Properties

Label 81.10.e.a.10.4
Level $81$
Weight $10$
Character 81.10
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 10.4
Character \(\chi\) \(=\) 81.10
Dual form 81.10.e.a.73.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.40153 - 36.3049i) q^{2} +(-795.940 + 289.699i) q^{4} +(170.489 + 143.057i) q^{5} +(-5644.86 - 2054.56i) q^{7} +(6175.28 + 10695.9i) q^{8} +(4102.29 - 7105.37i) q^{10} +(-36452.8 + 30587.5i) q^{11} +(935.040 - 5302.88i) q^{13} +(-38454.8 + 218088. i) q^{14} +(16567.1 - 13901.5i) q^{16} +(-73376.8 + 127092. i) q^{17} +(157159. + 272207. i) q^{19} +(-177143. - 64474.7i) q^{20} +(1.34383e6 + 1.12761e6i) q^{22} +(397465. - 144666. i) q^{23} +(-330555. - 1.87467e6i) q^{25} -198506. q^{26} +5.08817e6 q^{28} +(675466. + 3.83076e6i) q^{29} +(8.85575e6 - 3.22323e6i) q^{31} +(4.23332e6 + 3.55218e6i) q^{32} +(5.08379e6 + 1.85035e6i) q^{34} +(-668467. - 1.15782e6i) q^{35} +(1.03140e7 - 1.78644e7i) q^{37} +(8.87638e6 - 7.44817e6i) q^{38} +(-477309. + 2.70695e6i) q^{40} +(-2.02245e6 + 1.14699e7i) q^{41} +(-2.70604e7 + 2.27064e7i) q^{43} +(2.01531e7 - 3.49061e7i) q^{44} +(-7.79645e6 - 1.35038e7i) q^{46} +(2.73737e7 + 9.96322e6i) q^{47} +(-3.26946e6 - 2.74340e6i) q^{49} +(-6.59437e7 + 2.40015e7i) q^{50} +(792000. + 4.49165e6i) q^{52} -2.44455e7 q^{53} -1.05906e7 q^{55} +(-1.28832e7 - 7.30643e7i) q^{56} +(1.34751e8 - 4.90454e7i) q^{58} +(-5.30049e6 - 4.44764e6i) q^{59} +(-1.03660e8 - 3.77293e7i) q^{61} +(-1.73709e8 - 3.00873e8i) q^{62} +(1.07398e8 - 1.86019e8i) q^{64} +(918030. - 770319. i) q^{65} +(2.77008e7 - 1.57099e8i) q^{67} +(2.15851e7 - 1.22415e8i) q^{68} +(-3.77552e7 + 3.16804e7i) q^{70} +(1.75857e8 - 3.04593e8i) q^{71} +(2.14081e8 + 3.70799e8i) q^{73} +(-7.14592e8 - 2.60090e8i) q^{74} +(-2.03947e8 - 1.71132e8i) q^{76} +(2.68615e8 - 9.77677e7i) q^{77} +(1.07628e7 + 6.10386e7i) q^{79} +4.81322e6 q^{80} +4.29359e8 q^{82} +(4.52437e7 + 2.56590e8i) q^{83} +(-3.06915e7 + 1.11708e7i) q^{85} +(9.97581e8 + 8.37070e8i) q^{86} +(-5.52267e8 - 2.01009e8i) q^{88} +(4.26988e8 + 7.39565e8i) q^{89} +(-1.61732e7 + 2.80129e7i) q^{91} +(-2.74449e8 + 2.30290e8i) q^{92} +(1.86480e8 - 1.05758e9i) q^{94} +(-1.21474e7 + 6.88911e7i) q^{95} +(1.48323e8 - 1.24458e8i) q^{97} +(-7.86692e7 + 1.36259e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.40153 36.3049i −0.282910 1.60446i −0.712656 0.701513i \(-0.752508\pi\)
0.429746 0.902950i \(-0.358603\pi\)
\(3\) 0 0
\(4\) −795.940 + 289.699i −1.55457 + 0.565817i
\(5\) 170.489 + 143.057i 0.121992 + 0.102364i 0.701743 0.712430i \(-0.252406\pi\)
−0.579751 + 0.814794i \(0.696850\pi\)
\(6\) 0 0
\(7\) −5644.86 2054.56i −0.888611 0.323428i −0.142932 0.989733i \(-0.545653\pi\)
−0.745680 + 0.666305i \(0.767875\pi\)
\(8\) 6175.28 + 10695.9i 0.533030 + 0.923235i
\(9\) 0 0
\(10\) 4102.29 7105.37i 0.129726 0.224692i
\(11\) −36452.8 + 30587.5i −0.750695 + 0.629908i −0.935687 0.352832i \(-0.885219\pi\)
0.184992 + 0.982740i \(0.440774\pi\)
\(12\) 0 0
\(13\) 935.040 5302.88i 0.00907999 0.0514952i −0.979931 0.199336i \(-0.936121\pi\)
0.989011 + 0.147841i \(0.0472325\pi\)
\(14\) −38454.8 + 218088.i −0.267531 + 1.51724i
\(15\) 0 0
\(16\) 16567.1 13901.5i 0.0631985 0.0530298i
\(17\) −73376.8 + 127092.i −0.213078 + 0.369062i −0.952676 0.303987i \(-0.901682\pi\)
0.739598 + 0.673049i \(0.235016\pi\)
\(18\) 0 0
\(19\) 157159. + 272207.i 0.276661 + 0.479191i 0.970553 0.240888i \(-0.0774388\pi\)
−0.693892 + 0.720079i \(0.744105\pi\)
\(20\) −177143. 64474.7i −0.247564 0.0901061i
\(21\) 0 0
\(22\) 1.34383e6 + 1.12761e6i 1.22304 + 1.02626i
\(23\) 397465. 144666.i 0.296158 0.107793i −0.189668 0.981848i \(-0.560741\pi\)
0.485826 + 0.874055i \(0.338519\pi\)
\(24\) 0 0
\(25\) −330555. 1.87467e6i −0.169244 0.959833i
\(26\) −198506. −0.0851909
\(27\) 0 0
\(28\) 5.08817e6 1.56441
\(29\) 675466. + 3.83076e6i 0.177342 + 1.00576i 0.935405 + 0.353577i \(0.115035\pi\)
−0.758063 + 0.652181i \(0.773854\pi\)
\(30\) 0 0
\(31\) 8.85575e6 3.22323e6i 1.72226 0.626850i 0.724224 0.689565i \(-0.242198\pi\)
0.998031 + 0.0627154i \(0.0199761\pi\)
\(32\) 4.23332e6 + 3.55218e6i 0.713685 + 0.598853i
\(33\) 0 0
\(34\) 5.08379e6 + 1.85035e6i 0.652428 + 0.237465i
\(35\) −668467. 1.15782e6i −0.0752963 0.130417i
\(36\) 0 0
\(37\) 1.03140e7 1.78644e7i 0.904734 1.56705i 0.0834609 0.996511i \(-0.473403\pi\)
0.821273 0.570535i \(-0.193264\pi\)
\(38\) 8.87638e6 7.44817e6i 0.690574 0.579460i
\(39\) 0 0
\(40\) −477309. + 2.70695e6i −0.0294801 + 0.167190i
\(41\) −2.02245e6 + 1.14699e7i −0.111776 + 0.633915i 0.876520 + 0.481366i \(0.159859\pi\)
−0.988296 + 0.152549i \(0.951252\pi\)
\(42\) 0 0
\(43\) −2.70604e7 + 2.27064e7i −1.20705 + 1.01284i −0.207654 + 0.978202i \(0.566583\pi\)
−0.999400 + 0.0346367i \(0.988973\pi\)
\(44\) 2.01531e7 3.49061e7i 0.810596 1.40399i
\(45\) 0 0
\(46\) −7.79645e6 1.35038e7i −0.256736 0.444680i
\(47\) 2.73737e7 + 9.96322e6i 0.818264 + 0.297824i 0.717033 0.697039i \(-0.245500\pi\)
0.101231 + 0.994863i \(0.467722\pi\)
\(48\) 0 0
\(49\) −3.26946e6 2.74340e6i −0.0810202 0.0679840i
\(50\) −6.59437e7 + 2.40015e7i −1.49214 + 0.543093i
\(51\) 0 0
\(52\) 792000. + 4.49165e6i 0.0150214 + 0.0851905i
\(53\) −2.44455e7 −0.425557 −0.212779 0.977100i \(-0.568251\pi\)
−0.212779 + 0.977100i \(0.568251\pi\)
\(54\) 0 0
\(55\) −1.05906e7 −0.156058
\(56\) −1.28832e7 7.30643e7i −0.175056 0.992793i
\(57\) 0 0
\(58\) 1.34751e8 4.90454e7i 1.56353 0.569078i
\(59\) −5.30049e6 4.44764e6i −0.0569485 0.0477855i 0.613869 0.789408i \(-0.289612\pi\)
−0.670818 + 0.741622i \(0.734057\pi\)
\(60\) 0 0
\(61\) −1.03660e8 3.77293e7i −0.958580 0.348895i −0.185103 0.982719i \(-0.559262\pi\)
−0.773477 + 0.633825i \(0.781484\pi\)
\(62\) −1.73709e8 3.00873e8i −1.49300 2.58595i
\(63\) 0 0
\(64\) 1.07398e8 1.86019e8i 0.800178 1.38595i
\(65\) 918030. 770319.i 0.00637891 0.00535254i
\(66\) 0 0
\(67\) 2.77008e7 1.57099e8i 0.167941 0.952439i −0.778040 0.628215i \(-0.783786\pi\)
0.945980 0.324224i \(-0.105103\pi\)
\(68\) 2.15851e7 1.22415e8i 0.122423 0.694296i
\(69\) 0 0
\(70\) −3.77552e7 + 3.16804e7i −0.187947 + 0.157706i
\(71\) 1.75857e8 3.04593e8i 0.821292 1.42252i −0.0834291 0.996514i \(-0.526587\pi\)
0.904721 0.426005i \(-0.140079\pi\)
\(72\) 0 0
\(73\) 2.14081e8 + 3.70799e8i 0.882318 + 1.52822i 0.848757 + 0.528782i \(0.177351\pi\)
0.0335604 + 0.999437i \(0.489315\pi\)
\(74\) −7.14592e8 2.60090e8i −2.77023 1.00828i
\(75\) 0 0
\(76\) −2.03947e8 1.71132e8i −0.701223 0.588396i
\(77\) 2.68615e8 9.77677e7i 0.870806 0.316947i
\(78\) 0 0
\(79\) 1.07628e7 + 6.10386e7i 0.0310886 + 0.176312i 0.996398 0.0847949i \(-0.0270235\pi\)
−0.965310 + 0.261107i \(0.915912\pi\)
