Properties

Label 81.10.e.a.10.18
Level $81$
Weight $10$
Character 81.10
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 10.18
Character \(\chi\) \(=\) 81.10
Dual form 81.10.e.a.73.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.18108 + 18.0408i) q^{2} +(165.772 - 60.3360i) q^{4} +(1375.78 + 1154.42i) q^{5} +(2117.11 + 770.566i) q^{7} +(6305.53 + 10921.5i) q^{8} +(-16450.1 + 28492.4i) q^{10} +(-43252.3 + 36293.0i) q^{11} +(1069.11 - 6063.22i) q^{13} +(-7166.92 + 40645.6i) q^{14} +(-107783. + 90440.9i) q^{16} +(148706. - 257567. i) q^{17} +(362187. + 627326. i) q^{19} +(297718. + 108360. i) q^{20} +(-792343. - 664854. i) q^{22} +(217677. - 79228.1i) q^{23} +(220935. + 1.25299e6i) q^{25} +112786. q^{26} +397450. q^{28} +(187265. + 1.06204e6i) q^{29} +(-1.23107e6 + 448073. i) q^{31} +(2.97175e6 + 2.49360e6i) q^{32} +(5.11976e6 + 1.86344e6i) q^{34} +(2.02312e6 + 3.50415e6i) q^{35} +(6.85780e6 - 1.18781e7i) q^{37} +(-1.01653e7 + 8.52971e6i) q^{38} +(-3.93293e6 + 2.23048e7i) q^{40} +(-5.65192e6 + 3.20536e7i) q^{41} +(-1.65654e6 + 1.39000e6i) q^{43} +(-4.98023e6 + 8.62601e6i) q^{44} +(2.12179e6 + 3.67504e6i) q^{46} +(-2.89113e7 - 1.05228e7i) q^{47} +(-2.70243e7 - 2.26760e7i) q^{49} +(-2.19020e7 + 7.97169e6i) q^{50} +(-188602. - 1.06962e6i) q^{52} +9.69683e7 q^{53} -1.01403e8 q^{55} +(4.93378e6 + 2.79809e7i) q^{56} +(-1.85643e7 + 6.75684e6i) q^{58} +(-2.96299e7 - 2.48624e7i) q^{59} +(-1.84497e8 - 6.71515e7i) q^{61} +(-1.19997e7 - 2.07841e7i) q^{62} +(-7.15525e7 + 1.23933e8i) q^{64} +(8.47032e6 - 7.10745e6i) q^{65} +(-1.16980e7 + 6.63426e7i) q^{67} +(9.11076e6 - 5.16697e7i) q^{68} +(-5.67820e7 + 4.76458e7i) q^{70} +(-1.99027e8 + 3.44726e8i) q^{71} +(8.45049e7 + 1.46367e8i) q^{73} +(2.36105e8 + 8.59351e7i) q^{74} +(9.78906e7 + 8.21400e7i) q^{76} +(-1.19536e8 + 4.35076e7i) q^{77} +(-7.52500e6 - 4.26764e7i) q^{79} -2.52692e8 q^{80} -5.96252e8 q^{82} +(-5.13521e7 - 2.91232e8i) q^{83} +(5.01926e8 - 1.82686e8i) q^{85} +(-3.03464e7 - 2.54636e7i) q^{86} +(-6.69102e8 - 2.43533e8i) q^{88} +(5.24736e8 + 9.08869e8i) q^{89} +(6.93553e6 - 1.20127e7i) q^{91} +(3.13044e7 - 2.62675e7i) q^{92} +(9.78714e7 - 5.55056e8i) q^{94} +(-2.25906e8 + 1.28117e9i) q^{95} +(1.08650e9 - 9.11682e8i) q^{97} +(3.23128e8 - 5.59673e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.18108 + 18.0408i 0.140585 + 0.797298i 0.970806 + 0.239864i \(0.0771029\pi\)
−0.830221 + 0.557434i \(0.811786\pi\)
\(3\) 0 0
\(4\) 165.772 60.3360i 0.323773 0.117844i
\(5\) 1375.78 + 1154.42i 0.984427 + 0.826032i 0.984751 0.173968i \(-0.0556589\pi\)
−0.000324567 1.00000i \(0.500103\pi\)
\(6\) 0 0
\(7\) 2117.11 + 770.566i 0.333275 + 0.121302i 0.503237 0.864148i \(-0.332142\pi\)
−0.169962 + 0.985451i \(0.554364\pi\)
\(8\) 6305.53 + 10921.5i 0.544273 + 0.942708i
\(9\) 0 0
\(10\) −16450.1 + 28492.4i −0.520198 + 0.901009i
\(11\) −43252.3 + 36293.0i −0.890721 + 0.747404i −0.968355 0.249578i \(-0.919708\pi\)
0.0776335 + 0.996982i \(0.475264\pi\)
\(12\) 0 0
\(13\) 1069.11 6063.22i 0.0103819 0.0588787i −0.979177 0.203010i \(-0.934928\pi\)
0.989559 + 0.144131i \(0.0460387\pi\)
\(14\) −7166.92 + 40645.6i −0.0498605 + 0.282773i
\(15\) 0 0
\(16\) −107783. + 90440.9i −0.411161 + 0.345005i
\(17\) 148706. 257567.i 0.431827 0.747946i −0.565204 0.824951i \(-0.691203\pi\)
0.997031 + 0.0770054i \(0.0245359\pi\)
\(18\) 0 0
\(19\) 362187. + 627326.i 0.637590 + 1.10434i 0.985960 + 0.166981i \(0.0534018\pi\)
−0.348371 + 0.937357i \(0.613265\pi\)
\(20\) 297718. + 108360.i 0.416073 + 0.151438i
\(21\) 0 0
\(22\) −792343. 664854.i −0.721126 0.605096i
\(23\) 217677. 79228.1i 0.162195 0.0590342i −0.259646 0.965704i \(-0.583606\pi\)
0.421842 + 0.906670i \(0.361384\pi\)
\(24\) 0 0
\(25\) 220935. + 1.25299e6i 0.113119 + 0.641529i
\(26\) 112786. 0.0484034
\(27\) 0 0
\(28\) 397450. 0.122200
\(29\) 187265. + 1.06204e6i 0.0491662 + 0.278835i 0.999472 0.0324815i \(-0.0103410\pi\)
−0.950306 + 0.311317i \(0.899230\pi\)
\(30\) 0 0
\(31\) −1.23107e6 + 448073.i −0.239417 + 0.0871407i −0.458942 0.888466i \(-0.651771\pi\)
0.219525 + 0.975607i \(0.429549\pi\)
\(32\) 2.97175e6 + 2.49360e6i 0.501000 + 0.420389i
\(33\) 0 0
\(34\) 5.11976e6 + 1.86344e6i 0.657044 + 0.239144i
\(35\) 2.02312e6 + 3.50415e6i 0.227885 + 0.394709i
\(36\) 0 0
\(37\) 6.85780e6 1.18781e7i 0.601558 1.04193i −0.391028 0.920379i \(-0.627880\pi\)
0.992585 0.121549i \(-0.0387863\pi\)
\(38\) −1.01653e7 + 8.52971e6i −0.790850 + 0.663602i
\(39\) 0 0
\(40\) −3.93293e6 + 2.23048e7i −0.242911 + 1.37761i
\(41\) −5.65192e6 + 3.20536e7i −0.312370 + 1.77154i 0.274235 + 0.961663i \(0.411575\pi\)
−0.586605 + 0.809873i \(0.699536\pi\)
\(42\) 0 0
\(43\) −1.65654e6 + 1.39000e6i −0.0738915 + 0.0620023i −0.678985 0.734152i \(-0.737580\pi\)
0.605094 + 0.796154i \(0.293136\pi\)
\(44\) −4.98023e6 + 8.62601e6i −0.200315 + 0.346955i
\(45\) 0 0
\(46\) 2.12179e6 + 3.67504e6i 0.0698701 + 0.121019i
\(47\) −2.89113e7 1.05228e7i −0.864225 0.314552i −0.128399 0.991723i \(-0.540984\pi\)
−0.735826 + 0.677170i \(0.763206\pi\)
\(48\) 0 0
\(49\) −2.70243e7 2.26760e7i −0.669686 0.561934i
\(50\) −2.19020e7 + 7.97169e6i −0.495587 + 0.180379i
\(51\) 0 0
\(52\) −188602. 1.06962e6i −0.00357710 0.0202868i
\(53\) 9.69683e7 1.68806 0.844031 0.536294i \(-0.180176\pi\)
0.844031 + 0.536294i \(0.180176\pi\)
\(54\) 0 0
\(55\) −1.01403e8 −1.49423
\(56\) 4.93378e6 + 2.79809e7i 0.0670400 + 0.380203i
\(57\) 0 0
\(58\) −1.85643e7 + 6.75684e6i −0.215403 + 0.0784002i
\(59\) −2.96299e7 2.48624e7i −0.318343 0.267122i 0.469587 0.882886i \(-0.344403\pi\)
−0.787930 + 0.615764i \(0.788847\pi\)
\(60\) 0 0
\(61\) −1.84497e8 6.71515e7i −1.70610 0.620971i −0.709608 0.704597i \(-0.751128\pi\)
−0.996497 + 0.0836257i \(0.973350\pi\)
\(62\) −1.19997e7 2.07841e7i −0.103136 0.178636i
\(63\) 0 0
\(64\) −7.15525e7 + 1.23933e8i −0.533108 + 0.923370i
\(65\) 8.47032e6 7.10745e6i 0.0588559 0.0493859i
\(66\) 0 0
\(67\) −1.16980e7 + 6.63426e7i −0.0709210 + 0.402213i 0.928595 + 0.371095i \(0.121018\pi\)
−0.999516 + 0.0311174i \(0.990093\pi\)
\(68\) 9.11076e6 5.16697e7i 0.0516731 0.293053i
\(69\) 0 0
\(70\) −5.67820e7 + 4.76458e7i −0.282663 + 0.237183i
\(71\) −1.99027e8 + 3.44726e8i −0.929502 + 1.60994i −0.145346 + 0.989381i \(0.546430\pi\)
−0.784156 + 0.620564i \(0.786904\pi\)
\(72\) 0 0
\(73\) 8.45049e7 + 1.46367e8i 0.348280 + 0.603239i 0.985944 0.167076i \(-0.0534324\pi\)
−0.637664 + 0.770315i \(0.720099\pi\)
\(74\) 2.36105e8 + 8.59351e7i 0.915297 + 0.333141i
\(75\) 0 0
\(76\) 9.78906e7 + 8.21400e7i 0.336573 + 0.282419i
\(77\) −1.19536e8 + 4.35076e7i −0.387517 + 0.141045i
\(78\) 0 0
