Properties

Label 81.10.e.a.10.10
Level $81$
Weight $10$
Character 81.10
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 10.10
Character \(\chi\) \(=\) 81.10
Dual form 81.10.e.a.73.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.61607 - 14.8364i) q^{2} +(267.846 - 97.4881i) q^{4} +(-1174.80 - 985.775i) q^{5} +(-3599.21 - 1310.01i) q^{7} +(-6003.80 - 10398.9i) q^{8} +(-11552.0 + 20008.7i) q^{10} +(-49925.5 + 41892.5i) q^{11} +(2521.95 - 14302.7i) q^{13} +(-10020.1 + 56826.6i) q^{14} +(-26780.9 + 22471.8i) q^{16} +(163941. - 283953. i) q^{17} +(295448. + 511730. i) q^{19} +(-410767. - 149507. i) q^{20} +(752143. + 631123. i) q^{22} +(-1.32416e6 + 481955. i) q^{23} +(69247.9 + 392725. i) q^{25} -218798. q^{26} -1.09175e6 q^{28} +(364850. + 2.06917e6i) q^{29} +(3.05548e6 - 1.11211e6i) q^{31} +(-4.30610e6 - 3.61324e6i) q^{32} +(-4.64174e6 - 1.68945e6i) q^{34} +(2.93699e6 + 5.08701e6i) q^{35} +(-2.70434e6 + 4.68405e6i) q^{37} +(6.81935e6 - 5.72211e6i) q^{38} +(-3.19769e6 + 1.81350e7i) q^{40} +(1.42849e6 - 8.10140e6i) q^{41} +(-2.46362e7 + 2.06722e7i) q^{43} +(-9.28834e6 + 1.60879e7i) q^{44} +(1.06146e7 + 1.83850e7i) q^{46} +(4.90568e7 + 1.78552e7i) q^{47} +(-1.96744e7 - 1.65088e7i) q^{49} +(5.64548e6 - 2.05479e6i) q^{50} +(-718846. - 4.07678e6i) q^{52} +7.16704e7 q^{53} +9.99490e7 q^{55} +(7.98635e6 + 4.52928e7i) q^{56} +(2.97447e7 - 1.08262e7i) q^{58} +(7.22363e7 + 6.06134e7i) q^{59} +(1.25830e8 + 4.57984e7i) q^{61} +(-2.44930e7 - 4.24232e7i) q^{62} +(-5.12924e7 + 8.88411e7i) q^{64} +(-1.70620e7 + 1.43167e7i) q^{65} +(-4.82463e7 + 2.73619e8i) q^{67} +(1.62288e7 - 9.20381e7i) q^{68} +(6.77898e7 - 5.68824e7i) q^{70} +(2.00213e6 - 3.46779e6i) q^{71} +(-2.07301e8 - 3.59056e8i) q^{73} +(7.65693e7 + 2.78690e7i) q^{74} +(1.29022e8 + 1.08262e8i) q^{76} +(2.34572e8 - 8.53771e7i) q^{77} +(7.11807e7 + 4.03686e8i) q^{79} +5.36144e7 q^{80} -1.23933e8 q^{82} +(4.40096e7 + 2.49591e8i) q^{83} +(-4.72512e8 + 1.71980e8i) q^{85} +(3.71152e8 + 3.11433e8i) q^{86} +(7.35378e8 + 2.67656e8i) q^{88} +(1.50841e8 + 2.61263e8i) q^{89} +(-2.78136e7 + 4.81746e7i) q^{91} +(-3.07687e8 + 2.58180e8i) q^{92} +(1.36572e8 - 7.74540e8i) q^{94} +(1.57359e8 - 8.92426e8i) q^{95} +(-1.07337e9 + 9.00663e8i) q^{97} +(-1.93463e8 + 3.35087e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.61607 14.8364i −0.115615 0.655684i −0.986444 0.164099i \(-0.947528\pi\)
0.870829 0.491586i \(-0.163583\pi\)
\(3\) 0 0
\(4\) 267.846 97.4881i 0.523137 0.190406i
\(5\) −1174.80 985.775i −0.840619 0.705363i 0.117084 0.993122i \(-0.462645\pi\)
−0.957703 + 0.287759i \(0.907090\pi\)
\(6\) 0 0
\(7\) −3599.21 1310.01i −0.566587 0.206221i 0.0428141 0.999083i \(-0.486368\pi\)
−0.609401 + 0.792862i \(0.708590\pi\)
\(8\) −6003.80 10398.9i −0.518229 0.897598i
\(9\) 0 0
\(10\) −11552.0 + 20008.7i −0.365308 + 0.632731i
\(11\) −49925.5 + 41892.5i −1.02815 + 0.862718i −0.990629 0.136578i \(-0.956389\pi\)
−0.0375177 + 0.999296i \(0.511945\pi\)
\(12\) 0 0
\(13\) 2521.95 14302.7i 0.0244901 0.138890i −0.970111 0.242661i \(-0.921980\pi\)
0.994601 + 0.103771i \(0.0330908\pi\)
\(14\) −10020.1 + 56826.6i −0.0697098 + 0.395344i
\(15\) 0 0
\(16\) −26780.9 + 22471.8i −0.102161 + 0.0857233i
\(17\) 163941. 283953.i 0.476065 0.824569i −0.523559 0.851989i \(-0.675396\pi\)
0.999624 + 0.0274205i \(0.00872932\pi\)
\(18\) 0 0
\(19\) 295448. + 511730.i 0.520103 + 0.900845i 0.999727 + 0.0233707i \(0.00743979\pi\)
−0.479624 + 0.877474i \(0.659227\pi\)
\(20\) −410767. 149507.i −0.574065 0.208942i
\(21\) 0 0
\(22\) 752143. + 631123.i 0.684540 + 0.574397i
\(23\) −1.32416e6 + 481955.i −0.986655 + 0.359113i −0.784424 0.620225i \(-0.787041\pi\)
−0.202231 + 0.979338i \(0.564819\pi\)
\(24\) 0 0
\(25\) 69247.9 + 392725.i 0.0354550 + 0.201075i
\(26\) −218798. −0.0938997
\(27\) 0 0
\(28\) −1.09175e6 −0.335668
\(29\) 364850. + 2.06917e6i 0.0957908 + 0.543257i 0.994502 + 0.104716i \(0.0333934\pi\)
−0.898711 + 0.438541i \(0.855496\pi\)
\(30\) 0 0
\(31\) 3.05548e6 1.11211e6i 0.594227 0.216281i −0.0273605 0.999626i \(-0.508710\pi\)
0.621588 + 0.783345i \(0.286488\pi\)
\(32\) −4.30610e6 3.61324e6i −0.725954 0.609147i
\(33\) 0 0
\(34\) −4.64174e6 1.68945e6i −0.595697 0.216816i
\(35\) 2.93699e6 + 5.08701e6i 0.330823 + 0.573002i
\(36\) 0 0
\(37\) −2.70434e6 + 4.68405e6i −0.237221 + 0.410878i −0.959916 0.280289i \(-0.909570\pi\)
0.722695 + 0.691167i \(0.242903\pi\)
\(38\) 6.81935e6 5.72211e6i 0.530538 0.445175i
\(39\) 0 0
\(40\) −3.19769e6 + 1.81350e7i −0.197500 + 1.12008i
\(41\) 1.42849e6 8.10140e6i 0.0789499 0.447747i −0.919549 0.392975i \(-0.871446\pi\)
0.998499 0.0547716i \(-0.0174431\pi\)
\(42\) 0 0
\(43\) −2.46362e7 + 2.06722e7i −1.09892 + 0.922101i −0.997352 0.0727277i \(-0.976830\pi\)
−0.101566 + 0.994829i \(0.532385\pi\)
\(44\) −9.28834e6 + 1.60879e7i −0.373595 + 0.647086i
\(45\) 0 0
\(46\) 1.06146e7 + 1.83850e7i 0.349537 + 0.605416i
\(47\) 4.90568e7 + 1.78552e7i 1.46642 + 0.533734i 0.947127 0.320860i \(-0.103972\pi\)
0.519296 + 0.854594i \(0.326194\pi\)
\(48\) 0 0
\(49\) −1.96744e7 1.65088e7i −0.487551 0.409104i
\(50\) 5.64548e6 2.05479e6i 0.127743 0.0464945i
\(51\) 0 0
\(52\) −718846. 4.07678e6i −0.0136339 0.0773218i
\(53\) 7.16704e7 1.24767 0.623833 0.781558i \(-0.285574\pi\)
0.623833 + 0.781558i \(0.285574\pi\)
\(54\) 0 0
\(55\) 9.99490e7 1.47281
\(56\) 7.98635e6 + 4.52928e7i 0.108518 + 0.615437i
\(57\) 0 0
\(58\) 2.97447e7 1.08262e7i 0.345130 0.125617i
\(59\) 7.22363e7 + 6.06134e7i 0.776106 + 0.651230i 0.942265 0.334869i \(-0.108692\pi\)
−0.166159 + 0.986099i \(0.553136\pi\)
\(60\) 0 0
\(61\) 1.25830e8 + 4.57984e7i 1.16359 + 0.423512i 0.850379 0.526171i \(-0.176373\pi\)
0.313211 + 0.949683i \(0.398595\pi\)
\(62\) −2.44930e7 4.24232e7i −0.210514 0.364620i
\(63\) 0 0
\(64\) −5.12924e7 + 8.88411e7i −0.382158 + 0.661918i
\(65\) −1.70620e7 + 1.43167e7i −0.118555 + 0.0994795i
\(66\) 0 0
\(67\) −4.82463e7 + 2.73619e8i −0.292501 + 1.65886i 0.384687 + 0.923047i \(0.374309\pi\)
−0.677188 + 0.735810i \(0.736802\pi\)
\(68\) 1.62288e7 9.20381e7i 0.0920442 0.522009i
\(69\) 0 0
\(70\) 6.77898e7 5.68824e7i 0.337461 0.283163i
\(71\) 2.00213e6 3.46779e6i 0.00935040 0.0161954i −0.861312 0.508076i \(-0.830357\pi\)
0.870663 + 0.491880i \(0.163690\pi\)
\(72\) 0 0
\(73\) −2.07301e8 3.59056e8i −0.854375 1.47982i −0.877223 0.480083i \(-0.840607\pi\)
0.0228478 0.999739i \(-0.492727\pi\)
\(74\) 7.65693e7 + 2.78690e7i 0.296833 + 0.108038i
\(75\) 0 0
\(76\) 1.29022e8 + 1.08262e8i 0.443612 + 0.372235i
\(77\) 2.34572e8 8.53771e7i 0.760444 0.276779i
\(78\) 0 0
\(79\) 7.11807e7 + 4.03686e8i 0.205608 + 1.16606i 0.896480 + 0.443085i \(0.146116\pi\)
