Properties

Label 81.10.e.a.10.3
Level $81$
Weight $10$
Character 81.10
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 10.3
Character \(\chi\) \(=\) 81.10
Dual form 81.10.e.a.73.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.61278 - 37.5029i) q^{2} +(-881.618 + 320.883i) q^{4} +(-1241.60 - 1041.82i) q^{5} +(9160.78 + 3334.25i) q^{7} +(8115.13 + 14055.8i) q^{8} +(-30861.0 + 53452.8i) q^{10} +(51265.0 - 43016.4i) q^{11} +(23395.9 - 132685. i) q^{13} +(64465.9 - 365605. i) q^{14} +(105495. - 88521.1i) q^{16} +(211869. - 366968. i) q^{17} +(357829. + 619778. i) q^{19} +(1.42892e6 + 520083. i) q^{20} +(-1.95224e6 - 1.63813e6i) q^{22} +(841310. - 306212. i) q^{23} +(117010. + 663595. i) q^{25} -5.13079e6 q^{26} -9.14621e6 q^{28} +(-518380. - 2.93988e6i) q^{29} +(3.67352e6 - 1.33705e6i) q^{31} +(2.34833e6 + 1.97048e6i) q^{32} +(-1.51634e7 - 5.51903e6i) q^{34} +(-7.90029e6 - 1.36837e7i) q^{35} +(265173. - 459292. i) q^{37} +(2.08772e7 - 1.75181e7i) q^{38} +(4.56796e6 - 2.59062e7i) q^{40} +(-2.21098e6 + 1.25391e7i) q^{41} +(4.03280e6 - 3.38392e6i) q^{43} +(-3.13929e7 + 5.43741e7i) q^{44} +(-1.70472e7 - 2.95267e7i) q^{46} +(-2.97072e7 - 1.08125e7i) q^{47} +(4.18899e7 + 3.51498e7i) q^{49} +(2.41130e7 - 8.77641e6i) q^{50} +(2.19500e7 + 1.24485e8i) q^{52} -4.09188e6 q^{53} -1.08466e8 q^{55} +(2.74753e7 + 1.55820e8i) q^{56} +(-1.06826e8 + 3.88815e7i) q^{58} +(2.89699e7 + 2.43087e7i) q^{59} +(7.67470e7 + 2.79336e7i) q^{61} +(-7.44355e7 - 1.28926e8i) q^{62} +(9.36247e7 - 1.62163e8i) q^{64} +(-1.67283e8 + 1.40367e8i) q^{65} +(2.22923e7 - 1.26426e8i) q^{67} +(-6.90338e7 + 3.91510e8i) q^{68} +(-4.60936e8 + 3.86771e8i) q^{70} +(-1.48576e8 + 2.57342e8i) q^{71} +(1.19955e8 + 2.07769e8i) q^{73} +(-1.89783e7 - 6.90755e6i) q^{74} +(-5.14344e8 - 4.31586e8i) q^{76} +(6.13054e8 - 2.23133e8i) q^{77} +(-5.26889e7 - 2.98814e8i) q^{79} -2.23206e8 q^{80} +4.84873e8 q^{82} +(4.68884e7 + 2.65917e8i) q^{83} +(-6.45371e8 + 2.34896e8i) q^{85} +(-1.53575e8 - 1.28865e8i) q^{86} +(1.02065e9 + 3.71487e8i) q^{88} +(-2.90441e8 - 5.03059e8i) q^{89} +(6.56730e8 - 1.13749e9i) q^{91} +(-6.43456e8 + 5.39923e8i) q^{92} +(-2.09055e8 + 1.18561e9i) q^{94} +(2.01420e8 - 1.14231e9i) q^{95} +(-2.71680e8 + 2.27966e8i) q^{97} +(1.04121e9 - 1.80343e9i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.61278 37.5029i −0.292246 1.65741i −0.678189 0.734888i \(-0.737235\pi\)
0.385942 0.922523i \(-0.373876\pi\)
\(3\) 0 0
\(4\) −881.618 + 320.883i −1.72191 + 0.626724i
\(5\) −1241.60 1041.82i −0.888414 0.745468i 0.0794773 0.996837i \(-0.474675\pi\)
−0.967891 + 0.251369i \(0.919119\pi\)
\(6\) 0 0
\(7\) 9160.78 + 3334.25i 1.44209 + 0.524876i 0.940369 0.340156i \(-0.110480\pi\)
0.501717 + 0.865032i \(0.332702\pi\)
\(8\) 8115.13 + 14055.8i 0.700471 + 1.21325i
\(9\) 0 0
\(10\) −30861.0 + 53452.8i −0.975911 + 1.69033i
\(11\) 51265.0 43016.4i 1.05573 0.885864i 0.0620469 0.998073i \(-0.480237\pi\)
0.993685 + 0.112209i \(0.0357927\pi\)
\(12\) 0 0
\(13\) 23395.9 132685.i 0.227193 1.28848i −0.631254 0.775576i \(-0.717460\pi\)
0.858448 0.512901i \(-0.171429\pi\)
\(14\) 64465.9 365605.i 0.448492 2.54352i
\(15\) 0 0
\(16\) 105495. 88521.1i 0.402433 0.337681i
\(17\) 211869. 366968.i 0.615243 1.06563i −0.375098 0.926985i \(-0.622391\pi\)
0.990342 0.138648i \(-0.0442756\pi\)
\(18\) 0 0
\(19\) 357829. + 619778.i 0.629918 + 1.09105i 0.987568 + 0.157194i \(0.0502448\pi\)
−0.357650 + 0.933856i \(0.616422\pi\)
\(20\) 1.42892e6 + 520083.i 1.99697 + 0.726838i
\(21\) 0 0
\(22\) −1.95224e6 1.63813e6i −1.77677 1.49089i
\(23\) 841310. 306212.i 0.626875 0.228164i −0.00899585 0.999960i \(-0.502864\pi\)
0.635870 + 0.771796i \(0.280641\pi\)
\(24\) 0 0
\(25\) 117010. + 663595.i 0.0599090 + 0.339761i
\(26\) −5.13079e6 −2.20193
\(27\) 0 0
\(28\) −9.14621e6 −2.81209
\(29\) −518380. 2.93988e6i −0.136100 0.771860i −0.974088 0.226171i \(-0.927379\pi\)
0.837988 0.545689i \(-0.183732\pi\)
\(30\) 0 0
\(31\) 3.67352e6 1.33705e6i 0.714421 0.260028i 0.0408657 0.999165i \(-0.486988\pi\)
0.673556 + 0.739137i \(0.264766\pi\)
\(32\) 2.34833e6 + 1.97048e6i 0.395898 + 0.332198i
\(33\) 0 0
\(34\) −1.51634e7 5.51903e6i −1.94599 0.708284i
\(35\) −7.90029e6 1.36837e7i −0.889891 1.54134i
\(36\) 0 0
\(37\) 265173. 459292.i 0.0232606 0.0402885i −0.854161 0.520009i \(-0.825929\pi\)
0.877421 + 0.479720i \(0.159262\pi\)
\(38\) 2.08772e7 1.75181e7i 1.62423 1.36289i
\(39\) 0 0
\(40\) 4.56796e6 2.59062e7i 0.282132 1.60005i
\(41\) −2.21098e6 + 1.25391e7i −0.122196 + 0.693008i 0.860738 + 0.509049i \(0.170003\pi\)
−0.982934 + 0.183959i \(0.941108\pi\)
\(42\) 0 0
\(43\) 4.03280e6 3.38392e6i 0.179887 0.150943i −0.548398 0.836217i \(-0.684762\pi\)
0.728285 + 0.685274i \(0.240318\pi\)
\(44\) −3.13929e7 + 5.43741e7i −1.26268 + 2.18703i
\(45\) 0 0
\(46\) −1.70472e7 2.95267e7i −0.561363 0.972309i
\(47\) −2.97072e7 1.08125e7i −0.888018 0.323212i −0.142577 0.989784i \(-0.545539\pi\)
−0.745441 + 0.666572i \(0.767761\pi\)
\(48\) 0 0
\(49\) 4.18899e7 + 3.51498e7i 1.03807 + 0.871046i
\(50\) 2.41130e7 8.77641e6i 0.545615 0.198588i
\(51\) 0 0
\(52\) 2.19500e7 + 1.24485e8i 0.416313 + 2.36103i
\(53\) −4.09188e6 −0.0712330 −0.0356165 0.999366i \(-0.511339\pi\)
−0.0356165 + 0.999366i \(0.511339\pi\)
\(54\) 0 0
\(55\) −1.08466e8 −1.59831
\(56\) 2.74753e7 + 1.55820e8i 0.373333 + 2.11727i
\(57\) 0 0
\(58\) −1.06826e8 + 3.88815e7i −1.23951 + 0.451146i
\(59\) 2.89699e7 + 2.43087e7i 0.311253 + 0.261172i 0.785010 0.619484i \(-0.212658\pi\)
−0.473757 + 0.880656i \(0.657102\pi\)
\(60\) 0 0
\(61\) 7.67470e7 + 2.79336e7i 0.709704 + 0.258311i 0.671548 0.740961i \(-0.265630\pi\)
0.0381555 + 0.999272i \(0.487852\pi\)
\(62\) −7.44355e7 1.28926e8i −0.639760 1.10810i
\(63\) 0 0
\(64\) 9.36247e7 1.62163e8i 0.697558 1.20821i
\(65\) −1.67283e8 + 1.40367e8i −1.16236 + 0.975336i
\(66\) 0 0
\(67\) 2.22923e7 1.26426e8i 0.135151 0.766478i −0.839604 0.543199i \(-0.817213\pi\)
0.974755 0.223279i \(-0.0716760\pi\)
\(68\) −6.90338e7 + 3.91510e8i −0.391536 + 2.22051i
\(69\) 0 0
\(70\) −4.60936e8 + 3.86771e8i −2.29456 + 1.92536i
\(71\) −1.48576e8 + 2.57342e8i −0.693884 + 1.20184i 0.276672 + 0.960964i \(0.410769\pi\)
−0.970556 + 0.240877i \(0.922565\pi\)
\(72\) 0 0
\(73\) 1.19955e8 + 2.07769e8i 0.494386 + 0.856303i 0.999979 0.00646983i \(-0.00205943\pi\)
−0.505593 + 0.862772i \(0.668726\pi\)
\(74\) −1.89783e7 6.90755e6i −0.0735725 0.0267782i
\(75\) 0 0
\(76\) −5.14344e8 4.31586e8i −1.76845 1.48391i
\(77\) 6.13054e8 2.23133e8i 1.98742 0.723363i
\(78\) 0 0
\(79\) −5.26889e7 2.98814e8i −0.152194 0.863135i −0.961306 0.275481i \(-0.911163\pi\)