\(79\) −7.52500e6 4.26764e7i −0.0217362 0.123272i 0.972009 0.234944i \(-0.0754907\pi\)
−0.993745 + 0.111672i \(0.964380\pi\)
\(80\) −2.52692e8 −0.689743
\(81\) 0 0
\(82\) −5.96252e8 −1.45636
\(83\) −5.13521e7 2.91232e8i −0.118770 0.673578i −0.984814 0.173611i \(-0.944456\pi\)
0.866044 0.499967i \(-0.166655\pi\)
\(84\) 0 0
\(85\) 5.01926e8 1.82686e8i 1.04293 0.379595i
\(86\) −3.03464e7 2.54636e7i −0.0598224 0.0501969i
\(87\) 0 0
\(88\) −6.69102e8 2.43533e8i −1.18938 0.432899i
\(89\) 5.24736e8 + 9.08869e8i 0.886514 + 1.53549i 0.843968 + 0.536393i \(0.180213\pi\)
0.0425457 + 0.999095i \(0.486453\pi\)
\(90\) 0 0
\(91\) 6.93553e6 1.20127e7i 0.0106021 0.0183634i
\(92\) 3.13044e7 2.62675e7i 0.0455576 0.0382274i
\(93\) 0 0
\(94\) 9.78714e7 5.55056e8i 0.129295 0.733266i
\(95\) −2.25906e8 + 1.28117e9i −0.284558 + 1.61381i
\(96\) 0 0
\(97\) 1.08650e9 9.11682e8i 1.24611 1.04561i 0.249091 0.968480i \(-0.419868\pi\)
0.997021 0.0771321i \(-0.0245763\pi\)
\(98\) 3.23128e8 5.59673e8i 0.353881 0.612939i
\(99\) 0 0
\(100\) 1.12225e8 + 1.94379e8i 0.112225 + 0.194379i
\(101\) −1.17960e9 4.29339e8i −1.12795 0.410539i −0.290401 0.956905i \(-0.593789\pi\)
−0.837547 + 0.546366i \(0.816011\pi\)
\(102\) 0 0
\(103\) 1.53524e9 + 1.28822e9i 1.34403 + 1.12777i 0.980571 + 0.196164i \(0.0628483\pi\)
0.363458 + 0.931611i \(0.381596\pi\)
\(104\) 7.29607e7 2.65555e7i 0.0611560 0.0222590i
\(105\) 0 0
\(106\) 3.08464e8 + 1.74939e9i 0.237316 + 1.34589i
\(107\) 1.33848e9 0.987151 0.493575 0.869703i \(-0.335690\pi\)
0.493575 + 0.869703i \(0.335690\pi\)
\(108\) 0 0
\(109\) −2.51911e8 −0.170934 −0.0854669 0.996341i \(-0.527238\pi\)
−0.0854669 + 0.996341i \(0.527238\pi\)
\(110\) −3.22570e8 1.82938e9i −0.210066 1.19135i
\(111\) 0 0
\(112\) −2.97880e8 + 1.08419e8i −0.178879 + 0.0651068i
\(113\) −1.64771e8 1.38259e8i −0.0950664 0.0797701i 0.594016 0.804453i \(-0.297542\pi\)
−0.689082 + 0.724683i \(0.741986\pi\)
\(114\) 0 0
\(115\) 3.90938e8 + 1.42290e8i 0.208433 + 0.0758636i
\(116\) 9.51223e7 + 1.64757e8i 0.0487777 + 0.0844854i
\(117\) 0 0
\(118\) 3.54283e8 6.13636e8i 0.168221 0.291368i
\(119\) 5.13301e8 4.30710e8i 0.234644 0.196890i
\(120\) 0 0
\(121\) 1.44126e8 8.17380e8i 0.0611235 0.346649i
\(122\) 6.24566e8 3.54209e9i 0.255246 1.44757i
\(123\) 0 0
\(124\) −1.77042e8 + 1.48556e8i −0.0672478 + 0.0564276i
\(125\) 6.11351e8 1.05889e9i 0.223973 0.387932i
\(126\) 0 0
\(127\) −2.27429e9 3.93918e9i −0.775762 1.34366i −0.934365 0.356317i \(-0.884032\pi\)
0.158603 0.987342i \(-0.449301\pi\)
\(128\) −5.97016e8 2.17296e8i −0.196581 0.0715496i
\(129\) 0 0
\(130\) 1.55169e8 + 1.30202e8i 0.0476496 + 0.0399827i
\(131\) 2.93411e9 1.06793e9i 0.870474 0.316826i 0.132115 0.991234i \(-0.457823\pi\)
0.738359 + 0.674408i \(0.235601\pi\)
\(132\) 0 0
\(133\) 2.83394e8 + 1.60721e9i 0.0785341 + 0.445389i
\(134\) −1.23408e9 −0.330654
\(135\) 0 0
\(136\) 3.75069e9 0.940126
\(137\) −1.00171e9 5.68098e9i −0.242940 1.37778i −0.825228 0.564799i \(-0.808954\pi\)
0.582288 0.812983i \(-0.302158\pi\)
\(138\) 0 0
\(139\) 5.68111e9 2.06775e9i 1.29082 0.469821i 0.396825 0.917894i \(-0.370112\pi\)
0.893997 + 0.448073i \(0.147890\pi\)
\(140\) 5.46803e8 + 4.58822e8i 0.120297 + 0.100941i
\(141\) 0 0
\(142\) −6.85225e9 2.49401e9i −1.41428 0.514756i
\(143\) 1.73811e8 + 3.01049e8i 0.0347588 + 0.0602039i
\(144\) 0 0
\(145\) −9.68394e8 + 1.67731e9i −0.181927 + 0.315106i
\(146\) −2.37176e9 + 1.99014e9i −0.431998 + 0.362490i
\(147\) 0 0
\(148\) 4.20155e8 2.38282e9i 0.0719834 0.408238i
\(149\) 6.81322e8 3.86397e9i 0.113244 0.642238i −0.874361 0.485276i \(-0.838719\pi\)
0.987605 0.156961i \(-0.0501698\pi\)
\(150\) 0 0
\(151\) 1.79025e9 1.50220e9i 0.280232 0.235142i −0.491828 0.870692i \(-0.663671\pi\)
0.772060 + 0.635550i \(0.219227\pi\)
\(152\) −4.56756e9 + 7.91124e9i −0.694046 + 1.20212i
\(153\) 0 0
\(154\) −1.16516e9 2.01812e9i −0.166934 0.289138i
\(155\) −2.21094e9 8.04717e8i −0.307670 0.111983i
\(156\) 0 0
\(157\) 3.55156e9 + 2.98011e9i 0.466521 + 0.391457i 0.845523 0.533938i \(-0.179289\pi\)
−0.379003 + 0.925395i \(0.623733\pi\)
\(158\) 7.45978e8 2.71514e8i 0.0952290 0.0346605i
\(159\) 0 0
\(160\) 1.20983e9 + 6.86127e9i 0.145943 + 0.827684i
\(161\) 5.21898e8 0.0612166
\(162\) 0 0
\(163\) −3.94377e9 −0.437589 −0.218795 0.975771i \(-0.570213\pi\)
−0.218795 + 0.975771i \(0.570213\pi\)
\(164\) 9.97059e8 + 5.65460e9i 0.107628 + 0.610386i
\(165\) 0 0
\(166\) 5.09070e9 1.85286e9i 0.520345 0.189390i
\(167\) 2.15951e9 + 1.81205e9i 0.214848 + 0.180279i 0.743860 0.668335i \(-0.232993\pi\)
−0.529012 + 0.848614i \(0.677437\pi\)
\(168\) 0 0
\(169\) 9.92935e9 + 3.61399e9i 0.936334 + 0.340798i
\(170\) 4.89247e9 + 8.47401e9i 0.449271 + 0.778160i
\(171\) 0 0
\(172\) −1.90741e8 + 3.30373e8i −0.0166175 + 0.0287823i
\(173\) −6.23242e9 + 5.22962e9i −0.528992 + 0.443877i −0.867753 0.496995i \(-0.834437\pi\)
0.338761 + 0.940872i \(0.389992\pi\)
\(174\) 0 0
\(175\) −4.97763e8 + 2.82296e9i −0.0401191 + 0.227527i
\(176\) 1.37950e9 7.82355e9i 0.108372 0.614606i
\(177\) 0 0
\(178\) −1.47275e10 + 1.23578e10i −1.09961 + 0.922683i
\(179\) −7.06096e9 + 1.22299e10i −0.514073 + 0.890401i 0.485793 + 0.874074i \(0.338531\pi\)
−0.999867 + 0.0163276i \(0.994803\pi\)
\(180\) 0 0
\(181\) −8.52987e9 1.47742e10i −0.590730 1.02317i −0.994134 0.108152i \(-0.965507\pi\)
0.403405 0.915022i \(-0.367827\pi\)
\(182\) 2.38781e8 + 8.69091e7i 0.0161316 + 0.00587143i
\(183\) 0 0
\(184\) 2.23786e9 + 1.87779e9i 0.143931 + 0.120772i
\(185\) 2.31470e10 8.42483e9i 1.45286 0.528796i
\(186\) 0 0
\(187\) 2.91598e9 + 1.65374e10i 0.174380 + 0.988960i
\(188\) −5.42758e9 −0.316881
\(189\) 0 0
\(190\) −2.38320e10 −1.32669
\(191\) −4.29151e8 2.43384e9i −0.0233324 0.132325i 0.970917 0.239418i \(-0.0769567\pi\)
−0.994249 + 0.107093i \(0.965846\pi\)
\(192\) 0 0
\(193\) −1.80403e10 + 6.56614e9i −0.935915 + 0.340645i −0.764551 0.644563i \(-0.777039\pi\)
−0.171363 + 0.985208i \(0.554817\pi\)
\(194\) 1.99037e10 + 1.67012e10i 1.00885 + 0.846525i
\(195\) 0 0
\(196\) −5.84804e9 2.12851e9i −0.283047 0.103021i
\(197\) −1.69840e9 2.94172e9i −0.0803419 0.139156i 0.823055 0.567962i \(-0.192268\pi\)
−0.903397 + 0.428806i \(0.858935\pi\)
\(198\) 0 0
\(199\) 2.03141e10 3.51850e10i 0.918245 1.59045i 0.116166 0.993230i \(-0.462940\pi\)
0.802079 0.597217i \(-0.203727\pi\)
\(200\) −1.22914e10 + 1.03137e10i −0.543207 + 0.455805i
\(201\) 0 0
\(202\) 3.99322e9 2.26467e10i 0.168749 0.957026i
\(203\) −4.21906e8 + 2.39275e9i −0.0174375 + 0.0988929i
\(204\) 0 0
\(205\) −4.47790e10 + 3.75740e10i −1.77085 + 1.48592i
\(206\) −1.83568e10 + 3.17949e10i −0.710222 + 1.23014i
\(207\) 0 0
\(208\) 4.33131e8 + 7.50205e8i 0.0160448 + 0.0277904i