−0.690871 + 0.722978i \(0.742773\pi\)
\(80\) 5.36144e7 0.146344
\(81\) 0 0
\(82\) −1.23933e8 −0.302708
\(83\) 4.40096e7 + 2.49591e8i 0.101788 + 0.577268i 0.992455 + 0.122611i \(0.0391269\pi\)
−0.890667 + 0.454657i \(0.849762\pi\)
\(84\) 0 0
\(85\) −4.72512e8 + 1.71980e8i −0.981810 + 0.357350i
\(86\) 3.71152e8 + 3.11433e8i 0.731659 + 0.613934i
\(87\) 0 0
\(88\) 7.35378e8 + 2.67656e8i 1.30719 + 0.475778i
\(89\) 1.50841e8 + 2.61263e8i 0.254837 + 0.441391i 0.964851 0.262796i \(-0.0846447\pi\)
−0.710014 + 0.704188i \(0.751311\pi\)
\(90\) 0 0
\(91\) −2.78136e7 + 4.81746e7i −0.0425178 + 0.0736431i
\(92\) −3.07687e8 + 2.58180e8i −0.447779 + 0.375731i
\(93\) 0 0
\(94\) 1.36572e8 7.74540e8i 0.180421 1.02322i
\(95\) 1.57359e8 8.92426e8i 0.198214 1.12413i
\(96\) 0 0
\(97\) −1.07337e9 + 9.00663e8i −1.23105 + 1.03297i −0.232880 + 0.972505i \(0.574815\pi\)
−0.998170 + 0.0604687i \(0.980740\pi\)
\(98\) −1.93463e8 + 3.35087e8i −0.211875 + 0.366978i
\(99\) 0 0
\(100\) 5.68338e7 + 9.84390e7i 0.0568338 + 0.0984390i
\(101\) 4.04519e8 + 1.47233e8i 0.386806 + 0.140786i 0.528101 0.849182i \(-0.322904\pi\)
−0.141295 + 0.989968i \(0.545127\pi\)
\(102\) 0 0
\(103\) −4.52437e8 3.79640e8i −0.396087 0.332357i 0.422892 0.906180i \(-0.361015\pi\)
−0.818979 + 0.573824i \(0.805459\pi\)
\(104\) −1.63873e8 + 5.96450e7i −0.137359 + 0.0499947i
\(105\) 0 0
\(106\) −1.87494e8 1.06333e9i −0.144249 0.818075i
\(107\) −2.37636e9 −1.75261 −0.876303 0.481760i \(-0.839998\pi\)
−0.876303 + 0.481760i \(0.839998\pi\)
\(108\) 0 0
\(109\) −5.32469e8 −0.361306 −0.180653 0.983547i \(-0.557821\pi\)
−0.180653 + 0.983547i \(0.557821\pi\)
\(110\) −2.61473e8 1.48289e9i −0.170279 0.965698i
\(111\) 0 0
\(112\) 1.25828e8 4.57978e7i 0.0755609 0.0275019i
\(113\) −2.22606e9 1.86789e9i −1.28435 1.07770i −0.992628 0.121197i \(-0.961327\pi\)
−0.291724 0.956503i \(-0.594229\pi\)
\(114\) 0 0
\(115\) 2.03072e9 + 7.39123e8i 1.08271 + 0.394073i
\(116\) 2.99443e8 + 5.18651e8i 0.153551 + 0.265959i
\(117\) 0 0
\(118\) 7.10313e8 1.23030e9i 0.337272 0.584173i
\(119\) −9.62038e8 + 8.07245e8i −0.439775 + 0.369015i
\(120\) 0 0
\(121\) 3.28123e8 1.86088e9i 0.139156 0.789194i
\(122\) 3.50306e8 1.98668e9i 0.143162 0.811912i
\(123\) 0 0
\(124\) 7.09983e8 5.95747e8i 0.269681 0.226289i
\(125\) −1.19186e9 + 2.06437e9i −0.436648 + 0.756297i
\(126\) 0 0
\(127\) −1.13749e9 1.97019e9i −0.387999 0.672034i 0.604181 0.796847i \(-0.293500\pi\)
−0.992180 + 0.124813i \(0.960167\pi\)
\(128\) −1.25222e9 4.55771e8i −0.412322 0.150073i
\(129\) 0 0
\(130\) 2.57045e8 + 2.15686e8i 0.0789339 + 0.0662334i
\(131\) 7.74815e8 2.82009e8i 0.229867 0.0836648i −0.224519 0.974470i \(-0.572081\pi\)
0.454386 + 0.890805i \(0.349859\pi\)
\(132\) 0 0
\(133\) −3.93009e8 2.22886e9i −0.108911 0.617663i
\(134\) 4.18574e9 1.12150
\(135\) 0 0
\(136\) −3.93707e9 −0.986842
\(137\) 1.02609e8 + 5.81925e8i 0.0248853 + 0.141132i 0.994719 0.102636i \(-0.0327277\pi\)
−0.969834 + 0.243768i \(0.921617\pi\)
\(138\) 0 0
\(139\) 6.42326e9 2.33788e9i 1.45945 0.531196i 0.514235 0.857649i \(-0.328076\pi\)
0.945213 + 0.326453i \(0.105854\pi\)
\(140\) 1.28258e9 + 1.07622e9i 0.282169 + 0.236768i
\(141\) 0 0
\(142\) −5.66874e7 2.06325e7i −0.0117001 0.00425849i
\(143\) 4.73265e8 + 8.19719e8i 0.0946438 + 0.163928i
\(144\) 0 0
\(145\) 1.61111e9 2.79052e9i 0.302670 0.524239i
\(146\) −4.78480e9 + 4.01493e9i −0.871518 + 0.731290i
\(147\) 0 0
\(148\) −2.67708e8 + 1.51824e9i −0.0458652 + 0.260114i
\(149\) 1.46402e8 8.30289e8i 0.0243338 0.138004i −0.970221 0.242223i \(-0.922123\pi\)
0.994554 + 0.104219i \(0.0332344\pi\)
\(150\) 0 0
\(151\) −6.44433e9 + 5.40743e9i −1.00875 + 0.846438i −0.988172 0.153351i \(-0.950994\pi\)
−0.0205733 + 0.999788i \(0.506549\pi\)
\(152\) 3.54762e9 6.14466e9i 0.539065 0.933687i
\(153\) 0 0
\(154\) −1.88035e9 3.25686e9i −0.269398 0.466612i
\(155\) −4.68587e9 1.70552e9i −0.652075 0.237336i
\(156\) 0 0
\(157\) −7.01092e9 5.88286e9i −0.920930 0.772752i 0.0532367 0.998582i \(-0.483046\pi\)
−0.974167 + 0.225830i \(0.927491\pi\)
\(158\) 5.80305e9 2.11214e9i 0.740798 0.269628i
\(159\) 0 0
\(160\) 1.49696e9 + 8.48968e9i 0.180580 + 1.02412i
\(161\) 5.39730e9 0.633082
\(162\) 0 0
\(163\) −6.76854e9 −0.751019 −0.375509 0.926819i \(-0.622532\pi\)
−0.375509 + 0.926819i \(0.622532\pi\)
\(164\) −4.07173e8 2.30919e9i −0.0439523 0.249266i
\(165\) 0 0
\(166\) 3.58791e9 1.30589e9i 0.366738 0.133482i
\(167\) −8.24893e9 6.92167e9i −0.820679 0.688632i 0.132452 0.991189i \(-0.457715\pi\)
−0.953131 + 0.302558i \(0.902159\pi\)
\(168\) 0 0
\(169\) 9.76676e9 + 3.55481e9i 0.921002 + 0.335217i
\(170\) 3.78770e9 + 6.56048e9i 0.347820 + 0.602442i
\(171\) 0 0
\(172\) −4.58341e9 + 7.93870e9i −0.399311 + 0.691626i
\(173\) −1.15695e10 + 9.70793e9i −0.981987 + 0.823985i −0.984388 0.176012i \(-0.943680\pi\)
0.00240117 + 0.999997i \(0.499236\pi\)
\(174\) 0 0
\(175\) 2.65234e8 1.50421e9i 0.0213775 0.121238i
\(176\) 3.95649e8 2.24383e9i 0.0310815 0.176272i
\(177\) 0 0
\(178\) 3.48161e9 2.92142e9i 0.259950 0.218124i
\(179\) −8.39539e9 + 1.45412e10i −0.611227 + 1.05868i 0.379807 + 0.925066i \(0.375990\pi\)
−0.991034 + 0.133610i \(0.957343\pi\)
\(180\) 0 0
\(181\) 4.12115e9 + 7.13805e9i 0.285407 + 0.494340i 0.972708 0.232033i \(-0.0745378\pi\)
−0.687301 + 0.726373i \(0.741204\pi\)
\(182\) 7.87502e8 + 2.86627e8i 0.0532023 + 0.0193641i
\(183\) 0 0
\(184\) 1.29618e10 + 1.08762e10i 0.833652 + 0.699517i
\(185\) 7.79447e9 2.83695e9i 0.489231 0.178065i
\(186\) 0 0
\(187\) 3.71069e9 + 2.10444e10i 0.221905 + 1.25849i
\(188\) 1.48804e10 0.868767
\(189\) 0 0
\(190\) −1.36521e10 −0.759990
\(191\) −3.43955e9 1.95067e10i −0.187005 1.06056i −0.923353 0.383953i \(-0.874563\pi\)
0.736348 0.676603i \(-0.236549\pi\)
\(192\) 0 0
\(193\) 3.27230e10 1.19102e10i 1.69764 0.617889i 0.702084 0.712094i \(-0.252253\pi\)
0.995553 + 0.0942050i \(0.0300309\pi\)
\(194\) 1.61706e10 + 1.35688e10i 0.819633 + 0.687754i
\(195\) 0 0
\(196\) −6.87914e9 2.50380e9i −0.332952 0.121185i
\(197\) 1.37017e10 + 2.37321e10i 0.648153 + 1.12263i 0.983564 + 0.180562i \(0.0577917\pi\)
−0.335410 + 0.942072i \(0.608875\pi\)
\(198\) 0 0
\(199\) −1.38198e10 + 2.39367e10i −0.624690 + 1.08199i 0.363911 + 0.931434i \(0.381441\pi\)
−0.988601 + 0.150560i \(0.951892\pi\)
\(200\) 3.66815e9 3.07794e9i 0.162111 0.136027i
\(201\) 0 0
\(202\) 1.12616e9 6.38680e9i 0.0475905 0.269899i
\(203\) 1.39745e9 7.92534e9i 0.0577570 0.327556i
\(204\) 0 0
\(205\) −9.66435e9 + 8.10935e9i −0.382191 + 0.320696i
\(206\) −4.44890e9 + 7.70572e9i −0.172127 + 0.298134i
\(207\) 0 0
\(208\) 2.53867e8 + 4.39711e8i 0.00940420 + 0.0162886i