\(80\) 4.81322e6 0.0131380
\(81\) 0 0
\(82\) 4.29359e8 1.04872
\(83\) 4.52437e7 + 2.56590e8i 0.104642 + 0.593455i 0.991363 + 0.131149i \(0.0418667\pi\)
−0.886721 + 0.462306i \(0.847022\pi\)
\(84\) 0 0
\(85\) −3.06915e7 + 1.11708e7i −0.0637724 + 0.0232112i
\(86\) 9.97581e8 + 8.37070e8i 1.96655 + 1.65013i
\(87\) 0 0
\(88\) −5.52267e8 2.01009e8i −0.981696 0.357308i
\(89\) 4.26988e8 + 7.39565e8i 0.721375 + 1.24946i 0.960449 + 0.278456i \(0.0898227\pi\)
−0.239074 + 0.971001i \(0.576844\pi\)
\(90\) 0 0
\(91\) −1.61732e7 + 2.80129e7i −0.0247236 + 0.0428225i
\(92\) −2.74449e8 + 2.30290e8i −0.399408 + 0.335143i
\(93\) 0 0
\(94\) 1.86480e8 1.05758e9i 0.246352 1.39713i
\(95\) −1.21474e7 + 6.88911e7i −0.0153012 + 0.0867775i
\(96\) 0 0
\(97\) 1.48323e8 1.24458e8i 0.170112 0.142741i −0.553757 0.832678i \(-0.686806\pi\)
0.723869 + 0.689937i \(0.242362\pi\)
\(98\) −7.86692e7 + 1.36259e8i −0.0861564 + 0.149227i
\(99\) 0 0
\(100\) 8.06192e8 + 1.39637e9i 0.806192 + 1.39637i
\(101\) −1.04282e9 3.79556e8i −0.997159 0.362936i −0.208670 0.977986i \(-0.566914\pi\)
−0.788488 + 0.615050i \(0.789136\pi\)
\(102\) 0 0
\(103\) −4.27114e8 3.58391e8i −0.373918 0.313754i 0.436391 0.899757i \(-0.356256\pi\)
−0.810309 + 0.586003i \(0.800701\pi\)
\(104\) 6.24931e7 2.27456e7i 0.0523820 0.0190655i
\(105\) 0 0
\(106\) 1.56489e8 + 8.87492e8i 0.120394 + 0.682791i
\(107\) 1.39325e9 1.02755 0.513775 0.857925i \(-0.328246\pi\)
0.513775 + 0.857925i \(0.328246\pi\)
\(108\) 0 0
\(109\) 2.09480e9 1.42142 0.710711 0.703484i \(-0.248373\pi\)
0.710711 + 0.703484i \(0.248373\pi\)
\(110\) 6.77958e7 + 3.84489e8i 0.0441505 + 0.250390i
\(111\) 0 0
\(112\) −1.22080e8 + 4.44336e7i −0.0733102 + 0.0266827i
\(113\) 1.80963e9 + 1.51846e9i 1.04408 + 0.876091i 0.992459 0.122575i \(-0.0391153\pi\)
0.0516257 + 0.998667i \(0.483560\pi\)
\(114\) 0 0
\(115\) 8.84590e7 + 3.21965e7i 0.0471630 + 0.0171659i
\(116\) −1.64740e9 2.85337e9i −0.844767 1.46318i
\(117\) 0 0
\(118\) −1.27540e8 + 2.20905e8i −0.0605587 + 0.104891i
\(119\) 6.75321e8 5.66661e8i 0.308709 0.259037i
\(120\) 0 0
\(121\) −1.62442e7 + 9.21254e7i −0.00688913 + 0.0390702i
\(122\) −7.06172e8 + 4.00490e9i −0.288596 + 1.63671i
\(123\) 0 0
\(124\) −6.11488e9 + 5.13099e9i −2.32268 + 1.94896i
\(125\) 4.29171e8 7.43347e8i 0.157230 0.272330i
\(126\) 0 0
\(127\) −1.05275e9 1.82342e9i −0.359095 0.621970i 0.628715 0.777636i \(-0.283581\pi\)
−0.987810 + 0.155665i \(0.950248\pi\)
\(128\) −4.78212e9 1.74055e9i −1.57462 0.573114i
\(129\) 0 0
\(130\) −3.38431e7 2.83977e7i −0.0103926 0.00872044i
\(131\) 5.60440e8 2.03983e8i 0.166268 0.0605166i −0.257545 0.966266i \(-0.582914\pi\)
0.423813 + 0.905750i \(0.360691\pi\)
\(132\) 0 0
\(133\) −3.27874e8 1.85946e9i −0.0908603 0.515294i
\(134\) −5.88079e9 −1.57566
\(135\) 0 0
\(136\) −1.81249e9 −0.454308
\(137\) 1.38950e9 + 7.88023e9i 0.336989 + 1.91116i 0.406646 + 0.913586i \(0.366698\pi\)
−0.0696575 + 0.997571i \(0.522191\pi\)
\(138\) 0 0
\(139\) 1.55806e9 5.67087e8i 0.354011 0.128850i −0.158892 0.987296i \(-0.550792\pi\)
0.512903 + 0.858446i \(0.328570\pi\)
\(140\) 8.67478e8 + 7.27901e8i 0.190846 + 0.160139i
\(141\) 0 0
\(142\) −1.21840e10 4.43460e9i −2.51473 0.915287i
\(143\) 1.28117e8 + 2.21905e8i 0.0256209 + 0.0443767i
\(144\) 0 0
\(145\) −4.32859e8 + 7.49733e8i −0.0813186 + 0.140848i
\(146\) 1.20914e10 1.01459e10i 2.20235 1.84799i
\(147\) 0 0
\(148\) −3.03406e9 + 1.72070e10i −0.519812 + 2.94800i
\(149\) −7.95091e8 + 4.50918e9i −0.132153 + 0.749479i 0.844646 + 0.535325i \(0.179811\pi\)
−0.976800 + 0.214155i \(0.931300\pi\)
\(150\) 0 0
\(151\) −8.41399e8 + 7.06017e8i −0.131706 + 0.110514i −0.706261 0.707951i \(-0.749620\pi\)
0.574555 + 0.818466i \(0.305175\pi\)
\(152\) −1.94100e9 + 3.36191e9i −0.294937 + 0.510846i
\(153\) 0 0
\(154\) −5.26899e9 9.12615e9i −0.754890 1.30751i
\(155\) 1.97092e9 + 7.17354e8i 0.274268 + 0.0998254i
\(156\) 0 0
\(157\) 4.71688e9 + 3.95793e9i 0.619592 + 0.519900i 0.897675 0.440657i \(-0.145255\pi\)
−0.278083 + 0.960557i \(0.589699\pi\)
\(158\) 2.14710e9 7.81480e8i 0.274091 0.0997611i
\(159\) 0 0
\(160\) 2.13570e8 + 1.21122e9i 0.0257632 + 0.146111i
\(161\) −2.54086e9 −0.298033
\(162\) 0 0
\(163\) 9.36113e9 1.03869 0.519343 0.854566i \(-0.326177\pi\)
0.519343 + 0.854566i \(0.326177\pi\)
\(164\) −1.71306e9 9.71523e9i −0.184916 1.04871i
\(165\) 0 0
\(166\) 9.02582e9 3.28513e9i 0.922572 0.335789i
\(167\) −2.62106e9 2.19933e9i −0.260767 0.218810i 0.503025 0.864272i \(-0.332220\pi\)
−0.763792 + 0.645462i \(0.776665\pi\)
\(168\) 0 0
\(169\) 9.93772e9 + 3.61704e9i 0.937123 + 0.341085i
\(170\) 6.02026e8 + 1.04274e9i 0.0552834 + 0.0957537i
\(171\) 0 0
\(172\) 1.49605e10 2.59123e10i 1.30337 2.25750i
\(173\) 1.41514e10 1.18745e10i 1.20114 1.00787i 0.201540 0.979480i \(-0.435405\pi\)
0.999597 0.0283934i \(-0.00903911\pi\)
\(174\) 0 0
\(175\) −1.98569e9 + 1.12614e10i −0.160044 + 0.907656i
\(176\) −1.78706e8 + 1.01349e9i −0.0140389 + 0.0796185i
\(177\) 0 0
\(178\) 2.41164e10 2.02361e10i 1.80062 1.51090i
\(179\) −1.14380e10 + 1.98111e10i −0.832740 + 1.44235i 0.0631167 + 0.998006i \(0.479896\pi\)
−0.895857 + 0.444342i \(0.853437\pi\)
\(180\) 0 0
\(181\) −2.75553e9 4.77271e9i −0.190832 0.330530i 0.754694 0.656077i \(-0.227785\pi\)
−0.945526 + 0.325546i \(0.894452\pi\)
\(182\) 1.12054e9 + 4.07842e8i 0.0757016 + 0.0275531i
\(183\) 0 0
\(184\) 4.00179e9 + 3.35790e9i 0.257379 + 0.215967i
\(185\) 4.31407e9 1.57019e9i 0.270779 0.0985554i
\(186\) 0 0
\(187\) −1.21265e9 6.87729e9i −0.0725185 0.411273i
\(188\) −2.46742e10 −1.44056
\(189\) 0 0
\(190\) 2.57884e9 0.143560
\(191\) 1.57468e9 + 8.93044e9i 0.0856133 + 0.485537i 0.997223 + 0.0744794i \(0.0237295\pi\)
−0.911609 + 0.411058i \(0.865159\pi\)
\(192\) 0 0
\(193\) 1.35158e10 4.91936e9i 0.701189 0.255212i 0.0332703 0.999446i \(-0.489408\pi\)
0.667918 + 0.744235i \(0.267186\pi\)
\(194\) −5.46791e9 4.58812e9i −0.277149 0.232556i
\(195\) 0 0
\(196\) 3.39705e9 + 1.23643e9i 0.164418 + 0.0598433i
\(197\) 6.16599e9 + 1.06798e10i 0.291679 + 0.505202i 0.974207 0.225657i \(-0.0724529\pi\)
−0.682528 + 0.730859i \(0.739120\pi\)
\(198\) 0 0
\(199\) −1.25465e10 + 2.17311e10i −0.567131 + 0.982299i 0.429717 + 0.902963i \(0.358613\pi\)
−0.996848 + 0.0793356i \(0.974720\pi\)
\(200\) 1.80100e10 1.51122e10i 0.795938 0.667872i
\(201\) 0 0
\(202\) −7.10408e9 + 4.02893e10i −0.300211 + 1.70258i
\(203\) 4.05761e9 2.30119e10i 0.167702 0.951086i
\(204\) 0 0
\(205\) −1.98566e9 + 1.66616e9i −0.0785256 + 0.0658908i
\(206\) −1.02772e10 + 1.78005e10i −0.397622 + 0.688701i
\(207\) 0 0
\(208\) −5.82268e7 1.00852e8i −0.00215694 0.00373593i
\(209\) −1.40550e10 5.11561e9i −0.509534 0.185455i
