Properties

Label 81.10.e.a.10.1
Level $81$
Weight $10$
Character 81.10
Analytic conductor $41.718$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 10.1
Character \(\chi\) \(=\) 81.10
Dual form 81.10.e.a.73.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-7.14775 - 40.5369i) q^{2} +(-1111.03 + 404.381i) q^{4} +(610.019 + 511.867i) q^{5} +(4530.75 + 1649.06i) q^{7} +(13796.1 + 23895.6i) q^{8} +(16389.2 - 28387.0i) q^{10} +(-11267.0 + 9454.10i) q^{11} +(-12174.2 + 69043.0i) q^{13} +(34463.1 - 195450. i) q^{14} +(406315. - 340939. i) q^{16} +(313935. - 543751. i) q^{17} +(-179335. - 310617. i) q^{19} +(-884736. - 322018. i) q^{20} +(463773. + 389152. i) q^{22} +(-2.16249e6 + 787080. i) q^{23} +(-229041. - 1.29896e6i) q^{25} +2.88581e6 q^{26} -5.70063e6 q^{28} +(-38439.2 - 218000. i) q^{29} +(-8.47317e6 + 3.08398e6i) q^{31} +(-5.90275e6 - 4.95299e6i) q^{32} +(-2.42859e7 - 8.83935e6i) q^{34} +(1.91975e6 + 3.32510e6i) q^{35} +(4.94997e6 - 8.57361e6i) q^{37} +(-1.13096e7 + 9.48988e6i) q^{38} +(-3.81546e6 + 2.16386e7i) q^{40} +(6.02891e6 - 3.41916e7i) q^{41} +(745981. - 625952. i) q^{43} +(8.69483e6 - 1.50599e7i) q^{44} +(4.73627e7 + 8.20346e7i) q^{46} +(3.06202e7 + 1.11448e7i) q^{47} +(-1.31043e7 - 1.09958e7i) q^{49} +(-5.10185e7 + 1.85692e7i) q^{50} +(-1.43939e7 - 8.16316e7i) q^{52} +3.52475e7 q^{53} -1.17123e7 q^{55} +(2.31016e7 + 1.31016e8i) q^{56} +(-8.56228e6 + 3.11641e6i) q^{58} +(-7.09656e7 - 5.95472e7i) q^{59} +(-8.27266e7 - 3.01100e7i) q^{61} +(1.85579e8 + 3.21432e8i) q^{62} +(-2.28034e7 + 3.94967e7i) q^{64} +(-4.27673e7 + 3.58860e7i) q^{65} +(-3.89948e7 + 2.21151e8i) q^{67} +(-1.28908e8 + 7.31071e8i) q^{68} +(1.21067e8 - 1.01588e8i) q^{70} +(1.79802e7 - 3.11427e7i) q^{71} +(7.80253e7 + 1.35144e8i) q^{73} +(-3.82928e8 - 1.39375e8i) q^{74} +(3.24853e8 + 2.72584e8i) q^{76} +(-6.66382e7 + 2.42543e7i) q^{77} +(-1.32512e7 - 7.51515e7i) q^{79} +4.22375e8 q^{80} -1.42912e9 q^{82} +(-1.07463e8 - 6.09454e8i) q^{83} +(4.69834e8 - 1.71006e8i) q^{85} +(-3.07062e7 - 2.57656e7i) q^{86} +(-3.81352e8 - 1.38801e8i) q^{88} +(-1.99082e8 - 3.44820e8i) q^{89} +(-1.69014e8 + 2.92741e8i) q^{91} +(2.08430e9 - 1.74893e9i) q^{92} +(2.32911e8 - 1.32091e9i) q^{94} +(4.95968e7 - 2.81277e8i) q^{95} +(-6.56060e8 + 5.50500e8i) q^{97} +(-3.52071e8 + 6.09804e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 6 q^{2} - 6 q^{4} - 2382 q^{5} - 6 q^{7} - 36861 q^{8} - 3 q^{10} + 121767 q^{11} - 6 q^{13} + 720417 q^{14} + 1530 q^{16} - 1002249 q^{17} - 3 q^{19} + 8448573 q^{20} - 1585014 q^{22} - 9316482 q^{23}+ \cdots - 6901039926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.14775 40.5369i −0.315889 1.79149i −0.567192 0.823586i \(-0.691970\pi\)