\(209\) −3.61880e10 1.31714e10i −1.31192 0.477499i
\(210\) 0 0
\(211\) −1.54480e10 1.29624e10i −0.536539 0.450210i 0.333813 0.942639i \(-0.391664\pi\)
−0.870352 + 0.492430i \(0.836109\pi\)
\(212\) 1.91967e10 6.98701e9i 0.652701 0.237564i
\(213\) 0 0
\(214\) 6.21670e9 + 3.52567e10i 0.202627 + 1.14916i
\(215\) 4.93207e10 1.57419
\(216\) 0 0
\(217\) −1.24542e10 −0.381283
\(218\) 1.39297e9 + 7.89995e9i 0.0417723 + 0.236903i
\(219\) 0 0
\(220\) 2.67710e10 9.74384e9i 0.770481 0.280432i
\(221\) −3.64784e9 3.06091e9i −0.102866 0.0863147i
\(222\) 0 0
\(223\) −2.58516e10 9.40920e9i −0.700027 0.254789i −0.0326045 0.999468i \(-0.510380\pi\)
−0.667422 + 0.744679i \(0.732602\pi\)
\(224\) 1.07652e10 + 1.86458e10i 0.285697 + 0.494841i
\(225\) 0 0
\(226\) −2.18893e10 + 3.79134e10i −0.558141 + 0.966728i
\(227\) −2.29509e9 + 1.92581e9i −0.0573699 + 0.0481391i −0.671022 0.741438i \(-0.734144\pi\)
0.613652 + 0.789577i \(0.289700\pi\)
\(228\) 0 0
\(229\) 1.11920e10 6.34728e10i 0.268935 1.52521i −0.488657 0.872476i \(-0.662513\pi\)
0.757591 0.652729i \(-0.226376\pi\)
\(230\) 5.65345e9 3.20623e10i 0.133210 0.755474i
\(231\) 0 0
\(232\) 1.93266e10 1.62169e10i 0.437985 0.367513i
\(233\) 2.95383e9 5.11618e9i 0.0656573 0.113722i −0.831328 0.555782i \(-0.812419\pi\)
0.896985 + 0.442060i \(0.145752\pi\)
\(234\) 0 0
\(235\) −4.00308e10 6.93353e10i −0.856226 1.48303i
\(236\) 2.52573e10 + 9.19291e9i 0.530009 + 0.192907i
\(237\) 0 0
\(238\) 1.44934e10 + 1.21614e10i 0.292802 + 0.245690i
\(239\) −1.52704e10 + 5.55795e9i −0.302732 + 0.110185i −0.488920 0.872329i \(-0.662609\pi\)
0.186188 + 0.982514i \(0.440387\pi\)
\(240\) 0 0
\(241\) −1.84235e8 1.04485e9i −0.00351800 0.0199515i 0.982998 0.183615i \(-0.0587800\pi\)
−0.986516 + 0.163663i \(0.947669\pi\)
\(242\) −2.84672e10 −0.533550
\(243\) 0 0
\(244\) 3.81679e10 0.689357
\(245\) 6.83957e9 + 3.87891e10i 0.121278 + 0.687801i
\(246\) 0 0
\(247\) 8.06422e9 2.93514e9i 0.137856 0.0501755i
\(248\) −2.99092e10 2.50968e10i −0.502079 0.421294i
\(249\) 0 0
\(250\) 3.37459e10 + 1.22825e10i 0.546375 + 0.198864i
\(251\) 2.74609e9 + 4.75637e9i 0.0436700 + 0.0756387i 0.887034 0.461704i \(-0.152762\pi\)
−0.843364 + 0.537342i \(0.819428\pi\)
\(252\) 0 0
\(253\) 4.59191e10 7.95342e10i 0.704613 1.22043i
\(254\) −2.62549e10 + 2.20305e10i −0.395784 + 0.332102i
\(255\) 0 0
\(256\) −1.26067e10 + 7.14963e10i −0.183452 + 1.04041i
\(257\) 1.21069e10 6.86616e10i 0.173115 0.981782i −0.767183 0.641428i \(-0.778342\pi\)
0.940298 0.340353i \(-0.110547\pi\)
\(258\) 0 0
\(259\) 1.58696e10 1.33162e10i 0.219138 0.183878i
\(260\) −3.17428e9 + 5.49802e9i −0.0430790 + 0.0746151i
\(261\) 0 0
\(262\) −6.21098e9 1.07577e10i −0.0814338 0.141047i
\(263\) −9.92834e10 3.61362e10i −1.27960 0.465738i −0.389303 0.921110i \(-0.627284\pi\)
−0.890301 + 0.455372i \(0.849506\pi\)
\(264\) 0 0
\(265\) −8.41984e10 7.06509e10i −1.04881 0.880058i
\(266\) −3.20403e10 + 1.16617e10i −0.392400 + 0.142822i
\(267\) 0 0
\(268\) 1.37519e10 + 7.79912e10i 0.162839 + 0.923504i
\(269\) −9.78088e10 −1.13892 −0.569459 0.822020i \(-0.692847\pi\)
−0.569459 + 0.822020i \(0.692847\pi\)
\(270\) 0 0
\(271\) −9.08311e10 −1.02299 −0.511496 0.859285i \(-0.670909\pi\)
−0.511496 + 0.859285i \(0.670909\pi\)
\(272\) 1.99048e9 + 1.12886e10i 0.0220494 + 0.125049i
\(273\) 0 0
\(274\) 8.36527e9 3.04471e9i 0.0896607 0.0326338i
\(275\) −1.99094e10 1.67060e10i −0.209924 0.176147i
\(276\) 0 0
\(277\) 8.23031e9 + 2.99559e9i 0.0839957 + 0.0305719i 0.383676 0.923468i \(-0.374658\pi\)
−0.299681 + 0.954040i \(0.596880\pi\)
\(278\) −5.14894e10 8.91823e10i −0.517031 0.895524i
\(279\) 0 0
\(280\) 3.52662e10 6.10828e10i 0.342884 0.593892i
\(281\) −2.49252e10 + 2.09147e10i −0.238485 + 0.200112i −0.754195 0.656651i \(-0.771973\pi\)
0.515710 + 0.856763i \(0.327528\pi\)
\(282\) 0 0
\(283\) −2.92267e10 + 1.65753e11i −0.270858 + 1.53611i 0.480961 + 0.876742i \(0.340288\pi\)
−0.751819 + 0.659370i \(0.770823\pi\)
\(284\) 1.98195e8 1.12402e9i 0.00180784 0.0102528i
\(285\) 0 0
\(286\) 1.09236e10 9.16601e9i 0.0965427 0.0810089i
\(287\) −1.57543e10 + 2.72873e10i −0.137067 + 0.237406i
\(288\) 0 0
\(289\) 5.54090e9 + 9.59712e9i 0.0467240 + 0.0809284i
\(290\) −4.56162e10 1.66029e10i −0.378729 0.137846i
\(291\) 0 0
\(292\) −9.05285e10 7.59624e10i −0.728723 0.611471i
\(293\) 9.93962e9 3.61772e9i 0.0787890 0.0286768i −0.302325 0.953205i \(-0.597763\pi\)
0.381114 + 0.924528i \(0.375541\pi\)
\(294\) 0 0
\(295\) −2.51120e10 1.42417e11i −0.193056 1.09487i
\(296\) 6.49452e10 0.491739
\(297\) 0 0
\(298\) −1.27015e10 −0.0933004
\(299\) 3.55378e9 + 2.01545e10i 0.0257141 + 0.145832i
\(300\) 0 0
\(301\) 1.15751e11 4.21301e10i 0.812788 0.295831i
\(302\) 9.70859e10 + 8.14647e10i 0.671622 + 0.563558i
\(303\) 0 0
\(304\) −1.94119e10 7.06534e9i −0.130358 0.0474463i
\(305\) −1.02678e11 1.77844e11i −0.679406 1.17677i
\(306\) 0 0
\(307\) 5.06184e10 8.76736e10i 0.325226 0.563309i −0.656332 0.754472i \(-0.727893\pi\)
0.981558 + 0.191164i \(0.0612262\pi\)
\(308\) 5.45059e10 4.57359e10i 0.345116 0.289587i
\(309\) 0 0
\(310\) −1.30453e10 + 7.39834e10i −0.0802279 + 0.454995i
\(311\) −2.98438e10 + 1.69253e11i −0.180898 + 1.02592i 0.750216 + 0.661192i \(0.229949\pi\)
−0.931114 + 0.364729i \(0.881162\pi\)
\(312\) 0 0
\(313\) 1.94522e10 1.63223e10i 0.114556 0.0961240i −0.583710 0.811962i \(-0.698400\pi\)
0.698266 + 0.715838i \(0.253955\pi\)
\(314\) −6.89397e10 + 1.19407e11i −0.400208 + 0.693181i
\(315\) 0 0
\(316\) 5.84201e10 + 1.01187e11i 0.329587 + 0.570862i
\(317\) 1.91039e11 + 6.95326e10i 1.06257 + 0.386742i 0.813392 0.581717i \(-0.197619\pi\)
0.249174 + 0.968459i \(0.419841\pi\)
\(318\) 0 0
\(319\) −1.04898e11 8.80198e10i −0.567164 0.475907i
\(320\) 1.47836e11 5.38078e10i 0.788142 0.286860i
\(321\) 0 0
\(322\) −1.41197e10 8.00767e10i −0.0731937 0.415102i
\(323\) 1.93743e11 0.990412
\(324\) 0 0
\(325\) 5.79165e9 0.0287957
\(326\) 1.77069e10 + 1.00421e11i 0.0868289 + 0.492431i
\(327\) 0 0
\(328\) −9.28219e10 + 3.37844e10i −0.442811 + 0.161170i
\(329\) −1.53176e11 1.28530e11i −0.720788 0.604813i
\(330\) 0 0
\(331\) 6.41952e10 + 2.33651e10i 0.293952 + 0.106990i 0.484787 0.874632i \(-0.338897\pi\)
−0.190835 + 0.981622i \(0.561119\pi\)
\(332\) 3.61200e10 + 6.25616e10i 0.163165 + 0.282609i
\(333\) 0 0
\(334\) −8.11133e10 + 1.40492e11i −0.356642 + 0.617723i
\(335\) 3.26406e11 2.73887e11i 1.41598 1.18815i
\(336\) 0 0
\(337\) −1.18506e10 + 6.72081e10i −0.0500502 + 0.283849i −0.999553 0.0299110i \(-0.990478\pi\)
0.949502 + 0.313760i \(0.101589\pi\)
\(338\) 2.71903e10 1.54204e11i 0.113315 0.642643i
\(339\) 0 0
\(340\) −1.09794e11 + 9.21285e10i −0.445580 + 0.373886i