\(210\) 0 0
\(211\) −1.30381e10 1.09402e10i −0.452837 0.379976i 0.387650 0.921807i \(-0.373287\pi\)
−0.840487 + 0.541831i \(0.817731\pi\)
\(212\) 1.94572e10 7.08184e9i 0.661559 0.240788i
\(213\) 0 0
\(214\) −8.91895e9 5.05819e10i −0.290704 1.64867i
\(215\) −7.86183e9 −0.250929
\(216\) 0 0
\(217\) −5.66117e10 −1.73316
\(218\) −1.34099e10 7.60514e10i −0.402135 2.28062i
\(219\) 0 0
\(220\) 8.42946e9 3.06807e9i 0.242604 0.0883006i
\(221\) 6.05345e8 + 5.07945e8i 0.0170702 + 0.0143236i
\(222\) 0 0
\(223\) −2.06463e10 7.51465e9i −0.559076 0.203487i 0.0469983 0.998895i \(-0.485034\pi\)
−0.606075 + 0.795408i \(0.707257\pi\)
\(224\) −1.65983e10 2.87492e10i −0.440503 0.762973i
\(225\) 0 0
\(226\) 4.35430e10 7.54186e10i 1.11027 1.92305i
\(227\) 1.89209e10 1.58766e10i 0.472962 0.396862i −0.374912 0.927061i \(-0.622327\pi\)
0.847874 + 0.530198i \(0.177882\pi\)
\(228\) 0 0
\(229\) −9.82004e9 + 5.56922e10i −0.235968 + 1.33824i 0.604597 + 0.796532i \(0.293334\pi\)
−0.840565 + 0.541710i \(0.817777\pi\)
\(230\) 6.02615e8 3.41760e9i 0.0141992 0.0805278i
\(231\) 0 0
\(232\) −3.68022e10 + 3.08807e10i −0.834022 + 0.699828i
\(233\) −9.95140e9 + 1.72363e10i −0.221199 + 0.383127i −0.955172 0.296051i \(-0.904330\pi\)
0.733974 + 0.679178i \(0.237664\pi\)
\(234\) 0 0
\(235\) 3.24161e9 + 5.61464e9i 0.0693355 + 0.120093i
\(236\) 5.50735e9 + 2.00451e9i 0.115568 + 0.0420634i
\(237\) 0 0
\(238\) −2.48956e10 2.08899e10i −0.502953 0.422027i
\(239\) −3.44982e10 + 1.25563e10i −0.683922 + 0.248927i −0.660530 0.750799i \(-0.729669\pi\)
−0.0233912 + 0.999726i \(0.507446\pi\)
\(240\) 0 0
\(241\) 1.92542e8 + 1.09196e9i 0.00367663 + 0.0208512i 0.986591 0.163213i \(-0.0521857\pi\)
−0.982914 + 0.184064i \(0.941075\pi\)
\(242\) 3.44859e9 0.0646356
\(243\) 0 0
\(244\) 9.34375e10 1.68759
\(245\) −1.64943e8 9.35440e8i −0.00292474 0.0165870i
\(246\) 0 0
\(247\) 1.59043e9 5.78870e8i 0.0271881 0.00989565i
\(248\) 8.91620e10 + 7.48158e10i 1.49674 + 1.25592i
\(249\) 0 0
\(250\) −2.97344e10 1.08224e10i −0.481426 0.175225i
\(251\) −1.01467e10 1.75746e10i −0.161359 0.279482i 0.773997 0.633189i \(-0.218254\pi\)
−0.935356 + 0.353707i \(0.884921\pi\)
\(252\) 0 0
\(253\) −1.00638e10 + 1.74309e10i −0.154425 + 0.267472i
\(254\) −5.94597e10 + 4.98926e10i −0.896337 + 0.752116i
\(255\) 0 0
\(256\) −1.34804e10 + 7.64514e10i −0.196166 + 1.11251i
\(257\) −6.29806e9 + 3.57181e10i −0.0900550 + 0.510727i 0.906096 + 0.423072i \(0.139048\pi\)
−0.996151 + 0.0876550i \(0.972063\pi\)
\(258\) 0 0
\(259\) −9.49249e10 + 7.96514e10i −1.31078 + 1.09988i
\(260\) −5.07537e8 + 8.79079e8i −0.00688791 + 0.0119302i
\(261\) 0 0
\(262\) −1.09933e10 1.90409e10i −0.144135 0.249650i
\(263\) 1.41128e11 + 5.13665e10i 1.81892 + 0.662033i 0.995518 + 0.0945732i \(0.0301486\pi\)
0.823401 + 0.567459i \(0.192074\pi\)
\(264\) 0 0
\(265\) −4.16770e9 3.49711e9i −0.0519146 0.0435616i
\(266\) −6.54086e10 + 2.38068e10i −0.801065 + 0.291564i
\(267\) 0 0
\(268\) 2.34632e10 + 1.33066e11i 0.277831 + 1.57566i
\(269\) −3.65710e10 −0.425845 −0.212922 0.977069i \(-0.568298\pi\)
−0.212922 + 0.977069i \(0.568298\pi\)
\(270\) 0 0
\(271\) −1.03536e10 −0.116608 −0.0583039 0.998299i \(-0.518569\pi\)
−0.0583039 + 0.998299i \(0.518569\pi\)
\(272\) 5.51127e8 + 3.12560e9i 0.00610509 + 0.0346237i
\(273\) 0 0
\(274\) 2.77196e11 1.00891e11i 2.97104 1.08137i
\(275\) 6.93913e10 + 5.82262e10i 0.731657 + 0.613933i
\(276\) 0 0
\(277\) −9.83901e10 3.58111e10i −1.00414 0.365475i −0.212958 0.977061i \(-0.568310\pi\)
−0.791178 + 0.611586i \(0.790532\pi\)
\(278\) −3.05619e10 5.29348e10i −0.306888 0.531545i
\(279\) 0 0
\(280\) 8.25594e9 1.42997e10i 0.0802704 0.139032i
\(281\) −1.24873e11 + 1.04781e11i −1.19478 + 1.00254i −0.195021 + 0.980799i \(0.562478\pi\)
−0.999764 + 0.0217445i \(0.993078\pi\)
\(282\) 0 0
\(283\) −2.04952e10 + 1.16234e11i −0.189939 + 1.07720i 0.729506 + 0.683975i \(0.239750\pi\)
−0.919444 + 0.393221i \(0.871361\pi\)
\(284\) −5.17315e10 + 2.93384e11i −0.471870 + 2.67611i
\(285\) 0 0
\(286\) 7.23609e9 6.07180e9i 0.0639524 0.0536624i
\(287\) 3.49820e10 6.05906e10i 0.304352 0.527153i
\(288\) 0 0
\(289\) 4.85256e10 + 8.40488e10i 0.409195 + 0.708747i
\(290\) 2.99899e10 + 1.09154e10i 0.248991 + 0.0906254i
\(291\) 0 0
\(292\) −2.77815e11 2.33115e11i −2.23632 1.87649i
\(293\) 1.18073e11 4.29750e10i 0.935935 0.340653i 0.171376 0.985206i \(-0.445179\pi\)
0.764560 + 0.644553i \(0.222957\pi\)
\(294\) 0 0
\(295\) −2.67409e8 1.51655e9i −0.00205578 0.0116589i
\(296\) 2.54768e11 1.92900
\(297\) 0 0
\(298\) 1.68795e11 1.23990
\(299\) −3.95498e8 2.24298e9i −0.00286170 0.0162295i
\(300\) 0 0
\(301\) 1.99404e11 7.25771e10i 1.40018 0.509625i
\(302\) 3.10181e10 + 2.60273e10i 0.214577 + 0.180052i
\(303\) 0 0
\(304\) 6.38774e9 + 2.32495e9i 0.0428960 + 0.0156129i
\(305\) −1.22755e10 2.12618e10i −0.0812251 0.140686i
\(306\) 0 0
\(307\) −1.29425e11 + 2.24170e11i −0.831563 + 1.44031i 0.0652363 + 0.997870i \(0.479220\pi\)
−0.896799 + 0.442439i \(0.854113\pi\)
\(308\) −1.85478e11 + 1.55635e11i −1.17440 + 0.985434i
\(309\) 0 0
\(310\) 1.34266e10 7.61459e10i 0.0825730 0.468295i
\(311\) 4.07695e10 2.31215e11i 0.247123 1.40151i −0.568386 0.822762i \(-0.692432\pi\)
0.815509 0.578744i \(-0.196457\pi\)
\(312\) 0 0
\(313\) 3.67264e10 3.08171e10i 0.216286 0.181486i −0.528207 0.849116i \(-0.677136\pi\)
0.744493 + 0.667630i \(0.232691\pi\)
\(314\) 1.13497e11 1.96582e11i 0.658871 1.14120i
\(315\) 0 0
\(316\) −2.62493e10 4.54651e10i −0.148090 0.256499i
\(317\) −7.27839e10 2.64912e10i −0.404826 0.147345i 0.131578 0.991306i \(-0.457996\pi\)
−0.536404 + 0.843961i \(0.680218\pi\)
\(318\) 0 0
\(319\) −1.41796e11 1.18981e11i −0.766665 0.643309i
\(320\) 4.49216e10 1.63501e10i 0.239486 0.0871658i
\(321\) 0 0
\(322\) 1.62654e10 + 9.22455e10i 0.0843165 + 0.478183i
\(323\) −4.61273e10 −0.235801
\(324\) 0 0
\(325\) −1.02502e10 −0.0509635
\(326\) −5.99255e10 3.39854e11i −0.293854 1.66653i
\(327\) 0 0
\(328\) −1.35170e11 + 4.91977e10i −0.644833 + 0.234700i
\(329\) −1.34051e11 1.12482e11i −0.630794 0.529299i
\(330\) 0 0
\(331\) −2.64223e10 9.61694e9i −0.120989 0.0440363i 0.280816 0.959762i \(-0.409395\pi\)
−0.401805 + 0.915725i \(0.631617\pi\)
\(332\) −1.10345e11 1.91123e11i −0.498461 0.863359i
\(333\) 0 0
\(334\) −6.30677e10 + 1.09236e11i −0.277299 + 0.480295i
\(335\) 2.71969e10 2.28209e10i 0.117982 0.0989990i
\(336\) 0 0
\(337\) −1.38244e10 + 7.84022e10i −0.0583865 + 0.331127i −0.999984 0.00561338i \(-0.998213\pi\)
0.941598 + 0.336740i \(0.109324\pi\)
\(338\) 6.76994e10 3.83942e11i 0.282137 1.60008i
\(339\) 0 0
\(340\) 2.11924e10 1.77825e10i 0.0860053 0.0721670i