0.251303 0.967909i \(-0.419141\pi\)
\(3\) 0 0
\(4\) −1111.03 + 404.381i −2.16997 + 0.789806i
\(5\) 610.019 + 511.867i 0.436494 + 0.366262i 0.834396 0.551166i \(-0.185817\pi\)
−0.397901 + 0.917428i \(0.630261\pi\)
\(6\) 0 0
\(7\) 4530.75 + 1649.06i 0.713229 + 0.259594i 0.673049 0.739598i \(-0.264984\pi\)
0.0401806 + 0.999192i \(0.487207\pi\)
\(8\) 13796.1 + 23895.6i 1.19084 + 2.06259i
\(9\) 0 0
\(10\) 16389.2 28387.0i 0.518273 0.897675i
\(11\) −11267.0 + 9454.10i −0.232028 + 0.194694i −0.751387 0.659862i \(-0.770615\pi\)
0.519360 + 0.854556i \(0.326170\pi\)
\(12\) 0 0
\(13\) −12174.2 + 69043.0i −0.118221 + 0.670463i 0.866884 + 0.498509i \(0.166119\pi\)
−0.985105 + 0.171954i \(0.944992\pi\)
\(14\) 34463.1 195450.i 0.239760 1.35975i
\(15\) 0 0
\(16\) 406315. 340939.i 1.54997 1.30058i
\(17\) 313935. 543751.i 0.911632 1.57899i 0.0998723 0.995000i \(-0.468157\pi\)
0.811759 0.583992i \(-0.198510\pi\)
\(18\) 0 0
\(19\) −179335. 310617.i −0.315699 0.546806i 0.663887 0.747833i \(-0.268906\pi\)
−0.979586 + 0.201027i \(0.935572\pi\)
\(20\) −884736. 322018.i −1.23646 0.450033i
\(21\) 0 0
\(22\) 463773. + 389152.i 0.422088 + 0.354174i
\(23\) −2.16249e6 + 787080.i −1.61131 + 0.586467i −0.981698 0.190445i \(-0.939007\pi\)
−0.629608 + 0.776913i \(0.716785\pi\)
\(24\) 0 0
\(25\) −229041. 1.29896e6i −0.117269 0.665065i
\(26\) 2.88581e6 1.23848
\(27\) 0 0
\(28\) −5.70063e6 −1.75272
\(29\) −38439.2 218000.i −0.0100921 0.0572354i 0.979346 0.202193i \(-0.0648067\pi\)
−0.989438 + 0.144957i \(0.953696\pi\)
\(30\) 0 0
\(31\) −8.47317e6 + 3.08398e6i −1.64785 + 0.599769i −0.988386 0.151966i \(-0.951440\pi\)
−0.659466 + 0.751735i \(0.729217\pi\)
\(32\) −5.90275e6 4.95299e6i −0.995129 0.835012i
\(33\) 0 0
\(34\) −2.42859e7 8.83935e6i −3.11673 1.13440i
\(35\) 1.91975e6 + 3.32510e6i 0.216241 + 0.374540i
\(36\) 0 0
\(37\) 4.94997e6 8.57361e6i 0.434205 0.752066i −0.563025 0.826440i \(-0.690363\pi\)
0.997230 + 0.0743741i \(0.0236959\pi\)
\(38\) −1.13096e7 + 9.48988e6i −0.879875 + 0.738303i
\(39\) 0 0
\(40\) −3.81546e6 + 2.16386e7i −0.235655 + 1.33647i
\(41\) 6.02891e6 3.41916e7i 0.333205 1.88970i −0.111078 0.993812i \(-0.535430\pi\)
0.444283 0.895887i \(-0.353459\pi\)
\(42\) 0 0
