\) 2.97134e12 1.68513e13i 0.260850 1.47935i −0.519748 0.854319i \(-0.673974\pi\)
0.780598 0.625033i \(-0.214915\pi\)
\(798\) 0 0
\(799\) 9.30618e12 7.80881e12i 0.807813 0.677836i
\(800\) −1.19103e13 + 2.06292e13i −1.02806 + 1.78065i
\(801\) 0 0
\(802\) 3.56601e12 + 6.17651e12i 0.304367 + 0.527179i
\(803\) −1.16052e13 4.22394e12i −0.984991 0.358508i
\(804\) 0 0
\(805\) 9.46166e11 + 7.93927e11i 0.0794119 + 0.0666345i
\(806\) 3.69215e13 1.34383e13i 3.08156 1.12160i
\(807\) 0 0
\(808\) −1.31724e12 7.47046e12i −0.108721 0.616590i
\(809\) −4.01160e12 −0.329268 −0.164634 0.986355i \(-0.552644\pi\)
−0.164634 + 0.986355i \(0.552644\pi\)
\(810\) 0 0
\(811\) −4.68406e12 −0.380215 −0.190107 0.981763i \(-0.560884\pi\)
−0.190107 + 0.981763i \(0.560884\pi\)
\(812\) −6.94930e11 3.94114e12i −0.0560969 0.318141i
\(813\) 0 0
\(814\) −2.17825e13 + 7.92819e12i −1.73900 + 0.632942i
\(815\) −3.49942e12 2.93636e12i −0.277835 0.233131i
\(816\) 0 0
\(817\) −1.62563e12 5.91680e11i −0.127650 0.0464609i
\(818\) −1.33142e13 2.30610e13i −1.03974 1.80089i
\(819\) 0 0
\(820\) 4.16567e12 7.21516e12i 0.321753 0.557293i
\(821\) −9.75166e12 + 8.18261e12i −0.749091 + 0.628562i −0.935262 0.353956i \(-0.884836\pi\)
0.186172 + 0.982517i \(0.440392\pi\)
\(822\) 0 0
\(823\) −2.14203e12 + 1.21481e13i −0.162752 + 0.923013i 0.788600 + 0.614907i \(0.210806\pi\)
−0.951352 + 0.308107i \(0.900305\pi\)
\(824\) −2.08738e12 + 1.18381e13i −0.157735 + 0.894560i
\(825\) 0 0
\(826\) 3.57633e12 3.00090e12i 0.267318 0.224306i
\(827\) −1.63634e12 + 2.83423e12i −0.121646 + 0.210698i −0.920417 0.390938i \(-0.872151\pi\)
0.798771 + 0.601636i \(0.205484\pi\)
\(828\) 0 0
\(829\) 1.59813e12 + 2.76804e12i 0.117521 + 0.203553i 0.918785 0.394759i \(-0.129172\pi\)
−0.801264 + 0.598312i \(0.795838\pi\)
\(830\) 5.47131e13 + 1.99140e13i 4.00166 + 1.45649i
\(831\) 0 0
\(832\) −2.09704e13 1.75962e13i −1.51723 1.27311i
\(833\) 1.59702e13 5.81267e12i 1.14923 0.418286i
\(834\) 0 0
\(835\) 2.92923e12 + 1.66125e13i 0.208528 + 1.18262i
\(836\) −1.52750e12 −0.108157
\(837\) 0 0
\(838\) 3.54626e13 2.48412
\(839\) 4.01100e12 + 2.27475e13i 0.279463 + 1.58491i 0.724418 + 0.689360i \(0.242108\pi\)
−0.444956 + 0.895553i \(0.646781\pi\)
\(840\) 0 0
\(841\) 3.70294e12 1.34776e12i 0.255249 0.0929031i
\(842\) 7.01944e12 + 5.89001e12i 0.481280 + 0.403842i
\(843\) 0 0
\(844\) 3.79695e13 + 1.38198e13i 2.57569 + 0.937475i
\(845\) −5.94931e12 1.03045e13i −0.401431 0.695300i
\(846\) 0 0
\(847\) −8.19318e11 + 1.41910e12i −0.0546987 + 0.0947410i
\(848\) 4.65410e12 3.90525e12i 0.309068 0.259339i