\(341\) −2.24226e11 + 3.88371e11i −0.898031 + 1.55544i
\(342\) 0 0
\(343\) 1.34024e11 + 2.32136e11i 0.522828 + 0.905564i
\(344\) −4.09971e11 1.49217e11i −1.57848 0.574521i
\(345\) 0 0
\(346\) −5.21691e11 4.37751e11i −1.95691 1.64204i
\(347\) 1.24542e11 4.53295e10i 0.461140 0.167841i −0.100995 0.994887i \(-0.532203\pi\)
0.562135 + 0.827046i \(0.309980\pi\)
\(348\) 0 0
\(349\) −7.68067e10 4.35592e11i −0.277131 1.57169i −0.732112 0.681185i \(-0.761465\pi\)
0.454981 0.890501i \(-0.349646\pi\)
\(350\) 4.21555e11 1.50158
\(351\) 0 0
\(352\) −2.62969e11 −0.912982
\(353\) 6.93131e10 + 3.93094e11i 0.237591 + 1.34744i 0.837089 + 0.547067i \(0.184256\pi\)
−0.599498 + 0.800376i \(0.704633\pi\)
\(354\) 0 0
\(355\) 7.35561e10 2.67722e10i 0.245805 0.0894658i
\(356\) −5.54108e11 4.64952e11i −1.82839 1.53420i
\(357\) 0 0
\(358\) 7.92460e11 + 2.88432e11i 2.54979 + 0.928046i
\(359\) 2.10653e11 + 3.64862e11i 0.669333 + 1.15932i 0.978091 + 0.208179i \(0.0667535\pi\)
−0.308757 + 0.951141i \(0.599913\pi\)
\(360\) 0 0
\(361\) 1.11946e11 1.93896e11i 0.346918 0.600879i
\(362\) −1.55633e11 + 1.30592e11i −0.476336 + 0.399693i
\(363\) 0 0
\(364\) 4.75765e9 2.69819e10i 0.0142048 0.0805596i
\(365\) −1.65471e10 + 9.38431e10i −0.0487981 + 0.276748i
\(366\) 0 0
\(367\) 4.38435e11 3.67891e11i 1.26156 1.05858i 0.266047 0.963960i \(-0.414282\pi\)
0.995514 0.0946156i \(-0.0301622\pi\)
\(368\) 4.57379e9 7.92204e9i 0.0130005 0.0225176i
\(369\) 0 0
\(370\) −8.46223e10 1.46570e11i −0.234735 0.406572i
\(371\) 1.37992e11 + 5.02248e10i 0.378155 + 0.137637i
\(372\) 0 0
\(373\) 3.71902e11 + 3.12063e11i 0.994806 + 0.834742i 0.986256 0.165222i \(-0.0528340\pi\)
0.00854993 + 0.999963i \(0.497278\pi\)
\(374\) −2.41916e11 + 8.80502e10i −0.639356 + 0.232706i
\(375\) 0 0
\(376\) 6.24748e10 + 3.54312e11i 0.161198 + 0.914199i
\(377\) 2.09456e10 0.0534020
\(378\) 0 0
\(379\) −1.76515e11 −0.439446 −0.219723 0.975562i \(-0.570515\pi\)
−0.219723 + 0.975562i \(0.570515\pi\)
\(380\) −1.02891e10 5.83523e10i −0.0253134 0.143559i
\(381\) 0 0
\(382\) 3.14138e11 1.14337e11i 0.754806 0.274727i
\(383\) −2.95459e11 2.47919e11i −0.701620 0.588729i 0.220614 0.975361i \(-0.429194\pi\)
−0.922234 + 0.386632i \(0.873638\pi\)
\(384\) 0 0
\(385\) 5.97823e10 + 2.17590e10i 0.138675 + 0.0504737i
\(386\) −2.65119e11 4.59199e11i −0.607851 1.05283i
\(387\) 0 0
\(388\) −8.20009e10 + 1.42030e11i −0.183686 + 0.318153i
\(389\) 5.74522e11 4.82081e11i 1.27214 1.06745i 0.277857 0.960622i \(-0.410376\pi\)
0.994278 0.106826i \(-0.0340687\pi\)
\(390\) 0 0
\(391\) −1.07789e10 + 6.11299e10i −0.0233226 + 0.132269i
\(392\) 9.15331e9 5.19110e10i 0.0195790 0.111038i
\(393\) 0 0
\(394\) 3.48257e11 2.92222e11i 0.728060 0.610915i
\(395\) −6.89709e9 + 1.19461e10i −0.0142554 + 0.0246910i
\(396\) 0 0
\(397\) −5.80196e10 1.00493e11i −0.117224 0.203038i 0.801442 0.598072i \(-0.204066\pi\)
−0.918667 + 0.395034i \(0.870733\pi\)
\(398\) 8.69263e11 + 3.16386e11i 1.73651 + 0.632038i
\(399\) 0 0
\(400\) −3.15370e10 2.64627e10i −0.0615958 0.0516850i
\(401\) 1.45692e10 5.30277e9i 0.0281376 0.0102412i −0.327913 0.944708i \(-0.606345\pi\)
0.356051 + 0.934467i \(0.384123\pi\)
\(402\) 0 0
\(403\) −8.81190e9 4.99748e10i −0.0166417 0.0943796i
\(404\) 9.39981e11 1.75551
\(405\) 0 0
\(406\) −8.61417e11 −1.57343
\(407\) 1.70453e11 + 9.66689e11i 0.307915 + 1.74627i
\(408\) 0 0
\(409\) 8.25039e11 3.00289e11i 1.45787 0.530622i 0.513094 0.858333i \(-0.328499\pi\)
0.944778 + 0.327711i \(0.106277\pi\)
\(410\) 7.32010e10 + 6.14229e10i 0.127935 + 0.107350i
\(411\) 0 0
\(412\) 4.43782e11 + 1.61524e11i 0.758809 + 0.276184i
\(413\) 2.07826e10 + 3.59965e10i 0.0351499 + 0.0608814i
\(414\) 0 0
\(415\) −2.89935e10 + 5.02182e10i −0.0479826 + 0.0831084i
\(416\) 2.27951e10 1.91274e10i 0.0373183 0.0313137i
\(417\) 0 0
\(418\) −9.57479e10 + 5.43013e11i −0.153404 + 0.869996i
\(419\) 1.02324e11 5.80310e11i 0.162187 0.919807i −0.789731 0.613453i \(-0.789780\pi\)
0.951918 0.306354i \(-0.0991090\pi\)
\(420\) 0 0
\(421\) 2.34819e11 1.97037e11i 0.364305 0.305688i −0.442199 0.896917i \(-0.645802\pi\)
0.806504 + 0.591229i \(0.201357\pi\)
\(422\) −3.13720e11 + 5.43379e11i −0.481545 + 0.834060i
\(423\) 0 0
\(424\) −1.50958e11 2.61467e11i −0.226835 0.392889i
\(425\) 2.62512e11 + 9.55465e10i 0.390300 + 0.142058i
\(426\) 0 0
\(427\) 5.07631e11 + 4.25953e11i 0.738963 + 0.620063i
\(428\) −1.10895e12 + 4.03624e11i −1.59740 + 0.581406i
\(429\) 0 0
\(430\) 5.03277e10 + 2.85423e11i 0.0709903 + 0.402606i
\(431\) −6.35532e11 −0.887135 −0.443568 0.896241i \(-0.646287\pi\)
−0.443568 + 0.896241i \(0.646287\pi\)
\(432\) 0 0
\(433\) −4.34254e11 −0.593675 −0.296837 0.954928i \(-0.595932\pi\)
−0.296837 + 0.954928i \(0.595932\pi\)
\(434\) 3.62401e11 + 2.05528e12i 0.490327 + 2.78078i
\(435\) 0 0
\(436\) −1.66733e12 + 6.06860e11i −2.20970 + 0.804265i
\(437\) 1.01844e11 + 8.54575e10i 0.133589 + 0.112094i
\(438\) 0 0
\(439\) −1.07757e12 3.92204e11i −1.38470 0.503990i −0.461101 0.887348i \(-0.652545\pi\)
−0.923600 + 0.383358i \(0.874768\pi\)
\(440\) −6.53997e10 1.13276e11i −0.0831838 0.144079i
\(441\) 0 0
\(442\) 1.45657e10 2.52286e10i 0.0181523 0.0314407i
\(443\) 9.54438e11 8.00869e11i 1.17742 0.987972i 0.177426 0.984134i \(-0.443223\pi\)
0.999993 0.00383775i \(-0.00122160\pi\)
\(444\) 0 0
\(445\) −3.30034e10 + 1.87172e11i −0.0398969 + 0.226266i
\(446\) −1.40650e11 + 7.97667e11i −0.168319 + 0.954586i
\(447\) 0 0
\(448\) −9.88434e11 + 8.29395e11i −1.15930 + 0.972770i
\(449\) −6.88438e11 + 1.19241e12i −0.799386 + 1.38458i 0.120631 + 0.992697i \(0.461508\pi\)
−0.920017 + 0.391879i \(0.871825\pi\)
\(450\) 0 0
\(451\) −2.77111e11 4.79970e11i −0.315398 0.546286i
\(452\) −1.88025e12 6.84355e11i −2.11881 0.771184i
\(453\) 0 0
\(454\) −6.97519e11 5.85288e11i −0.770557 0.646574i
\(455\) −6.76481e9 + 2.46219e9i −0.00739954 + 0.00269321i
\(456\) 0 0
\(457\) 8.01533e10 + 4.54572e11i 0.0859604 + 0.487506i 0.997145 + 0.0755079i \(0.0240578\pi\)
−0.911185 + 0.411998i \(0.864831\pi\)
\(458\) 2.08476e12 2.21392
\(459\) 0 0
\(460\) −7.97354e10 −0.0830311
\(461\) −1.78683e11 1.01336e12i −0.184259 1.04499i −0.926903 0.375301i \(-0.877540\pi\)
0.742644 0.669687i \(-0.233572\pi\)
\(462\) 0 0
\(463\) −4.99548e11 + 1.81821e11i −0.505200 + 0.183878i −0.582031 0.813166i \(-0.697742\pi\)
0.0768316 + 0.997044i \(0.475520\pi\)
\(464\) 6.44436e10 + 5.40746e10i 0.0645430 + 0.0541580i
\(465\) 0 0
\(466\) 6.89466e11 + 2.50945e11i 0.677293 + 0.246514i
\(467\) −6.15190e11 1.06554e12i −0.598526 1.03668i −0.993039 0.117787i \(-0.962420\pi\)
0.394512 0.918891i \(-0.370913\pi\)
\(468\) 0 0
\(469\) −4.79137e11 + 8.29889e11i −0.457279 + 0.792031i