\(209\) −3.84329e10 1.39884e10i −1.39330 0.507120i
\(210\) 0 0
\(211\) 2.19100e10 + 1.83847e10i 0.760978 + 0.638536i 0.938381 0.345602i \(-0.112325\pi\)
−0.177404 + 0.984138i \(0.556770\pi\)
\(212\) 1.60746e10 5.85068e9i 0.546549 0.198927i
\(213\) 0 0
\(214\) 4.25780e9 + 2.41472e10i 0.138779 + 0.787053i
\(215\) −3.88368e9 −0.123957
\(216\) 0 0
\(217\) −2.95158e9 −0.0903621
\(218\) −8.01349e8 4.54468e9i −0.0240308 0.136285i
\(219\) 0 0
\(220\) −1.68097e10 + 6.11823e9i −0.483791 + 0.176085i
\(221\) −1.40270e9 1.17701e9i −0.0395549 0.0331905i
\(222\) 0 0
\(223\) 4.60395e10 + 1.67570e10i 1.24669 + 0.453758i 0.879282 0.476302i \(-0.158023\pi\)
0.367408 + 0.930060i \(0.380245\pi\)
\(224\) 4.37005e9 + 7.56915e9i 0.115977 + 0.200877i
\(225\) 0 0
\(226\) 1.97015e9 3.41241e9i 0.0502357 0.0870107i
\(227\) −1.96247e10 + 1.64671e10i −0.490554 + 0.411624i −0.854225 0.519904i \(-0.825968\pi\)
0.363671 + 0.931528i \(0.381523\pi\)
\(228\) 0 0
\(229\) 1.28706e10 7.29928e10i 0.309271 1.75396i −0.293417 0.955985i \(-0.594792\pi\)
0.602687 0.797977i \(-0.294097\pi\)
\(230\) −1.32342e9 + 7.50546e9i −0.0311832 + 0.176849i
\(231\) 0 0
\(232\) −1.04182e10 + 8.74192e9i −0.236101 + 0.198112i
\(233\) 1.69048e10 2.92800e10i 0.375758 0.650833i −0.614682 0.788775i \(-0.710716\pi\)
0.990440 + 0.137943i \(0.0440489\pi\)
\(234\) 0 0
\(235\) −2.76278e10 4.78527e10i −0.590936 1.02353i
\(236\) −6.41189e9 2.33374e9i −0.134550 0.0489720i
\(237\) 0 0
\(238\) 9.40320e9 + 7.89022e9i 0.189968 + 0.159402i
\(239\) 2.90863e10 1.05866e10i 0.576631 0.209877i −0.0372082 0.999308i \(-0.511846\pi\)
0.613839 + 0.789431i \(0.289624\pi\)
\(240\) 0 0
\(241\) −1.35007e10 7.65660e10i −0.257797 1.46204i −0.788789 0.614664i \(-0.789292\pi\)
0.530992 0.847377i \(-0.321819\pi\)
\(242\) 1.52047e10 0.284975
\(243\) 0 0
\(244\) −3.46361e10 −0.625568
\(245\) −1.10018e10 6.23944e10i −0.195082 1.10637i
\(246\) 0 0
\(247\) 4.19083e9 1.52534e9i 0.0716413 0.0260753i
\(248\) −1.26562e10 1.06198e10i −0.212457 0.178272i
\(249\) 0 0
\(250\) 2.10480e10 + 7.66084e9i 0.340785 + 0.124036i
\(251\) 1.34873e10 + 2.33607e10i 0.214483 + 0.371496i 0.953113 0.302616i \(-0.0978599\pi\)
−0.738629 + 0.674112i \(0.764527\pi\)
\(252\) 0 0
\(253\) −6.53962e9 + 1.13269e10i −0.100348 + 0.173808i
\(254\) 6.38312e10 5.35608e10i 0.962236 0.807412i
\(255\) 0 0
\(256\) −1.07021e10 + 6.06948e10i −0.155736 + 0.883226i
\(257\) 1.71316e10 9.71579e10i 0.244961 1.38925i −0.575621 0.817717i \(-0.695239\pi\)
0.820582 0.571529i \(-0.193649\pi\)
\(258\) 0 0
\(259\) 2.36716e10 1.98628e10i 0.326872 0.274278i
\(260\) 9.75305e8 1.68928e9i 0.0132361 0.0229256i
\(261\) 0 0
\(262\) 2.85999e10 + 4.95365e10i 0.374981 + 0.649486i
\(263\) −1.56709e10 5.70375e9i −0.201973 0.0735122i 0.239053 0.971007i \(-0.423163\pi\)
−0.441026 + 0.897494i \(0.645385\pi\)
\(264\) 0 0
\(265\) 1.33407e11 + 1.11942e11i 1.66177 + 1.39439i
\(266\) −2.80938e10 + 1.02253e10i −0.344067 + 0.125230i
\(267\) 0 0
\(268\) 2.06365e9 + 1.17035e10i 0.0244359 + 0.138583i
\(269\) −2.61530e10 −0.304534 −0.152267 0.988339i \(-0.548657\pi\)
−0.152267 + 0.988339i \(0.548657\pi\)
\(270\) 0 0
\(271\) 5.12755e10 0.577494 0.288747 0.957405i \(-0.406761\pi\)
0.288747 + 0.957405i \(0.406761\pi\)
\(272\) 7.26653e9 + 4.12106e10i 0.0804947 + 0.456508i
\(273\) 0 0
\(274\) 9.93028e10 3.61433e10i 1.06435 0.387391i
\(275\) −5.50305e10 4.61761e10i −0.580238 0.486878i
\(276\) 0 0
\(277\) −5.29886e10 1.92863e10i −0.540783 0.196829i 0.0571636 0.998365i \(-0.481794\pi\)
−0.597947 + 0.801536i \(0.704017\pi\)
\(278\) 5.53760e10 + 9.59140e10i 0.556057 + 0.963120i
\(279\) 0 0
\(280\) −2.55137e10 + 4.41911e10i −0.248064 + 0.429659i
\(281\) 5.73227e10 4.80995e10i 0.548464 0.460216i −0.325956 0.945385i \(-0.605686\pi\)
0.874421 + 0.485169i \(0.161242\pi\)
\(282\) 0 0
\(283\) 2.28233e10 1.29438e11i 0.211514 1.19956i −0.675339 0.737507i \(-0.736003\pi\)
0.886853 0.462051i \(-0.152886\pi\)
\(284\) −1.21938e10 + 6.91543e10i −0.111226 + 0.630792i
\(285\) 0 0
\(286\) −4.87826e9 + 4.09334e9i −0.0431139 + 0.0361769i
\(287\) −3.66652e10 + 6.35060e10i −0.318996 + 0.552518i
\(288\) 0 0
\(289\) 1.50668e10 + 2.60964e10i 0.127051 + 0.220059i
\(290\) −3.33405e10 1.21349e10i −0.276809 0.100750i
\(291\) 0 0
\(292\) 2.28397e10 + 1.91648e10i 0.183852 + 0.154270i
\(293\) 1.66284e10 6.05226e9i 0.131810 0.0479748i −0.275273 0.961366i \(-0.588768\pi\)
0.407083 + 0.913391i \(0.366546\pi\)
\(294\) 0 0
\(295\) −1.20626e10 6.84103e10i −0.0927345 0.525924i
\(296\) 1.72968e11 1.30965
\(297\) 0 0
\(298\) 7.18764e10 0.527975
\(299\) −2.47656e8 1.40453e9i −0.00179196 0.0101627i
\(300\) 0 0
\(301\) −4.57818e9 + 1.66632e9i −0.0321472 + 0.0117006i
\(302\) 3.27957e10 + 2.75189e10i 0.226875 + 0.190371i
\(303\) 0 0
\(304\) −9.57736e10 3.48587e10i −0.643153 0.234089i
\(305\) −1.76307e11 3.05372e11i −1.16659 2.02060i
\(306\) 0 0
\(307\) −3.51307e10 + 6.08482e10i −0.225717 + 0.390954i −0.956534 0.291620i \(-0.905806\pi\)
0.730817 + 0.682573i \(0.239139\pi\)
\(308\) −1.71906e10 + 1.44246e10i −0.108846 + 0.0913328i
\(309\) 0 0
\(310\) 7.48456e9 4.24470e10i 0.0460297 0.261048i
\(311\) −8.16527e9 + 4.63075e10i −0.0494935 + 0.280692i −0.999503 0.0315299i \(-0.989962\pi\)
0.950009 + 0.312222i \(0.101073\pi\)
\(312\) 0 0
\(313\) 1.70477e11 1.43047e11i 1.00396 0.842420i 0.0164291 0.999865i \(-0.494770\pi\)
0.987528 + 0.157445i \(0.0503258\pi\)
\(314\) −4.24658e10 + 7.35529e10i −0.246522 + 0.426989i
\(315\) 0 0
\(316\) −3.82235e9 6.62051e9i −0.0215645 0.0373508i
\(317\) 1.03678e11 + 3.77359e10i 0.576663 + 0.209888i 0.613853 0.789420i \(-0.289619\pi\)
−0.0371906 + 0.999308i \(0.511841\pi\)
\(318\) 0 0
\(319\) −4.66441e10 3.91390e10i −0.252196 0.211618i
\(320\) −2.41510e11 + 8.79025e10i −1.28754 + 0.468626i
\(321\) 0 0
\(322\) 1.66020e9 + 9.41545e9i 0.00860614 + 0.0488079i
\(323\) 2.15438e11 1.10131
\(324\) 0 0
\(325\) 7.83332e9 0.0389467
\(326\) −1.25454e10 7.11487e10i −0.0615186 0.348889i
\(327\) 0 0
\(328\) −3.85712e11 + 1.40388e11i −1.84006 + 0.669726i
\(329\) −5.30999e10 4.45561e10i −0.249869 0.209665i
\(330\) 0 0
\(331\) 5.41688e10 + 1.97158e10i 0.248041 + 0.0902794i 0.463049 0.886333i \(-0.346756\pi\)
−0.215008 + 0.976612i \(0.568978\pi\)
\(332\) −2.60845e10 4.51797e10i −0.117831 0.204090i
\(333\) 0 0
\(334\) −2.58212e10 + 4.47235e10i −0.113532 + 0.196642i
\(335\) −9.26807e10 + 7.77684e10i −0.402057 + 0.337366i
\(336\) 0 0
\(337\) −1.34280e9 + 7.61541e9i −0.00567123 + 0.0321631i −0.987512 0.157543i \(-0.949643\pi\)
0.981841 + 0.189707i \(0.0607537\pi\)
\(338\) −3.36132e10 + 1.90630e11i −0.140083 + 0.794448i
\(339\) 0 0