0.809113 0.587654i \(-0.199948\pi\)
\(80\) −2.23206e8 −0.609257
\(81\) 0 0
\(82\) 4.84873e8 1.18431
\(83\) 4.68884e7 + 2.65917e8i 0.108446 + 0.615029i 0.989788 + 0.142549i \(0.0455299\pi\)
−0.881342 + 0.472480i \(0.843359\pi\)
\(84\) 0 0
\(85\) −6.45371e8 + 2.34896e8i −1.34099 + 0.488079i
\(86\) −1.53575e8 1.28865e8i −0.302746 0.254034i
\(87\) 0 0
\(88\) 1.02065e9 + 3.71487e8i 1.81429 + 0.660346i
\(89\) −2.90441e8 5.03059e8i −0.490685 0.849892i 0.509257 0.860614i \(-0.329920\pi\)
−0.999943 + 0.0107223i \(0.996587\pi\)
\(90\) 0 0
\(91\) 6.56730e8 1.13749e9i 1.00392 1.73885i
\(92\) −6.43456e8 + 5.39923e8i −0.936426 + 0.785755i
\(93\) 0 0
\(94\) −2.09055e8 + 1.18561e9i −0.276175 + 1.56627i
\(95\) 2.01420e8 1.14231e9i 0.253715 1.43889i
\(96\) 0 0
\(97\) −2.71680e8 + 2.27966e8i −0.311590 + 0.261455i −0.785149 0.619307i \(-0.787414\pi\)
0.473559 + 0.880762i \(0.342969\pi\)
\(98\) 1.04121e9 1.80343e9i 1.14031 1.97507i
\(99\) 0 0
\(100\) −3.16094e8 5.47491e8i −0.316094 0.547491i
\(101\) −1.17167e9 4.26451e8i −1.12036 0.407778i −0.285576 0.958356i \(-0.592185\pi\)
−0.834784 + 0.550578i \(0.814407\pi\)
\(102\) 0 0
\(103\) −1.64034e9 1.37641e9i −1.43604 1.20498i −0.942030 0.335529i \(-0.891085\pi\)
−0.494014 0.869454i \(-0.664471\pi\)
\(104\) 2.05486e9 7.47907e8i 1.72239 0.626899i
\(105\) 0 0
\(106\) 2.70587e7 + 1.53457e8i 0.0208176 + 0.118062i
\(107\) −1.07082e9 −0.789750 −0.394875 0.918735i \(-0.629212\pi\)
−0.394875 + 0.918735i \(0.629212\pi\)
\(108\) 0 0
\(109\) 1.22729e8 0.0832778 0.0416389 0.999133i \(-0.486742\pi\)
0.0416389 + 0.999133i \(0.486742\pi\)
\(110\) 7.17261e8 + 4.06779e9i 0.467100 + 2.64906i
\(111\) 0 0
\(112\) 1.26157e9 4.59174e8i 0.757583 0.275738i
\(113\) −1.15062e9 9.65488e8i −0.663866 0.557050i 0.247377 0.968919i \(-0.420431\pi\)
−0.911243 + 0.411870i \(0.864876\pi\)
\(114\) 0 0
\(115\) −1.36359e9 4.96305e8i −0.727013 0.264611i
\(116\) 1.40037e9 + 2.42551e9i 0.718094 + 1.24378i
\(117\) 0 0
\(118\) 7.20074e8 1.24720e9i 0.341907 0.592201i
\(119\) 3.16444e9 2.65528e9i 1.44656 1.21381i
\(120\) 0 0
\(121\) 3.68231e8 2.08834e9i 0.156166 0.885661i
\(122\) 5.40082e8 3.06296e9i 0.220719 1.25176i
\(123\) 0 0
\(124\) −2.80960e9 + 2.35754e9i −1.06720 + 0.895490i
\(125\) −1.03673e9 + 1.79567e9i −0.379814 + 0.657858i
\(126\) 0 0
\(127\) 4.63931e8 + 8.03551e8i 0.158247 + 0.274092i 0.934237 0.356654i \(-0.116082\pi\)
−0.775989 + 0.630746i \(0.782749\pi\)
\(128\) −5.22580e9 1.90204e9i −1.72071 0.626288i
\(129\) 0 0
\(130\) 6.37037e9 + 5.34537e9i 1.95623 + 1.64147i
\(131\) 4.24209e9 1.54399e9i 1.25852 0.458063i 0.375246 0.926925i \(-0.377558\pi\)
0.883271 + 0.468863i \(0.155336\pi\)
\(132\) 0 0
\(133\) 1.21150e9 + 6.87073e9i 0.335730 + 1.90402i
\(134\) −4.88876e9 −1.30987
\(135\) 0 0
\(136\) 6.87737e9 1.72384
\(137\) 7.47967e7 + 4.24193e8i 0.0181401 + 0.102878i 0.992534 0.121972i \(-0.0389219\pi\)
−0.974393 + 0.224850i \(0.927811\pi\)
\(138\) 0 0
\(139\) 7.57071e9 2.75551e9i 1.72016 0.626089i 0.722310 0.691569i \(-0.243080\pi\)
0.997854 + 0.0654804i \(0.0208580\pi\)
\(140\) 1.13559e10 + 9.52873e9i 2.49830 + 2.09633i
\(141\) 0 0
\(142\) 1.06336e10 + 3.87030e9i 2.19473 + 0.798817i
\(143\) −4.50824e9 7.80850e9i −0.901561 1.56155i
\(144\) 0 0
\(145\) −2.41921e9 + 4.19020e9i −0.454484 + 0.787189i
\(146\) 6.99870e9 5.87260e9i 1.27476 1.06965i
\(147\) 0 0
\(148\) −8.64019e7 + 4.90010e8i −0.0148029 + 0.0839512i
\(149\) −8.54017e8 + 4.84337e9i −0.141948 + 0.805026i 0.827820 + 0.560994i \(0.189581\pi\)
−0.969767 + 0.244031i \(0.921530\pi\)
\(150\) 0 0
\(151\) −1.20881e9 + 1.01431e9i −0.189218 + 0.158773i −0.732476 0.680793i \(-0.761635\pi\)
0.543257 + 0.839566i \(0.317191\pi\)
\(152\) −5.80765e9 + 1.00591e10i −0.882479 + 1.52850i
\(153\) 0 0
\(154\) −1.24221e10 2.15158e10i −1.77973 3.08258i
\(155\) −5.95400e9 2.16708e9i −0.828544 0.301566i
\(156\) 0 0
\(157\) −7.61749e9 6.39183e9i −1.00061 0.839608i −0.0135378 0.999908i \(-0.504309\pi\)
−0.987068 + 0.160300i \(0.948754\pi\)
\(158\) −1.08580e10 + 3.95198e9i −1.38609 + 0.504496i
\(159\) 0 0
\(160\) −8.62783e8 4.89308e9i −0.104079 0.590259i
\(161\) 8.72804e9 1.02376
\(162\) 0 0
\(163\) −1.51960e10 −1.68611 −0.843056 0.537826i \(-0.819246\pi\)
−0.843056 + 0.537826i \(0.819246\pi\)
\(164\) −2.07434e9 1.17641e10i −0.223914 1.26988i
\(165\) 0 0
\(166\) 9.66262e9 3.51691e9i 0.987662 0.359480i
\(167\) −7.30584e9 6.13032e9i −0.726852 0.609901i 0.202420 0.979299i \(-0.435120\pi\)
−0.929271 + 0.369398i \(0.879564\pi\)
\(168\) 0 0
\(169\) −7.09298e9 2.58163e9i −0.668865 0.243447i
\(170\) 1.30770e10 + 2.26500e10i 1.20085 + 2.07993i
\(171\) 0 0
\(172\) −2.46955e9 + 4.27739e9i −0.215149 + 0.372649i
\(173\) 9.30068e9 7.80420e9i 0.789418 0.662401i −0.156183 0.987728i \(-0.549919\pi\)
0.945601 + 0.325328i \(0.105475\pi\)
\(174\) 0 0
\(175\) −1.14069e9 + 6.46919e9i −0.0919384 + 0.521409i
\(176\) 1.60035e9 9.07606e9i 0.125721 0.713001i
\(177\) 0 0
\(178\) −1.69456e10 + 1.42190e10i −1.26522 + 1.06165i
\(179\) 2.95892e9 5.12500e9i 0.215424 0.373126i −0.737979 0.674823i \(-0.764220\pi\)
0.953404 + 0.301697i \(0.0975532\pi\)
\(180\) 0 0
\(181\) 9.54730e9 + 1.65364e10i 0.661191 + 1.14522i 0.980303 + 0.197500i \(0.0632822\pi\)
−0.319112 + 0.947717i \(0.603385\pi\)
\(182\) −4.70020e10 1.71073e10i −3.17538 1.15574i
\(183\) 0 0
\(184\) 1.11314e10 + 9.34034e9i 0.715928 + 0.600735i
\(185\) −8.07739e8 + 2.93993e8i −0.0506989 + 0.0184529i
\(186\) 0 0
\(187\) −4.92418e9 2.79264e10i −0.294474 1.67004i
\(188\) 2.96600e10 1.73165
\(189\) 0 0
\(190\) −4.41718e10 −2.45898
\(191\) 2.35641e8 + 1.33639e9i 0.0128115 + 0.0726577i 0.990543 0.137201i \(-0.0438107\pi\)
−0.977732 + 0.209859i \(0.932700\pi\)
\(192\) 0 0
\(193\) 1.38564e10 5.04331e9i 0.718856 0.261642i 0.0434159 0.999057i \(-0.486176\pi\)
0.675440 + 0.737415i \(0.263954\pi\)
\(194\) 1.03460e10 + 8.68129e9i 0.524400 + 0.440024i
\(195\) 0 0
\(196\) −4.82099e10 1.75470e10i −2.33337 0.849278i
\(197\) 7.75260e9 + 1.34279e10i 0.366732 + 0.635199i 0.989053 0.147564i \(-0.0471431\pi\)
−0.622320 + 0.782763i \(0.713810\pi\)
\(198\) 0 0
\(199\) 1.59656e10 2.76532e10i 0.721681 1.24999i −0.238644 0.971107i \(-0.576703\pi\)
0.960325 0.278882i \(-0.0899638\pi\)
\(200\) −8.37782e9 + 7.02982e9i −0.370251 + 0.310677i
\(201\) 0 0
\(202\) −8.24521e9 + 4.67609e10i −0.348434 + 1.97607i
\(203\) 5.05353e9 2.86600e10i 0.208863 1.18452i
\(204\) 0 0
\(205\) 1.58086e10 1.32650e10i 0.625176 0.524585i
\(206\) −4.07723e10 + 7.06196e10i −1.57747 + 2.73227i
\(207\) 0 0
\(208\) −9.27726e9 1.60687e10i −0.343665 0.595244i