\(341\) −1.05958e11 + 1.83524e11i −0.424363 + 0.735019i
\(342\) 0 0
\(343\) 1.26467e11 + 2.19047e11i 0.493349 + 0.854505i
\(344\) 3.62879e11 + 1.32077e11i 1.39717 + 0.508527i
\(345\) 0 0
\(346\) 1.74298e11 + 1.46253e11i 0.653806 + 0.548609i
\(347\) −2.76672e11 + 1.00700e11i −1.02443 + 0.372862i −0.798958 0.601387i \(-0.794615\pi\)
−0.225473 + 0.974249i \(0.572393\pi\)
\(348\) 0 0
\(349\) −2.67663e9 1.51799e10i −0.00965769 0.0547715i 0.979598 0.200967i \(-0.0644083\pi\)
−0.989256 + 0.146195i \(0.953297\pi\)
\(350\) −2.30111e10 −0.0819654
\(351\) 0 0
\(352\) 3.66352e11 1.27191
\(353\) 6.06520e9 + 3.43975e10i 0.0207902 + 0.117907i 0.993437 0.114383i \(-0.0364891\pi\)
−0.972646 + 0.232290i \(0.925378\pi\)
\(354\) 0 0
\(355\) −5.77057e9 + 2.10032e9i −0.0192837 + 0.00701870i
\(356\) 6.58722e10 + 5.52733e10i 0.217359 + 0.182386i
\(357\) 0 0
\(358\) 2.37703e11 + 8.65169e10i 0.764824 + 0.278373i
\(359\) −9.36376e10 1.62185e11i −0.297526 0.515330i 0.678043 0.735022i \(-0.262828\pi\)
−0.975569 + 0.219692i \(0.929495\pi\)
\(360\) 0 0
\(361\) −1.32348e10 + 2.29234e10i −0.0410143 + 0.0710388i
\(362\) 9.51220e10 7.98169e10i 0.291134 0.244290i
\(363\) 0 0
\(364\) −2.75333e9 + 1.56149e10i −0.00822056 + 0.0466211i
\(365\) −1.10411e11 + 6.26171e11i −0.325607 + 1.84661i
\(366\) 0 0
\(367\) −3.41267e11 + 2.86357e11i −0.981966 + 0.823967i −0.984385 0.176030i \(-0.943674\pi\)
0.00241890 + 0.999997i \(0.499230\pi\)
\(368\) 2.46318e10 4.26635e10i 0.0700133 0.121267i
\(369\) 0 0
\(370\) −6.24812e10 1.08221e11i −0.173317 0.300194i
\(371\) −2.57957e11 9.38887e10i −0.706911 0.257295i
\(372\) 0 0
\(373\) 9.16897e10 + 7.69368e10i 0.245262 + 0.205799i 0.757129 0.653265i \(-0.226601\pi\)
−0.511867 + 0.859065i \(0.671046\pi\)
\(374\) 3.02516e11 1.10107e11i 0.799515 0.291000i
\(375\) 0 0
\(376\) −1.08853e11 6.17336e11i −0.280863 1.59286i
\(377\) 3.05148e10 0.0777991
\(378\) 0 0
\(379\) 4.48236e11 1.11591 0.557957 0.829870i \(-0.311585\pi\)
0.557957 + 0.829870i \(0.311585\pi\)
\(380\) −4.48529e10 2.54374e11i −0.110348 0.625815i
\(381\) 0 0
\(382\) −2.80412e11 + 1.02062e11i −0.673769 + 0.245232i
\(383\) 3.81724e11 + 3.20305e11i 0.906474 + 0.760622i 0.971445 0.237265i \(-0.0762510\pi\)
−0.0649709 + 0.997887i \(0.520695\pi\)
\(384\) 0 0
\(385\) −3.59738e11 1.30934e11i −0.834474 0.303724i
\(386\) −2.62310e11 4.54335e11i −0.601412 1.04168i
\(387\) 0 0
\(388\) −1.99694e11 + 3.45880e11i −0.447324 + 0.774787i
\(389\) −3.40197e11 + 2.85459e11i −0.753281 + 0.632078i −0.936368 0.351019i \(-0.885835\pi\)
0.183088 + 0.983097i \(0.441391\pi\)
\(390\) 0 0
\(391\) −8.02309e10 + 4.55012e11i −0.173599 + 0.984526i
\(392\) −5.35519e10 + 3.03708e11i −0.114548 + 0.649635i
\(393\) 0 0
\(394\) 3.16256e11 2.65370e11i 0.661158 0.554777i
\(395\) 3.14320e11 5.44419e11i 0.649659 1.12524i
\(396\) 0 0
\(397\) 2.97024e11 + 5.14461e11i 0.600116 + 1.03943i 0.992803 + 0.119759i \(0.0382121\pi\)
−0.392688 + 0.919672i \(0.628455\pi\)
\(398\) 3.91289e11 + 1.42417e11i 0.781670 + 0.284505i
\(399\) 0 0
\(400\) −1.06798e10 8.96139e9i −0.0208589 0.0175027i
\(401\) −5.97210e11 + 2.17367e11i −1.15339 + 0.419801i −0.846733 0.532018i \(-0.821434\pi\)
−0.306661 + 0.951819i \(0.599212\pi\)
\(402\) 0 0
\(403\) −8.20031e9 4.65063e10i −0.0154867 0.0878292i
\(404\) 1.22702e11 0.229159
\(405\) 0 0
\(406\) −1.21240e11 −0.221451
\(407\) −6.12109e10 3.47145e11i −0.110574 0.627098i
\(408\) 0 0
\(409\) −2.15242e11 + 7.83418e10i −0.380341 + 0.138433i −0.525114 0.851032i \(-0.675977\pi\)
0.144773 + 0.989465i \(0.453755\pi\)
\(410\) 1.45597e11 + 1.22170e11i 0.254462 + 0.213519i
\(411\) 0 0
\(412\) −1.58194e11 5.75779e10i −0.270491 0.0984506i
\(413\) −1.80590e11 3.12790e11i −0.305434 0.529028i
\(414\) 0 0
\(415\) 1.94338e11 3.36603e11i 0.321619 0.557060i
\(416\) −6.25388e10 + 5.24763e10i −0.102383 + 0.0859099i
\(417\) 0 0
\(418\) −1.00746e11 + 5.71359e11i −0.161411 + 0.915410i
\(419\) −1.75299e10 + 9.94169e10i −0.0277854 + 0.157579i −0.995544 0.0943023i \(-0.969938\pi\)
0.967758 + 0.251881i \(0.0810491\pi\)
\(420\) 0 0
\(421\) 3.97866e11 3.33849e11i 0.617259 0.517942i −0.279681 0.960093i \(-0.590229\pi\)
0.896941 + 0.442151i \(0.145784\pi\)
\(422\) −1.51903e11 + 2.63104e11i −0.233164 + 0.403851i
\(423\) 0 0
\(424\) −4.30295e11 7.45293e11i −0.646576 1.11990i
\(425\) 1.22868e11 + 4.47203e10i 0.182679 + 0.0664897i
\(426\) 0 0
\(427\) −3.92893e11 3.29676e11i −0.571937 0.479913i
\(428\) −6.36498e11 + 2.31666e11i −0.916854 + 0.333707i
\(429\) 0 0
\(430\) −1.29026e11 7.31744e11i −0.181999 1.03217i
\(431\) 1.02370e12 1.42897 0.714485 0.699651i \(-0.246661\pi\)
0.714485 + 0.699651i \(0.246661\pi\)
\(432\) 0 0
\(433\) 6.59846e10 0.0902084 0.0451042 0.998982i \(-0.485638\pi\)
0.0451042 + 0.998982i \(0.485638\pi\)
\(434\) 3.25810e10 + 1.84776e11i 0.0440819 + 0.250001i
\(435\) 0 0
\(436\) −1.42620e11 + 5.19094e10i −0.189013 + 0.0687950i
\(437\) −6.37851e11 5.35221e11i −0.836667 0.702047i
\(438\) 0 0
\(439\) −1.14039e12 4.15069e11i −1.46543 0.533371i −0.518571 0.855034i \(-0.673536\pi\)
−0.946854 + 0.321663i \(0.895758\pi\)
\(440\) −6.00074e11 1.03936e12i −0.763252 1.32199i
\(441\) 0 0
\(442\) −3.58700e10 + 6.21286e10i −0.0447024 + 0.0774268i
\(443\) 6.92069e11 5.80715e11i 0.853754 0.716384i −0.106859 0.994274i \(-0.534079\pi\)
0.960613 + 0.277890i \(0.0896350\pi\)
\(444\) 0 0
\(445\) 8.03394e10 4.55627e11i 0.0971199 0.550795i
\(446\) −7.19697e10 + 4.08160e11i −0.0861276 + 0.488454i
\(447\) 0 0
\(448\) 3.00995e11 2.52565e11i 0.353027 0.296225i
\(449\) −6.94965e11 + 1.20371e12i −0.806964 + 1.39770i 0.107993 + 0.994152i \(0.465557\pi\)
−0.914957 + 0.403551i \(0.867776\pi\)
\(450\) 0 0
\(451\) 2.68069e11 + 4.64309e11i 0.305107 + 0.528461i
\(452\) −7.78339e11 2.83292e11i −0.877093 0.319236i
\(453\) 0 0
\(454\) 3.45763e10 + 2.90130e10i 0.0381968 + 0.0320510i
\(455\) 8.01648e10 2.91776e10i 0.0876864 0.0319152i
\(456\) 0 0
\(457\) 2.17240e11 + 1.23203e12i 0.232979 + 1.32129i 0.846828 + 0.531867i \(0.178510\pi\)
−0.613848 + 0.789424i \(0.710379\pi\)
\(458\) −9.70990e11 −1.03115
\(459\) 0 0
\(460\) 6.15977e11 0.641438
\(461\) 1.92582e10 + 1.09219e11i 0.0198592 + 0.112627i 0.993126 0.117050i \(-0.0373439\pi\)
−0.973267 + 0.229678i \(0.926233\pi\)
\(462\) 0 0
\(463\) 1.35017e12 4.91420e11i 1.36544 0.496980i 0.447709 0.894180i \(-0.352240\pi\)
0.917732 + 0.397200i \(0.130018\pi\)
\(464\) −5.62691e10 4.72154e10i −0.0563558 0.0472881i
\(465\) 0 0
\(466\) −8.36333e10 3.04400e10i −0.0821566 0.0299026i
\(467\) −1.63841e11 2.83782e11i −0.159404 0.276095i 0.775250 0.631654i \(-0.217624\pi\)
−0.934654 + 0.355559i \(0.884290\pi\)