\(340\) 7.21826e10 6.05684e10i 0.292939 0.245805i
\(341\) 3.69847e10 6.40594e10i 0.148125 0.256559i
\(342\) 0 0
\(343\) −8.51980e10 1.47567e11i −0.332358 0.575661i
\(344\) −2.56263e10 9.32722e9i −0.0986673 0.0359120i
\(345\) 0 0
\(346\) −1.14172e11 9.58019e10i −0.428271 0.359362i
\(347\) −2.93769e10 + 1.06923e10i −0.108774 + 0.0395904i −0.395834 0.918322i \(-0.629544\pi\)
0.287060 + 0.957913i \(0.407322\pi\)
\(348\) 0 0
\(349\) 6.18876e10 + 3.50982e11i 0.223300 + 1.26640i 0.865908 + 0.500203i \(0.166741\pi\)
−0.642608 + 0.766195i \(0.722148\pi\)
\(350\) −5.25118e10 −0.187047
\(351\) 0 0
\(352\) −2.19035e11 −0.760451
\(353\) 4.91097e10 + 2.78515e11i 0.168338 + 0.954690i 0.945556 + 0.325459i \(0.105519\pi\)
−0.777219 + 0.629231i \(0.783370\pi\)
\(354\) 0 0
\(355\) −6.71774e11 + 2.44506e11i −2.24489 + 0.817074i
\(356\) 1.41824e11 + 1.19004e11i 0.467977 + 0.392679i
\(357\) 0 0
\(358\) −2.43099e11 8.84809e10i −0.782186 0.284692i
\(359\) −1.18627e11 2.05467e11i −0.376927 0.652856i 0.613687 0.789550i \(-0.289686\pi\)
−0.990613 + 0.136694i \(0.956352\pi\)
\(360\) 0 0
\(361\) −1.01015e11 + 1.74962e11i −0.313041 + 0.542203i
\(362\) 2.39403e11 2.00883e11i 0.732726 0.614830i
\(363\) 0 0
\(364\) 4.24917e8 2.40983e9i 0.00126867 0.00719498i
\(365\) −5.27080e10 + 2.98922e11i −0.155439 + 0.881536i
\(366\) 0 0
\(367\) 7.78478e10 6.53221e10i 0.224001 0.187959i −0.523880 0.851792i \(-0.675516\pi\)
0.747881 + 0.663833i \(0.231072\pi\)
\(368\) −1.62965e10 + 2.82264e10i −0.0463212 + 0.0802307i
\(369\) 0 0
\(370\) 2.25623e11 + 3.90791e11i 0.625858 + 1.08402i
\(371\) 2.05293e11 + 7.47205e10i 0.562589 + 0.204766i
\(372\) 0 0
\(373\) 1.76640e11 + 1.48219e11i 0.472498 + 0.396473i 0.847705 0.530468i \(-0.177984\pi\)
−0.375207 + 0.926941i \(0.622428\pi\)
\(374\) −2.89071e11 + 1.05213e11i −0.763980 + 0.278066i
\(375\) 0 0
\(376\) −6.73757e10 3.82107e11i −0.173843 0.985915i
\(377\) 6.63956e9 0.0169279
\(378\) 0 0
\(379\) 4.34730e11 1.08229 0.541144 0.840930i \(-0.317991\pi\)
0.541144 + 0.840930i \(0.317991\pi\)
\(380\) 3.98521e10 + 2.26013e11i 0.0980450 + 0.556041i
\(381\) 0 0
\(382\) 4.25432e10 1.54844e10i 0.102222 0.0372058i
\(383\) 2.21788e11 + 1.86102e11i 0.526675 + 0.441933i 0.866952 0.498392i \(-0.166076\pi\)
−0.340276 + 0.940326i \(0.610521\pi\)
\(384\) 0 0
\(385\) −2.14681e11 7.81374e10i −0.497989 0.181253i
\(386\) −1.75846e11 3.04574e11i −0.403171 0.698313i
\(387\) 0 0
\(388\) 1.25104e11 2.16686e11i 0.280238 0.485387i
\(389\) −3.46880e11 + 2.91067e11i −0.768080 + 0.644496i −0.940216 0.340577i \(-0.889377\pi\)
0.172136 + 0.985073i \(0.444933\pi\)
\(390\) 0 0
\(391\) 1.19635e10 6.78482e10i 0.0258858 0.146806i
\(392\) 7.72541e10 4.38130e11i 0.165247 0.937164i
\(393\) 0 0
\(394\) 4.76681e10 3.99983e10i 0.0996541 0.0836197i
\(395\) 3.89135e10 6.74002e10i 0.0804292 0.139307i
\(396\) 0 0
\(397\) 2.26479e11 + 3.92272e11i 0.457583 + 0.792557i 0.998833 0.0483051i \(-0.0153820\pi\)
−0.541250 + 0.840862i \(0.682049\pi\)
\(398\) 6.99387e11 + 2.54556e11i 1.39715 + 0.508522i
\(399\) 0 0
\(400\) −1.37134e11 1.15069e11i −0.267840 0.224745i
\(401\) −1.70866e9 + 6.21902e8i −0.00329994 + 0.00120108i −0.343670 0.939091i \(-0.611670\pi\)
0.340370 + 0.940292i \(0.389448\pi\)
\(402\) 0 0
\(403\) 1.40062e9 + 7.94329e9i 0.00264513 + 0.0150013i
\(404\) −2.21449e11 −0.413578
\(405\) 0 0
\(406\) −4.45092e10 −0.0812985
\(407\) 1.34475e11 + 7.62643e11i 0.242921 + 1.37767i
\(408\) 0 0
\(409\) −9.05323e10 + 3.29511e10i −0.159974 + 0.0582257i −0.420766 0.907169i \(-0.638239\pi\)
0.260792 + 0.965395i \(0.416016\pi\)
\(410\) −8.20311e11 6.88323e11i −1.43368 1.20300i
\(411\) 0 0
\(412\) 3.32225e11 + 1.20920e11i 0.568061 + 0.206757i
\(413\) −4.35716e10 7.54683e10i −0.0736934 0.127641i
\(414\) 0 0
\(415\) 2.65554e11 4.59953e11i 0.439477 0.761196i
\(416\) 1.82963e10 1.53524e10i 0.0299533 0.0251338i
\(417\) 0 0
\(418\) 1.30104e11 7.37858e11i 0.208448 1.18217i
\(419\) 7.72259e10 4.37970e11i 0.122405 0.694194i −0.860410 0.509602i \(-0.829793\pi\)
0.982815 0.184592i \(-0.0590964\pi\)
\(420\) 0 0
\(421\) 5.52249e11 4.63392e11i 0.856772 0.718917i −0.104498 0.994525i \(-0.533324\pi\)
0.961270 + 0.275608i \(0.0888791\pi\)
\(422\) −2.61977e11 + 4.53757e11i −0.402121 + 0.696494i
\(423\) 0 0
\(424\) 6.11437e11 + 1.05904e12i 0.918767 + 1.59135i
\(425\) 3.55582e11 + 1.29421e11i 0.528676 + 0.192422i
\(426\) 0 0
\(427\) −3.38857e11 2.84335e11i −0.493277 0.413908i
\(428\) 2.21881e11 8.07582e10i 0.319613 0.116329i
\(429\) 0 0
\(430\) −1.23543e10 7.00646e10i −0.0174265 0.0988304i
\(431\) 2.95889e11 0.413029 0.206515 0.978443i \(-0.433788\pi\)
0.206515 + 0.978443i \(0.433788\pi\)
\(432\) 0 0
\(433\) 4.31646e11 0.590109 0.295054 0.955480i \(-0.404662\pi\)
0.295054 + 0.955480i \(0.404662\pi\)
\(434\) −9.38922e9 5.32489e10i −0.0127036 0.0720455i
\(435\) 0 0
\(436\) −4.17597e10 + 1.51993e10i −0.0553437 + 0.0201435i
\(437\) 1.28542e11 + 1.07859e11i 0.168608 + 0.141479i
\(438\) 0 0
\(439\) 6.01837e11 + 2.19051e11i 0.773373 + 0.281485i 0.698406 0.715701i \(-0.253893\pi\)
0.0749663 + 0.997186i \(0.476115\pi\)
\(440\) −6.39398e11 1.10747e12i −0.813269 1.40862i
\(441\) 0 0
\(442\) 1.67720e10 2.90500e10i 0.0209019 0.0362031i
\(443\) −1.20640e11 + 1.01229e11i −0.148824 + 0.124878i −0.714160 0.699983i \(-0.753191\pi\)
0.565336 + 0.824861i \(0.308747\pi\)
\(444\) 0 0
\(445\) −3.27292e11 + 1.85617e12i −0.395654 + 2.24386i
\(446\) −1.55854e11 + 8.83894e11i −0.186514 + 1.05778i
\(447\) 0 0
\(448\) −2.46983e11 + 2.07243e11i −0.289678 + 0.243069i
\(449\) 1.21206e11 2.09934e11i 0.140739 0.243767i −0.787036 0.616907i \(-0.788386\pi\)
0.927775 + 0.373140i \(0.121719\pi\)
\(450\) 0 0
\(451\) −9.18863e11 1.59152e12i −1.04582 1.81141i
\(452\) −3.56563e10 1.29778e10i −0.0401803 0.0146244i
\(453\) 0 0
\(454\) −3.59507e11 3.01662e11i −0.397152 0.333250i
\(455\) 2.34094e10 8.52032e9i 0.0256058 0.00931976i
\(456\) 0 0
\(457\) −1.46359e11 8.30041e11i −0.156962 0.890177i −0.956970 0.290187i \(-0.906282\pi\)
0.800008 0.599990i \(-0.204829\pi\)
\(458\) 1.35779e12 1.44191
\(459\) 0 0
\(460\) 7.33916e10 0.0764251
\(461\) −2.64210e11 1.49841e12i −0.272455 1.54517i −0.746931 0.664902i \(-0.768473\pi\)
0.474476 0.880269i \(-0.342638\pi\)
\(462\) 0 0
\(463\) 2.89751e11 1.05461e11i 0.293029 0.106654i −0.191323 0.981527i \(-0.561278\pi\)
0.484352 + 0.874873i \(0.339056\pi\)
\(464\) −1.16236e11 9.75332e10i −0.116415 0.0976836i
\(465\) 0 0
\(466\) 5.82010e11 + 2.11834e11i 0.571733 + 0.208094i
\(467\) −9.74341e11 1.68761e12i −0.947949 1.64190i −0.749735 0.661738i \(-0.769819\pi\)
−0.198214 0.980159i \(-0.563514\pi\)
\(468\) 0 0