\(470\) 1.83087e11 1.53628e11i 0.173068 0.145222i
\(471\) 0 0
\(472\) 1.48395e10 8.41589e10i 0.0137619 0.0780479i
\(473\) 2.91896e11 1.65542e12i 0.268135 1.52067i
\(474\) 0 0
\(475\) 4.58350e11 3.84601e11i 0.413120 0.346648i
\(476\) −3.73354e11 + 6.46668e11i −0.333342 + 0.577365i
\(477\) 0 0
\(478\) 6.76697e11 + 1.17207e12i 0.592883 + 1.02690i
\(479\) −1.22723e12 4.46674e11i −1.06516 0.387687i −0.250796 0.968040i \(-0.580692\pi\)
−0.814365 + 0.580353i \(0.802914\pi\)
\(480\) 0 0
\(481\) −8.50889e10 7.13981e10i −0.0724803 0.0608182i
\(482\) 3.84110e10 1.39804e10i 0.0324148 0.0117980i
\(483\) 0 0
\(484\) −1.37592e10 7.80322e10i −0.0113970 0.0646353i
\(485\) 4.30920e10 0.0353638
\(486\) 0 0
\(487\) 1.46641e12 1.18134 0.590669 0.806914i \(-0.298864\pi\)
0.590669 + 0.806914i \(0.298864\pi\)
\(488\) −2.36583e11 1.34173e12i −0.188840 1.07097i
\(489\) 0 0
\(490\) −3.29051e10 + 1.19765e10i −0.0257858 + 0.00938527i
\(491\) −4.16887e11 3.49810e11i −0.323707 0.271622i 0.466423 0.884562i \(-0.345543\pi\)
−0.790130 + 0.612939i \(0.789987\pi\)
\(492\) 0 0
\(493\) −5.36424e11 1.95242e11i −0.408975 0.148855i
\(494\) −3.11970e10 5.40347e10i −0.0235690 0.0408227i
\(495\) 0 0
\(496\) 1.01907e11 1.76507e11i 0.0756022 0.130947i
\(497\) −1.61849e12 + 1.35808e12i −1.18989 + 0.998438i
\(498\) 0 0
\(499\) 2.64439e11 1.49971e12i 0.190929 1.08281i −0.727169 0.686459i \(-0.759164\pi\)
0.918098 0.396354i \(-0.129725\pi\)
\(500\) −1.26248e11 + 7.15990e11i −0.0903359 + 0.512321i
\(501\) 0 0
\(502\) −5.73089e11 + 4.80879e11i −0.402769 + 0.337963i
\(503\) 3.18848e11 5.52260e11i 0.222089 0.384670i −0.733353 0.679848i \(-0.762046\pi\)
0.955442 + 0.295178i \(0.0953791\pi\)
\(504\) 0 0
\(505\) −1.23492e11 2.13894e11i −0.0844941 0.146348i
\(506\) 6.97251e11 + 2.53779e11i 0.472838 + 0.172099i
\(507\) 0 0
\(508\) 1.36617e12 + 1.14635e12i 0.910160 + 0.763715i
\(509\) 1.83169e12 6.66681e11i 1.20955 0.440239i 0.343000 0.939336i \(-0.388557\pi\)
0.866546 + 0.499097i \(0.166335\pi\)
\(510\) 0 0
\(511\) −4.46627e11 2.53295e12i −0.289769 1.64336i
\(512\) 2.56271e11 0.164811
\(513\) 0 0
\(514\) 1.33706e12 0.844921
\(515\) −2.15478e10 1.22204e11i −0.0134980 0.0765511i
\(516\) 0 0
\(517\) −1.30260e12 + 4.74107e11i −0.801869 + 0.291856i
\(518\) 3.49940e12 + 2.93634e12i 2.13555 + 1.79194i
\(519\) 0 0
\(520\) 1.39083e10 + 5.06222e9i 0.00834180 + 0.00303617i
\(521\) 4.55095e9 + 7.88248e9i 0.00270603 + 0.00468698i 0.867375 0.497655i \(-0.165805\pi\)
−0.864669 + 0.502342i \(0.832472\pi\)
\(522\) 0 0
\(523\) −7.13405e11 + 1.23565e12i −0.416945 + 0.722169i −0.995630 0.0933813i \(-0.970232\pi\)
0.578686 + 0.815551i \(0.303566\pi\)
\(524\) −3.86983e11 + 3.24717e11i −0.224234 + 0.188155i
\(525\) 0 0
\(526\) 9.61417e11 5.45247e12i 0.547616 3.10568i
\(527\) −2.40159e11 + 1.36201e12i −0.135628 + 0.769187i
\(528\) 0 0
\(529\) −1.24271e12 + 1.04276e12i −0.689954 + 0.578940i
\(530\) −1.00283e11 + 1.73695e11i −0.0552057 + 0.0956191i
\(531\) 0 0
\(532\) 7.99651e11 + 1.38504e12i 0.432811 + 0.749651i
\(533\) 5.89322e10 + 2.14496e10i 0.0316286 + 0.0115119i
\(534\) 0 0
\(535\) 2.37535e11 + 1.99315e11i 0.125353 + 0.105184i
\(536\) 1.85137e12 6.73845e11i 0.968842 0.352630i
\(537\) 0 0
\(538\) 2.34110e11 + 1.32770e12i 0.120476 + 0.683252i
\(539\) 2.03095e11 0.103645
\(540\) 0 0
\(541\) 1.43983e12 0.722641 0.361320 0.932442i \(-0.382326\pi\)
0.361320 + 0.932442i \(0.382326\pi\)
\(542\) 6.62786e10 + 3.75884e11i 0.0329895 + 0.187093i
\(543\) 0 0
\(544\) −7.62083e11 + 2.77376e11i −0.373085 + 0.135792i
\(545\) 3.57140e11 + 2.99676e11i 0.173402 + 0.145502i
\(546\) 0 0
\(547\) −3.45780e11 1.25854e11i −0.165142 0.0601067i 0.258126 0.966111i \(-0.416895\pi\)
−0.423268 + 0.906004i \(0.639117\pi\)
\(548\) −3.38885e12 5.86966e12i −1.60524 2.78035i
\(549\) 0 0
\(550\) 1.66968e12 2.89198e12i 0.778040 1.34760i
\(551\) −9.36604e11 + 7.85904e11i −0.432886 + 0.363235i
\(552\) 0 0
\(553\) 6.46533e10 3.66667e11i 0.0293986 0.166728i
\(554\) −6.70269e11 + 3.80128e12i −0.302312 + 1.71450i
\(555\) 0 0
\(556\) −1.07584e12 + 9.02734e11i −0.477430 + 0.400611i
\(557\) −4.28201e11 + 7.41665e11i −0.188495 + 0.326482i −0.944749 0.327796i \(-0.893694\pi\)
0.756254 + 0.654278i \(0.227027\pi\)
\(558\) 0 0
\(559\) 9.51067e10 + 1.64730e11i 0.0411963 + 0.0713540i
\(560\) −2.71699e10 9.88905e9i −0.0116746 0.00424921i
\(561\) 0 0
\(562\) 4.60343e12 + 3.86273e12i 1.94656 + 1.63336i
\(563\) −6.58635e11 + 2.39724e11i −0.276285 + 0.100559i −0.476447 0.879203i \(-0.658075\pi\)
0.200162 + 0.979763i \(0.435853\pi\)
\(564\) 0 0
\(565\) 9.12952e10 + 5.17761e11i 0.0376903 + 0.213752i
\(566\) 4.35106e12 1.78206
\(567\) 0 0
\(568\) 4.34387e12 1.75109
\(569\) −6.69270e11 3.79562e12i −0.267668 1.51802i −0.761329 0.648366i \(-0.775453\pi\)
0.493661 0.869654i \(-0.335658\pi\)
\(570\) 0 0
\(571\) −7.21760e11 + 2.62699e11i −0.284139 + 0.103418i −0.480158 0.877182i \(-0.659421\pi\)
0.196019 + 0.980600i \(0.437198\pi\)
\(572\) −1.66259e11 1.39508e11i −0.0649386 0.0544900i
\(573\) 0 0
\(574\) −2.42367e12 8.82143e11i −0.931901 0.339184i
\(575\) −4.02585e11 6.97298e11i −0.153586 0.266019i
\(576\) 0 0
\(577\) 2.13129e12 3.69150e12i 0.800481 1.38647i −0.118819 0.992916i \(-0.537911\pi\)
0.919300 0.393557i \(-0.128756\pi\)
\(578\) 2.74074e12 2.29976e12i 1.02139 0.857051i
\(579\) 0 0
\(580\) 1.27333e11 7.22141e11i 0.0467213 0.264970i
\(581\) 2.71785e11 1.54137e12i 0.0989538 0.561195i
\(582\) 0 0
\(583\) 8.91108e11 7.47728e11i 0.319464 0.268062i
\(584\) −2.64402e12 + 4.57957e12i −0.940603 + 1.62917i
\(585\) 0 0
\(586\) −2.31605e12 4.01151e12i −0.811350 1.40530i
\(587\) −2.14624e12 7.81167e11i −0.746116 0.271564i −0.0591456 0.998249i \(-0.518838\pi\)
−0.686970 + 0.726685i \(0.741060\pi\)
\(588\) 0 0
\(589\) 2.26914e12 + 1.90404e12i 0.776861 + 0.651864i
\(590\) −5.33463e10 + 1.94165e10i −0.0181247 + 0.00659684i
\(591\) 0 0
\(592\) −7.74679e10 4.39342e11i −0.0259223 0.147013i
\(593\) −2.44394e12 −0.811604 −0.405802 0.913961i \(-0.633008\pi\)
−0.405802 + 0.913961i \(0.633008\pi\)
\(594\) 0 0
\(595\) 1.96200e11 0.0641760
\(596\) −6.73459e11 3.81938e12i −0.218627 1.23989i
\(597\) 0 0
\(598\) −7.88992e10 + 2.87170e10i −0.0252300 + 0.00918297i
\(599\) −1.38527e12 1.16238e12i −0.439657 0.368916i 0.395924 0.918283i \(-0.370424\pi\)
−0.835581 + 0.549367i \(0.814869\pi\)
\(600\) 0 0
\(601\) −3.03595e12 1.10500e12i −0.949204 0.345482i −0.179410 0.983774i \(-0.557419\pi\)
−0.769794 + 0.638293i \(0.779641\pi\)
\(602\) −3.91139e12 6.77473e12i −1.21380 2.10236i
\(603\) 0 0
\(604\) 4.65171e11 8.05699e11i 0.142215 0.246324i