\(468\) 0 0
\(469\) 5.32091e11 9.21608e11i 0.507818 0.879566i
\(470\) −9.23967e11 + 7.75300e11i −0.873406 + 0.732874i
\(471\) 0 0
\(472\) 1.96620e11 1.11509e12i 0.182343 1.03412i
\(473\) 3.63963e11 2.06414e12i 0.334336 1.89611i
\(474\) 0 0
\(475\) −1.80510e11 + 1.51466e11i −0.162697 + 0.136519i
\(476\) −1.78981e11 + 3.10005e11i −0.159800 + 0.276782i
\(477\) 0 0
\(478\) 1.22409e11 + 2.12018e11i 0.107247 + 0.185758i
\(479\) 1.68338e12 + 6.12699e11i 1.46107 + 0.531786i 0.945660 0.325157i \(-0.105417\pi\)
0.515411 + 0.856943i \(0.327639\pi\)
\(480\) 0 0
\(481\) 6.01742e10 + 5.04922e10i 0.0512575 + 0.0430102i
\(482\) −1.50199e10 + 5.46678e9i −0.0126752 + 0.00461339i
\(483\) 0 0
\(484\) −9.35268e10 5.30417e11i −0.0774697 0.439353i
\(485\) 2.14884e12 1.76347
\(486\) 0 0
\(487\) −6.82172e11 −0.549558 −0.274779 0.961507i \(-0.588605\pi\)
−0.274779 + 0.961507i \(0.588605\pi\)
\(488\) −2.79206e11 1.58346e12i −0.222862 1.26391i
\(489\) 0 0
\(490\) 5.57600e11 2.02950e11i 0.436959 0.159040i
\(491\) 3.52157e11 + 2.95495e11i 0.273445 + 0.229448i 0.769189 0.639021i \(-0.220660\pi\)
−0.495744 + 0.868469i \(0.665105\pi\)
\(492\) 0 0
\(493\) 6.47362e11 + 2.35620e11i 0.493555 + 0.179639i
\(494\) −6.46435e10 1.11966e11i −0.0488375 0.0845891i
\(495\) 0 0
\(496\) −5.68375e10 + 9.84455e10i −0.0421665 + 0.0730346i
\(497\) −1.17489e10 + 9.85852e9i −0.00863763 + 0.00724783i
\(498\) 0 0
\(499\) 2.55340e11 1.44810e12i 0.184360 1.04556i −0.742416 0.669940i \(-0.766320\pi\)
0.926775 0.375616i \(-0.122569\pi\)
\(500\) −1.17985e11 + 6.69126e11i −0.0844232 + 0.478788i
\(501\) 0 0
\(502\) 6.33837e10 5.31852e10i 0.0445462 0.0373787i
\(503\) −1.22139e12 + 2.11552e12i −0.850746 + 1.47354i 0.0297901 + 0.999556i \(0.490516\pi\)
−0.880536 + 0.473979i \(0.842817\pi\)
\(504\) 0 0
\(505\) −3.30091e11 5.71734e11i −0.225851 0.391186i
\(506\) −1.30013e12 4.73209e11i −0.881678 0.320905i
\(507\) 0 0
\(508\) −4.96743e11 4.16816e11i −0.330936 0.277689i
\(509\) −3.18548e10 + 1.15942e10i −0.0210351 + 0.00765615i −0.352516 0.935806i \(-0.614674\pi\)
0.331481 + 0.943462i \(0.392452\pi\)
\(510\) 0 0
\(511\) 2.75755e11 + 1.56388e12i 0.178908 + 1.01464i
\(512\) 4.11448e11 0.264606
\(513\) 0 0
\(514\) −1.05037e12 −0.663754
\(515\) 1.57284e11 + 8.92002e11i 0.0985263 + 0.558770i
\(516\) 0 0
\(517\) −3.19719e12 + 1.16368e12i −1.96816 + 0.716352i
\(518\) −2.39081e11 2.00613e11i −0.145902 0.122426i
\(519\) 0 0
\(520\) 2.51315e11 + 9.14711e10i 0.150731 + 0.0548617i
\(521\) −6.11020e11 1.05832e12i −0.363317 0.629283i 0.625188 0.780474i \(-0.285022\pi\)
−0.988505 + 0.151191i \(0.951689\pi\)
\(522\) 0 0
\(523\) −7.53243e11 + 1.30466e12i −0.440228 + 0.762497i −0.997706 0.0676944i \(-0.978436\pi\)
0.557478 + 0.830192i \(0.311769\pi\)
\(524\) 1.80039e11 1.51070e11i 0.104322 0.0875364i
\(525\) 0 0
\(526\) −2.76401e11 + 1.56755e12i −0.157436 + 0.892863i
\(527\) 1.85132e11 1.04993e12i 0.104552 0.592945i
\(528\) 0 0
\(529\) 1.41357e11 1.18613e11i 0.0784814 0.0658537i
\(530\) −8.27939e11 + 1.43403e12i −0.455782 + 0.789437i
\(531\) 0 0
\(532\) −3.22554e11 5.58679e11i −0.174582 0.302385i
\(533\) −1.12269e11 4.08626e10i −0.0602543 0.0219308i
\(534\) 0 0
\(535\) 2.79174e12 + 2.34255e12i 1.47327 + 1.23622i
\(536\) 3.13499e12 1.14104e12i 1.64057 0.597119i
\(537\) 0 0
\(538\) 2.55874e11 + 1.45113e12i 0.131676 + 0.746771i
\(539\) 1.67385e12 0.854215
\(540\) 0 0
\(541\) −3.05022e12 −1.53089 −0.765445 0.643501i \(-0.777481\pi\)
−0.765445 + 0.643501i \(0.777481\pi\)
\(542\) 2.37620e11 + 1.34761e12i 0.118273 + 0.670760i
\(543\) 0 0
\(544\) −1.73194e12 + 6.30374e11i −0.847885 + 0.308605i
\(545\) 6.25545e11 + 5.24895e11i 0.303721 + 0.254852i
\(546\) 0 0
\(547\) 2.01299e12 + 7.32668e11i 0.961388 + 0.349916i 0.774577 0.632480i \(-0.217963\pi\)
0.186810 + 0.982396i \(0.440185\pi\)
\(548\) 8.42142e10 + 1.45863e11i 0.0398908 + 0.0690929i
\(549\) 0 0
\(550\) −1.95773e11 + 3.39089e11i −0.0912266 + 0.158009i
\(551\) −9.51063e11 + 7.98036e11i −0.439569 + 0.368842i
\(552\) 0 0
\(553\) 2.72637e11 1.54620e12i 0.123971 0.703076i
\(554\) 2.29128e10 1.29945e11i 0.0103344 0.0586092i
\(555\) 0 0
\(556\) 1.49253e12 1.25238e12i 0.662349 0.555777i
\(557\) 3.43622e11 5.95170e11i 0.151263 0.261995i −0.780429 0.625244i \(-0.784999\pi\)
0.931692 + 0.363249i \(0.118333\pi\)
\(558\) 0 0
\(559\) 2.33537e11 + 4.04497e11i 0.101158 + 0.175211i
\(560\) −1.92969e11 7.02352e10i −0.0829168 0.0301792i
\(561\) 0 0
\(562\) 3.75506e11 + 3.15087e11i 0.158783 + 0.133235i
\(563\) 2.32837e12 8.47457e11i 0.976706 0.355492i 0.196147 0.980574i \(-0.437157\pi\)
0.780559 + 0.625082i \(0.214935\pi\)
\(564\) 0 0
\(565\) 7.73862e11 + 4.38879e12i 0.319481 + 1.81187i
\(566\) 2.53565e12 1.03852
\(567\) 0 0
\(568\) −4.80816e10 −0.0193826
\(569\) 4.83176e11 + 2.74023e12i 0.193242 + 1.09593i 0.914901 + 0.403679i \(0.132269\pi\)
−0.721659 + 0.692248i \(0.756620\pi\)
\(570\) 0 0
\(571\) 1.54335e12 5.61734e11i 0.607578 0.221140i −0.0198650 0.999803i \(-0.506324\pi\)
0.627443 + 0.778662i \(0.284101\pi\)
\(572\) 2.06675e11 + 1.73421e11i 0.0807246 + 0.0677360i
\(573\) 0 0
\(574\) 4.46061e11 + 1.62353e11i 0.171511 + 0.0624247i
\(575\) −2.80971e11 4.86656e11i −0.107190 0.185659i
\(576\) 0 0
\(577\) 2.04659e12 3.54480e12i 0.768670 1.33138i −0.169614 0.985510i \(-0.554252\pi\)
0.938284 0.345865i \(-0.112414\pi\)
\(578\) 1.27892e11 1.07314e11i 0.0476615 0.0399927i
\(579\) 0 0
\(580\) 1.59487e11 9.04495e11i 0.0585193 0.331879i
\(581\) 1.68566e11 9.55984e11i 0.0613729 0.348063i
\(582\) 0 0
\(583\) −3.57818e12 + 3.00245e12i −1.28278 + 1.07638i
\(584\) −2.48919e12 + 4.31140e12i −0.885524 + 1.53377i
\(585\) 0 0
\(586\) −7.96769e10 1.38004e11i −0.0279121 0.0483452i
\(587\) −3.06701e12 1.11630e12i −1.06621 0.388070i −0.251454 0.967869i \(-0.580909\pi\)
−0.814759 + 0.579799i \(0.803131\pi\)
\(588\) 0 0
\(589\) 1.47183e12 + 1.23502e12i 0.503895 + 0.422818i
\(590\) −2.04727e12 + 7.45146e11i −0.695571 + 0.253167i
\(591\) 0 0
\(592\) −3.28346e10 1.86214e11i −0.0109871 0.0623111i
\(593\) 4.88443e12 1.62206 0.811032 0.585001i \(-0.198906\pi\)
0.811032 + 0.585001i \(0.198906\pi\)
\(594\) 0 0
\(595\) 1.92596e12 0.629973
\(596\) −4.17300e10 2.36662e11i −0.0135469 0.0768283i
\(597\) 0 0
\(598\) 2.89724e11 1.05451e11i 0.0926466 0.0337206i
\(599\) −2.73777e12 2.29726e12i −0.868912 0.729104i 0.0949567 0.995481i \(-0.469729\pi\)
−0.963869 + 0.266378i \(0.914173\pi\)
\(600\) 0 0
\(601\) 3.56881e12 + 1.29894e12i 1.11581 + 0.406120i 0.833120 0.553092i \(-0.186552\pi\)
0.282686 + 0.959212i \(0.408775\pi\)
\(602\) −9.27874e11 1.60713e12i −0.287942 0.498730i
\(603\) 0 0