\(469\) −7.58873e10 + 1.31441e11i −0.0724255 + 0.125445i
\(470\) 7.75415e11 6.50650e11i 0.732983 0.615046i
\(471\) 0 0
\(472\) 8.47028e10 4.80373e11i 0.0785523 0.445492i
\(473\) 2.12019e10 1.20242e11i 0.0194760 0.110454i
\(474\) 0 0
\(475\) −7.06010e11 + 5.92413e11i −0.636341 + 0.533953i
\(476\) 5.91034e10 1.02370e11i 0.0527693 0.0913990i
\(477\) 0 0
\(478\) 2.83516e11 + 4.91063e11i 0.248400 + 0.430241i
\(479\) −1.38285e12 5.03315e11i −1.20023 0.436848i −0.336925 0.941531i \(-0.609387\pi\)
−0.863305 + 0.504683i \(0.831609\pi\)
\(480\) 0 0
\(481\) −6.46875e10 5.42793e10i −0.0551020 0.0462361i
\(482\) 1.33837e12 4.87125e11i 1.12944 0.411082i
\(483\) 0 0
\(484\) −2.54254e10 1.44194e11i −0.0210602 0.119439i
\(485\) 2.54724e12 2.09042
\(486\) 0 0
\(487\) −4.38273e11 −0.353073 −0.176537 0.984294i \(-0.556489\pi\)
−0.176537 + 0.984294i \(0.556489\pi\)
\(488\) −4.29958e11 2.43841e12i −0.343192 1.94634i
\(489\) 0 0
\(490\) 1.09065e12 3.96963e11i 0.854677 0.311077i
\(491\) 5.26764e11 + 4.42008e11i 0.409025 + 0.343213i 0.823970 0.566634i \(-0.191755\pi\)
−0.414945 + 0.909847i \(0.636199\pi\)
\(492\) 0 0
\(493\) 3.01393e11 + 1.09698e11i 0.229785 + 0.0836349i
\(494\) 4.08496e10 + 7.07536e10i 0.0308615 + 0.0534537i
\(495\) 0 0
\(496\) 9.21647e10 1.59634e11i 0.0683750 0.118429i
\(497\) −6.86997e11 + 5.76459e11i −0.505070 + 0.423804i
\(498\) 0 0
\(499\) −8.66368e10 + 4.91342e11i −0.0625532 + 0.354757i 0.937425 + 0.348187i \(0.113203\pi\)
−0.999978 + 0.00657028i \(0.997909\pi\)
\(500\) 3.74555e10 2.12421e11i 0.0268010 0.151996i
\(501\) 0 0
\(502\) −3.78542e11 + 3.17634e11i −0.266040 + 0.223234i
\(503\) −1.23017e12 + 2.13072e12i −0.856860 + 1.48413i 0.0180486 + 0.999837i \(0.494255\pi\)
−0.874909 + 0.484288i \(0.839079\pi\)
\(504\) 0 0
\(505\) −1.12723e12 1.95242e12i −0.771263 1.33587i
\(506\) −2.25150e11 8.19480e10i −0.152684 0.0555726i
\(507\) 0 0
\(508\) −6.14687e11 5.15783e11i −0.409512 0.343622i
\(509\) −1.88778e12 + 6.87097e11i −1.24659 + 0.453720i −0.879247 0.476367i \(-0.841953\pi\)
−0.367339 + 0.930087i \(0.619731\pi\)
\(510\) 0 0
\(511\) 6.61211e10 + 3.74992e11i 0.0428989 + 0.243292i
\(512\) −1.45432e12 −0.935285
\(513\) 0 0
\(514\) 1.80730e12 1.14208
\(515\) 6.25010e11 + 3.54461e12i 0.391520 + 2.22042i
\(516\) 0 0
\(517\) 1.63238e12 5.94139e11i 1.00488 0.365747i
\(518\) 4.33642e11 + 3.63869e11i 0.264635 + 0.222055i
\(519\) 0 0
\(520\) 1.31034e11 + 4.76924e10i 0.0785902 + 0.0286045i
\(521\) 1.00781e12 + 1.74559e12i 0.599254 + 1.03794i 0.992931 + 0.118690i \(0.0378694\pi\)
−0.393677 + 0.919249i \(0.628797\pi\)
\(522\) 0 0
\(523\) −1.60874e12 + 2.78643e12i −0.940220 + 1.62851i −0.175169 + 0.984538i \(0.556047\pi\)
−0.765051 + 0.643970i \(0.777286\pi\)
\(524\) 4.21958e11 3.54065e11i 0.244500 0.205160i
\(525\) 0 0
\(526\) 5.30497e10 3.00860e11i 0.0302167 0.171368i
\(527\) −6.76592e10 + 3.83715e11i −0.0382102 + 0.216701i
\(528\) 0 0
\(529\) −1.33866e12 + 1.12327e12i −0.743222 + 0.623637i
\(530\) −1.59514e12 + 2.76286e12i −0.878126 + 1.52096i
\(531\) 0 0
\(532\) 1.43951e11 + 2.49331e11i 0.0779135 + 0.134950i
\(533\) 1.88306e11 + 6.85376e10i 0.101063 + 0.0367838i
\(534\) 0 0
\(535\) 1.84145e12 + 1.54516e12i 0.971778 + 0.815418i
\(536\) −7.98323e11 + 2.90566e11i −0.417770 + 0.152056i
\(537\) 0 0
\(538\) −8.31946e10 4.71820e11i −0.0428129 0.242804i
\(539\) 1.99184e12 1.01650
\(540\) 0 0
\(541\) −2.42753e12 −1.21836 −0.609181 0.793031i \(-0.708502\pi\)
−0.609181 + 0.793031i \(0.708502\pi\)
\(542\) 1.63111e11 + 9.25050e11i 0.0811871 + 0.460435i
\(543\) 0 0
\(544\) 1.08419e12 3.94612e11i 0.530773 0.193186i
\(545\) −3.46574e11 2.90810e11i −0.168272 0.141197i
\(546\) 0 0
\(547\) −1.09378e12 3.98102e11i −0.522379 0.190130i 0.0673534 0.997729i \(-0.478544\pi\)
−0.589732 + 0.807599i \(0.700767\pi\)
\(548\) −5.08822e11 8.81306e11i −0.241020 0.417459i
\(549\) 0 0
\(550\) 6.57996e11 1.13968e12i 0.306614 0.531070i
\(551\) −5.98417e11 + 5.02132e11i −0.276581 + 0.232079i
\(552\) 0 0
\(553\) 1.69537e10 9.61492e10i 0.00770906 0.0437203i
\(554\) 1.79379e11 1.01731e12i 0.0809053 0.458837i
\(555\) 0 0
\(556\) 8.17007e11 6.85550e11i 0.362568 0.304230i
\(557\) −2.13352e12 + 3.69537e12i −0.939181 + 1.62671i −0.172177 + 0.985066i \(0.555080\pi\)
−0.767004 + 0.641643i \(0.778253\pi\)
\(558\) 0 0
\(559\) 6.65687e9 + 1.15300e10i 0.00288348 + 0.00499434i
\(560\) −5.34978e11 1.94716e11i −0.229874 0.0836673i
\(561\) 0 0
\(562\) 1.05010e12 + 8.81139e11i 0.444035 + 0.372590i
\(563\) 2.50295e12 9.10998e11i 1.04994 0.382146i 0.241299 0.970451i \(-0.422427\pi\)
0.808640 + 0.588304i \(0.200204\pi\)
\(564\) 0 0
\(565\) −6.70796e10 3.80427e11i −0.0276932 0.157056i
\(566\) 2.40776e12 0.986141
\(567\) 0 0
\(568\) −5.01990e12 −2.02361
\(569\) −8.28665e11 4.69959e12i −0.331416 1.87956i −0.460096 0.887869i \(-0.652185\pi\)
0.128680 0.991686i \(-0.458926\pi\)
\(570\) 0 0
\(571\) 1.35368e12 4.92699e11i 0.532909 0.193963i −0.0615276 0.998105i \(-0.519597\pi\)
0.594437 + 0.804142i \(0.297375\pi\)
\(572\) 4.69770e10 + 3.94184e10i 0.0183486 + 0.0153963i
\(573\) 0 0
\(574\) −1.26233e12 4.59452e11i −0.485367 0.176659i
\(575\) 1.47364e11 + 2.55242e11i 0.0562195 + 0.0973750i
\(576\) 0 0
\(577\) −9.28577e10 + 1.60834e11i −0.0348760 + 0.0604070i −0.882937 0.469492i \(-0.844437\pi\)
0.848061 + 0.529899i \(0.177770\pi\)
\(578\) −4.22871e11 + 3.54831e11i −0.157591 + 0.132235i
\(579\) 0 0
\(580\) −5.93303e10 + 3.36479e11i −0.0217696 + 0.123462i
\(581\) 1.15695e11 6.56141e11i 0.0421234 0.238894i
\(582\) 0 0
\(583\) −4.19410e12 + 3.51927e12i −1.50359 + 1.26166i
\(584\) −1.06570e12 + 1.84584e12i −0.379119 + 0.656654i
\(585\) 0 0
\(586\) 1.62084e11 + 2.80738e11i 0.0567807 + 0.0983470i
\(587\) −1.93706e12 7.05031e11i −0.673397 0.245096i −0.0173872 0.999849i \(-0.505535\pi\)
−0.656010 + 0.754752i \(0.727757\pi\)
\(588\) 0 0
\(589\) −7.26965e11 6.09996e11i −0.248883 0.208837i
\(590\) 1.19580e12 4.35237e11i 0.406281 0.147874i
\(591\) 0 0
\(592\) 3.35106e11 + 1.90048e12i 0.112133 + 0.635940i
\(593\) 2.75077e12 0.913499 0.456750 0.889595i \(-0.349014\pi\)
0.456750 + 0.889595i \(0.349014\pi\)
\(594\) 0 0
\(595\) 1.20341e12 0.393628
\(596\) −1.20192e11 6.81645e11i −0.0390184 0.221284i
\(597\) 0 0
\(598\) 2.45510e10 8.93583e9i 0.00785080 0.00285746i
\(599\) 5.33088e11 + 4.47314e11i 0.169191 + 0.141968i 0.723452 0.690375i \(-0.242554\pi\)
−0.554260 + 0.832343i \(0.686999\pi\)
\(600\) 0 0
\(601\) −4.17448e12 1.51939e12i −1.30517 0.475043i −0.406494 0.913654i \(-0.633249\pi\)
−0.898677 + 0.438610i \(0.855471\pi\)
\(602\) −4.46253e10 7.72932e10i −0.0138483 0.0239860i
\(603\) 0 0
\(604\) 2.06136e11 3.57038e11i 0.0630214 0.109156i