\(43\) 745981. 625952.i 0.0332751 0.0279211i −0.625998 0.779824i \(-0.715308\pi\)
0.659274 + 0.751903i \(0.270864\pi\)
\(44\) 8.69483e6 1.50599e7i 0.349723 0.605738i
\(45\) 0 0
\(46\) 4.73627e7 + 8.20346e7i 1.55965 + 2.70139i
\(47\) 3.06202e7 + 1.11448e7i 0.915307 + 0.333145i 0.756370 0.654144i \(-0.226971\pi\)
0.158937 + 0.987289i \(0.449193\pi\)
\(48\) 0 0
\(49\) −1.31043e7 1.09958e7i −0.324738 0.272487i
\(50\) −5.10185e7 + 1.85692e7i −1.15442 + 0.420173i
\(51\) 0 0
\(52\) −1.43939e7 8.16316e7i −0.273000 1.54826i
\(53\) 3.52475e7 0.613602 0.306801 0.951774i \(-0.400741\pi\)
0.306801 + 0.951774i \(0.400741\pi\)
\(54\) 0 0
\(55\) −1.17123e7 −0.172588
\(56\) 2.31016e7 + 1.31016e8i 0.313903 + 1.78023i
\(57\) 0 0
\(58\) −8.56228e6 + 3.11641e6i −0.0993489 + 0.0361601i
\(59\) −7.09656e7 5.95472e7i −0.762454 0.639775i 0.176310 0.984335i \(-0.443584\pi\)
−0.938764 + 0.344559i \(0.888028\pi\)
\(60\) 0 0
\(61\) −8.27266e7 3.01100e7i −0.764999 0.278437i −0.0700959 0.997540i \(-0.522331\pi\)
−0.694903 + 0.719103i \(0.744553\pi\)
\(62\) 1.85579e8 + 3.21432e8i 1.59502 + 2.76266i
\(63\) 0 0
\(64\) −2.28034e7 + 3.94967e7i −0.169899 + 0.294273i
\(65\) −4.27673e7 + 3.58860e7i −0.297168 + 0.249353i
\(66\) 0 0
\(67\) −3.89948e7 + 2.21151e8i −0.236412 + 1.34076i 0.603206 + 0.797585i \(0.293890\pi\)
−0.839619 + 0.543176i \(0.817222\pi\)
\(68\) −1.28908e8 + 7.31071e8i −0.731119 + 4.14638i
\(69\) 0 0
\(70\) 1.21067e8 1.01588e8i 0.602678 0.505707i
\(71\) 1.79802e7 3.11427e7i 0.0839717 0.145443i −0.820981 0.570956i \(-0.806573\pi\)
0.904953 + 0.425512i \(0.139906\pi\)
\(72\) 0 0
\(73\) 7.80253e7 + 1.35144e8i 0.321575 + 0.556984i 0.980813 0.194950i \(-0.0624544\pi\)
−0.659238 + 0.751934i \(0.729121\pi\)
\(74\) −3.82928e8 1.39375e8i −1.48448 0.540307i
\(75\) 0 0
\(76\) 3.24853e8 + 2.72584e8i 1.11693 + 0.937215i
\(77\) −6.66382e7 + 2.42543e7i −0.216030 + 0.0786286i
\(78\) 0 0
\(79\) −1.32512e7 7.51515e7i −0.0382767 0.217078i 0.959670 0.281129i \(-0.0907090\pi\)
−0.997947 + 0.0640514i \(0.979598\pi\)
\(80\) 4.22375e8 1.15291
\(81\) 0 0
\(82\) −1.42912e9 −3.49064
\(83\) −1.07463e8 6.09454e8i −0.248547 1.40958i −0.812109 0.583505i \(-0.801681\pi\)
0.563562 0.826073i \(-0.309430\pi\)
\(84\) 0 0
\(85\) 4.69834e8 1.71006e8i 0.976247 0.355325i
\(86\) −3.07062e7 2.57656e7i −0.0605318 0.0507922i
\(87\) 0 0
\(88\) −3.81352e8 1.38801e8i −0.677882 0.246729i
\(89\) −1.99082e8 3.44820e8i −0.336339 0.582556i 0.647402 0.762148i \(-0.275855\pi\)