\(209\) 4.50047e10 + 1.63804e10i 1.63155 + 0.593834i
\(210\) 0 0
\(211\) 2.27993e10 + 1.91309e10i 0.791865 + 0.664454i 0.946206 0.323564i \(-0.104881\pi\)
−0.154341 + 0.988018i \(0.549325\pi\)
\(212\) 3.60747e9 1.31301e9i 0.122657 0.0446435i
\(213\) 0 0
\(214\) 7.08110e9 + 4.01589e10i 0.230802 + 1.30894i
\(215\) −8.53257e9 −0.272337
\(216\) 0 0
\(217\) 3.81103e10 1.16674
\(218\) −8.11582e8 4.60271e9i −0.0243376 0.138025i
\(219\) 0 0
\(220\) 9.56255e10 3.48048e10i 2.75215 1.00170i
\(221\) −4.37342e10 3.66974e10i −1.23326 1.03483i
\(222\) 0 0
\(223\) −3.60170e10 1.31091e10i −0.975294 0.354978i −0.195285 0.980746i \(-0.562563\pi\)
−0.780009 + 0.625768i \(0.784786\pi\)
\(224\) 1.49424e10 + 2.58810e10i 0.396557 + 0.686856i
\(225\) 0 0
\(226\) −2.85998e10 + 4.95363e10i −0.729248 + 1.26309i
\(227\) −3.27814e10 + 2.75068e10i −0.819428 + 0.687582i −0.952838 0.303479i \(-0.901852\pi\)
0.133410 + 0.991061i \(0.457407\pi\)
\(228\) 0 0
\(229\) −4.33114e9 + 2.45631e10i −0.104074 + 0.590233i 0.887512 + 0.460784i \(0.152432\pi\)
−0.991586 + 0.129449i \(0.958679\pi\)
\(230\) −9.59578e9 + 5.44204e10i −0.226102 + 1.28229i
\(231\) 0 0
\(232\) 3.71157e10 3.11437e10i 0.841126 0.705789i
\(233\) −1.73450e9 + 3.00424e9i −0.0385543 + 0.0667779i −0.884659 0.466239i \(-0.845609\pi\)
0.846104 + 0.533017i \(0.178942\pi\)
\(234\) 0 0
\(235\) 2.56196e10 + 4.43745e10i 0.547984 + 0.949135i
\(236\) −3.33406e10 1.21350e10i −0.699632 0.254645i
\(237\) 0 0
\(238\) −1.20507e11 1.01117e11i −2.43453 2.04281i
\(239\) 2.59096e10 9.43032e9i 0.513653 0.186955i −0.0721714 0.997392i \(-0.522993\pi\)
0.585825 + 0.810438i \(0.300771\pi\)
\(240\) 0 0
\(241\) 1.53696e10 + 8.71652e10i 0.293485 + 1.66443i 0.673299 + 0.739371i \(0.264877\pi\)
−0.379814 + 0.925063i \(0.624012\pi\)
\(242\) −8.07540e10 −1.51354
\(243\) 0 0
\(244\) −7.66249e10 −1.38394
\(245\) −1.53905e10 8.72838e10i −0.272901 1.54770i
\(246\) 0 0
\(247\) 9.06069e10 3.29782e10i 1.54891 0.563756i
\(248\) 4.86044e10 + 4.07839e10i 0.815911 + 0.684631i
\(249\) 0 0
\(250\) 7.41986e10 + 2.70061e10i 1.20134 + 0.437252i
\(251\) 2.97826e10 + 5.15849e10i 0.473620 + 0.820335i 0.999544 0.0301972i \(-0.00961352\pi\)
−0.525924 + 0.850532i \(0.676280\pi\)
\(252\) 0 0
\(253\) 2.99576e10 5.18880e10i 0.459689 0.796205i
\(254\) 2.70677e10 2.27125e10i 0.408036 0.342383i
\(255\) 0 0
\(256\) −2.01269e10 + 1.14145e11i −0.292885 + 1.66104i
\(257\) −1.77025e10 + 1.00396e11i −0.253126 + 1.43555i 0.547712 + 0.836667i \(0.315499\pi\)
−0.800838 + 0.598881i \(0.795612\pi\)
\(258\) 0 0
\(259\) 3.96058e9 3.32332e9i 0.0546903 0.0458906i
\(260\) 1.02438e11 1.77428e11i 1.39021 2.40792i
\(261\) 0 0
\(262\) −8.59563e10 1.48881e11i −1.12699 1.95201i
\(263\) 2.15781e9 + 7.85380e8i 0.0278108 + 0.0101223i 0.355888 0.934529i \(-0.384178\pi\)
−0.328077 + 0.944651i \(0.606401\pi\)
\(264\) 0 0
\(265\) 5.08046e9 + 4.26301e9i 0.0632844 + 0.0531019i
\(266\) 2.49661e11 9.08693e10i 3.05762 1.11288i
\(267\) 0 0
\(268\) 2.09146e10 + 1.18613e11i 0.247653 + 1.40451i
\(269\) −1.85141e9 −0.0215584 −0.0107792 0.999942i \(-0.503431\pi\)
−0.0107792 + 0.999942i \(0.503431\pi\)
\(270\) 0 0
\(271\) 9.38886e10 1.05743 0.528714 0.848800i \(-0.322674\pi\)
0.528714 + 0.848800i \(0.322674\pi\)
\(272\) −1.01332e10 5.74682e10i −0.112250 0.636602i
\(273\) 0 0
\(274\) 1.54139e10 5.61019e9i 0.165209 0.0601312i
\(275\) 3.45440e10 + 2.89858e10i 0.364229 + 0.305625i
\(276\) 0 0
\(277\) 4.17222e10 + 1.51856e10i 0.425803 + 0.154979i 0.546028 0.837767i \(-0.316139\pi\)
−0.120225 + 0.992747i \(0.538362\pi\)
\(278\) −1.53403e11 2.65702e11i −1.54040 2.66805i
\(279\) 0 0
\(280\) 1.28224e11 2.22090e11i 1.24669 2.15932i
\(281\) 2.73934e10 2.29858e10i 0.262100 0.219928i −0.502262 0.864716i \(-0.667499\pi\)
0.764362 + 0.644788i \(0.223054\pi\)
\(282\) 0 0
\(283\) 2.13889e10 1.21302e11i 0.198221 1.12417i −0.709536 0.704669i \(-0.751095\pi\)
0.907757 0.419497i \(-0.137794\pi\)
\(284\) 4.84110e10 2.74552e11i 0.441582 2.50434i
\(285\) 0 0
\(286\) −2.63030e11 + 2.20708e11i −2.32465 + 1.95061i
\(287\) −6.20627e10 + 1.07496e11i −0.539961 + 0.935239i
\(288\) 0 0
\(289\) −3.04829e10 5.27979e10i −0.257049 0.445221i
\(290\) 1.73143e11 + 6.30187e10i 1.43752 + 0.523213i
\(291\) 0 0
\(292\) −1.72424e11 1.44681e11i −1.38795 1.16463i
\(293\) −3.38752e10 + 1.23296e10i −0.268521 + 0.0977335i −0.472771 0.881185i \(-0.656746\pi\)
0.204251 + 0.978919i \(0.434524\pi\)
\(294\) 0 0
\(295\) −1.06436e10 6.03631e10i −0.0818260 0.464058i
\(296\) 8.60764e9 0.0651735
\(297\) 0 0
\(298\) 1.87288e11 1.37574
\(299\) −2.09465e10 1.18793e11i −0.151562 0.859551i
\(300\) 0 0
\(301\) 4.82265e10 1.75530e10i 0.338638 0.123254i
\(302\) 4.60334e10 + 3.86266e10i 0.318450 + 0.267211i
\(303\) 0 0
\(304\) 9.26126e10 + 3.37082e10i 0.621927 + 0.226363i
\(305\) −6.61869e10 1.14639e11i −0.437948 0.758549i
\(306\) 0 0
\(307\) −9.24670e10 + 1.60158e11i −0.594106 + 1.02902i 0.399566 + 0.916704i \(0.369161\pi\)
−0.993672 + 0.112318i \(0.964173\pi\)
\(308\) −4.68880e11 + 3.93437e11i −2.96882 + 2.49113i
\(309\) 0 0
\(310\) −4.18993e10 + 2.37623e11i −0.257679 + 1.46137i
\(311\) 7.36847e9 4.17887e10i 0.0446638 0.253301i −0.954298 0.298857i \(-0.903395\pi\)
0.998962 + 0.0455558i \(0.0145059\pi\)
\(312\) 0 0
\(313\) 5.57703e10 4.67968e10i 0.328438 0.275592i −0.463625 0.886031i \(-0.653452\pi\)
0.792063 + 0.610439i \(0.209007\pi\)
\(314\) −1.89340e11 + 3.27946e11i −1.09915 + 1.90379i
\(315\) 0 0
\(316\) 1.42336e11 + 2.46533e11i 0.803012 + 1.39086i
\(317\) 2.84222e11 + 1.03448e11i 1.58085 + 0.575382i 0.975389 0.220492i \(-0.0707664\pi\)
0.605461 + 0.795875i \(0.292989\pi\)
\(318\) 0 0
\(319\) −1.53038e11 1.28414e11i −0.827447 0.694311i
\(320\) −2.85189e11 + 1.03800e11i −1.52040 + 0.553380i
\(321\) 0 0
\(322\) −5.77166e10 3.27327e11i −0.299191 1.69680i
\(323\) 3.03251e11 1.55021
\(324\) 0 0
\(325\) 9.07867e10 0.451385
\(326\) 1.00488e11 + 5.69896e11i 0.492760 + 2.79458i
\(327\) 0 0
\(328\) −1.94189e11 + 7.06791e10i −0.926388 + 0.337178i
\(329\) −2.36090e11 1.98103e11i −1.11095 0.932199i
\(330\) 0 0
\(331\) 1.62610e11 + 5.91853e10i 0.744598 + 0.271011i 0.686331 0.727290i \(-0.259220\pi\)
0.0582670 + 0.998301i \(0.481443\pi\)
\(332\) −1.26666e11 2.19392e11i −0.572188 0.991058i
\(333\) 0 0
\(334\) −1.81593e11 + 3.14529e11i −0.798437 + 1.38293i
\(335\) −1.59392e11 + 1.33745e11i −0.691455 + 0.580199i
\(336\) 0 0
\(337\) −2.94939e10 + 1.67268e11i −0.124565 + 0.706445i 0.857000 + 0.515317i \(0.172326\pi\)
−0.981565 + 0.191128i \(0.938785\pi\)
\(338\) −4.99145e10 + 2.83079e11i −0.208018 + 1.17973i