\(605\) 1.14188e12 9.58152e11i 0.346515 0.290760i
\(606\) 0 0
\(607\) −6.75469e11 + 3.83077e12i −0.201956 + 1.14535i 0.700203 + 0.713944i \(0.253093\pi\)
−0.902159 + 0.431404i \(0.858018\pi\)
\(608\) −4.87968e11 + 2.76740e12i −0.144819 + 0.821309i
\(609\) 0 0
\(610\) 4.94831e12 4.15212e12i 1.44701 1.21419i
\(611\) −9.47116e10 + 1.64045e11i −0.0274927 + 0.0476188i
\(612\) 0 0
\(613\) −1.18969e12 2.06060e12i −0.340300 0.589417i 0.644188 0.764867i \(-0.277195\pi\)
−0.984488 + 0.175450i \(0.943862\pi\)
\(614\) −1.20950e12 4.40223e11i −0.343439 0.125002i
\(615\) 0 0
\(616\) −1.22891e12 1.03117e12i −0.343879 0.288549i
\(617\) −2.63994e11 + 9.60860e10i −0.0733349 + 0.0266917i −0.378427 0.925631i \(-0.623535\pi\)
0.305092 + 0.952323i \(0.401313\pi\)
\(618\) 0 0
\(619\) 9.95985e11 + 5.64851e12i 0.272675 + 1.54642i 0.746252 + 0.665663i \(0.231851\pi\)
−0.473578 + 0.880752i \(0.657038\pi\)
\(620\) −4.15065e11 −0.112812
\(621\) 0 0
\(622\) −8.61399e11 −0.230753
\(623\) 4.10581e11 + 2.32852e12i 0.109195 + 0.619276i
\(624\) 0 0
\(625\) 4.39861e12 1.60096e12i 1.15307 0.419683i
\(626\) 3.12298e12 + 2.62049e12i 0.812801 + 0.682021i
\(627\) 0 0
\(628\) 7.68556e11 + 2.79732e11i 0.197177 + 0.0717667i
\(629\) −2.03960e12 3.53269e12i −0.519537 0.899865i
\(630\) 0 0
\(631\) 2.86459e12 4.96162e12i 0.719334 1.24592i −0.241930 0.970294i \(-0.577780\pi\)
0.961264 0.275629i \(-0.0888862\pi\)
\(632\) 4.18641e11 3.51282e11i 0.104379 0.0875848i
\(633\) 0 0
\(634\) −3.50976e11 + 1.99048e12i −0.0862731 + 0.489279i
\(635\) 1.41853e12 8.04491e12i 0.346225 1.96354i
\(636\) 0 0
\(637\) −1.66382e11 + 1.39611e11i −0.0400385 + 0.0335963i
\(638\) 5.57720e11 9.66000e11i 0.133267 0.230826i
\(639\) 0 0
\(640\) −5.70512e11 9.88156e11i −0.134417 0.232817i
\(641\) −5.18535e12 1.88731e12i −1.21316 0.441553i −0.345360 0.938470i \(-0.612243\pi\)
−0.867798 + 0.496917i \(0.834465\pi\)
\(642\) 0 0
\(643\) −5.41878e12 4.54690e12i −1.25012 1.04898i −0.996663 0.0816309i \(-0.973987\pi\)
−0.253459 0.967346i \(-0.581568\pi\)
\(644\) 8.65159e10 3.14892e10i 0.0198203 0.00721399i
\(645\) 0 0
\(646\) 6.85325e11 + 3.88667e12i 0.154828 + 0.878074i
\(647\) 4.09026e11 0.0917660 0.0458830 0.998947i \(-0.485390\pi\)
0.0458830 + 0.998947i \(0.485390\pi\)
\(648\) 0 0
\(649\) 2.18389e12 0.483203
\(650\) 2.49184e10 + 1.41319e11i 0.00547533 + 0.0310521i
\(651\) 0 0
\(652\) −6.53765e11 + 2.37951e11i −0.141680 + 0.0515672i
\(653\) −5.34411e12 4.48424e12i −1.15018 0.965116i −0.150456 0.988617i \(-0.548074\pi\)
−0.999724 + 0.0235012i \(0.992519\pi\)
\(654\) 0 0
\(655\) 5.26952e12 + 1.91795e12i 1.11863 + 0.407147i
\(656\) −2.28978e12 3.96601e12i −0.482754 0.836155i
\(657\) 0 0
\(658\) 6.34912e11 1.09970e12i 0.132037 0.228696i
\(659\) −3.77424e12 + 3.16696e12i −0.779552 + 0.654122i −0.943136 0.332408i \(-0.892139\pi\)
0.163584 + 0.986529i \(0.447695\pi\)
\(660\) 0 0
\(661\) 7.61963e11 4.32131e12i 0.155249 0.880458i −0.803310 0.595561i \(-0.796930\pi\)
0.958558 0.284897i \(-0.0919593\pi\)
\(662\) −1.83374e11 + 1.03996e12i −0.0371088 + 0.210454i
\(663\) 0 0
\(664\) 2.85689e12 2.39722e12i 0.570344 0.478576i
\(665\) −1.46550e12 + 2.53832e12i −0.290595 + 0.503325i
\(666\) 0 0
\(667\) 1.24906e11 + 2.16344e11i 0.0244354 + 0.0423233i
\(668\) 4.67317e11 + 1.70090e11i 0.0908067 + 0.0330509i
\(669\) 0 0
\(670\) −1.69783e12 1.42465e12i −0.325504 0.273131i
\(671\) 1.04171e13 3.79150e12i 1.98378 0.722037i
\(672\) 0 0
\(673\) 1.51399e11 + 8.58629e11i 0.0284483 + 0.161338i 0.995722 0.0923954i \(-0.0294524\pi\)
−0.967274 + 0.253734i \(0.918341\pi\)
\(674\) −1.41660e11 −0.0264409
\(675\) 0 0
\(676\) 1.86406e12 0.343320
\(677\) 8.43098e11 + 4.78144e12i 0.154251 + 0.874803i 0.959467 + 0.281821i \(0.0909383\pi\)
−0.805216 + 0.592982i \(0.797951\pi\)
\(678\) 0 0
\(679\) 3.00275e12 1.09291e12i 0.542133 0.197320i
\(680\) 5.16012e12 + 4.32985e12i 0.925486 + 0.776575i
\(681\) 0 0
\(682\) 1.27333e12 + 4.63455e11i 0.225378 + 0.0820310i
\(683\) −3.86723e11 6.69825e11i −0.0679998 0.117779i 0.830021 0.557732i \(-0.188328\pi\)
−0.898021 + 0.439953i \(0.854995\pi\)
\(684\) 0 0
\(685\) 5.18008e12 8.97215e12i 0.898935 1.55700i
\(686\) 2.39121e12 2.00646e12i 0.412249 0.345918i
\(687\) 0 0
\(688\) 5.28344e10 2.99639e11i 0.00899018 0.0509859i
\(689\) 1.03670e11 5.87940e11i 0.0175253 0.0993908i
\(690\) 0 0
\(691\) −4.89965e12 + 4.11129e12i −0.817549 + 0.686005i −0.952397 0.304861i \(-0.901390\pi\)
0.134848 + 0.990866i \(0.456945\pi\)
\(692\) −7.17624e11 + 1.24296e12i −0.118965 + 0.206054i
\(693\) 0 0
\(694\) −2.86348e11 4.95970e11i −0.0468573 0.0811592i
\(695\) 1.02030e13 + 3.71358e12i 1.65881 + 0.603756i
\(696\) 0 0
\(697\) 7.41548e12 + 6.22233e12i 1.19012 + 0.998632i
\(698\) −6.13512e12 + 2.23300e12i −0.978304 + 0.356073i
\(699\) 0 0
\(700\) 8.78107e10 + 4.97999e11i 0.0138231 + 0.0783949i
\(701\) 9.18203e12 1.43618 0.718088 0.695953i \(-0.245018\pi\)
0.718088 + 0.695953i \(0.245018\pi\)
\(702\) 0 0
\(703\) 9.93522e12 1.53419
\(704\) −1.40307e12 7.95722e12i −0.215280 1.22091i
\(705\) 0 0
\(706\) −4.86841e12 + 1.77196e12i −0.737506 + 0.268430i
\(707\) −2.16651e12 1.81792e12i −0.326117 0.273645i
\(708\) 0 0
\(709\) −2.82352e12 1.02768e12i −0.419646 0.152738i 0.123562 0.992337i \(-0.460568\pi\)
−0.543208 + 0.839598i \(0.682790\pi\)
\(710\) −6.54804e12 1.13415e13i −0.967050 1.67498i
\(711\) 0 0
\(712\) −6.61748e12 + 1.14618e13i −0.965011 + 1.67145i
\(713\) −2.32476e11 + 1.95071e11i −0.0336880 + 0.0282676i
\(714\) 0 0
\(715\) −1.08410e11 + 6.14826e11i −0.0155129 + 0.0879782i
\(716\) −4.32602e11 + 2.45341e12i −0.0615149 + 0.348868i
\(717\) 0 0
\(718\) 3.32943e12 2.79372e12i 0.467530 0.392305i
\(719\) −3.89833e12 + 6.75211e12i −0.544000 + 0.942236i 0.454669 + 0.890660i \(0.349758\pi\)
−0.998669 + 0.0515752i \(0.983576\pi\)
\(720\) 0 0
\(721\) 2.25762e12 + 3.91031e12i 0.311130 + 0.538893i
\(722\) −3.47779e12 1.26581e12i −0.476306 0.173361i
\(723\) 0 0
\(724\) −2.30542e12 1.93448e12i −0.311837 0.261662i
\(725\) −1.28934e12 + 4.69282e11i −0.173319 + 0.0630831i
\(726\) 0 0
\(727\) −8.83784e11 5.01219e12i −0.117339 0.665461i −0.985566 0.169294i \(-0.945851\pi\)
0.868227 0.496167i \(-0.165260\pi\)
\(728\) 1.74929e11 0.0230818
\(729\) 0 0
\(730\) −5.56046e12 −0.724699
\(731\) 1.11681e11 + 6.33373e11i 0.0144661 + 0.0820411i
\(732\) 0 0
\(733\) 4.68571e12 1.70546e12i 0.599525 0.218209i −0.0243888 0.999703i \(-0.507764\pi\)
0.623914 + 0.781493i \(0.285542\pi\)
\(734\) 1.42610e12 + 1.19664e12i 0.181350 + 0.152171i
\(735\) 0 0
\(736\) 8.44446e11 + 3.07353e11i 0.106077 + 0.0386089i
\(737\) −1.90180e12 3.29402e12i −0.237444 0.411266i