−0.983741 + 0.179593i \(0.942522\pi\)
\(90\) 0 0
\(91\) −1.69014e8 + 2.92741e8i −0.258367 + 0.447504i
\(92\) 2.08430e9 1.74893e9i 3.03330 2.54524i
\(93\) 0 0
\(94\) 2.32911e8 1.32091e9i 0.307691 1.74500i
\(95\) 4.95968e7 2.81277e8i 0.0624737 0.354306i
\(96\) 0 0
\(97\) −6.56060e8 + 5.50500e8i −0.752438 + 0.631371i −0.936147 0.351610i \(-0.885634\pi\)
0.183708 + 0.982981i \(0.441190\pi\)
\(98\) −3.52071e8 + 6.09804e8i −0.385578 + 0.667841i
\(99\) 0 0
\(100\) 7.79743e8 + 1.35055e9i 0.779743 + 1.35055i
\(101\) −1.27420e9 4.63770e8i −1.21840 0.443462i −0.348791 0.937201i \(-0.613408\pi\)
−0.869610 + 0.493739i \(0.835630\pi\)
\(102\) 0 0
\(103\) −1.56088e8 1.30973e8i −0.136648 0.114661i 0.571902 0.820322i \(-0.306206\pi\)
−0.708550 + 0.705661i \(0.750650\pi\)
\(104\) −1.81778e9 + 6.61618e8i −1.52367 + 0.554572i
\(105\) 0 0
\(106\) −2.51940e8 1.42882e9i −0.193830 1.09926i
\(107\) −5.27545e8 −0.389074 −0.194537 0.980895i \(-0.562320\pi\)
−0.194537 + 0.980895i \(0.562320\pi\)
\(108\) 0 0
\(109\) −1.19433e9 −0.810411 −0.405205 0.914226i \(-0.632800\pi\)
−0.405205 + 0.914226i \(0.632800\pi\)
\(110\) 8.37165e7 + 4.74780e8i 0.0545185 + 0.309190i
\(111\) 0 0
\(112\) 2.40314e9 8.74672e8i 1.44311 0.525248i
\(113\) −3.74659e8 3.14376e8i −0.216164 0.181383i 0.528276 0.849073i \(-0.322839\pi\)
−0.744440 + 0.667690i \(0.767283\pi\)
\(114\) 0 0
\(115\) −1.72204e9 6.26770e8i −0.918126 0.334171i
\(116\) 1.30862e8 + 2.26659e8i 0.0671046 + 0.116229i
\(117\) 0 0
\(118\) −1.90661e9 + 3.30235e9i −0.905303 + 1.56803i
\(119\) 2.31904e9 1.94590e9i 1.06010 0.889529i
\(120\) 0 0
\(121\) −3.71889e8 + 2.10909e9i −0.157717 + 0.894459i
\(122\) −6.29258e8 + 3.56870e9i −0.257163 + 1.45845i
\(123\) 0 0
\(124\) 8.16681e9 6.85277e9i 3.10209 2.60297i
\(125\) 1.30283e9 2.25657e9i 0.477302 0.826712i
\(126\) 0 0
\(127\) −9.80631e8 1.69850e9i −0.334494 0.579361i 0.648893 0.760879i \(-0.275232\pi\)
−0.983388 + 0.181518i \(0.941899\pi\)
\(128\) −1.94322e9 7.07274e8i −0.639848 0.232886i
\(129\) 0 0
\(130\) 1.76040e9 + 1.47715e9i 0.540587 + 0.453606i
\(131\) −2.66929e9 + 9.71542e8i −0.791908 + 0.288231i −0.706129 0.708083i \(-0.749560\pi\)
−0.0857791 + 0.996314i \(0.527338\pi\)
\(132\) 0 0
\(133\) −3.00296e8 1.70306e9i −0.0832178 0.471952i
\(134\) 9.24348e9 2.47665
\(135\) 0 0
\(136\) 1.73244e10 4.34242
\(137\) 1.07383e9 + 6.09000e9i 0.260432 + 1.47698i 0.781736 + 0.623610i \(0.214335\pi\)
−0.521304 + 0.853371i \(0.674554\pi\)