\(605\) −1.59487e10 + 1.33825e10i −0.00483978 + 0.00406106i
\(606\) 0 0
\(607\) −2.53816e11 + 1.43946e12i −0.0758874 + 0.430379i 0.923066 + 0.384641i \(0.125675\pi\)
−0.998953 + 0.0457375i \(0.985436\pi\)
\(608\) −3.01625e11 + 1.71060e12i −0.0895160 + 0.507670i
\(609\) 0 0
\(610\) −6.93325e11 + 5.81769e11i −0.202746 + 0.170124i
\(611\) 7.84293e10 1.35844e11i 0.0227663 0.0394324i
\(612\) 0 0
\(613\) 8.53243e11 + 1.47786e12i 0.244062 + 0.422728i 0.961868 0.273516i \(-0.0881865\pi\)
−0.717805 + 0.696244i \(0.754853\pi\)
\(614\) 8.96699e12 + 3.26372e12i 2.54618 + 0.926733i
\(615\) 0 0
\(616\) 2.70448e12 + 2.26933e12i 0.756782 + 0.635016i
\(617\) −2.27334e12 + 8.27426e11i −0.631510 + 0.229851i −0.637888 0.770129i \(-0.720192\pi\)
0.00637834 + 0.999980i \(0.497970\pi\)
\(618\) 0 0
\(619\) 8.56840e10 + 4.85938e11i 0.0234581 + 0.133037i 0.994288 0.106733i \(-0.0340390\pi\)
−0.970830 + 0.239770i \(0.922928\pi\)
\(620\) −1.77655e12 −0.482852
\(621\) 0 0
\(622\) −8.65523e12 −2.31858
\(623\) −8.90806e11 5.05201e12i −0.236912 1.34359i
\(624\) 0 0
\(625\) −3.31422e12 + 1.20628e12i −0.868804 + 0.316219i
\(626\) −1.35392e12 1.13607e12i −0.352377 0.295679i
\(627\) 0 0
\(628\) −4.90096e12 1.78380e12i −1.25737 0.457645i
\(629\) 1.51362e12 + 2.62167e12i 0.385558 + 0.667806i
\(630\) 0 0
\(631\) 2.11783e12 3.66819e12i 0.531814 0.921128i −0.467497 0.883995i \(-0.654844\pi\)
0.999310 0.0371334i \(-0.0118227\pi\)
\(632\) −5.86399e11 + 4.92047e11i −0.146206 + 0.122682i
\(633\) 0 0
\(634\) −4.95830e11 + 2.81199e12i −0.121880 + 0.691214i
\(635\) 8.13708e10 4.61477e11i 0.0198604 0.112634i
\(636\) 0 0
\(637\) −1.76050e10 + 1.47723e10i −0.00423651 + 0.00355485i
\(638\) −3.41188e12 + 5.90954e12i −0.815267 + 1.41208i
\(639\) 0 0
\(640\) −5.66301e11 9.80862e11i −0.133425 0.231099i
\(641\) 3.31662e12 + 1.20715e12i 0.775952 + 0.282423i 0.699484 0.714649i \(-0.253413\pi\)
0.0764684 + 0.997072i \(0.475636\pi\)
\(642\) 0 0
\(643\) 6.96875e11 + 5.84747e11i 0.160770 + 0.134902i 0.719624 0.694364i \(-0.244314\pi\)
−0.558854 + 0.829266i \(0.688759\pi\)
\(644\) 2.02237e12 7.36083e11i 0.463313 0.168632i
\(645\) 0 0
\(646\) 2.95285e11 + 1.67464e12i 0.0667106 + 0.378335i
\(647\) 1.74424e12 0.391324 0.195662 0.980671i \(-0.437314\pi\)
0.195662 + 0.980671i \(0.437314\pi\)
\(648\) 0 0
\(649\) 3.29260e11 0.0728514
\(650\) 6.56172e10 + 3.72134e11i 0.0144181 + 0.0817690i
\(651\) 0 0
\(652\) −7.45090e12 + 2.71190e12i −1.61471 + 0.587706i
\(653\) 2.12427e12 + 1.78247e12i 0.457193 + 0.383631i 0.842097 0.539326i \(-0.181321\pi\)
−0.384904 + 0.922957i \(0.625765\pi\)
\(654\) 0 0
\(655\) 1.24730e11 + 4.53981e10i 0.0264781 + 0.00963722i
\(656\) 1.25942e11 + 2.18138e11i 0.0265523 + 0.0459900i
\(657\) 0 0
\(658\) −3.22551e12 + 5.58675e12i −0.670783 + 1.16183i
\(659\) −5.88085e12 + 4.93462e12i −1.21466 + 1.01922i −0.215577 + 0.976487i \(0.569163\pi\)
−0.999086 + 0.0427364i \(0.986392\pi\)
\(660\) 0 0
\(661\) −4.99155e11 + 2.83085e12i −0.101702 + 0.576779i 0.890785 + 0.454425i \(0.150155\pi\)
−0.992487 + 0.122354i \(0.960956\pi\)
\(662\) −1.79998e11 + 1.02082e12i −0.0364257 + 0.206580i
\(663\) 0 0
\(664\) −2.46506e12 + 2.06843e12i −0.492121 + 0.412938i
\(665\) 2.10111e11 3.63923e11i 0.0416631 0.0721626i
\(666\) 0 0
\(667\) 8.22653e11 + 1.42488e12i 0.160935 + 0.278748i
\(668\) 2.72335e12 + 9.91219e11i 0.529188 + 0.192609i
\(669\) 0 0
\(670\) −1.00261e12 8.41290e11i −0.192219 0.161291i
\(671\) 4.93275e12 1.79537e12i 0.939373 0.341904i
\(672\) 0 0
\(673\) −4.30691e11 2.44257e12i −0.0809279 0.458965i −0.998161 0.0606145i \(-0.980694\pi\)
0.917233 0.398350i \(-0.130417\pi\)
\(674\) 2.93488e12 0.547798
\(675\) 0 0
\(676\) −8.95768e12 −1.64982
\(677\) 8.46807e11 + 4.80248e12i 0.154930 + 0.878652i 0.958850 + 0.283914i \(0.0916330\pi\)
−0.803920 + 0.594738i \(0.797256\pi\)
\(678\) 0 0
\(679\) −1.09297e12 + 3.97807e11i −0.197330 + 0.0718222i
\(680\) −3.09010e11 2.59290e11i −0.0554220 0.0465046i
\(681\) 0 0
\(682\) 1.55351e13 + 5.65433e12i 2.74970 + 1.00081i
\(683\) 2.95284e12 + 5.11447e12i 0.519215 + 0.899307i 0.999751 + 0.0223315i \(0.00710893\pi\)
−0.480536 + 0.876975i \(0.659558\pi\)
\(684\) 0 0
\(685\) −8.90431e11 + 1.54227e12i −0.154523 + 0.267641i
\(686\) 7.56971e12 6.35174e12i 1.30503 1.09505i
\(687\) 0 0
\(688\) −1.32661e11 + 7.52359e11i −0.0225733 + 0.128020i
\(689\) −2.28576e10 + 1.29632e11i −0.00386406 + 0.0219141i
\(690\) 0 0
\(691\) 4.65251e12 3.90392e12i 0.776312 0.651403i −0.166005 0.986125i \(-0.553087\pi\)
0.942317 + 0.334722i \(0.108642\pi\)
\(692\) −7.82367e12 + 1.35510e13i −1.29698 + 2.24644i
\(693\) 0 0
\(694\) −2.44294e12 4.23129e12i −0.399756 0.692398i
\(695\) 3.46758e11 + 1.26210e11i 0.0563761 + 0.0205192i
\(696\) 0 0
\(697\) −1.30933e12 1.09866e12i −0.210137 0.176326i
\(698\) −1.53224e13 + 5.57691e12i −2.44331 + 0.889292i
\(699\) 0 0
\(700\) −1.68192e12 9.53866e12i −0.264768 1.50157i
\(701\) 1.19134e13 1.86340 0.931700 0.363230i \(-0.118326\pi\)
0.931700 + 0.363230i \(0.118326\pi\)
\(702\) 0 0
\(703\) 6.48377e12 1.00122
\(704\) 1.77490e12 + 1.00660e13i 0.272331 + 1.54446i
\(705\) 0 0
\(706\) 1.38275e13 5.03280e12i 2.09471 0.762410i
\(707\) 5.10676e12 + 4.28508e12i 0.768703 + 0.645018i
\(708\) 0 0
\(709\) 5.62894e12 + 2.04877e12i 0.836601 + 0.304498i 0.724565 0.689206i \(-0.242041\pi\)
0.112036 + 0.993704i \(0.464263\pi\)
\(710\) −1.44283e12 2.49906e12i −0.213085 0.369075i
\(711\) 0 0
\(712\) −5.27354e12 + 9.13404e12i −0.769028 + 1.33200i
\(713\) 3.05356e12 2.56224e12i 0.442490 0.371294i
\(714\) 0 0
\(715\) −9.90261e9 + 5.61605e10i −0.00141701 + 0.00803626i
\(716\) 3.36467e12 1.90820e13i 0.478448 2.71341i
\(717\) 0 0
\(718\) 1.18977e13 9.98339e12i 1.67072 1.40190i
\(719\) −6.57047e12 + 1.13804e13i −0.916888 + 1.58810i −0.112775 + 0.993621i \(0.535974\pi\)
−0.804113 + 0.594476i \(0.797359\pi\)
\(720\) 0 0
\(721\) 1.67466e12 + 2.90060e12i 0.230791 + 0.399741i
\(722\) −7.75600e12 2.82295e12i −1.06223 0.386622i
\(723\) 0 0
\(724\) 3.57588e12 + 3.00052e12i 0.483682 + 0.405857i
\(725\) 6.95814e12 2.53256e12i 0.935346 0.340438i
\(726\) 0 0
\(727\) 1.31808e12 + 7.47519e12i 0.174999 + 0.992470i 0.938145 + 0.346243i \(0.112543\pi\)
−0.763145 + 0.646227i \(0.776346\pi\)
\(728\) −3.99497e11 −0.0527136
\(729\) 0 0
\(730\) 3.51288e12 0.457837
\(731\) −9.00202e11 5.10530e12i −0.116604 0.661292i
\(732\) 0 0
\(733\) −1.07102e13 + 3.89819e12i −1.37034 + 0.498764i −0.919237 0.393706i \(-0.871193\pi\)
−0.451107 + 0.892470i \(0.648971\pi\)
\(734\) −1.61629e13 1.35623e13i −2.05535 1.72465i
\(735\) 0 0
\(736\) 2.19648e12 + 7.99453e11i 0.275916 + 0.100425i
\(737\) 3.79550e12 + 6.57400e12i 0.473876 + 0.820778i