\(738\) 0 0
\(739\) −2.74608e12 + 4.75636e12i −0.338699 + 0.586644i −0.984188 0.177125i \(-0.943320\pi\)
0.645489 + 0.763769i \(0.276654\pi\)
\(740\) 3.32880e12 2.79320e12i 0.408080 0.342420i
\(741\) 0 0
\(742\) −6.94964e11 + 3.94134e12i −0.0841676 + 0.477338i
\(743\) −1.11559e12 + 6.32681e12i −0.134293 + 0.761614i 0.841056 + 0.540948i \(0.181934\pi\)
−0.975349 + 0.220666i \(0.929177\pi\)
\(744\) 0 0
\(745\) 5.39798e12 4.52944e12i 0.641989 0.538693i
\(746\) −2.11208e12 + 3.65823e12i −0.249681 + 0.432460i
\(747\) 0 0
\(748\) 1.48118e12 + 2.56549e12i 0.173002 + 0.299649i
\(749\) 2.83370e12 + 1.03138e12i 0.328993 + 0.119744i
\(750\) 0 0
\(751\) 4.54149e12 + 3.81076e12i 0.520977 + 0.437151i 0.864972 0.501820i \(-0.167336\pi\)
−0.343995 + 0.938971i \(0.611780\pi\)
\(752\) 4.06785e12 1.48058e12i 0.463857 0.168830i
\(753\) 0 0
\(754\) 2.11210e10 + 1.19783e11i 0.00237981 + 0.0134966i
\(755\) 4.19714e12 0.470103
\(756\) 0 0
\(757\) −5.65008e12 −0.625350 −0.312675 0.949860i \(-0.601225\pi\)
−0.312675 + 0.949860i \(0.601225\pi\)
\(758\) 1.38291e12 + 7.84287e12i 0.152154 + 0.862906i
\(759\) 0 0
\(760\) −1.54168e13 + 5.61126e12i −1.67623 + 0.610097i
\(761\) −7.77088e12 6.52054e12i −0.839922 0.704778i 0.117624 0.993058i \(-0.462472\pi\)
−0.957546 + 0.288280i \(0.906917\pi\)
\(762\) 0 0
\(763\) −5.33324e11 1.94114e11i −0.0569680 0.0207346i
\(764\) −2.17989e11 3.77568e11i −0.0231480 0.0400936i
\(765\) 0 0
\(766\) −2.65190e12 + 4.59323e12i −0.278310 + 0.482046i
\(767\) −1.82424e11 + 1.53072e11i −0.0190328 + 0.0159704i
\(768\) 0 0
\(769\) 1.59520e12 9.04681e12i 0.164492 0.932882i −0.785094 0.619377i \(-0.787385\pi\)
0.949586 0.313506i \(-0.101503\pi\)
\(770\) 7.26745e11 4.12157e12i 0.0745030 0.422527i
\(771\) 0 0
\(772\) −2.59440e12 + 2.17696e12i −0.262881 + 0.220583i
\(773\) 2.81840e12 4.88161e12i 0.283919 0.491763i −0.688427 0.725305i \(-0.741699\pi\)
0.972347 + 0.233543i \(0.0750319\pi\)
\(774\) 0 0
\(775\) −8.33416e11 1.44352e12i −0.0829859 0.143736i
\(776\) 1.68079e13 + 6.11757e12i 1.66393 + 0.605622i
\(777\) 0 0
\(778\) −6.35454e12 5.33209e12i −0.621836 0.521782i
\(779\) −2.21551e13 + 8.06381e12i −2.15554 + 0.784552i
\(780\) 0 0
\(781\) −3.90273e12 2.21335e13i −0.375352 2.12873i
\(782\) 1.26209e12 0.120687
\(783\) 0 0
\(784\) 4.96361e12 0.469218
\(785\) 1.44587e12 + 8.19995e12i 0.135899 + 0.770722i
\(786\) 0 0
\(787\) −1.58091e13 + 5.75405e12i −1.46900 + 0.534672i −0.947828 0.318782i \(-0.896726\pi\)
−0.521170 + 0.853453i \(0.674504\pi\)
\(788\) −4.59038e11 3.85179e11i −0.0424112 0.0355872i
\(789\) 0 0
\(790\) 1.33974e12 + 4.87626e11i 0.122377 + 0.0445415i
\(791\) −2.42300e11 4.19676e11i −0.0220069 0.0381172i
\(792\) 0 0
\(793\) −6.04402e11 + 1.04685e12i −0.0542746 + 0.0940063i
\(794\) −6.35646e12 + 5.33370e12i −0.567575 + 0.476252i
\(795\) 0 0
\(796\) 1.24458e12 7.05836e12i 0.109879 0.623153i
\(797\) −3.65633e11 + 2.07361e12i −0.0320984 + 0.182039i −0.996642 0.0818855i \(-0.973906\pi\)
0.964543 + 0.263924i \(0.0850169\pi\)
\(798\) 0 0
\(799\) −7.00963e12 + 5.88178e12i −0.608464 + 0.510562i
\(800\) −2.46787e12 + 4.27448e12i −0.213019 + 0.368960i
\(801\) 0 0
\(802\) −1.66550e10 2.88473e10i −0.00142154 0.00246218i
\(803\) −8.96711e12 3.26376e12i −0.761084 0.277012i
\(804\) 0 0
\(805\) 7.18016e11 + 6.02487e11i 0.0602632 + 0.0505669i
\(806\) −1.38848e11 + 5.05364e10i −0.0115886 + 0.00421791i
\(807\) 0 0
\(808\) −2.74898e12 1.55902e13i −0.226892 1.28677i
\(809\) −2.25794e12 −0.185329 −0.0926647 0.995697i \(-0.529538\pi\)
−0.0926647 + 0.995697i \(0.529538\pi\)
\(810\) 0 0
\(811\) 4.94641e12 0.401510 0.200755 0.979642i \(-0.435661\pi\)
0.200755 + 0.979642i \(0.435661\pi\)
\(812\) 7.44287e10 + 4.22106e11i 0.00600812 + 0.0340737i
\(813\) 0 0
\(814\) −1.33309e13 + 4.85205e12i −1.06427 + 0.387361i
\(815\) −5.42575e12 4.55274e12i −0.430775 0.361463i
\(816\) 0 0
\(817\) −1.47196e12 5.35751e11i −0.115584 0.0420691i
\(818\) −8.82454e11 1.52846e12i −0.0689132 0.119361i
\(819\) 0 0
\(820\) −5.15602e12 + 8.93050e12i −0.398247 + 0.689784i
\(821\) 6.83054e12 5.73150e12i 0.524699 0.440275i −0.341567 0.939857i \(-0.610958\pi\)
0.866266 + 0.499582i \(0.166513\pi\)
\(822\) 0 0
\(823\) −7.78590e11 + 4.41560e12i −0.0591575 + 0.335499i −0.999994 0.00336111i \(-0.998930\pi\)
0.940837 + 0.338860i \(0.110041\pi\)
\(824\) −4.38878e12 + 2.48900e13i −0.331644 + 1.88084i
\(825\) 0 0
\(826\) 1.22290e12 1.02614e12i 0.0914075 0.0767000i
\(827\) 1.05330e13 1.82437e13i 0.783028 1.35624i −0.147143 0.989115i \(-0.547008\pi\)
0.930170 0.367128i \(-0.119659\pi\)
\(828\) 0 0
\(829\) 4.76625e12 + 8.25539e12i 0.350495 + 0.607075i 0.986336 0.164745i \(-0.0526802\pi\)
−0.635842 + 0.771820i \(0.719347\pi\)
\(830\) 9.14266e12 + 3.32765e12i 0.668684 + 0.243381i
\(831\) 0 0
\(832\) 6.74933e11 + 5.66336e11i 0.0488321 + 0.0409750i
\(833\) −9.85928e12 + 3.58849e12i −0.709484 + 0.258231i
\(834\) 0 0
\(835\) 8.79156e11 + 4.98594e12i 0.0625860 + 0.354943i
\(836\) −7.21509e12 −0.510874
\(837\) 0 0
\(838\) 8.14698e12 0.570688
\(839\) −2.05496e12 1.16542e13i −0.143177 0.811998i −0.968813 0.247794i \(-0.920294\pi\)
0.825636 0.564204i \(-0.190817\pi\)
\(840\) 0 0
\(841\) 1.25394e13 4.56397e12i 0.864361 0.314602i
\(842\) 1.01167e13 + 8.48892e12i 0.693641 + 0.582034i
\(843\) 0 0
\(844\) 4.74132e12 + 1.72570e12i 0.321631 + 0.117064i
\(845\) 9.48854e12 + 1.64346e13i 0.640242 + 1.10893i
\(846\) 0 0
\(847\) 9.34976e11 1.61943e12i 0.0624202 0.108115i
\(848\) −1.04516e13 + 8.76990e12i −0.694065 + 0.582389i
\(849\) 0 0
\(850\) −1.20373e12 + 6.82668e12i −0.0790940 + 0.448564i
\(851\) 5.51712e11 3.12892e12i 0.0360603 0.204508i
\(852\) 0 0
\(853\) −2.38008e12 + 1.99712e12i −0.153929 + 0.129162i −0.716500 0.697587i \(-0.754257\pi\)
0.562571 + 0.826749i \(0.309812\pi\)
\(854\) 4.05169e12 7.01774e12i 0.260661 0.451478i
\(855\) 0 0
\(856\) 8.43980e12 + 1.46182e13i 0.537279 + 0.930595i
\(857\) −1.00108e13 3.64363e12i −0.633950 0.230739i 0.00499983 0.999988i \(-0.498408\pi\)
−0.638949 + 0.769249i \(0.720631\pi\)
\(858\) 0 0
\(859\) 8.96564e12 + 7.52307e12i 0.561839 + 0.471439i 0.878927 0.476957i \(-0.158260\pi\)
−0.317087 + 0.948396i \(0.602705\pi\)
\(860\) −6.43804e11 + 2.34325e11i −0.0401338 + 0.0146075i
\(861\) 0 0
\(862\) 9.41246e11 + 5.33807e12i 0.0580658 + 0.329308i
\(863\) 3.00625e13 1.84492 0.922459 0.386095i \(-0.126176\pi\)
0.922459 + 0.386095i \(0.126176\pi\)
\(864\) 0 0
\(865\) −1.46116e13 −0.887410
\(866\) 1.37310e12 + 7.78724e12i 0.0829605 + 0.470493i
\(867\) 0 0
\(868\) −4.89289e11 + 1.78087e11i −0.0292568 + 0.0106486i
\(869\) 1.87433e12 + 1.57275e12i 0.111495 + 0.0935556i