\(138\) 0 0
\(139\) −3.79593e8 + 1.38160e8i −0.0862484 + 0.0313919i −0.384784 0.923007i \(-0.625724\pi\)
0.298536 + 0.954399i \(0.403502\pi\)
\(140\) −3.47749e9 2.91796e9i −0.765051 0.641954i
\(141\) 0 0
\(142\) −1.39095e9 5.06263e8i −0.287086 0.104491i
\(143\) −5.15574e8 8.93000e8i −0.103105 0.178583i
\(144\) 0 0
\(145\) 8.81381e7 1.52660e8i 0.0165580 0.0286793i
\(146\) 4.92060e9 4.12887e9i 0.896252 0.752045i
\(147\) 0 0
\(148\) −2.03255e9 + 1.15272e10i −0.348228 + 1.97490i
\(149\) 1.45367e9 8.24418e9i 0.241617 1.37028i −0.586602 0.809876i \(-0.699535\pi\)
0.828219 0.560404i \(-0.189354\pi\)
\(150\) 0 0
\(151\) −2.19866e9 + 1.84490e9i −0.344161 + 0.288786i −0.798440 0.602074i \(-0.794341\pi\)
0.454279 + 0.890859i \(0.349897\pi\)
\(152\) 4.94825e9 8.57062e9i 0.751892 1.30232i
\(153\) 0 0
\(154\) 1.45951e9 + 2.52794e9i 0.209104 + 0.362179i
\(155\) −6.74738e9 2.45584e9i −0.938950 0.341750i
\(156\) 0 0
\(157\) −9.24618e9 7.75847e9i −1.21455 1.01913i −0.999092 0.0426115i \(-0.986432\pi\)
−0.215455 0.976514i \(-0.569123\pi\)
\(158\) −2.95169e9 + 1.07433e9i −0.376803 + 0.137145i
\(159\) 0 0
\(160\) −1.06552e9 6.04284e9i −0.128535 0.728956i
\(161\) −1.10956e10 −1.30147
\(162\) 0 0
\(163\) 2.45692e9 0.272613 0.136306 0.990667i \(-0.456477\pi\)
0.136306 + 0.990667i \(0.456477\pi\)
\(164\) 7.12816e9 + 4.04258e10i 0.769449 + 4.36376i
\(165\) 0 0
\(166\) −2.39372e10 + 8.71244e9i −2.44674 + 0.890540i
\(167\) −2.10568e9 1.76688e9i −0.209492 0.175785i 0.532004 0.846742i \(-0.321439\pi\)
−0.741496 + 0.670957i \(0.765884\pi\)
\(168\) 0 0
\(169\) 5.34624e9 + 1.94587e9i 0.504148 + 0.183495i
\(170\) −1.02903e10 1.78233e10i −0.944948 1.63670i
\(171\) 0 0
\(172\) −5.75681e8 + 9.97110e8i −0.0501538 + 0.0868690i
\(173\) 8.22330e8 6.90017e8i 0.0697973 0.0585669i −0.607222 0.794533i \(-0.707716\pi\)
0.677019 + 0.735966i \(0.263272\pi\)
\(174\) 0 0
\(175\) 1.10433e9 6.26295e9i 0.0890075 0.504786i
\(176\) −1.35467e9 + 7.68269e9i −0.106420 + 0.603540i
\(177\) 0 0
\(178\) −1.25549e10 + 1.05349e10i −0.937400 + 0.786572i
\(179\) 1.00514e9 1.74096e9i 0.0731793 0.126750i −0.827114 0.562035i \(-0.810019\pi\)
0.900293 + 0.435284i \(0.143352\pi\)
\(180\) 0 0
\(181\) 1.23846e9 + 2.14507e9i 0.0857683 + 0.148555i 0.905718 0.423880i \(-0.139332\pi\)
−0.819950 + 0.572435i \(0.805999\pi\)
\(182\) 1.30749e10 + 4.75887e9i 0.883317 + 0.321501i
\(183\) 0 0
\(184\) −4.86417e10 4.08152e10i −3.12845 2.62508i
\(185\) 7.40812e9 2.69634e9i 0.464981 0.169239i