\(339\) 0 0
\(340\) 4.93597e11 4.14177e11i 2.00317 1.68086i
\(341\) 1.30808e11 2.26565e11i 0.523888 0.907400i
\(342\) 0 0
\(343\) 6.98486e10 + 1.20981e11i 0.272480 + 0.471949i
\(344\) 8.02905e10 + 2.92234e10i 0.309137 + 0.112517i
\(345\) 0 0
\(346\) −3.54184e11 2.97195e11i −1.32857 1.11481i
\(347\) −1.02685e11 + 3.73742e10i −0.380210 + 0.138385i −0.525053 0.851070i \(-0.675954\pi\)
0.144843 + 0.989455i \(0.453732\pi\)
\(348\) 0 0
\(349\) 2.67405e9 + 1.51653e10i 0.00964840 + 0.0547188i 0.989252 0.146222i \(-0.0467113\pi\)
−0.979603 + 0.200941i \(0.935600\pi\)
\(350\) 2.50156e11 0.891057
\(351\) 0 0
\(352\) 2.05150e11 0.712245
\(353\) −9.60340e10 5.44636e11i −0.329184 1.86690i −0.478472 0.878103i \(-0.658809\pi\)
0.149288 0.988794i \(-0.452302\pi\)
\(354\) 0 0
\(355\) 4.52576e11 1.64724e11i 1.51239 0.550465i
\(356\) 4.17481e11 + 3.50308e11i 1.37756 + 1.15591i
\(357\) 0 0
\(358\) −2.11769e11 7.70777e10i −0.681380 0.248002i
\(359\) 2.42280e11 + 4.19641e11i 0.769825 + 1.33338i 0.937658 + 0.347560i \(0.112990\pi\)
−0.167833 + 0.985815i \(0.553677\pi\)
\(360\) 0 0
\(361\) −9.47390e10 + 1.64093e11i −0.293593 + 0.508519i
\(362\) 5.57030e11 4.67403e11i 1.70486 1.43055i
\(363\) 0 0
\(364\) −2.13984e11 + 1.21356e12i −0.638889 + 3.62332i
\(365\) 6.75221e10 3.82937e11i 0.199126 1.12930i
\(366\) 0 0
\(367\) −3.42857e11 + 2.87691e11i −0.986541 + 0.827806i −0.985063 0.172193i \(-0.944915\pi\)
−0.00147785 + 0.999999i \(0.500470\pi\)
\(368\) 6.16480e10 1.06778e11i 0.175228 0.303504i
\(369\) 0 0
\(370\) 1.63670e10 + 2.83485e10i 0.0454006 + 0.0786361i
\(371\) −3.74848e10 1.36434e10i −0.102724 0.0373885i
\(372\) 0 0
\(373\) −3.38603e11 2.84122e11i −0.905735 0.760002i 0.0655675 0.997848i \(-0.479114\pi\)
−0.971303 + 0.237846i \(0.923559\pi\)
\(374\) −1.01476e12 + 3.69342e11i −2.68189 + 0.976128i
\(375\) 0 0
\(376\) −8.90988e10 5.05304e11i −0.229893 1.30379i
\(377\) −4.02206e11 −1.02544
\(378\) 0 0
\(379\) −6.65757e11 −1.65745 −0.828723 0.559659i \(-0.810932\pi\)
−0.828723 + 0.559659i \(0.810932\pi\)
\(380\) 1.88972e11 + 1.07171e12i 0.464912 + 2.63664i
\(381\) 0 0
\(382\) 4.85601e10 1.76744e10i 0.116680 0.0424679i
\(383\) −4.17637e11 3.50439e11i −0.991755 0.832182i −0.00593455 0.999982i \(-0.501889\pi\)
−0.985821 + 0.167801i \(0.946333\pi\)
\(384\) 0 0
\(385\) −9.93632e11 3.61652e11i −2.30490 0.838915i
\(386\) −2.80768e11 4.86304e11i −0.643732 1.11498i
\(387\) 0 0
\(388\) 1.66367e11 2.88156e11i 0.372670 0.645484i
\(389\) 6.16350e11 5.17179e11i 1.36475 1.14516i 0.390272 0.920699i \(-0.372381\pi\)
0.974482 0.224465i \(-0.0720636\pi\)
\(390\) 0 0
\(391\) 6.58775e10 3.73610e11i 0.142542 0.808394i
\(392\) −1.54117e11 + 8.74043e11i −0.329658 + 1.86959i
\(393\) 0 0
\(394\) 4.52319e11 3.79541e11i 0.945610 0.793461i
\(395\) −2.45893e11 + 4.25899e11i −0.508228 + 0.880277i
\(396\) 0 0
\(397\) 2.32548e11 + 4.02784e11i 0.469845 + 0.813795i 0.999405 0.0344768i \(-0.0109765\pi\)
−0.529561 + 0.848272i \(0.677643\pi\)
\(398\) −1.14265e12 4.15891e11i −2.28265 0.830818i
\(399\) 0 0
\(400\) 7.10861e10 + 5.96483e10i 0.138840 + 0.116501i
\(401\) 4.37962e10 1.59405e10i 0.0845837 0.0307859i −0.299382 0.954133i \(-0.596780\pi\)
0.383965 + 0.923347i \(0.374558\pi\)
\(402\) 0 0
\(403\) −9.14612e10 5.18702e11i −0.172729 0.979592i
\(404\) 1.16980e12 2.18472
\(405\) 0 0
\(406\) −1.10825e12 −2.02428
\(407\) −6.16305e9 3.49524e10i −0.0111332 0.0631396i
\(408\) 0 0
\(409\) −1.88046e10 + 6.84430e9i −0.0332283 + 0.0120941i −0.358581 0.933499i \(-0.616739\pi\)
0.325353 + 0.945593i \(0.394517\pi\)
\(410\) −6.02016e11 5.05152e11i −1.05216 0.882865i
\(411\) 0 0
\(412\) 1.88782e12 + 6.87112e11i 3.22793 + 1.17487i
\(413\) 1.84336e11 + 3.19279e11i 0.311770 + 0.540002i
\(414\) 0 0
\(415\) 2.18822e11 3.79012e11i 0.362139 0.627243i
\(416\) 3.16395e11 2.65487e11i 0.517975 0.434633i
\(417\) 0 0
\(418\) 3.16706e11 1.79613e12i 0.507414 2.87769i
\(419\) 4.09285e10 2.32117e11i 0.0648728 0.367912i −0.935038 0.354548i \(-0.884635\pi\)
0.999911 0.0133641i \(-0.00425404\pi\)
\(420\) 0 0
\(421\) −6.24091e11 + 5.23674e11i −0.968229 + 0.812441i −0.982272 0.187461i \(-0.939974\pi\)
0.0140430 + 0.999901i \(0.495530\pi\)
\(422\) 5.66699e11 9.81551e11i 0.869853 1.50663i
\(423\) 0 0
\(424\) −3.32061e10 5.75147e10i −0.0498967 0.0864236i
\(425\) 2.68309e11 + 9.76563e10i 0.398919 + 0.145195i
\(426\) 0 0
\(427\) 6.09924e11 + 5.11787e11i 0.887872 + 0.745013i
\(428\) 9.44055e11 3.43608e11i 1.35988 0.494955i
\(429\) 0 0
\(430\) 5.64240e10 + 3.19996e11i 0.0795895 + 0.451374i
\(431\) −1.48147e11 −0.206798 −0.103399 0.994640i \(-0.532972\pi\)
−0.103399 + 0.994640i \(0.532972\pi\)
\(432\) 0 0
\(433\) 7.08214e11 0.968209 0.484104 0.875010i \(-0.339146\pi\)
0.484104 + 0.875010i \(0.339146\pi\)
\(434\) −2.52015e11 1.42925e12i −0.340975 1.93377i
\(435\) 0 0
\(436\) −1.08200e11 + 3.93817e10i −0.143397 + 0.0521922i
\(437\) 4.90828e11 + 4.11854e11i 0.643818 + 0.540227i
\(438\) 0 0
\(439\) −3.82071e11 1.39062e11i −0.490968 0.178698i 0.0846591 0.996410i \(-0.473020\pi\)
−0.575627 + 0.817712i \(0.695242\pi\)
\(440\) −8.80214e11 1.52458e12i −1.11957 1.93915i
\(441\) 0 0
\(442\) −1.08705e12 + 1.88283e12i −1.35472 + 2.34645i
\(443\) 4.48333e11 3.76196e11i 0.553074 0.464085i −0.322906 0.946431i \(-0.604660\pi\)
0.875981 + 0.482346i \(0.160215\pi\)
\(444\) 0 0
\(445\) −1.63488e11 + 9.27184e11i −0.197635 + 1.12085i
\(446\) −2.53458e11 + 1.43743e12i −0.303318 + 1.72020i
\(447\) 0 0
\(448\) 1.39837e12 1.17337e12i 1.64010 1.37621i
\(449\) −1.15769e11 + 2.00518e11i −0.134426 + 0.232833i −0.925378 0.379045i \(-0.876252\pi\)
0.790952 + 0.611878i \(0.209586\pi\)
\(450\) 0 0
\(451\) 4.26040e11 + 7.37924e11i 0.484905 + 0.839879i
\(452\) 1.32422e12 + 4.81976e11i 1.49223 + 0.543129i
\(453\) 0 0
\(454\) 1.24836e12 + 1.04750e12i 1.37908 + 1.15719i
\(455\) −2.00046e12 + 7.28107e11i −2.18815 + 0.796423i
\(456\) 0 0
\(457\) −1.43209e11 8.12180e11i −0.153585 0.871023i −0.960068 0.279766i \(-0.909743\pi\)
0.806483 0.591257i \(-0.201368\pi\)
\(458\) 9.49829e11 1.00867
\(459\) 0 0
\(460\) 1.36142e12 1.41769
\(461\) 1.92138e11 + 1.08967e12i 0.198134 + 1.12367i 0.907885 + 0.419219i \(0.137696\pi\)
−0.709751 + 0.704452i \(0.751193\pi\)
\(462\) 0 0
\(463\) 9.19311e11 3.34602e11i 0.929711 0.338387i 0.167616 0.985852i \(-0.446393\pi\)
0.762095 + 0.647465i \(0.224171\pi\)
\(464\) −3.14928e11 2.64256e11i −0.315413 0.264663i
\(465\) 0 0
\(466\) 1.24138e11 + 4.51824e10i 0.121946 + 0.0443846i
\(467\) 6.79708e11 + 1.17729e12i 0.661297 + 1.14540i 0.980275 + 0.197637i \(0.0633268\pi\)