\(604\) −1.19893e12 + 2.07661e12i −0.366545 + 0.634875i
\(605\) −2.21988e12 + 1.86270e12i −0.673645 + 0.565255i
\(606\) 0 0
\(607\) 5.79319e11 3.28548e12i 0.173208 0.982313i −0.766983 0.641667i \(-0.778243\pi\)
0.940192 0.340646i \(-0.110646\pi\)
\(608\) 5.76781e11 3.27109e12i 0.171177 0.970791i
\(609\) 0 0
\(610\) −2.36996e12 + 1.98863e12i −0.693037 + 0.581527i
\(611\) 3.79096e11 6.56614e11i 0.110043 0.190601i
\(612\) 0 0
\(613\) −2.77838e12 4.81229e12i −0.794729 1.37651i −0.923011 0.384774i \(-0.874279\pi\)
0.128281 0.991738i \(-0.459054\pi\)
\(614\) −1.43319e12 5.21637e11i −0.406954 0.148119i
\(615\) 0 0
\(616\) −2.29615e12 1.92670e12i −0.642521 0.539139i
\(617\) 1.62073e12 5.89897e11i 0.450222 0.163868i −0.106950 0.994264i \(-0.534108\pi\)
0.557172 + 0.830397i \(0.311886\pi\)
\(618\) 0 0
\(619\) −8.34582e11 4.73315e12i −0.228487 1.29581i −0.855906 0.517131i \(-0.827000\pi\)
0.627419 0.778682i \(-0.284111\pi\)
\(620\) −1.42136e12 −0.386315
\(621\) 0 0
\(622\) 2.58918e12 0.693595
\(623\) −2.00650e11 1.13794e12i −0.0533634 0.302639i
\(624\) 0 0
\(625\) 4.16711e12 1.51670e12i 1.09238 0.397595i
\(626\) −2.93053e11 2.45901e11i −0.0762714 0.0639993i
\(627\) 0 0
\(628\) −2.45136e12 8.92221e11i −0.628910 0.228904i
\(629\) 8.86701e11 + 1.53581e12i 0.225865 + 0.391210i
\(630\) 0 0
\(631\) −2.29459e12 + 3.97434e12i −0.576199 + 0.998006i 0.419711 + 0.907658i \(0.362131\pi\)
−0.995910 + 0.0903481i \(0.971202\pi\)
\(632\) 3.77053e12 3.16385e12i 0.940104 0.788841i
\(633\) 0 0
\(634\) 5.31845e11 3.01624e12i 0.130732 0.741421i
\(635\) −6.05840e11 + 3.43589e12i −0.147869 + 0.838605i
\(636\) 0 0
\(637\) −2.85738e11 + 2.39763e11i −0.0687608 + 0.0576972i
\(638\) −1.03148e12 + 1.78658e12i −0.246472 + 0.426903i
\(639\) 0 0
\(640\) 1.02182e12 + 1.76985e12i 0.240750 + 0.416990i
\(641\) 3.03781e12 + 1.10567e12i 0.710721 + 0.258681i 0.671982 0.740568i \(-0.265443\pi\)
0.0387398 + 0.999249i \(0.487666\pi\)
\(642\) 0 0
\(643\) 3.88077e12 + 3.25636e12i 0.895301 + 0.751247i 0.969266 0.246014i \(-0.0791210\pi\)
−0.0739655 + 0.997261i \(0.523565\pi\)
\(644\) 1.44565e12 5.26172e11i 0.331189 0.120543i
\(645\) 0 0
\(646\) −5.06846e11 2.87446e12i −0.114506 0.649398i
\(647\) 7.31844e12 1.64191 0.820955 0.570993i \(-0.193442\pi\)
0.820955 + 0.570993i \(0.193442\pi\)
\(648\) 0 0
\(649\) −6.14568e12 −1.35978
\(650\) −1.51513e10 8.59276e10i −0.00332921 0.0188809i
\(651\) 0 0
\(652\) −1.81293e12 + 6.59852e11i −0.392886 + 0.142999i
\(653\) −2.08471e12 1.74928e12i −0.448680 0.376487i 0.390266 0.920702i \(-0.372383\pi\)
−0.838946 + 0.544215i \(0.816828\pi\)
\(654\) 0 0
\(655\) −1.18825e12 4.32488e11i −0.252245 0.0918096i
\(656\) 1.43797e11 + 2.49064e11i 0.0303167 + 0.0525101i
\(657\) 0 0
\(658\) −1.50620e12 + 2.60882e12i −0.313233 + 0.542535i
\(659\) −3.18784e12 + 2.67491e12i −0.658434 + 0.552491i −0.909617 0.415448i \(-0.863625\pi\)
0.251183 + 0.967940i \(0.419180\pi\)
\(660\) 0 0
\(661\) −1.82179e11 + 1.03319e12i −0.0371187 + 0.210511i −0.997726 0.0673982i \(-0.978530\pi\)
0.960607 + 0.277909i \(0.0896413\pi\)
\(662\) 1.78717e11 1.01355e12i 0.0361663 0.205109i
\(663\) 0 0
\(664\) 2.33124e12 1.95615e12i 0.465406 0.390522i
\(665\) −1.73545e12 + 3.00589e12i −0.344124 + 0.596040i
\(666\) 0 0
\(667\) −1.48037e12 2.56407e12i −0.289603 0.501607i
\(668\) −2.88423e12 1.04977e12i −0.560448 0.203986i
\(669\) 0 0
\(670\) −4.91741e12 4.12620e12i −0.942757 0.791067i
\(671\) −8.20073e12 + 2.98482e12i −1.56171 + 0.568417i
\(672\) 0 0
\(673\) −6.25268e11 3.54607e12i −0.117489 0.666315i −0.985488 0.169748i \(-0.945705\pi\)
0.867998 0.496567i \(-0.165406\pi\)
\(674\) 1.02813e12 0.191902
\(675\) 0 0
\(676\) 2.96254e12 0.545638
\(677\) −8.27944e11 4.69550e12i −0.151479 0.859079i −0.961935 0.273279i \(-0.911892\pi\)
0.810456 0.585800i \(-0.199219\pi\)
\(678\) 0 0
\(679\) 5.04315e12 1.83556e12i 0.910517 0.331401i
\(680\) 4.62527e12 + 3.88106e12i 0.829558 + 0.696082i
\(681\) 0 0
\(682\) 3.00004e12 + 1.09192e12i 0.531003 + 0.193269i
\(683\) −4.45626e12 7.71846e12i −0.783568 1.35718i −0.929851 0.367937i \(-0.880064\pi\)
0.146282 0.989243i \(-0.453269\pi\)
\(684\) 0 0
\(685\) 4.53102e11 7.84795e11i 0.0786300 0.136191i
\(686\) 2.91904e12 2.44936e12i 0.503247 0.422274i
\(687\) 0 0
\(688\) 1.95236e11 1.10724e12i 0.0332210 0.188406i
\(689\) 1.80749e11 1.02508e12i 0.0305555 0.173289i
\(690\) 0 0
\(691\) −4.69982e11 + 3.94362e11i −0.0784206 + 0.0658027i −0.681155 0.732139i \(-0.738522\pi\)
0.602735 + 0.797942i \(0.294078\pi\)
\(692\) −2.15243e12 + 3.72812e12i −0.356822 + 0.618034i
\(693\) 0 0
\(694\) 2.21783e12 + 3.84139e12i 0.362919 + 0.628595i
\(695\) −9.85067e12 3.58535e12i −1.60153 0.582908i
\(696\) 0 0
\(697\) −2.06623e12 1.73377e12i −0.331613 0.278256i
\(698\) −2.18214e11 + 7.94232e10i −0.0347962 + 0.0126648i
\(699\) 0 0
\(700\) −7.56011e10 4.28755e11i −0.0119011 0.0674945i
\(701\) −4.33085e12 −0.677396 −0.338698 0.940895i \(-0.609986\pi\)
−0.338698 + 0.940895i \(0.609986\pi\)
\(702\) 0 0
\(703\) −3.19596e12 −0.493517
\(704\) −1.16097e12 6.58420e12i −0.178133 1.01024i
\(705\) 0 0
\(706\) 4.94469e11 1.79972e11i 0.0749063 0.0272637i
\(707\) −1.26307e12 1.05984e12i −0.190126 0.159535i
\(708\) 0 0
\(709\) −8.61963e12 3.13729e12i −1.28109 0.466280i −0.390299 0.920688i \(-0.627628\pi\)
−0.890793 + 0.454408i \(0.849851\pi\)
\(710\) 4.62574e10 + 8.01202e10i 0.00683154 + 0.0118326i
\(711\) 0 0
\(712\) 1.81123e12 3.13715e12i 0.264128 0.457483i
\(713\) −3.50997e12 + 2.94521e12i −0.508628 + 0.426789i
\(714\) 0 0
\(715\) 2.52066e11 1.42954e12i 0.0360693 0.204559i
\(716\) −8.31077e11 + 4.71327e12i −0.118177 + 0.670214i
\(717\) 0 0
\(718\) −2.16129e12 + 1.81354e12i −0.303496 + 0.254663i
\(719\) −1.32786e12 + 2.29993e12i −0.185299 + 0.320948i −0.943677 0.330867i \(-0.892659\pi\)
0.758378 + 0.651815i \(0.225992\pi\)
\(720\) 0 0
\(721\) 1.13109e12 + 1.95910e12i 0.155879 + 0.269990i
\(722\) 3.74724e11 + 1.36388e11i 0.0513209 + 0.0186793i
\(723\) 0 0
\(724\) 1.79971e12 + 1.51014e12i 0.243433 + 0.204264i
\(725\) −7.87349e11 + 2.86572e11i −0.105839 + 0.0385223i
\(726\) 0 0
\(727\) 6.45108e11 + 3.65859e12i 0.0856501 + 0.485746i 0.997214 + 0.0745883i \(0.0237643\pi\)
−0.911564 + 0.411157i \(0.865125\pi\)
\(728\) 6.67950e11 0.0881359
\(729\) 0 0
\(730\) 9.57900e12 1.24844
\(731\) 1.83107e12 + 1.03845e13i 0.237180 + 1.34511i
\(732\) 0 0
\(733\) −5.05347e12 + 1.83931e12i −0.646579 + 0.235336i −0.644432 0.764662i \(-0.722906\pi\)
−0.00214794 + 0.999998i \(0.500684\pi\)
\(734\) 5.14129e12 + 4.31405e12i 0.653792 + 0.548597i
\(735\) 0 0
\(736\) 7.44338e12 + 2.70917e12i 0.935019 + 0.340319i