\(870\) 0 0
\(871\) 3.89743e11 + 1.41855e11i 0.0229455 + 0.00835146i
\(872\) −1.58843e12 2.75125e12i −0.0930347 0.161141i
\(873\) 0 0
\(874\) −1.53697e12 + 2.66210e12i −0.0890969 + 0.154320i
\(875\) 2.11024e12 1.77070e12i 0.121702 0.102120i
\(876\) 0 0
\(877\) −5.36016e11 + 3.03990e12i −0.0305971 + 0.173525i −0.996277 0.0862107i \(-0.972524\pi\)
0.965680 + 0.259735i \(0.0836353\pi\)
\(878\) −2.03736e12 + 1.15544e13i −0.115702 + 0.656181i
\(879\) 0 0
\(880\) 1.09295e13 9.17095e12i 0.614368 0.515516i
\(881\) 1.03812e13 1.79808e13i 0.580573 1.00558i −0.414838 0.909895i \(-0.636162\pi\)
0.995411 0.0956870i \(-0.0305048\pi\)
\(882\) 0 0
\(883\) −5.36537e12 9.29310e12i −0.297014 0.514443i 0.678438 0.734658i \(-0.262657\pi\)
−0.975451 + 0.220215i \(0.929324\pi\)
\(884\) −3.03544e11 1.10481e11i −0.0167181 0.00608488i
\(885\) 0 0
\(886\) −2.21001e12 1.85442e12i −0.120488 0.101101i
\(887\) −1.66700e13 + 6.06737e12i −0.904229 + 0.329112i −0.751946 0.659225i \(-0.770885\pi\)
−0.152283 + 0.988337i \(0.548662\pi\)
\(888\) 0 0
\(889\) −1.77952e12 1.00922e13i −0.0955533 0.541910i
\(890\) −3.45278e13 −1.84465
\(891\) 0 0
\(892\) 8.64309e12 0.457117
\(893\) −3.87003e12 2.19480e13i −0.203649 1.15495i
\(894\) 0 0
\(895\) −2.38327e13 + 8.67441e12i −1.24157 + 0.451894i
\(896\) −1.09651e12 9.20081e11i −0.0568364 0.0476914i
\(897\) 0 0
\(898\) 4.17294e12 + 1.51883e12i 0.214140 + 0.0779408i
\(899\) −7.06407e11 1.22353e12i −0.0360692 0.0624736i
\(900\) 0 0
\(901\) 1.44198e13 2.49758e13i 0.728950 1.26258i
\(902\) 2.57893e13 2.16398e13i 1.29721 1.08849i
\(903\) 0 0
\(904\) 4.71029e11 2.67134e12i 0.0234579 0.133037i
\(905\) 5.32031e12 3.01730e13i 0.263644 1.49520i
\(906\) 0 0
\(907\) 1.83588e11 1.54048e11i 0.00900764 0.00755830i −0.638273 0.769810i \(-0.720351\pi\)
0.647280 + 0.762252i \(0.275906\pi\)
\(908\) −2.25967e12 + 3.91385e12i −0.110321 + 0.191081i
\(909\) 0 0
\(910\) 2.28180e11 + 3.95220e11i 0.0110304 + 0.0191052i
\(911\) 2.67117e13 + 9.72225e12i 1.28490 + 0.467664i 0.892049 0.451940i \(-0.149268\pi\)
0.392848 + 0.919604i \(0.371490\pi\)
\(912\) 0 0
\(913\) 1.27908e13 + 1.07327e13i 0.609226 + 0.511201i
\(914\) 1.45090e13 5.28085e12i 0.687670 0.250291i
\(915\) 0 0
\(916\) −2.27051e12 1.28767e13i −0.106560 0.604331i
\(917\) 7.03475e12 0.328539
\(918\) 0 0
\(919\) −2.26056e13 −1.04543 −0.522717 0.852506i \(-0.675082\pi\)
−0.522717 + 0.852506i \(0.675082\pi\)
\(920\) 9.11053e11 + 5.16684e12i 0.0419275 + 0.237782i
\(921\) 0 0
\(922\) 2.61920e13 9.53312e12i 1.19366 0.434456i
\(923\) 1.87736e12 + 1.57530e12i 0.0851414 + 0.0714421i
\(924\) 0 0
\(925\) 1.63982e13 + 5.96845e12i 0.736474 + 0.268055i
\(926\) 2.82431e12 + 4.89186e12i 0.126230 + 0.218637i
\(927\) 0 0
\(928\) −2.09178e12 + 3.62307e12i −0.0925870 + 0.160365i
\(929\) −1.24111e13 + 1.04142e13i −0.546689 + 0.458727i −0.873818 0.486253i \(-0.838363\pi\)
0.327129 + 0.944980i \(0.393919\pi\)
\(930\) 0 0
\(931\) 4.43744e12 2.51660e13i 0.193579 1.09784i
\(932\) 1.03570e12 5.87376e12i 0.0449639 0.255003i
\(933\) 0 0
\(934\) 2.73463e13 2.29463e13i 1.17581 0.986624i
\(935\) −1.50792e13 + 2.61180e13i −0.645248 + 1.11760i
\(936\) 0 0
\(937\) 1.77481e13 + 3.07406e13i 0.752182 + 1.30282i 0.946763 + 0.321931i \(0.104332\pi\)
−0.194581 + 0.980886i \(0.562335\pi\)
\(938\) −2.61270e12 9.50944e11i −0.110199 0.0401090i
\(939\) 0 0
\(940\) −7.46715e12 6.26568e12i −0.311946 0.261754i
\(941\) 1.03843e12 3.77957e11i 0.0431741 0.0157141i −0.320343 0.947302i \(-0.603798\pi\)
0.363517 + 0.931588i \(0.381576\pi\)
\(942\) 0 0
\(943\) 1.30925e12 + 7.42514e12i 0.0539164 + 0.305775i
\(944\) 5.44219e12 0.223049
\(945\) 0 0
\(946\) 2.23670e12 0.0908025
\(947\) 3.52640e12 + 1.99992e13i 0.142481 + 0.808049i 0.969355 + 0.245662i \(0.0790055\pi\)
−0.826875 + 0.562386i \(0.809883\pi\)
\(948\) 0 0
\(949\) 9.77798e11 3.55889e11i 0.0391337 0.0142435i
\(950\) −1.29335e13 1.08525e13i −0.515180 0.432287i
\(951\) 0 0
\(952\) 7.94063e12 + 2.89015e12i 0.313321 + 0.114039i
\(953\) −1.46728e13 2.54140e13i −0.576227 0.998055i −0.995907 0.0903827i \(-0.971191\pi\)
0.419680 0.907672i \(-0.362142\pi\)
\(954\) 0 0
\(955\) 2.21924e12 3.84384e12i 0.0863355 0.149537i
\(956\) 4.18294e12 3.50990e12i 0.161965 0.135905i
\(957\) 0 0
\(958\) 4.68126e12 2.65487e13i 0.179563 1.01836i
\(959\) 2.25684e12 1.27992e13i 0.0861621 0.488649i
\(960\) 0 0
\(961\) −1.89392e13 + 1.58918e13i −0.716317 + 0.601062i
\(962\) 7.73465e11 1.33968e12i 0.0291174 0.0504328i
\(963\) 0 0
\(964\) −6.85771e12 1.18779e13i −0.255760 0.442989i
\(965\) −3.23995e13 1.17925e13i −1.20272 0.437755i
\(966\) 0 0
\(967\) 2.73518e13 + 2.29509e13i 1.00593 + 0.844074i 0.987795 0.155761i \(-0.0497831\pi\)
0.0181337 + 0.999836i \(0.494228\pi\)
\(968\) 9.83580e12 3.57994e12i 0.360057 0.131050i
\(969\) 0 0
\(970\) 8.10298e12 + 4.59543e13i 0.293881 + 1.66668i
\(971\) −3.73550e13 −1.34853 −0.674267 0.738488i \(-0.735540\pi\)
−0.674267 + 0.738488i \(0.735540\pi\)
\(972\) 0 0
\(973\) 1.36209e13 0.487189
\(974\) −1.39418e12 7.90680e12i −0.0496368 0.281504i
\(975\) 0 0
\(976\) 2.59590e13 9.44829e12i 0.915721 0.333295i
\(977\) −1.16521e13 9.77725e12i −0.409145 0.343314i 0.414870 0.909880i \(-0.363827\pi\)
−0.824016 + 0.566567i \(0.808271\pi\)
\(978\) 0 0
\(979\) −5.56816e13 2.02664e13i −1.93727 0.705107i
\(980\) −5.58842e12 9.67943e12i −0.193540 0.335222i
\(981\) 0 0
\(982\) −6.29849e12 + 1.09093e13i −0.216140 + 0.374365i
\(983\) −7.23845e12 + 6.07378e12i −0.247261 + 0.207476i −0.757992 0.652264i \(-0.773819\pi\)
0.510731 + 0.859741i \(0.329375\pi\)
\(984\) 0 0
\(985\) 1.05934e12 6.00781e12i 0.0358568 0.203354i
\(986\) −1.02029e12 + 5.78632e12i −0.0343776 + 0.194965i
\(987\) 0 0
\(988\) 6.02688e11 5.05715e11i 0.0201227 0.0168850i
\(989\) −2.50464e11 + 4.33817e11i −0.00832459 + 0.0144186i
\(990\) 0 0
\(991\) −1.17808e13 2.04049e13i −0.388009 0.672051i 0.604173 0.796853i \(-0.293504\pi\)
−0.992182 + 0.124802i \(0.960170\pi\)
\(992\) −4.77575e12 1.73823e12i −0.156581 0.0569908i
\(993\) 0 0
\(994\) −1.25852e13 1.05602e13i −0.408903 0.343110i
\(995\) 6.85658e13 2.49559e13i 2.21771 0.807179i
\(996\) 0 0
\(997\) 5.44626e12 + 3.08873e13i 0.174570 + 0.990037i 0.938639 + 0.344902i \(0.112088\pi\)
−0.764069 + 0.645135i \(0.776801\pi\)
\(998\) −9.13979e12 −0.291641
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.10.18 156
3.2 odd 2 27.10.e.a.13.9 156
27.2 odd 18 27.10.e.a.25.9 yes 156
27.25 even 9 inner 81.10.e.a.73.18 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.13.9 156 3.2 odd 2
27.10.e.a.25.9 yes 156 27.2 odd 18
81.10.e.a.10.18 156 1.1 even 1 trivial
81.10.e.a.73.18 156 27.25 even 9 inner