−0.318979 + 0.947762i \(0.603340\pi\)
\(468\) 0 0
\(469\) 6.25751e11 1.08383e12i 0.597205 1.03439i
\(470\) 1.49476e12 1.25425e12i 1.41296 1.18562i
\(471\) 0 0
\(472\) −1.06583e11 + 6.04464e11i −0.0988439 + 0.560572i
\(473\) 6.11773e10 3.46954e11i 0.0561972 0.318710i
\(474\) 0 0
\(475\) −3.69412e11 + 3.09973e11i −0.332958 + 0.279385i
\(476\) −1.93780e12 + 3.35636e12i −1.73012 + 2.99666i
\(477\) 0 0
\(478\) −5.24999e11 9.09325e11i −0.459974 0.796698i
\(479\) −1.07486e12 3.91217e11i −0.932914 0.339553i −0.169550 0.985522i \(-0.554231\pi\)
−0.763364 + 0.645969i \(0.776454\pi\)
\(480\) 0 0
\(481\) −5.47373e10 4.59300e10i −0.0466262 0.0391241i
\(482\) 3.16731e12 1.15281e12i 2.67288 0.972849i
\(483\) 0 0
\(484\) 3.45474e11 + 1.95928e12i 0.286161 + 1.62290i
\(485\) 5.74817e11 0.471728
\(486\) 0 0
\(487\) −1.29566e12 −1.04379 −0.521894 0.853010i \(-0.674774\pi\)
−0.521894 + 0.853010i \(0.674774\pi\)
\(488\) 2.30182e11 + 1.30543e12i 0.183731 + 1.04199i
\(489\) 0 0
\(490\) −3.17162e12 + 1.15438e12i −2.48542 + 0.904618i
\(491\) −4.71619e11 3.95736e11i −0.366206 0.307283i 0.441053 0.897481i \(-0.354605\pi\)
−0.807258 + 0.590198i \(0.799050\pi\)
\(492\) 0 0
\(493\) −1.18867e12 4.32640e11i −0.906253 0.329849i
\(494\) −1.83594e12 3.17995e12i −1.38704 2.40242i
\(495\) 0 0
\(496\) 2.69182e11 4.66236e11i 0.199700 0.345890i
\(497\) −2.21911e12 + 1.86206e12i −1.63146 + 1.36896i
\(498\) 0 0
\(499\) 4.37285e11 2.47997e12i 0.315727 1.79058i −0.252383 0.967627i \(-0.581214\pi\)
0.568111 0.822952i \(-0.307675\pi\)
\(500\) 3.37801e11 1.91577e12i 0.241711 1.37081i
\(501\) 0 0
\(502\) 1.73764e12 1.45805e12i 1.22122 1.02472i
\(503\) −2.59221e11 + 4.48984e11i −0.180557 + 0.312734i −0.942070 0.335415i \(-0.891123\pi\)
0.761513 + 0.648149i \(0.224457\pi\)
\(504\) 0 0
\(505\) 1.01045e12 + 1.75015e12i 0.691358 + 1.19747i
\(506\) −2.14406e12 7.80373e11i −1.45398 0.529206i
\(507\) 0 0
\(508\) −6.66855e11 5.59558e11i −0.444268 0.372785i
\(509\) 5.21676e11 1.89875e11i 0.344486 0.125383i −0.163983 0.986463i \(-0.552434\pi\)
0.508468 + 0.861081i \(0.330212\pi\)
\(510\) 0 0
\(511\) 4.06131e11 + 2.30328e12i 0.263495 + 1.49435i
\(512\) 1.56656e12 1.00747
\(513\) 0 0
\(514\) 3.88221e12 2.45327
\(515\) 6.02668e11 + 3.41790e12i 0.377525 + 2.14105i
\(516\) 0 0
\(517\) −1.98806e12 + 7.23594e11i −1.22383 + 0.445438i
\(518\) −1.50825e11 1.26557e11i −0.0920426 0.0772329i
\(519\) 0 0
\(520\) −3.33049e12 1.21220e12i −1.99753 0.727041i
\(521\) −8.51875e11 1.47549e12i −0.506531 0.877338i −0.999971 0.00755790i \(-0.997594\pi\)
0.493440 0.869780i \(-0.335739\pi\)
\(522\) 0 0
\(523\) −9.46454e10 + 1.63931e11i −0.0553149 + 0.0958082i −0.892357 0.451330i \(-0.850950\pi\)
0.837042 + 0.547139i \(0.184283\pi\)
\(524\) −3.24446e12 + 2.72243e12i −1.87997 + 1.57749i
\(525\) 0 0
\(526\) 1.51849e10 8.61179e10i 0.00864921 0.0490521i
\(527\) 2.87649e11 1.63134e12i 0.162448 0.921291i
\(528\) 0 0
\(529\) −7.65727e11 + 6.42521e11i −0.425131 + 0.356728i
\(530\) 1.26280e11 2.18723e11i 0.0695171 0.120407i
\(531\) 0 0
\(532\) −3.27278e12 5.66861e12i −1.77139 3.06814i
\(533\) 1.61202e12 + 5.86727e11i 0.865163 + 0.314894i
\(534\) 0 0
\(535\) 1.32953e12 + 1.11561e12i 0.701625 + 0.588733i
\(536\) 1.95792e12 7.12626e11i 1.02460 0.372924i
\(537\) 0 0
\(538\) 1.22429e10 + 6.94332e10i 0.00630036 + 0.0357311i
\(539\) 3.65951e12 1.86755
\(540\) 0 0
\(541\) 1.71246e12 0.859474 0.429737 0.902954i \(-0.358606\pi\)
0.429737 + 0.902954i \(0.358606\pi\)
\(542\) −6.20864e11 3.52110e12i −0.309029 1.75259i
\(543\) 0 0
\(544\) 1.22064e12 4.44277e11i 0.597575 0.217500i
\(545\) −1.52380e11 1.27862e11i −0.0739851 0.0620809i
\(546\) 0 0
\(547\) 6.72612e11 + 2.44811e11i 0.321234 + 0.116920i 0.497604 0.867404i \(-0.334213\pi\)
−0.176370 + 0.984324i \(0.556436\pi\)
\(548\) −2.02058e11 3.49975e11i −0.0957115 0.165777i
\(549\) 0 0
\(550\) 8.58622e11 1.48718e12i 0.400101 0.692996i
\(551\) 1.63658e12 1.37325e12i 0.756406 0.634700i
\(552\) 0 0
\(553\) 5.13648e11 2.91304e12i 0.233562 1.32460i
\(554\) 2.93606e11 1.66512e12i 0.132425 0.751022i
\(555\) 0 0
\(556\) −5.79028e12 + 4.85862e12i −2.56958 + 2.15614i
\(557\) −1.16608e12 + 2.01971e12i −0.513312 + 0.889082i 0.486569 + 0.873642i \(0.338248\pi\)
−0.999881 + 0.0154397i \(0.995085\pi\)
\(558\) 0 0
\(559\) −3.54645e11 6.14263e11i −0.153617 0.266073i
\(560\) −2.04474e12 7.44224e11i −0.878601 0.319785i
\(561\) 0 0
\(562\) −1.04318e12 8.75331e11i −0.441108 0.370134i
\(563\) −1.04738e12 + 3.81214e11i −0.439355 + 0.159912i −0.552220 0.833698i \(-0.686219\pi\)
0.112866 + 0.993610i \(0.463997\pi\)
\(564\) 0 0
\(565\) 4.22743e11 + 2.39749e12i 0.174525 + 0.989782i
\(566\) −4.69064e12 −1.92114
\(567\) 0 0
\(568\) −4.82286e12 −1.94418
\(569\) −3.67748e11 2.08560e12i −0.147077 0.834116i −0.965676 0.259750i \(-0.916360\pi\)
0.818599 0.574366i \(-0.194751\pi\)
\(570\) 0 0
\(571\) −2.80930e12 + 1.02250e12i −1.10595 + 0.402533i −0.829506 0.558497i \(-0.811378\pi\)
−0.276444 + 0.961030i \(0.589156\pi\)
\(572\) 6.48016e12 + 5.43750e12i 2.53107 + 2.12382i
\(573\) 0 0
\(574\) 4.44181e12 + 1.61669e12i 1.70788 + 0.621616i
\(575\) 3.01642e11 + 5.22459e11i 0.115076 + 0.199318i
\(576\) 0 0
\(577\) 1.49735e12 2.59348e12i 0.562382 0.974074i −0.434906 0.900476i \(-0.643218\pi\)
0.997288 0.0735985i \(-0.0234483\pi\)
\(578\) −1.77850e12 + 1.49234e12i −0.662793 + 0.556149i
\(579\) 0 0
\(580\) 7.88259e11 4.47044e12i 0.289230 1.64030i
\(581\) −4.57101e11 + 2.59235e12i −0.166425 + 0.943845i
\(582\) 0 0
\(583\) −2.09770e11 + 1.76018e11i −0.0752030 + 0.0631028i
\(584\) −1.94690e12 + 3.37214e12i −0.692607 + 1.19963i
\(585\) 0 0
\(586\) 6.86404e11 + 1.18889e12i 0.240459 + 0.416487i
\(587\) 8.38843e11 + 3.05314e11i 0.291615 + 0.106139i 0.483685 0.875242i \(-0.339298\pi\)
−0.192070 + 0.981381i \(0.561520\pi\)
\(588\) 0 0
\(589\) 2.14316e12 + 1.79833e12i 0.733730 + 0.615673i
\(590\) −2.19341e12 + 7.98335e11i −0.745222 + 0.271238i
\(591\) 0 0
\(592\) −1.26826e10 7.19266e10i −0.00424385 0.0240681i
\(593\) −3.77700e12 −1.25430 −0.627149 0.778900i \(-0.715778\pi\)
−0.627149 + 0.778900i \(0.715778\pi\)
\(594\) 0 0
\(595\) −6.69530e12 −2.19000
\(596\) −8.01238e11 4.54404e12i −0.260108 1.47514i
\(597\) 0 0
\(598\) −4.31658e12 + 1.57111e12i −1.38034 + 0.502401i
\(599\) 3.36683e12 + 2.82510e12i 1.06856 + 0.896631i 0.994921 0.100654i \(-0.0320935\pi\)
0.0736415 + 0.997285i \(0.476538\pi\)
\(600\) 0 0
\(601\) −2.19366e11 7.98426e10i −0.0685857 0.0249631i 0.307499 0.951548i \(-0.400508\pi\)
−0.376085 + 0.926585i \(0.622730\pi\)
\(602\) −9.77200e11 1.69256e12i −0.303249 0.525242i