\(737\) −9.05383e12 1.56817e13i −1.13039 1.95789i
\(738\) 0 0
\(739\) 2.19535e12 3.80246e12i 0.270773 0.468992i −0.698287 0.715818i \(-0.746054\pi\)
0.969060 + 0.246826i \(0.0793875\pi\)
\(740\) 1.81115e12 1.51974e12i 0.222030 0.186305i
\(741\) 0 0
\(742\) −7.18142e11 + 4.07278e12i −0.0869746 + 0.493258i
\(743\) 3.02652e11 1.71643e12i 0.0364330 0.206622i −0.961157 0.276001i \(-0.910991\pi\)
0.997590 + 0.0693793i \(0.0221019\pi\)
\(744\) 0 0
\(745\) −9.90472e11 + 8.31105e11i −0.117798 + 0.0988445i
\(746\) 9.01602e11 1.56162e12i 0.106584 0.184608i
\(747\) 0 0
\(748\) 3.04547e12 + 5.27491e12i 0.355711 + 0.616110i
\(749\) 8.55301e12 + 3.11304e12i 0.993003 + 0.361424i
\(750\) 0 0
\(751\) 2.34406e12 + 1.96690e12i 0.268899 + 0.225633i 0.767259 0.641337i \(-0.221620\pi\)
−0.498360 + 0.866970i \(0.666064\pi\)
\(752\) −1.71503e12 + 6.24218e11i −0.195565 + 0.0711797i
\(753\) 0 0
\(754\) −7.98287e10 4.52731e11i −0.00899473 0.0510116i
\(755\) 1.29013e13 1.44502
\(756\) 0 0
\(757\) −1.17914e13 −1.30507 −0.652535 0.757758i \(-0.726295\pi\)
−0.652535 + 0.757758i \(0.726295\pi\)
\(758\) −1.17262e12 6.65023e12i −0.129016 0.731687i
\(759\) 0 0
\(760\) −1.02250e13 + 3.72159e12i −1.11174 + 0.404639i
\(761\) −4.18195e12 3.50907e12i −0.452009 0.379281i 0.388172 0.921587i \(-0.373107\pi\)
−0.840181 + 0.542306i \(0.817551\pi\)
\(762\) 0 0
\(763\) 1.91647e12 + 6.97538e11i 0.204711 + 0.0745088i
\(764\) −2.82294e12 4.88948e12i −0.299766 0.519209i
\(765\) 0 0
\(766\) 3.75357e12 6.50137e12i 0.393926 0.682300i
\(767\) 1.04911e12 8.80308e11i 0.109457 0.0918450i
\(768\) 0 0
\(769\) −1.57900e12 + 8.95494e12i −0.162822 + 0.923409i 0.788460 + 0.615086i \(0.210879\pi\)
−0.951282 + 0.308323i \(0.900232\pi\)
\(770\) −1.00149e12 + 5.67976e12i −0.102669 + 0.582266i
\(771\) 0 0
\(772\) 7.60362e12 6.38020e12i 0.770447 0.646482i
\(773\) −2.65497e12 + 4.59854e12i −0.267455 + 0.463246i −0.968204 0.250162i \(-0.919516\pi\)
0.700749 + 0.713408i \(0.252849\pi\)
\(774\) 0 0
\(775\) 6.48337e11 + 1.12295e12i 0.0645570 + 0.111816i
\(776\) 1.58102e13 + 5.75444e12i 1.56516 + 0.569672i
\(777\) 0 0
\(778\) 5.12517e12 + 4.30053e12i 0.501534 + 0.420837i
\(779\) 4.56778e12 1.66253e12i 0.444413 0.161753i
\(780\) 0 0
\(781\) 4.53170e10 + 2.57006e11i 0.00435844 + 0.0247180i
\(782\) 6.96065e12 0.665609
\(783\) 0 0
\(784\) 8.97883e11 0.0848784
\(785\) 2.43726e12 + 1.38224e13i 0.229080 + 1.29918i
\(786\) 0 0
\(787\) −3.51971e12 + 1.28107e12i −0.327055 + 0.119038i −0.500329 0.865835i \(-0.666788\pi\)
0.173274 + 0.984874i \(0.444565\pi\)
\(788\) 5.98356e12 + 5.02080e12i 0.552830 + 0.463879i
\(789\) 0 0
\(790\) −8.89952e12 3.23916e12i −0.812914 0.295877i
\(791\) 5.56512e12 + 9.63908e12i 0.505453 + 0.875470i
\(792\) 0 0
\(793\) 9.72376e11 1.68420e12i 0.0873182 0.151240i
\(794\) 6.85574e12 5.75265e12i 0.612156 0.513660i
\(795\) 0 0
\(796\) −1.36805e12 + 7.75862e12i −0.120780 + 0.684976i
\(797\) −6.59110e11 + 3.73800e12i −0.0578623 + 0.328153i −0.999974 0.00714451i \(-0.997726\pi\)
0.942112 + 0.335298i \(0.108837\pi\)
\(798\) 0 0
\(799\) 1.31125e13 1.10027e13i 1.13821 0.955075i
\(800\) 1.12082e12 1.94132e12i 0.0967457 0.167568i
\(801\) 0 0
\(802\) 4.78729e12 + 8.29183e12i 0.408607 + 0.707727i
\(803\) 2.53913e13 + 9.24169e12i 2.15509 + 0.784389i
\(804\) 0 0
\(805\) −6.34075e12 5.32052e12i −0.532181 0.446553i
\(806\) −6.68535e11 + 2.43327e11i −0.0557977 + 0.0203087i
\(807\) 0 0
\(808\) −8.97594e11 5.09051e12i −0.0740847 0.420155i
\(809\) −1.37037e13 −1.12479 −0.562394 0.826870i \(-0.690119\pi\)
−0.562394 + 0.826870i \(0.690119\pi\)
\(810\) 0 0
\(811\) 2.17179e13 1.76289 0.881444 0.472289i \(-0.156572\pi\)
0.881444 + 0.472289i \(0.156572\pi\)
\(812\) −3.98324e11 2.25901e12i −0.0321539 0.182354i
\(813\) 0 0
\(814\) −4.99026e12 + 1.81631e12i −0.398394 + 0.145004i
\(815\) 7.95168e12 + 6.67226e12i 0.631320 + 0.529741i
\(816\) 0 0
\(817\) −1.78573e13 6.49952e12i −1.40222 0.510366i
\(818\) 1.72540e12 + 2.98849e12i 0.134741 + 0.233379i
\(819\) 0 0
\(820\) −1.79799e12 + 3.11422e12i −0.138876 + 0.240540i
\(821\) 4.62072e11 3.87724e11i 0.0354948 0.0297837i −0.624868 0.780731i \(-0.714847\pi\)
0.660363 + 0.750947i \(0.270403\pi\)
\(822\) 0 0
\(823\) −3.35539e12 + 1.90294e13i −0.254943 + 1.44586i 0.541275 + 0.840846i \(0.317942\pi\)
−0.796218 + 0.605010i \(0.793169\pi\)
\(824\) −1.23149e12 + 6.98413e12i −0.0930590 + 0.527764i
\(825\) 0 0
\(826\) −4.16826e12 + 3.49759e12i −0.311562 + 0.261432i
\(827\) 1.29968e13 2.25112e13i 0.966190 1.67349i 0.259806 0.965661i \(-0.416341\pi\)
0.706384 0.707829i \(-0.250325\pi\)
\(828\) 0 0
\(829\) −6.25121e12 1.08274e13i −0.459694 0.796213i 0.539251 0.842145i \(-0.318708\pi\)
−0.998945 + 0.0459320i \(0.985374\pi\)
\(830\) −5.50240e12 2.00271e12i −0.402439 0.146476i
\(831\) 0 0
\(832\) 1.14131e12 + 9.57672e11i 0.0825749 + 0.0692886i
\(833\) −7.91318e12 + 2.88016e12i −0.569440 + 0.207259i
\(834\) 0 0
\(835\) 2.86764e12 + 1.62632e13i 0.204143 + 1.15775i
\(836\) −1.09769e13 −0.777232
\(837\) 0 0
\(838\) 1.52085e12 0.106534
\(839\) −2.43824e12 1.38280e13i −0.169882 0.963451i −0.943886 0.330270i \(-0.892860\pi\)
0.774004 0.633181i \(-0.218251\pi\)
\(840\) 0 0
\(841\) 9.48391e12 3.45186e12i 0.653741 0.237942i
\(842\) −5.99398e12 5.02955e12i −0.410971 0.344846i
\(843\) 0 0
\(844\) −5.40137e12 1.96594e12i −0.366406 0.133361i
\(845\) −7.96976e12 1.38040e13i −0.537762 0.931431i
\(846\) 0 0
\(847\) −3.61874e12 + 6.26785e12i −0.241592 + 0.418450i
\(848\) −1.91940e12 + 1.61057e12i −0.127463 + 0.106954i
\(849\) 0 0
\(850\) 3.42060e11 1.93992e12i 0.0224759 0.127467i
\(851\) 1.32347e12 7.50580e12i 0.0865033 0.490584i
\(852\) 0 0
\(853\) −6.20170e11 + 5.20385e11i −0.0401089 + 0.0336553i −0.662622 0.748954i \(-0.730556\pi\)
0.622513 + 0.782610i \(0.286112\pi\)
\(854\) −3.86339e12 + 6.69159e12i −0.248547 + 0.430496i
\(855\) 0 0
\(856\) 1.42672e13 + 2.47115e13i 0.908251 + 1.57314i
\(857\) −6.00301e12 2.18492e12i −0.380150 0.138363i 0.144875 0.989450i \(-0.453722\pi\)
−0.525025 + 0.851087i \(0.675944\pi\)
\(858\) 0 0
\(859\) −1.16461e13 9.77223e12i −0.729812 0.612385i 0.200269 0.979741i \(-0.435819\pi\)
−0.930080 + 0.367356i \(0.880263\pi\)
\(860\) 1.32104e13 4.80818e12i 0.823516 0.299735i
\(861\) 0 0
\(862\) −2.67805e12 1.51880e13i −0.165210 0.936953i
\(863\) −1.77505e13 −1.08933 −0.544667 0.838652i \(-0.683344\pi\)
−0.544667 + 0.838652i \(0.683344\pi\)
\(864\) 0 0
\(865\) 2.31616e13 1.40668
\(866\) −1.72620e11 9.78977e11i −0.0104294 0.0591483i
\(867\) 0 0
\(868\) −3.33581e12 + 1.21414e12i −0.199463 + 0.0725987i
\(869\) −2.04651e13 1.71723e13i −1.21738 1.02150i
\(870\) 0 0
\(871\) 3.79180e12 + 1.38010e12i 0.223236 + 0.0812512i