\(849\) 0 0
\(850\) −9.46242e12 + 5.36641e13i −0.621752 + 3.52613i
\(851\) −1.02644e12 + 5.82122e12i −0.0670888 + 0.380480i
\(852\) 0 0
\(853\) 1.13053e12 9.48625e11i 0.0731156 0.0613513i −0.605497 0.795847i \(-0.707026\pi\)
0.678613 + 0.734496i \(0.262581\pi\)
\(854\) 3.64412e12 6.31180e12i 0.234440 0.406063i
\(855\) 0 0
\(856\) −6.28269e11 1.08819e12i −0.0399957 0.0692746i
\(857\) −1.24331e13 4.52528e12i −0.787346 0.286570i −0.0831136 0.996540i \(-0.526486\pi\)
−0.704232 + 0.709970i \(0.748709\pi\)
\(858\) 0 0
\(859\) −8.22964e10 6.90549e10i −0.00515717 0.00432738i 0.640205 0.768204i \(-0.278849\pi\)
−0.645363 + 0.763876i \(0.723294\pi\)
\(860\) −5.30071e13 + 1.92930e13i −3.30439 + 1.20270i
\(861\) 0 0
\(862\) −4.28459e12 2.42991e13i −0.264318 1.49902i
\(863\) 1.25905e13 0.772670 0.386335 0.922358i \(-0.373741\pi\)
0.386335 + 0.922358i \(0.373741\pi\)
\(864\) 0 0
\(865\) −3.56244e13 −2.16359
\(866\) 8.99156e11 + 5.09937e12i 0.0543256 + 0.308096i
\(867\) 0 0
\(868\) 1.01226e13 3.68431e12i 0.605273 0.220301i
\(869\) −9.75323e12 8.18393e12i −0.580175 0.486825i
\(870\) 0 0
\(871\) 5.12231e12 + 1.86437e12i 0.301567 + 0.109761i
\(872\) −5.07308e12 8.78683e12i −0.297131 0.514645i
\(873\) 0 0
\(874\) −3.24600e11 + 5.62224e11i −0.0188169 + 0.0325918i
\(875\) −4.06658e12 + 3.41227e12i −0.234527 + 0.196792i
\(876\) 0 0
\(877\) −5.15279e12 + 2.92229e13i −0.294133 + 1.66811i 0.376571 + 0.926388i \(0.377103\pi\)
−0.670705 + 0.741725i \(0.734008\pi\)
\(878\) 2.23613e12 1.26817e13i 0.126991 0.720199i
\(879\) 0 0
\(880\) 4.24205e12 3.55950e12i 0.238453 0.200086i
\(881\) −1.25156e12 + 2.16776e12i −0.0699936 + 0.121233i −0.898898 0.438157i \(-0.855631\pi\)
0.828905 + 0.559390i \(0.188965\pi\)
\(882\) 0 0
\(883\) 9.03816e12 + 1.56546e13i 0.500330 + 0.866598i 1.00000 0.000381660i \(0.000121486\pi\)
−0.499669 + 0.866216i \(0.666545\pi\)
\(884\) −4.07419e13 1.48288e13i −2.24391 0.816717i
\(885\) 0 0
\(886\) −2.24526e13 1.88400e13i −1.22410 1.02714i
\(887\) −3.61702e11 + 1.31649e11i −0.0196198 + 0.00714103i −0.351811 0.936071i \(-0.614434\pi\)
0.332192 + 0.943212i \(0.392212\pi\)
\(888\) 0 0
\(889\) −9.64061e11 5.46746e12i −0.0517662 0.293581i
\(890\) −5.11579e13 −2.73311
\(891\) 0 0
\(892\) 4.36614e11 0.0230917
\(893\) 2.55235e11 + 1.44751e12i 0.0134310 + 0.0761710i
\(894\) 0 0
\(895\) 3.36613e13 1.22517e13i 1.75359 0.638253i
\(896\) −5.15931e12 4.32918e12i −0.267427 0.224398i
\(897\) 0 0
\(898\) −3.70467e13 1.34839e13i −1.90110 0.691945i
\(899\) −1.42212e13 2.46319e13i −0.726137 1.25771i
\(900\) 0 0