\(603\) 0 0
\(604\) 7.40235e11 1.28212e12i 0.226310 0.391980i
\(605\) −2.63288e12 + 2.20925e12i −0.798972 + 0.670417i
\(606\) 0 0
\(607\) −1.00818e12 + 5.71768e12i −0.301432 + 1.70951i 0.338409 + 0.940999i \(0.390111\pi\)
−0.639841 + 0.768508i \(0.721000\pi\)
\(608\) −3.80961e11 + 2.16054e12i −0.113061 + 0.641203i
\(609\) 0 0
\(610\) −3.86162e12 + 3.24029e12i −1.12924 + 0.947543i
\(611\) −2.12969e12 + 3.68874e12i −0.618203 + 1.07076i
\(612\) 0 0
\(613\) −1.53253e12 2.65443e12i −0.438367 0.759274i 0.559197 0.829035i \(-0.311110\pi\)
−0.997564 + 0.0697610i \(0.977776\pi\)
\(614\) 6.61784e12 + 2.40870e12i 1.87914 + 0.683950i
\(615\) 0 0
\(616\) 8.11133e12 + 6.80622e12i 2.26976 + 1.90455i
\(617\) 4.79504e12 1.74525e12i 1.33202 0.484814i 0.424726 0.905322i \(-0.360370\pi\)
0.907289 + 0.420508i \(0.138148\pi\)
\(618\) 0 0
\(619\) 1.02333e11 + 5.80361e11i 0.0280162 + 0.158888i 0.995606 0.0936384i \(-0.0298498\pi\)
−0.967590 + 0.252526i \(0.918739\pi\)
\(620\) 5.94453e12 1.61568
\(621\) 0 0
\(622\) −1.61592e12 −0.432876
\(623\) −9.83343e11 5.57681e12i −0.261522 1.48317i
\(624\) 0 0
\(625\) 4.39468e12 1.59953e12i 1.15204 0.419308i
\(626\) −2.12381e12 1.78209e12i −0.552754 0.463816i
\(627\) 0 0
\(628\) 8.76674e12 + 3.19083e12i 2.24916 + 0.818626i
\(629\) −1.12364e11 1.94620e11i −0.0286219 0.0495745i
\(630\) 0 0
\(631\) 5.61187e10 9.72005e10i 0.0140921 0.0244082i −0.858893 0.512154i \(-0.828848\pi\)
0.872985 + 0.487746i \(0.162181\pi\)
\(632\) 3.77249e12 3.16550e12i 0.940593 0.789251i
\(633\) 0 0
\(634\) 2.00012e12 1.13432e13i 0.491647 2.78827i
\(635\) 2.61144e11 1.48102e12i 0.0637379 0.361476i
\(636\) 0 0
\(637\) 5.64391e12 4.73580e12i 1.35817 1.13964i
\(638\) −3.80389e12 + 6.58853e12i −0.908940 + 1.57433i
\(639\) 0 0
\(640\) 4.50675e12 + 7.80593e12i 1.06183 + 1.83914i
\(641\) −4.20138e12 1.52918e12i −0.982949 0.357764i −0.199963 0.979803i \(-0.564082\pi\)
−0.782986 + 0.622039i \(0.786304\pi\)
\(642\) 0 0
\(643\) 1.33757e12 + 1.12235e12i 0.308578 + 0.258928i 0.783904 0.620882i \(-0.213225\pi\)
−0.475326 + 0.879810i \(0.657670\pi\)
\(644\) −7.69479e12 + 2.80068e12i −1.76283 + 0.641618i
\(645\) 0 0
\(646\) −2.00533e12 1.13728e13i −0.453043 2.56934i
\(647\) 4.93576e12 1.10735 0.553675 0.832733i \(-0.313225\pi\)
0.553675 + 0.832733i \(0.313225\pi\)
\(648\) 0 0
\(649\) 2.53081e12 0.559963
\(650\) −6.00352e11 3.40477e12i −0.131916 0.748130i
\(651\) 0 0
\(652\) 1.33971e13 4.87615e12i 2.90333 1.05673i
\(653\) −4.12280e12 3.45944e12i −0.887326 0.744555i 0.0803456 0.996767i \(-0.474398\pi\)
−0.967672 + 0.252212i \(0.918842\pi\)
\(654\) 0 0
\(655\) −6.87553e12 2.50249e12i −1.45955 0.531234i
\(656\) 8.76725e11 + 1.51853e12i 0.184840 + 0.320152i
\(657\) 0 0
\(658\) −5.86822e12 + 1.01641e13i −1.22037 + 2.11374i
\(659\) −3.70769e12 + 3.11112e12i −0.765807 + 0.642588i −0.939631 0.342188i \(-0.888832\pi\)
0.173824 + 0.984777i \(0.444387\pi\)
\(660\) 0 0
\(661\) −9.37173e10 + 5.31497e11i −0.0190947 + 0.108292i −0.992865 0.119240i \(-0.961954\pi\)
0.973771 + 0.227531i \(0.0730654\pi\)
\(662\) 1.14432e12 6.48974e12i 0.231571 1.31331i
\(663\) 0 0
\(664\) −3.35718e12 + 2.81701e12i −0.670221 + 0.562382i
\(665\) 5.65390e12 9.79284e12i 1.12112 1.94183i
\(666\) 0 0
\(667\) −1.33634e12 2.31461e12i −0.261428 0.452806i
\(668\) 8.40807e12 + 3.06029e12i 1.63381 + 0.594659i
\(669\) 0 0
\(670\) 6.06986e12 + 5.09322e12i 1.16370 + 0.976463i
\(671\) 5.13604e12 1.86936e12i 0.978085 0.355994i
\(672\) 0 0
\(673\) 6.83923e11 + 3.87872e12i 0.128511 + 0.728821i 0.979160 + 0.203088i \(0.0650977\pi\)
−0.850650 + 0.525733i \(0.823791\pi\)
\(674\) 6.46808e12 1.20727
\(675\) 0 0
\(676\) 7.08169e12 1.30430
\(677\) 1.40415e12 + 7.96332e12i 0.256900 + 1.45695i 0.791148 + 0.611625i \(0.209484\pi\)
−0.534248 + 0.845328i \(0.679405\pi\)
\(678\) 0 0
\(679\) −3.24889e12 + 1.18250e12i −0.586572 + 0.213495i
\(680\) −8.53892e12 7.16500e12i −1.53148 1.28507i
\(681\) 0 0
\(682\) −9.36186e12 3.40744e12i −1.65704 0.603113i
\(683\) 4.43784e12 + 7.68656e12i 0.780330 + 1.35157i 0.931750 + 0.363101i \(0.118282\pi\)
−0.151420 + 0.988469i \(0.548385\pi\)
\(684\) 0 0
\(685\) 3.49067e11 6.04601e11i 0.0605760 0.104921i
\(686\) 4.07526e12 3.41955e12i 0.702582 0.589536i
\(687\) 0 0
\(688\) 1.25893e11 7.13977e11i 0.0214217 0.121489i
\(689\) −9.57334e10 + 5.42931e11i −0.0161837 + 0.0917822i
\(690\) 0 0
\(691\) 3.04573e11 2.55567e11i 0.0508207 0.0426436i −0.617024 0.786945i \(-0.711662\pi\)
0.667844 + 0.744301i \(0.267217\pi\)
\(692\) −5.69541e12 + 9.86475e12i −0.944165 + 1.63534i
\(693\) 0 0
\(694\) 2.08067e12 + 3.60383e12i 0.340476 + 0.589721i
\(695\) −1.22705e13 4.46610e12i −1.99495 0.726101i
\(696\) 0 0
\(697\) 4.13300e12 + 3.46800e12i 0.663312 + 0.556585i
\(698\) 5.51060e11 2.00570e11i 0.0878719 0.0319827i
\(699\) 0 0
\(700\) −1.07020e12 6.06938e12i −0.168470 0.955439i
\(701\) 5.09147e12 0.796365 0.398183 0.917306i \(-0.369641\pi\)
0.398183 + 0.917306i \(0.369641\pi\)
\(702\) 0 0
\(703\) 3.79546e11 0.0586091
\(704\) −2.17599e12 1.23407e13i −0.333872 1.89348i
\(705\) 0 0
\(706\) −1.97904e13 + 7.20311e12i −2.99801 + 1.09119i
\(707\) −9.31147e12 7.81325e12i −1.40162 1.17610i
\(708\) 0 0
\(709\) −5.93257e11 2.15928e11i −0.0881729 0.0320923i 0.297557 0.954704i \(-0.403828\pi\)
−0.385730 + 0.922612i \(0.626050\pi\)
\(710\) −9.17043e12 1.58836e13i −1.35434 2.34578i
\(711\) 0 0
\(712\) 4.71393e12 8.16477e12i 0.687422 1.19065i
\(713\) 2.68114e12 2.24975e12i 0.388524 0.326010i
\(714\) 0 0
\(715\) −2.53766e12 + 1.43918e13i −0.363125 + 2.05939i
\(716\) −9.64113e11 + 5.46776e12i −0.137094 + 0.777500i
\(717\) 0 0
\(718\) 1.41356e13 1.18612e13i 1.98497 1.66559i
\(719\) 5.27092e12 9.12950e12i 0.735540 1.27399i −0.218946 0.975737i \(-0.570262\pi\)
0.954486 0.298256i \(-0.0964048\pi\)
\(720\) 0 0
\(721\) −1.04375e13 1.80783e13i −1.43843 2.49143i
\(722\) 6.78044e12 + 2.46788e12i 0.928626 + 0.337992i
\(723\) 0 0
\(724\) −1.37233e13 1.15152e13i −1.85625 1.55758i
\(725\) 1.89023e12 6.87989e11i 0.254094 0.0924826i
\(726\) 0 0
\(727\) −2.25862e12 1.28093e13i −0.299874 1.70067i −0.646702 0.762743i \(-0.723852\pi\)
0.346828 0.937929i \(-0.387259\pi\)
\(728\) 2.13178e13 2.81288
\(729\) 0 0
\(730\) −1.48078e13 −1.92991
\(731\) −3.87365e11 2.19686e12i −0.0501756 0.284560i
\(732\) 0 0
\(733\) −4.84063e12 + 1.76184e12i −0.619346 + 0.225424i −0.632588 0.774489i \(-0.718007\pi\)
0.0132414 + 0.999912i \(0.495785\pi\)
\(734\) 1.30565e13 + 1.09557e13i 1.66033 + 1.39318i
\(735\) 0 0
\(736\) 2.57906e12 + 9.38699e11i 0.323974 + 0.117917i
\(737\) −4.29558e12 7.44016e12i −0.536312 0.928920i