\(872\) 3.19684e12 + 5.53709e12i 0.187239 + 0.324308i
\(873\) 0 0
\(874\) −6.27211e12 + 1.08636e13i −0.363590 + 0.629757i
\(875\) 6.99411e12 5.86875e12i 0.403363 0.338462i
\(876\) 0 0
\(877\) −7.62180e11 + 4.32254e12i −0.0435070 + 0.246741i −0.998803 0.0489099i \(-0.984425\pi\)
0.955296 + 0.295651i \(0.0955364\pi\)
\(878\) −3.17480e12 + 1.80052e13i −0.180298 + 1.02252i
\(879\) 0 0
\(880\) −2.67672e12 + 2.24604e12i −0.150464 + 0.126254i
\(881\) −1.28773e13 + 2.23041e13i −0.720165 + 1.24736i 0.240768 + 0.970583i \(0.422601\pi\)
−0.960933 + 0.276780i \(0.910733\pi\)
\(882\) 0 0
\(883\) −1.61012e13 2.78881e13i −0.891322 1.54381i −0.838292 0.545222i \(-0.816445\pi\)
−0.0530302 0.998593i \(-0.516888\pi\)
\(884\) −1.27546e12 4.64231e11i −0.0702478 0.0255681i
\(885\) 0 0
\(886\) −1.04262e13 8.74865e12i −0.568429 0.476968i
\(887\) −1.91150e13 + 6.95730e12i −1.03686 + 0.377385i −0.803688 0.595051i \(-0.797132\pi\)
−0.233169 + 0.972436i \(0.574909\pi\)
\(888\) 0 0
\(889\) 1.51311e12 + 8.58125e12i 0.0812478 + 0.460779i
\(890\) −6.97006e12 −0.372376
\(891\) 0 0
\(892\) −7.84153e12 −0.414724
\(893\) 5.35667e12 + 3.03792e13i 0.281879 + 1.59862i
\(894\) 0 0
\(895\) 2.41973e13 8.80710e12i 1.26056 0.458806i
\(896\) 3.90995e12 + 3.28083e12i 0.202668 + 0.170058i
\(897\) 0 0
\(898\) 1.96769e13 + 7.16181e12i 1.00975 + 0.367519i
\(899\) 3.41593e12 + 5.91656e12i 0.174418 + 0.302100i
\(900\) 0 0
\(901\) 1.17497e13 2.03511e13i 0.593970 1.02879i
\(902\) 6.18741e12 5.19186e12i 0.311229 0.261152i
\(903\) 0 0
\(904\) −6.05912e12 + 3.43630e13i −0.301753 + 1.71133i
\(905\) 2.19497e12 1.24483e13i 0.108770 0.616867i
\(906\) 0 0
\(907\) 7.78211e12 6.52997e12i 0.381825 0.320389i −0.431593 0.902068i \(-0.642048\pi\)
0.813418 + 0.581679i \(0.197604\pi\)
\(908\) −4.26989e11 + 7.39566e11i −0.0208463 + 0.0361069i
\(909\) 0 0
\(910\) −6.42608e11 1.11303e12i −0.0310642 0.0538047i
\(911\) 1.31480e13 + 4.78548e12i 0.632451 + 0.230193i 0.638298 0.769790i \(-0.279639\pi\)
−0.00584676 + 0.999983i \(0.501861\pi\)
\(912\) 0 0
\(913\) −1.26532e13 1.06173e13i −0.602672 0.505702i
\(914\) 1.77106e13 6.44615e12i 0.839414 0.305522i
\(915\) 0 0
\(916\) −3.19012e12 1.80921e13i −0.149719 0.849099i
\(917\) −3.15816e12 −0.147493
\(918\) 0 0
\(919\) −1.49823e12 −0.0692881 −0.0346440 0.999400i \(-0.511030\pi\)
−0.0346440 + 0.999400i \(0.511030\pi\)
\(920\) −4.50600e12 2.55548e13i −0.207370 1.17605i
\(921\) 0 0
\(922\) 1.57004e12 5.71447e11i 0.0715519 0.0260428i
\(923\) −4.45495e10 3.73814e10i −0.00202039 0.00169531i
\(924\) 0 0
\(925\) −2.02681e12 7.37699e11i −0.0910280 0.0331315i
\(926\) −1.08231e13 1.87461e13i −0.483727 0.837840i
\(927\) 0 0
\(928\) 5.90533e12 1.02283e13i 0.261384 0.452730i
\(929\) −1.67699e13 + 1.40716e13i −0.738687 + 0.619832i −0.932485 0.361209i \(-0.882364\pi\)
0.193797 + 0.981042i \(0.437920\pi\)
\(930\) 0 0
\(931\) 2.63530e12 1.49455e13i 0.114962 0.651984i
\(932\) 2.92405e11 1.65831e12i 0.0126944 0.0719937i
\(933\) 0 0
\(934\) −3.78169e12 + 3.17322e12i −0.162602 + 0.136439i
\(935\) 1.63857e13 2.83809e13i 0.701153 1.21443i
\(936\) 0 0
\(937\) −8.69489e12 1.50600e13i −0.368499 0.638258i 0.620833 0.783943i \(-0.286795\pi\)
−0.989331 + 0.145685i \(0.953461\pi\)
\(938\) −1.50654e13 5.48335e12i −0.635429 0.231277i
\(939\) 0 0
\(940\) −1.74815e13 1.46687e13i −0.730302 0.612796i
\(941\) −1.00914e13 + 3.67298e12i −0.419565 + 0.152709i −0.543171 0.839622i \(-0.682776\pi\)
0.123606 + 0.992331i \(0.460554\pi\)
\(942\) 0 0
\(943\) 2.01295e12 + 1.14160e13i 0.0828955 + 0.470124i
\(944\) −3.29665e12 −0.135113
\(945\) 0 0
\(946\) −3.15766e13 −1.28190
\(947\) −1.32708e12 7.52627e12i −0.0536196 0.304092i 0.946190 0.323612i \(-0.104897\pi\)
−0.999809 + 0.0195201i \(0.993786\pi\)
\(948\) 0 0
\(949\) −5.65827e12 + 2.05944e12i −0.226457 + 0.0824235i
\(950\) 2.71944e12 + 2.28188e12i 0.108324 + 0.0908944i
\(951\) 0 0
\(952\) 1.41703e13 + 5.15758e12i 0.559132 + 0.203507i
\(953\) 6.20174e12 + 1.07417e13i 0.243554 + 0.421848i 0.961724 0.274020i \(-0.0883534\pi\)
−0.718170 + 0.695868i \(0.755020\pi\)
\(954\) 0 0
\(955\) −1.51884e13 + 2.63071e13i −0.590877 + 1.02343i
\(956\) −3.54827e12 + 2.97735e12i −0.137390 + 0.115284i
\(957\) 0 0
\(958\) 4.68645e12 2.65782e13i 0.179763 1.01948i
\(959\) 3.93013e11 2.22889e12i 0.0150046 0.0850952i
\(960\) 0 0
\(961\) −1.21547e13 + 1.01990e13i −0.459716 + 0.385748i
\(962\) 5.91704e11 1.02486e12i 0.0222750 0.0385814i
\(963\) 0 0
\(964\) −1.51207e11 2.61898e11i −0.00563930 0.00976755i
\(965\) −5.01837e13 1.82654e13i −1.86290 0.678041i
\(966\) 0 0
\(967\) 2.99282e13 + 2.51128e13i 1.10068 + 0.923582i 0.997471 0.0710777i \(-0.0226438\pi\)
0.103211 + 0.994659i \(0.467088\pi\)
\(968\) −2.13210e13 + 7.76022e12i −0.780494 + 0.284076i
\(969\) 0 0
\(970\) −5.62152e12 3.18812e13i −0.203883 1.15628i
\(971\) 3.60297e13 1.30069 0.650345 0.759639i \(-0.274624\pi\)
0.650345 + 0.759639i \(0.274624\pi\)
\(972\) 0 0
\(973\) −2.61813e13 −0.936448
\(974\) 1.78461e12 + 1.01210e13i 0.0635370 + 0.360336i
\(975\) 0 0
\(976\) −4.39901e12 + 1.60111e12i −0.155178 + 0.0564803i
\(977\) 2.48466e13 + 2.08488e13i 0.872453 + 0.732075i 0.964613 0.263669i \(-0.0849328\pi\)
−0.0921604 + 0.995744i \(0.529377\pi\)
\(978\) 0 0
\(979\) −1.84758e13 6.72463e12i −0.642806 0.233962i
\(980\) 5.61343e12 + 9.72275e12i 0.194407 + 0.336722i
\(981\) 0 0
\(982\) 3.46283e12 5.99780e12i 0.118831 0.205821i
\(983\) −5.27198e12 + 4.42372e12i −0.180087 + 0.151111i −0.728375 0.685178i \(-0.759724\pi\)
0.548288 + 0.836290i \(0.315280\pi\)
\(984\) 0 0
\(985\) 7.29770e12 4.13873e13i 0.247015 1.40089i
\(986\) 1.80223e12 1.02209e13i 0.0607245 0.344386i
\(987\) 0 0
\(988\) 1.87383e12 1.57233e12i 0.0625639 0.0524974i
\(989\) 2.26592e13 3.92468e13i 0.753114 1.30443i
\(990\) 0 0
\(991\) −2.47791e12 4.29187e12i −0.0816120 0.141356i 0.822330 0.569010i \(-0.192674\pi\)
−0.903943 + 0.427654i \(0.859340\pi\)
\(992\) −1.71755e13 6.25138e12i −0.563128 0.204962i
\(993\) 0 0
\(994\) 1.77001e11 + 1.48522e11i 0.00575093 + 0.00482560i
\(995\) 3.98317e13 1.44976e13i 1.28832 0.468912i
\(996\) 0 0
\(997\) −3.69434e12 2.09517e13i −0.118416 0.671568i −0.985002 0.172542i \(-0.944802\pi\)
0.866587 0.499027i \(-0.166309\pi\)
\(998\) −2.21527e13 −0.706870
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.10.10 156
3.2 odd 2 27.10.e.a.13.17 156
27.2 odd 18 27.10.e.a.25.17 yes 156
27.25 even 9 inner 81.10.e.a.73.10 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.13.17 156 3.2 odd 2
27.10.e.a.25.17 yes 156 27.2 odd 18
81.10.e.a.10.10 156 1.1 even 1 trivial
81.10.e.a.73.10 156 27.25 even 9 inner