\(901\) 2.08383e13 3.60929e13i 1.05342 1.82457i
\(902\) −4.70274e12 + 3.94607e12i −0.236549 + 0.198488i
\(903\) 0 0
\(904\) −4.05396e11 + 2.29912e12i −0.0201893 + 0.114499i
\(905\) −6.15757e12 + 3.49213e13i −0.305134 + 1.73050i
\(906\) 0 0
\(907\) 8.24405e12 6.91758e12i 0.404490 0.339407i −0.417736 0.908568i \(-0.637176\pi\)
0.822226 + 0.569161i \(0.192732\pi\)
\(908\) −1.56551e13 + 2.71154e13i −0.764310 + 1.32382i
\(909\) 0 0
\(910\) −8.31703e12 1.44055e13i −0.402052 0.696374i
\(911\) 9.04663e12 + 3.29270e12i 0.435165 + 0.158387i 0.550308 0.834962i \(-0.314510\pi\)
−0.115143 + 0.993349i \(0.536733\pi\)
\(912\) 0 0
\(913\) −1.97190e13 1.65462e13i −0.939219 0.788098i
\(914\) −6.96045e12 + 2.53340e12i −0.329898 + 0.120073i
\(915\) 0 0
\(916\) 4.20402e12 + 2.38422e13i 0.197304 + 1.11896i
\(917\) −1.52545e12 −0.0712419
\(918\) 0 0
\(919\) −1.65093e13 −0.763499 −0.381750 0.924266i \(-0.624678\pi\)
−0.381750 + 0.924266i \(0.624678\pi\)
\(920\) 1.22519e12 + 6.94839e12i 0.0563842 + 0.319771i
\(921\) 0 0
\(922\) −5.21132e12 + 1.89677e12i −0.237497 + 0.0864420i
\(923\) −3.63945e12 3.05386e12i −0.165055 0.138497i
\(924\) 0 0
\(925\) −5.64097e13 2.05315e13i −2.53347 0.922108i
\(926\) 3.15685e13 + 5.46782e13i 1.41093 + 2.44379i
\(927\) 0 0
\(928\) −1.14334e13 + 1.98032e13i −0.506069 + 0.876537i
\(929\) −3.98546e12 + 3.34420e12i −0.175553 + 0.147306i −0.726330 0.687346i \(-0.758776\pi\)
0.550778 + 0.834652i \(0.314331\pi\)
\(930\) 0 0
\(931\) −3.57064e11 + 2.02501e12i −0.0155766 + 0.0883393i
\(932\) 8.89835e12 5.04650e13i 0.386312 2.19088i
\(933\) 0 0
\(934\) −4.78686e13 + 4.01665e13i −2.05821 + 1.72704i
\(935\) 1.89933e13 3.28974e13i 0.812735 1.40770i
\(936\) 0 0
\(937\) −1.08049e13 1.87146e13i −0.457923 0.793146i 0.540928 0.841069i \(-0.318073\pi\)
−0.998851 + 0.0479228i \(0.984740\pi\)
\(938\) 2.34063e12 + 8.51921e11i 0.0987236 + 0.0359324i
\(939\) 0 0
\(940\) 3.67145e13 + 3.08071e13i 1.53378 + 1.28699i
\(941\) −9.95662e12 + 3.62391e12i −0.413960 + 0.150669i −0.540600 0.841280i \(-0.681803\pi\)
0.126640 + 0.991949i \(0.459581\pi\)
\(942\) 0 0
\(943\) 2.71837e11 + 1.54166e12i 0.0111945 + 0.0634873i
\(944\) −5.33744e12 −0.218756
\(945\) 0 0
\(946\) 4.15653e13 1.68741
\(947\) −6.24492e12 3.54167e13i −0.252320 1.43098i −0.802859 0.596169i \(-0.796689\pi\)
0.550539 0.834809i \(-0.314422\pi\)
\(948\) 0 0
\(949\) 3.98545e13 1.45059e13i 1.59507 0.580558i
\(950\) −5.05054e12 4.23791e12i −0.201179 0.168809i
\(951\) 0 0
\(952\) −6.20511e12 2.25847e12i −0.244840 0.0891146i
\(953\) 1.75493e13 + 3.03963e13i 0.689195 + 1.19372i 0.972099 + 0.234572i \(0.0753688\pi\)