\(738\) 0 0
\(739\) −6.80061e11 + 1.17790e12i −0.0838780 + 0.145281i −0.904913 0.425598i \(-0.860064\pi\)
0.821035 + 0.570878i \(0.193397\pi\)
\(740\) 6.17780e11 5.18379e11i 0.0757340 0.0635484i
\(741\) 0 0
\(742\) −2.63787e11 + 1.49601e12i −0.0319474 + 0.181183i
\(743\) −2.14481e10 + 1.21638e11i −0.00258190 + 0.0146427i −0.986071 0.166322i \(-0.946811\pi\)
0.983490 + 0.180965i \(0.0579220\pi\)
\(744\) 0 0
\(745\) 6.10628e12 5.12378e12i 0.726229 0.609379i
\(746\) −8.41629e12 + 1.45774e13i −0.994938 + 1.72328i
\(747\) 0 0
\(748\) 1.33023e13 + 2.30403e13i 1.55371 + 2.69111i
\(749\) −9.80955e12 3.57038e12i −1.13889 0.414521i
\(750\) 0 0
\(751\) 1.95666e11 + 1.64183e11i 0.0224458 + 0.0188343i 0.653942 0.756545i \(-0.273114\pi\)
−0.631496 + 0.775379i \(0.717559\pi\)
\(752\) −4.09111e12 + 1.48904e12i −0.466510 + 0.169796i
\(753\) 0 0
\(754\) 2.65970e12 + 1.50839e13i 0.299682 + 1.69958i
\(755\) 2.55759e12 0.286464
\(756\) 0 0
\(757\) 1.34688e13 1.49072 0.745360 0.666662i \(-0.232277\pi\)
0.745360 + 0.666662i \(0.232277\pi\)
\(758\) 4.40250e12 + 2.49678e13i 0.484382 + 2.74707i
\(759\) 0 0
\(760\) 1.76906e13 6.43886e12i 1.92345 0.700080i
\(761\) −8.76212e11 7.35229e11i −0.0947061 0.0794679i 0.594205 0.804313i \(-0.297467\pi\)
−0.688911 + 0.724846i \(0.741911\pi\)
\(762\) 0 0
\(763\) 1.12430e12 + 4.09210e11i 0.120094 + 0.0437105i
\(764\) −6.36568e11 1.10257e12i −0.0675966 0.117081i
\(765\) 0 0
\(766\) −1.03808e13 + 1.79800e13i −1.08943 + 1.88695i
\(767\) 3.90317e12 3.27515e12i 0.407229 0.341706i
\(768\) 0 0
\(769\) 1.58478e12 8.98772e12i 0.163418 0.926790i −0.787263 0.616618i \(-0.788502\pi\)
0.950681 0.310172i \(-0.100387\pi\)
\(770\) −6.99235e12 + 3.96556e13i −0.716828 + 4.06534i
\(771\) 0 0
\(772\) −1.05977e13 + 8.89254e12i −1.07383 + 0.901049i
\(773\) 2.26657e12 3.92582e12i 0.228329 0.395478i −0.728984 0.684531i \(-0.760007\pi\)
0.957313 + 0.289053i \(0.0933404\pi\)
\(774\) 0 0
\(775\) 1.31710e12 + 2.28128e12i 0.131148 + 0.227154i
\(776\) −5.40896e12 1.96870e12i −0.535471 0.194896i
\(777\) 0 0
\(778\) −2.34715e13 1.96950e13i −2.29685 1.92729i
\(779\) −8.56259e12 + 3.11653e12i −0.833080 + 0.303216i
\(780\) 0 0
\(781\) 3.45316e12 + 1.95838e13i 0.332113 + 1.88351i
\(782\) −1.44471e13 −1.38150
\(783\) 0 0
\(784\) 7.53070e12 0.711890
\(785\) 2.79869e12 + 1.58721e13i 0.263052 + 1.49184i
\(786\) 0 0
\(787\) 1.46649e13 5.33760e12i 1.36268 0.495975i 0.445799 0.895133i \(-0.352920\pi\)
0.916882 + 0.399158i \(0.130697\pi\)
\(788\) −1.11436e13 9.35060e12i −1.02957 0.863916i
\(789\) 0 0
\(790\) 1.75985e13 + 6.40532e12i 1.60751 + 0.585085i
\(791\) −7.32143e12 1.26811e13i −0.664970 1.15176i
\(792\) 0 0
\(793\) 5.50194e12 9.52964e12i 0.494068 0.855751i
\(794\) 1.35678e13 1.13847e13i 1.21148 1.01655i
\(795\) 0 0
\(796\) −5.20211e12 + 2.95026e13i −0.459272 + 2.60466i
\(797\) 2.66540e12 1.51162e13i 0.233991 1.32703i −0.610736 0.791834i \(-0.709126\pi\)
0.844727 0.535197i \(-0.179763\pi\)
\(798\) 0 0
\(799\) −1.02619e13 + 8.61075e12i −0.890773 + 0.747447i
\(800\) −1.03282e12 + 1.78890e12i −0.0891500 + 0.154412i
\(801\) 0 0
\(802\) −8.87430e11 1.53707e12i −0.0757442 0.131193i
\(803\) 1.50870e13 + 5.49121e12i 1.28051 + 0.466066i
\(804\) 0 0
\(805\) −1.08367e13 9.09307e12i −0.909527 0.763184i
\(806\) −1.88480e13 + 6.86012e12i −1.57311 + 0.572564i
\(807\) 0 0
\(808\) −3.51409e12 1.99294e13i −0.290043 1.64492i
\(809\) −1.59419e13 −1.30849 −0.654246 0.756282i \(-0.727014\pi\)
−0.654246 + 0.756282i \(0.727014\pi\)
\(810\) 0 0
\(811\) 1.43124e13 1.16177 0.580883 0.813987i \(-0.302707\pi\)
0.580883 + 0.813987i \(0.302707\pi\)
\(812\) 4.74121e12 + 2.68887e13i 0.382725 + 2.17054i
\(813\) 0 0
\(814\) −1.27006e12 + 4.62265e11i −0.101395 + 0.0369046i
\(815\) 1.88674e13 + 1.58316e13i 1.49797 + 1.25694i
\(816\) 0 0
\(817\) 3.54033e12 + 1.28858e12i 0.278000 + 0.101184i
\(818\) 3.81032e11 + 6.59966e11i 0.0297558 + 0.0515385i
\(819\) 0 0
\(820\) −9.68066e12 + 1.67674e13i −0.747727 + 1.29510i
\(821\) −1.15994e13 + 9.73305e12i −0.891028 + 0.747661i −0.968416 0.249340i \(-0.919786\pi\)
0.0773880 + 0.997001i \(0.475342\pi\)
\(822\) 0 0
\(823\) −3.25956e11 + 1.84859e12i −0.0247662 + 0.140456i −0.994684 0.102978i \(-0.967163\pi\)
0.969917 + 0.243434i \(0.0782740\pi\)
\(824\) 6.03499e12 3.42261e13i 0.456041 2.58634i
\(825\) 0 0
\(826\) 1.07549e13 9.02446e12i 0.803891 0.674545i
\(827\) 9.18022e11 1.59006e12i 0.0682462 0.118206i −0.829883 0.557937i \(-0.811593\pi\)
0.898129 + 0.439731i \(0.144926\pi\)
\(828\) 0 0
\(829\) −8.03155e12 1.39111e13i −0.590614 1.02297i −0.994150 0.108010i \(-0.965552\pi\)
0.403535 0.914964i \(-0.367781\pi\)
\(830\) −1.56611e13 5.70016e12i −1.14543 0.416904i
\(831\) 0 0
\(832\) −1.93261e13 1.62165e13i −1.39827 1.17328i
\(833\) 2.17740e13 7.92510e12i 1.56688 0.570298i
\(834\) 0 0
\(835\) 2.68419e12 + 1.52228e13i 0.191084 + 1.08369i
\(836\) −4.49331e13 −3.18155
\(837\) 0 0
\(838\) −8.97571e12 −0.628740
\(839\) 4.19598e12 + 2.37966e13i 0.292351 + 1.65801i 0.677778 + 0.735267i \(0.262943\pi\)
−0.385427 + 0.922738i \(0.625946\pi\)
\(840\) 0 0
\(841\) 5.25809e12 1.91379e12i 0.362448 0.131920i
\(842\) 2.37663e13 + 1.99423e13i 1.62951 + 1.36732i
\(843\) 0 0
\(844\) −2.62391e13 9.55025e12i −1.77995 0.647849i
\(845\) 6.11701e12 + 1.05950e13i 0.412747 + 0.714899i
\(846\) 0 0
\(847\) 1.03363e13 1.79031e13i 0.690067 1.19523i
\(848\) −4.31674e11 + 3.62218e11i −0.0286665 + 0.0240541i
\(849\) 0 0
\(850\) 1.88813e12 1.07081e13i 0.124064 0.703605i
\(851\) 8.24516e10 4.67606e11i 0.00538910 0.0305631i
\(852\) 0 0
\(853\) 2.64964e12 2.22331e12i 0.171362 0.143790i −0.553073 0.833133i \(-0.686545\pi\)
0.724435 + 0.689343i \(0.242101\pi\)
\(854\) 1.51602e13 2.62583e13i 0.975316 1.68930i
\(855\) 0 0
\(856\) −8.68985e12 1.50513e13i −0.553197 0.958166i
\(857\) −7.62208e11 2.77421e11i −0.0482681 0.0175681i 0.317773 0.948167i \(-0.397065\pi\)
−0.366041 + 0.930599i \(0.619287\pi\)
\(858\) 0 0
\(859\) 1.35901e13 + 1.14035e13i 0.851637 + 0.714608i 0.960149 0.279487i \(-0.0901644\pi\)
−0.108513 + 0.994095i \(0.534609\pi\)
\(860\) 7.52246e12 2.73795e12i 0.468940 0.170680i
\(861\) 0 0
\(862\) 9.79666e11 + 5.55596e12i 0.0604359 + 0.342749i
\(863\) −5.67923e12 −0.348531 −0.174265 0.984699i \(-0.555755\pi\)
−0.174265 + 0.984699i \(0.555755\pi\)
\(864\) 0 0
\(865\) −1.96783e13 −1.19513
\(866\) −4.68326e12 2.65601e13i −0.282955 1.60472i
\(867\) 0 0
\(868\) −3.35987e13 + 1.22289e13i −2.00902 + 0.731224i
\(869\) −1.55550e13 1.30522e13i −0.925296 0.776416i
\(870\) 0 0
\(871\) −1.62533e13 5.91571e12i −0.956884 0.348277i