\(738\) 0 0
\(739\) 5.66629e12 9.81430e12i 0.698874 1.21048i −0.269984 0.962865i \(-0.587018\pi\)
0.968857 0.247620i \(-0.0796484\pi\)
\(740\) −2.97886e12 + 2.49956e12i −0.365180 + 0.306423i
\(741\) 0 0
\(742\) 9.40048e11 5.33128e12i 0.113850 0.645675i
\(743\) −5.38829e11 + 3.05585e12i −0.0648637 + 0.367860i 0.935047 + 0.354523i \(0.115357\pi\)
−0.999911 + 0.0133374i \(0.995754\pi\)
\(744\) 0 0
\(745\) −7.80626e11 + 6.55023e11i −0.0928410 + 0.0779029i
\(746\) 8.94865e12 1.54995e13i 1.05787 1.83229i
\(747\) 0 0
\(748\) 2.95754e12 + 5.12261e12i 0.345440 + 0.598320i
\(749\) −7.86472e12 2.86252e12i −0.913093 0.332339i
\(750\) 0 0
\(751\) −4.08838e12 3.43056e12i −0.468998 0.393536i 0.377431 0.926038i \(-0.376808\pi\)
−0.846429 + 0.532501i \(0.821252\pi\)
\(752\) 5.92007e11 2.15473e11i 0.0675067 0.0245704i
\(753\) 0 0
\(754\) −1.34084e11 7.60428e11i −0.0151080 0.0856815i
\(755\) −2.44450e11 −0.0273797
\(756\) 0 0
\(757\) −2.46692e12 −0.273039 −0.136519 0.990637i \(-0.543592\pi\)
−0.136519 + 0.990637i \(0.543592\pi\)
\(758\) 1.12997e12 + 6.40836e12i 0.124324 + 0.705075i
\(759\) 0 0
\(760\) −8.11865e11 + 2.95495e11i −0.0882720 + 0.0321284i
\(761\) 9.96894e12 + 8.36493e12i 1.07750 + 0.904131i 0.995711 0.0925181i \(-0.0294916\pi\)
0.0817909 + 0.996650i \(0.473936\pi\)
\(762\) 0 0
\(763\) −1.18248e13 4.30389e12i −1.26309 0.459728i
\(764\) −3.84048e12 6.65191e12i −0.407817 0.706360i
\(765\) 0 0
\(766\) −7.10928e12 + 1.23136e13i −0.746099 + 1.29228i
\(767\) −2.85415e10 + 2.39491e10i −0.00297781 + 0.00249868i
\(768\) 0 0
\(769\) −2.20732e12 + 1.25183e13i −0.227613 + 1.29086i 0.630015 + 0.776583i \(0.283049\pi\)
−0.857627 + 0.514272i \(0.828062\pi\)
\(770\) 4.07258e11 2.30968e12i 0.0417505 0.236779i
\(771\) 0 0
\(772\) −9.33266e12 + 7.83103e12i −0.945644 + 0.793490i
\(773\) 4.42976e12 7.67257e12i 0.446244 0.772918i −0.551894 0.833914i \(-0.686095\pi\)
0.998138 + 0.0609967i \(0.0194279\pi\)
\(774\) 0 0
\(775\) −8.96981e12 1.55362e13i −0.893153 1.54699i
\(776\) 2.24712e12 + 8.17885e11i 0.222458 + 0.0809682i
\(777\) 0 0
\(778\) −2.11797e13 1.77719e13i −2.07258 1.73910i
\(779\) −3.44003e12 + 1.25207e12i −0.334690 + 0.121817i
\(780\) 0 0
\(781\) 2.90628e12 + 1.64823e13i 0.279516 + 1.58522i
\(782\) 2.28831e12 0.218819
\(783\) 0 0
\(784\) −9.23027e10 −0.00872554
\(785\) 2.37965e11 + 1.34957e12i 0.0223666 + 0.126847i
\(786\) 0 0
\(787\) 5.01926e12 1.82686e12i 0.466395 0.169754i −0.0981238 0.995174i \(-0.531284\pi\)
0.564518 + 0.825420i \(0.309062\pi\)
\(788\) −8.00168e12 6.71421e12i −0.739287 0.620336i
\(789\) 0 0
\(790\) 4.77854e11 + 1.73924e11i 0.0436489 + 0.0158869i
\(791\) −7.09532e12 1.22895e13i −0.644433 1.11619i
\(792\) 0 0
\(793\) −2.97000e11 + 5.14420e11i −0.0266703 + 0.0461943i
\(794\) −3.27697e12 + 2.74970e12i −0.292604 + 0.245524i
\(795\) 0 0
\(796\) 3.69077e12 2.09314e13i 0.325843 1.84795i
\(797\) −2.45807e12 + 1.39404e13i −0.215790 + 1.22381i 0.663741 + 0.747963i \(0.268968\pi\)
−0.879530 + 0.475843i \(0.842143\pi\)
\(798\) 0 0
\(799\) −3.27485e12 + 2.74792e12i −0.284270 + 0.238531i
\(800\) 5.25983e12 9.11029e12i 0.454011 0.786371i
\(801\) 0 0
\(802\) −2.85781e11 4.94988e11i −0.0243921 0.0422484i
\(803\) −1.91457e13 6.96845e12i −1.62499 0.591448i
\(804\) 0 0
\(805\) −4.33189e11 3.63489e11i −0.0363577 0.0305077i
\(806\) −1.75792e12 + 6.39830e11i −0.146720 + 0.0534019i
\(807\) 0 0
\(808\) −2.38002e12 1.34978e13i −0.196440 1.11407i
\(809\) 1.37409e13 1.12784 0.563918 0.825831i \(-0.309293\pi\)
0.563918 + 0.825831i \(0.309293\pi\)
\(810\) 0 0
\(811\) 1.57716e13 1.28021 0.640106 0.768287i \(-0.278891\pi\)
0.640106 + 0.768287i \(0.278891\pi\)
\(812\) 3.43689e12 + 1.94916e13i 0.277436 + 1.57342i
\(813\) 0 0
\(814\) 3.40044e13 1.23766e13i 2.71472 0.988077i
\(815\) 1.59597e12 + 1.33918e12i 0.126711 + 0.106323i
\(816\) 0 0
\(817\) −1.04336e13 3.79753e12i −0.819288 0.298196i
\(818\) −1.61835e13 2.80306e13i −1.26381 2.18898i
\(819\) 0 0
\(820\) 1.09778e12 1.90141e12i 0.0847915 0.146863i
\(821\) 4.98670e12 4.18434e12i 0.383062 0.321427i −0.430841 0.902428i \(-0.641783\pi\)
0.813903 + 0.581000i \(0.197339\pi\)
\(822\) 0 0
\(823\) 6.20738e10 3.52038e11i 0.00471639 0.0267480i −0.982359 0.187006i \(-0.940122\pi\)
0.987075 + 0.160258i \(0.0512327\pi\)
\(824\) 1.19577e12 6.78152e12i 0.0903595 0.512454i
\(825\) 0 0
\(826\) 1.17381e12 9.84941e11i 0.0877377 0.0736207i
\(827\) 5.49928e12 9.52504e12i 0.408819 0.708096i −0.585939 0.810355i \(-0.699274\pi\)
0.994758 + 0.102260i \(0.0326073\pi\)
\(828\) 0 0
\(829\) 1.10939e13 + 1.92152e13i 0.815811 + 1.41303i 0.908744 + 0.417353i \(0.137042\pi\)
−0.0929337 + 0.995672i \(0.529624\pi\)
\(830\) 2.00877e12 + 7.31131e11i 0.146919 + 0.0534742i
\(831\) 0 0
\(832\) −8.86014e11 7.43454e11i −0.0641041 0.0537897i
\(833\) 5.88568e11 2.14221e11i 0.0423539 0.0154156i
\(834\) 0 0
\(835\) −1.32232e11 7.49925e11i −0.00941342 0.0533861i
\(836\) 1.26689e13 0.897040
\(837\) 0 0
\(838\) −2.17231e13 −1.52168
\(839\) −6.77461e11 3.84207e12i −0.0472015 0.267693i 0.952069 0.305883i \(-0.0989518\pi\)
−0.999270 + 0.0381904i \(0.987841\pi\)
\(840\) 0 0
\(841\) −5.86193e11 + 2.13357e11i −0.0404072 + 0.0147070i
\(842\) −8.65660e12 7.26375e12i −0.593530 0.498031i
\(843\) 0 0
\(844\) 1.35469e13 + 4.93067e12i 0.918964 + 0.334476i
\(845\) 1.17683e12 + 2.03833e12i 0.0794070 + 0.137537i
\(846\) 0 0
\(847\) 2.80973e11 4.86660e11i 0.0187581 0.0324901i
\(848\) −4.04992e11 + 3.39829e11i −0.0268946 + 0.0225672i
\(849\) 0 0
\(850\) 1.78833e12 1.01421e13i 0.117506 0.666412i
\(851\) 1.51510e12 8.59258e12i 0.0990284 0.561618i
\(852\) 0 0
\(853\) −1.69523e12 + 1.42247e12i −0.109637 + 0.0919965i −0.695958 0.718082i \(-0.745020\pi\)
0.586321 + 0.810079i \(0.300576\pi\)
\(854\) 1.22145e13 2.11562e13i 0.785808 1.36106i
\(855\) 0 0
\(856\) 8.60373e12 + 1.49021e13i 0.547715 + 0.948670i
\(857\) −1.02276e13 3.72253e12i −0.647677 0.235735i −0.00276999 0.999996i \(-0.500882\pi\)
−0.644907 + 0.764261i \(0.723104\pi\)
\(858\) 0 0
\(859\) −1.49802e13 1.25699e13i −0.938749 0.787704i 0.0386185 0.999254i \(-0.487704\pi\)
−0.977367 + 0.211550i \(0.932149\pi\)
\(860\) 6.25755e12 2.27756e12i 0.390087 0.141980i
\(861\) 0 0
\(862\) 4.06838e12 + 2.30729e13i 0.250980 + 1.42338i
\(863\) −9.05491e12 −0.555694 −0.277847 0.960625i \(-0.589621\pi\)
−0.277847 + 0.960625i \(0.589621\pi\)
\(864\) 0 0
\(865\) 4.11139e12 0.249699
\(866\) 2.77989e12 + 1.57655e13i 0.167957 + 0.952529i
\(867\) 0 0
\(868\) 4.50596e13 1.64003e13i 2.69431 0.980650i
\(869\) −2.25935e12 1.89582e12i −0.134399 0.112774i
\(870\) 0 0
\(871\) −8.07176e11 2.93788e11i −0.0475211 0.0172963i