−0.282904 + 0.959148i \(0.591298\pi\)
\(954\) 0 0
\(955\) 2.19549e12 3.80271e12i 0.0854117 0.147937i
\(956\) −2.77829e12 + 2.33126e12i −0.107577 + 0.0902674i
\(957\) 0 0
\(958\) 8.76275e12 4.96960e13i 0.336121 1.90624i
\(959\) −1.11209e12 + 6.30699e12i −0.0424578 + 0.240790i
\(960\) 0 0
\(961\) 3.83943e13 3.22166e13i 1.45215 1.21850i
\(962\) 3.98032e13 6.89411e13i 1.49841 2.59532i
\(963\) 0 0
\(964\) 6.26691e12 + 1.08546e13i 0.233726 + 0.404825i
\(965\) 5.95476e13 + 2.16736e13i 2.21050 + 0.804558i
\(966\) 0 0
\(967\) −1.80056e13 1.51085e13i −0.662200 0.555652i 0.248545 0.968620i \(-0.420047\pi\)
−0.910745 + 0.412969i \(0.864492\pi\)
\(968\) −8.79606e12 + 3.20150e12i −0.321995 + 0.117197i
\(969\) 0 0
\(970\) −9.31646e12 5.28363e13i −0.337892 1.91628i
\(971\) 2.59501e13 0.936811 0.468405 0.883514i \(-0.344829\pi\)
0.468405 + 0.883514i \(0.344829\pi\)
\(972\) 0 0
\(973\) 5.70440e12 0.204034
\(974\) −8.62729e12 4.89278e13i −0.307156 1.74197i
\(975\) 0 0
\(976\) −7.82992e12 + 2.84986e12i −0.276206 + 0.100531i
\(977\) −1.35675e13 1.13845e13i −0.476404 0.399750i 0.372720 0.927944i \(-0.378425\pi\)
−0.849124 + 0.528194i \(0.822870\pi\)
\(978\) 0 0
\(979\) 2.12532e13 + 7.73553e12i 0.739438 + 0.269133i
\(980\) 3.35243e13 + 5.80657e13i 1.16103 + 2.01096i
\(981\) 0 0
\(982\) −1.56552e13 + 2.71157e13i −0.537227 + 0.930505i
\(983\) 1.29947e13 1.09038e13i 0.443889 0.372467i −0.393273 0.919422i \(-0.628657\pi\)
0.837162 + 0.546954i \(0.184213\pi\)
\(984\) 0 0
\(985\) 9.01060e12 5.11017e13i 0.304994 1.72971i
\(986\) −9.08356e12 + 5.15154e13i −0.306062 + 1.73577i
\(987\) 0 0
\(988\) 4.01848e12 3.37190e12i 0.134170 0.112582i
\(989\) 5.29957e12 9.17913e12i 0.176140 0.305083i
\(990\) 0 0
\(991\) 2.76904e13 + 4.79612e13i 0.912007 + 1.57964i 0.811225 + 0.584733i \(0.198801\pi\)
0.100781 + 0.994909i \(0.467866\pi\)
\(992\) −5.78396e13 2.10519e13i −1.89637 0.690221i
\(993\) 0 0
\(994\) −1.66304e12 1.39546e12i −0.0540337 0.0453397i
\(995\) 3.02155e13 1.09975e13i 0.977295 0.355706i
\(996\) 0 0
\(997\) 7.98790e12 + 4.53016e13i 0.256038 + 1.45206i 0.793394 + 0.608708i \(0.208312\pi\)
−0.537357 + 0.843355i \(0.680577\pi\)
\(998\) −6.13343e11 −0.0195711
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.10.5 156
3.2 odd 2 27.10.e.a.13.22 156
27.2 odd 18 27.10.e.a.25.22 yes 156
27.25 even 9 inner 81.10.e.a.73.5 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.13.22 156 3.2 odd 2
27.10.e.a.25.22 yes 156 27.2 odd 18
81.10.e.a.10.5 156 1.1 even 1 trivial
81.10.e.a.73.5 156 27.25 even 9 inner