\(872\) 9.95964e11 + 1.72506e12i 0.0583337 + 0.101037i
\(873\) 0 0
\(874\) 1.22000e13 2.11310e13i 0.707225 1.22495i
\(875\) −1.54845e13 + 1.29930e13i −0.893019 + 0.749332i
\(876\) 0 0
\(877\) −3.68175e12 + 2.08803e13i −0.210163 + 1.19189i 0.678942 + 0.734192i \(0.262439\pi\)
−0.889105 + 0.457702i \(0.848673\pi\)
\(878\) −2.68870e12 + 1.52484e13i −0.152692 + 0.865960i
\(879\) 0 0
\(880\) −1.14426e13 + 9.60152e12i −0.643212 + 0.539719i
\(881\) 4.49342e12 7.78283e12i 0.251296 0.435257i −0.712587 0.701584i \(-0.752477\pi\)
0.963883 + 0.266327i \(0.0858100\pi\)
\(882\) 0 0
\(883\) 8.76115e12 + 1.51748e13i 0.484996 + 0.840037i 0.999851 0.0172398i \(-0.00548788\pi\)
−0.514856 + 0.857277i \(0.672155\pi\)
\(884\) 5.03324e13 + 1.83195e13i 2.77212 + 1.00897i
\(885\) 0 0
\(886\) −1.70732e13 1.43261e13i −0.930813 0.781045i
\(887\) −1.50480e11 + 5.47702e10i −0.00816248 + 0.00297090i −0.346098 0.938198i \(-0.612494\pi\)
0.337936 + 0.941169i \(0.390271\pi\)
\(888\) 0 0
\(889\) 1.57072e12 + 8.90801e12i 0.0843416 + 0.478325i
\(890\) 3.58532e13 1.91546
\(891\) 0 0
\(892\) 3.59597e13 1.90184
\(893\) −3.92873e12 2.22809e13i −0.206738 1.17247i
\(894\) 0 0
\(895\) −9.01313e12 + 3.28051e12i −0.469539 + 0.170898i
\(896\) −4.15306e13 3.48483e13i −2.15269 1.80632i
\(897\) 0 0
\(898\) 8.28555e12 + 3.01569e12i 0.425185 + 0.154755i
\(899\) −5.83504e12 1.01066e13i −0.297938 0.516043i
\(900\) 0 0
\(901\) −8.66942e11 + 1.50159e12i −0.0438256 + 0.0759083i
\(902\) 2.48570e13 2.08575e13i 1.25031 1.04914i
\(903\) 0 0
\(904\) 4.23326e12 2.40080e13i 0.210823 1.19563i
\(905\) 5.37412e12 3.04782e13i 0.266311 1.51032i
\(906\) 0 0
\(907\) 2.90354e13 2.43636e13i 1.42461 1.19539i 0.475789 0.879559i \(-0.342163\pi\)
0.948817 0.315827i \(-0.102282\pi\)
\(908\) 2.00742e13 3.47695e13i 0.980057 1.69751i
\(909\) 0 0
\(910\) 4.05347e13 + 7.02082e13i 1.95948 + 3.39392i
\(911\) −1.68656e12 6.13857e11i −0.0811276 0.0295280i 0.301138 0.953581i \(-0.402634\pi\)
−0.382265 + 0.924053i \(0.624856\pi\)
\(912\) 0 0
\(913\) 1.38425e13 + 1.16153e13i 0.659322 + 0.553237i
\(914\) −2.95121e13 + 1.07415e13i −1.39876 + 0.509106i
\(915\) 0 0
\(916\) −4.06347e12 2.30451e13i −0.190707 1.08155i
\(917\) 4.40089e13 2.05532
\(918\) 0 0
\(919\) −3.29913e13 −1.52574 −0.762869 0.646553i \(-0.776210\pi\)
−0.762869 + 0.646553i \(0.776210\pi\)
\(920\) −4.08971e12 2.31939e13i −0.188212 1.06740i
\(921\) 0 0
\(922\) 3.95951e13 1.44114e13i 1.80448 0.656777i
\(923\) 3.06693e13 + 2.57346e13i 1.39090 + 1.16710i
\(924\) 0 0
\(925\) 3.35812e11 + 1.22226e11i 0.0150820 + 0.00548939i
\(926\) −1.86277e13 3.22642e13i −0.832551 1.44202i
\(927\) 0 0
\(928\) 4.57565e12 7.92525e12i 0.202529 0.350790i
\(929\) −6.60168e12 + 5.53946e12i −0.290793 + 0.244004i −0.776500 0.630118i \(-0.783007\pi\)
0.485707 + 0.874122i \(0.338562\pi\)
\(930\) 0 0
\(931\) −6.79565e12 + 3.85401e13i −0.296454 + 1.68128i
\(932\) 5.65157e11 3.20516e12i 0.0245356 0.139148i
\(933\) 0 0
\(934\) 3.96570e13 3.32762e13i 1.70514 1.43078i
\(935\) −2.29805e13 + 3.98035e13i −0.983349 + 1.70321i
\(936\) 0 0
\(937\) 6.35838e12 + 1.10130e13i 0.269475 + 0.466744i 0.968726 0.248132i \(-0.0798166\pi\)
−0.699251 + 0.714876i \(0.746483\pi\)
\(938\) −4.47848e13 1.63003e13i −1.88894 0.687518i
\(939\) 0 0
\(940\) −3.68257e13 3.09005e13i −1.53842 1.29089i
\(941\) −2.37799e12 + 8.65519e11i −0.0988684 + 0.0359851i −0.390981 0.920399i \(-0.627864\pi\)
0.292112 + 0.956384i \(0.405642\pi\)
\(942\) 0 0
\(943\) 1.97949e12 + 1.12263e13i 0.0815177 + 0.462310i
\(944\) 5.20802e12 0.213451
\(945\) 0 0
\(946\) −1.34163e13 −0.544657
\(947\) 3.16316e12 + 1.79391e13i 0.127804 + 0.724815i 0.979603 + 0.200945i \(0.0644011\pi\)
−0.851798 + 0.523870i \(0.824488\pi\)
\(948\) 0 0
\(949\) 3.03743e13 1.10553e13i 1.21565 0.442460i
\(950\) 1.40677e13 + 1.18042e13i 0.560361 + 0.470199i
\(951\) 0 0
\(952\) 6.30020e13 + 2.29309e13i 2.48593 + 0.904803i
\(953\) 1.37479e13 + 2.38121e13i 0.539907 + 0.935147i 0.998908 + 0.0467114i \(0.0148741\pi\)
−0.459001 + 0.888436i \(0.651793\pi\)
\(954\) 0 0
\(955\) 1.09971e12 1.90475e12i 0.0427821 0.0741007i
\(956\) −1.98163e13 + 1.66279e13i −0.767296 + 0.643838i
\(957\) 0 0
\(958\) −7.56397e12 + 4.28974e13i −0.290138 + 1.64545i
\(959\) −7.29170e11 + 4.13533e12i −0.0278384 + 0.157880i
\(960\) 0 0
\(961\) −8.54691e12 + 7.17171e12i −0.323261 + 0.271248i
\(962\) −1.36054e12 + 2.35653e12i −0.0512183 + 0.0887127i
\(963\) 0 0
\(964\) −4.15199e13 7.19146e13i −1.54849 2.68207i
\(965\) −2.24583e13 8.17414e12i −0.833688 0.303437i
\(966\) 0 0
\(967\) −2.67535e13 2.24489e13i −0.983924 0.825611i 0.000752475 1.00000i \(-0.499760\pi\)
−0.984677 + 0.174389i \(0.944205\pi\)
\(968\) 3.23416e13 1.17714e13i 1.18392 0.430912i
\(969\) 0 0
\(970\) −3.80114e12 2.15573e13i −0.137861 0.781847i
\(971\) 1.90619e13 0.688144 0.344072 0.938943i \(-0.388194\pi\)
0.344072 + 0.938943i \(0.388194\pi\)
\(972\) 0 0
\(973\) 7.85411e13 2.80924
\(974\) 8.56794e12 + 4.85912e13i 0.305043 + 1.72999i
\(975\) 0 0
\(976\) 1.05692e13 3.84686e12i 0.372835 0.135701i
\(977\) −7.65075e12 6.41974e12i −0.268645 0.225420i 0.498507 0.866886i \(-0.333882\pi\)
−0.767151 + 0.641466i \(0.778326\pi\)
\(978\) 0 0
\(979\) −3.65292e13 1.32956e13i −1.27092 0.462577i
\(980\) 4.15764e13 + 7.20124e13i 1.43989 + 2.49396i
\(981\) 0 0
\(982\) −1.17225e13 + 2.03040e13i −0.402272 + 0.696755i
\(983\) −3.03891e13 + 2.54995e13i −1.03807 + 0.871044i −0.991789 0.127884i \(-0.959181\pi\)
−0.0462808 + 0.998928i \(0.514737\pi\)
\(984\) 0 0
\(985\) 4.36389e12 2.47489e13i 0.147710 0.837707i
\(986\) −8.36486e12 + 4.74395e13i −0.281847 + 1.59843i
\(987\) 0 0
\(988\) −6.92986e13 + 5.81484e13i −2.31376 + 1.94147i
\(989\) 2.35664e12 4.08182e12i 0.0783267 0.135666i
\(990\) 0 0
\(991\) 1.08584e13 + 1.88074e13i 0.357632 + 0.619437i 0.987565 0.157213i \(-0.0502509\pi\)
−0.629933 + 0.776650i \(0.716918\pi\)
\(992\) 1.12613e13 + 4.09876e12i 0.369219 + 0.134385i
\(993\) 0 0
\(994\) 8.45071e13 + 7.09099e13i 2.74571 + 2.30392i
\(995\) −4.86325e13 + 1.77008e13i −1.57298 + 0.572517i
\(996\) 0 0
\(997\) −9.72994e12 5.51812e13i −0.311876 1.76874i −0.589227 0.807968i \(-0.700568\pi\)
0.277351 0.960769i \(-0.410544\pi\)
\(998\) −9.58977e13 −3.06000
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.10.3 156
3.2 odd 2 27.10.e.a.13.24 156
27.2 odd 18 27.10.e.a.25.24 yes 156
27.25 even 9 inner 81.10.e.a.73.3 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.13.24 156 3.2 odd 2
27.10.e.a.25.24 yes 156 27.2 odd 18
81.10.e.a.10.3 156 1.1 even 1 trivial
81.10.e.a.73.3 156 27.25 even 9 inner