\(872\) 1.29360e13 + 2.24057e13i 0.757660 + 1.31231i
\(873\) 0 0
\(874\) 2.45056e12 4.24450e12i 0.142058 0.246051i
\(875\) −3.94986e12 + 3.31433e12i −0.227796 + 0.191143i
\(876\) 0 0
\(877\) −4.61716e12 + 2.61852e13i −0.263559 + 1.49471i 0.509550 + 0.860441i \(0.329812\pi\)
−0.773109 + 0.634274i \(0.781299\pi\)
\(878\) −7.34081e12 + 4.16318e13i −0.416887 + 2.36428i
\(879\) 0 0
\(880\) −1.75455e11 + 1.47224e11i −0.00986266 + 0.00827576i
\(881\) −7.60735e12 + 1.31763e13i −0.425443 + 0.736889i −0.996462 0.0840479i \(-0.973215\pi\)
0.571018 + 0.820937i \(0.306548\pi\)
\(882\) 0 0
\(883\) 2.36850e12 + 4.10237e12i 0.131115 + 0.227097i 0.924106 0.382135i \(-0.124811\pi\)
−0.792992 + 0.609232i \(0.791478\pi\)
\(884\) −6.28969e11 2.28926e11i −0.0346413 0.0126084i
\(885\) 0 0
\(886\) −3.51853e13 2.95240e13i −1.91827 1.60962i
\(887\) −7.59273e12 + 2.76353e12i −0.411853 + 0.149902i −0.539633 0.841900i \(-0.681437\pi\)
0.127780 + 0.991802i \(0.459215\pi\)
\(888\) 0 0
\(889\) 2.19631e12 + 1.24559e13i 0.117933 + 0.668831i
\(890\) 7.00651e12 0.374323
\(891\) 0 0
\(892\) 1.86102e13 0.984260
\(893\) 1.58996e12 + 9.01714e12i 0.0836673 + 0.474501i
\(894\) 0 0
\(895\) −4.78417e12 + 1.74130e12i −0.249232 + 0.0907129i
\(896\) 2.34183e13 + 1.96503e13i 1.21386 + 1.01855i
\(897\) 0 0
\(898\) 4.76973e13 + 1.73604e13i 2.44766 + 0.890874i
\(899\) 1.83292e13 + 3.17470e13i 0.935888 + 1.62101i
\(900\) 0 0
\(901\) 1.79374e12 3.10684e12i 0.0906770 0.157057i
\(902\) −1.56513e13 + 1.31330e13i −0.787266 + 0.660595i
\(903\) 0 0
\(904\) −5.06631e12 + 2.87325e13i −0.252309 + 1.43092i
\(905\) 2.12984e11 1.20789e12i 0.0105543 0.0598563i
\(906\) 0 0
\(907\) 6.71396e12 5.63368e12i 0.329417 0.276413i −0.463045 0.886335i \(-0.653243\pi\)
0.792462 + 0.609921i \(0.208799\pi\)
\(908\) −1.04605e13 + 1.81182e13i −0.510701 + 0.884561i
\(909\) 0 0
\(910\) 1.32695e11 + 2.29834e11i 0.00641456 + 0.0111103i
\(911\) −1.20635e13 4.39074e12i −0.580283 0.211206i 0.0351675 0.999381i \(-0.488804\pi\)
−0.615450 + 0.788176i \(0.711026\pi\)
\(912\) 0 0
\(913\) −9.49770e12 7.96952e12i −0.452376 0.379589i
\(914\) 1.59901e13 5.81991e12i 0.757866 0.275841i
\(915\) 0 0
\(916\) −8.31779e12 4.71725e13i −0.390371 2.21391i
\(917\) −3.58270e12 −0.167320
\(918\) 0 0
\(919\) 8.09918e12 0.374560 0.187280 0.982307i \(-0.440033\pi\)
0.187280 + 0.982307i \(0.440033\pi\)
\(920\) 2.01889e11 + 1.14497e12i 0.00929111 + 0.0526925i
\(921\) 0 0
\(922\) −3.56462e13 + 1.29741e13i −1.62451 + 0.591275i
\(923\) −1.45079e12 1.21736e12i −0.0657955 0.0552090i
\(924\) 0 0
\(925\) −3.68994e13 1.34303e13i −1.65722 0.603180i
\(926\) 9.79884e12 + 1.69721e13i 0.437951 + 0.758553i
\(927\) 0 0
\(928\) −1.07481e13 + 1.86162e13i −0.475735 + 0.823997i
\(929\) −2.26865e13 + 1.90363e13i −0.999303 + 0.838515i −0.986888 0.161408i \(-0.948396\pi\)
−0.0124153 + 0.999923i \(0.503952\pi\)
\(930\) 0 0
\(931\) 2.32949e11 1.32112e12i 0.0101622 0.0576326i
\(932\) 2.92738e12 1.66020e13i 0.127089 0.720756i
\(933\) 0 0
\(934\) −3.47461e13 + 2.91555e13i −1.49398 + 1.25360i
\(935\) 7.77103e11 1.34598e12i 0.0332526 0.0575953i
\(936\) 0 0
\(937\) 4.88007e12 + 8.45252e12i 0.206822 + 0.358227i 0.950712 0.310076i \(-0.100354\pi\)
−0.743889 + 0.668303i \(0.767021\pi\)
\(938\) 3.31962e13 + 1.20824e13i 1.40015 + 0.509614i
\(939\) 0 0
\(940\) −4.20668e12 3.52982e12i −0.175737 0.147461i
\(941\) 2.22728e13 8.10664e12i 0.926023 0.337045i 0.165391 0.986228i \(-0.447111\pi\)
0.760632 + 0.649183i \(0.224889\pi\)
\(942\) 0 0
\(943\) 8.55443e11 + 4.85146e12i 0.0352280 + 0.199788i
\(944\) −1.49643e11 −0.00613312
\(945\) 0 0
\(946\) −6.19685e13 −2.51571
\(947\) −4.39432e12 2.49214e13i −0.177548 1.00693i −0.935161 0.354222i \(-0.884746\pi\)
0.757613 0.652704i \(-0.226366\pi\)
\(948\) 0 0
\(949\) 2.16648e12 7.88533e11i 0.0867073 0.0315589i
\(950\) −1.68970e13 1.41783e13i −0.673060 0.564765i
\(951\) 0 0
\(952\) 1.02312e13 + 3.72387e12i 0.403703 + 0.146936i
\(953\) −6.87999e11 1.19165e12i −0.0270190 0.0467983i 0.852200 0.523217i \(-0.175268\pi\)
−0.879219 + 0.476418i \(0.841935\pi\)
\(954\) 0 0
\(955\) −1.00910e12 + 1.74781e12i −0.0392572 + 0.0679954i
\(956\) 2.38210e13 1.99882e13i 0.922357 0.773950i
\(957\) 0 0
\(958\) −8.36031e12 + 4.74137e13i −0.320684 + 1.81869i
\(959\) 8.34689e12 4.73376e13i 0.318670 1.80727i
\(960\) 0 0
\(961\) 4.77811e13 4.00931e13i 1.80718 1.51640i
\(962\) −2.04740e12 + 3.54620e12i −0.0770751 + 0.133498i
\(963\) 0 0
\(964\) −4.69592e11 8.13357e11i −0.0175135 0.0303344i
\(965\) 3.00805e12 + 1.09484e12i 0.111664 + 0.0406423i
\(966\) 0 0
\(967\) 6.21910e12 + 5.21845e12i 0.228722 + 0.191921i 0.749946 0.661500i \(-0.230080\pi\)
−0.521223 + 0.853420i \(0.674524\pi\)
\(968\) −1.08568e12 + 3.95154e11i −0.0397430 + 0.0144653i
\(969\) 0 0
\(970\) −2.75855e11 1.56445e12i −0.0100048 0.0567399i
\(971\) −4.23908e13 −1.53033 −0.765165 0.643834i \(-0.777343\pi\)
−0.765165 + 0.643834i \(0.777343\pi\)
\(972\) 0 0
\(973\) −9.96013e12 −0.356252
\(974\) −9.38725e12 5.32377e13i −0.334213 1.89541i
\(975\) 0 0
\(976\) −2.24184e12 + 8.15964e11i −0.0790826 + 0.0287837i
\(977\) −4.45418e12 3.73750e12i −0.156402 0.131237i 0.561228 0.827661i \(-0.310329\pi\)
−0.717631 + 0.696424i \(0.754773\pi\)
\(978\) 0 0
\(979\) −3.81864e13 1.38987e13i −1.32858 0.483562i
\(980\) 4.02281e11 + 6.96770e11i 0.0139319 + 0.0241308i
\(981\) 0 0
\(982\) −1.00311e13 + 1.73744e13i −0.344228 + 0.596221i
\(983\) 1.00550e13 8.43718e12i 0.343473 0.288208i −0.454690 0.890650i \(-0.650250\pi\)
0.798163 + 0.602442i \(0.205805\pi\)
\(984\) 0 0
\(985\) −4.76591e11 + 2.70288e12i −0.0161318 + 0.0914880i
\(986\) −3.65431e12 + 2.07246e13i −0.123129 + 0.698298i
\(987\) 0 0
\(988\) −1.09819e12 + 9.21491e11i −0.0366667 + 0.0307670i
\(989\) −7.47075e12 + 1.29397e13i −0.248303 + 0.430073i
\(990\) 0 0
\(991\) −1.94361e13 3.36644e13i −0.640145 1.10876i −0.985400 0.170255i \(-0.945541\pi\)
0.345255 0.938509i \(-0.387793\pi\)
\(992\) 4.89387e13 + 1.78122e13i 1.60454 + 0.584004i
\(993\) 0 0
\(994\) 5.96656e13 + 5.00654e13i 1.93859 + 1.62667i
\(995\) −5.24784e12 + 1.91006e12i −0.169737 + 0.0617792i
\(996\) 0 0
\(997\) 1.00583e10 + 5.70434e10i 0.000322401 + 0.00182842i 0.984969 0.172734i \(-0.0552601\pi\)
−0.984646 + 0.174562i \(0.944149\pi\)
\(998\) −5.61394e13 −1.79135
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.10.4 156
3.2 odd 2 27.10.e.a.13.23 156
27.2 odd 18 27.10.e.a.25.23 yes 156
27.25 even 9 inner 81.10.e.a.73.4 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.13.23 156 3.2 odd 2
27.10.e.a.25.23 yes 156 27.2 odd 18
81.10.e.a.10.4 156 1.1 even 1 trivial
81.10.e.a.73.4 156 27.25 even 9 inner