\(186\) 0 0
\(187\) 1.60359e9 + 9.09439e9i 0.0958970 + 0.543859i
\(188\) −3.85266e10 −2.24931
\(189\) 0 0
\(190\) −1.17566e10 −0.654472
\(191\) −1.85354e9 1.05119e10i −0.100775 0.571521i −0.992824 0.119584i \(-0.961844\pi\)
0.892049 0.451938i \(-0.149267\pi\)
\(192\) 0 0
\(193\) 1.43013e10 5.20525e9i 0.741939 0.270044i 0.0567293 0.998390i \(-0.481933\pi\)
0.685210 + 0.728346i \(0.259711\pi\)
\(194\) 2.70049e10 + 2.26598e10i 1.36878 + 1.14855i
\(195\) 0 0
\(196\) 1.90058e10 + 6.91753e9i 0.919884 + 0.334810i
\(197\) −7.06195e9 1.22317e10i −0.334062 0.578612i 0.649242 0.760581i \(-0.275086\pi\)
−0.983304 + 0.181970i \(0.941753\pi\)
\(198\) 0 0
\(199\) 1.85850e10 3.21902e10i 0.840088 1.45507i −0.0497323 0.998763i \(-0.515837\pi\)
0.889820 0.456312i \(-0.150830\pi\)
\(200\) 2.78795e10 2.33936e10i 1.23211 1.03386i
\(201\) 0 0
\(202\) −9.69214e9 + 5.49669e10i −0.409580 + 2.32284i
\(203\) 1.85336e8 1.05109e9i 0.00765997 0.0434418i
\(204\) 0 0
\(205\) 2.11793e10 1.77715e10i 0.837567 0.702802i
\(206\) −4.19358e9 + 7.26349e9i −0.162249 + 0.281024i
\(207\) 0 0
\(208\) 1.85929e10 + 3.22039e10i 0.688751 + 1.19295i
\(209\) 4.95716e9 + 1.80426e9i 0.179711 + 0.0654094i
\(210\) 0 0
\(211\) 1.26584e10 + 1.06217e10i 0.439651 + 0.368911i 0.835579 0.549371i \(-0.185133\pi\)
−0.395928 + 0.918282i \(0.629577\pi\)
\(212\) −3.91609e10 + 1.42534e10i −1.33150 + 0.484626i
\(213\) 0 0
\(214\) 3.77076e9 + 2.13850e10i 0.122904 + 0.697024i
\(215\) 7.75466e8 0.0247508
\(216\) 0 0
\(217\) −4.34755e10 −1.33099
\(218\) 8.53677e9 + 4.84144e10i 0.256000 + 1.45185i
\(219\) 0 0
\(220\) 1.30127e10 4.73623e9i 0.374511 0.136311i
\(221\) 3.37203e10 + 2.82947e10i 0.950882 + 0.797885i
\(222\) 0 0
\(223\) 2.84518e10 + 1.03556e10i 0.770439 + 0.280417i 0.697180 0.716896i \(-0.254438\pi\)
0.0732588 + 0.997313i \(0.476660\pi\)
\(224\) −1.85761e10 3.21748e10i −0.492991 0.853885i
\(225\) 0 0
\(226\) −1.00659e10 + 1.74346e10i −0.256663 + 0.444553i
\(227\) −3.81651e10 + 3.20243e10i −0.954003 + 0.800503i −0.979967 0.199160i \(-0.936179\pi\)
0.0259645 + 0.999663i \(0.491734\pi\)
\(228\) 0 0
\(229\) −1.88665e9 + 1.06998e10i −0.0453349 + 0.257107i −0.999049 0.0436088i \(-0.986114\pi\)
0.953714 + 0.300716i \(0.0972256\pi\)
\(230\) −1.30986e10 + 7.42861e10i −0.308639 + 1.75038i
\(231\) 0 0
\(232\) 4.67892e9 3.92608e9i 0.106035 0.0889741i
\(233\) −6.88739e9 + 1.19293e10i −0.153092 + 0.265164i −0.932363 0.361524i \(-0.882256\pi\)
0.779270 + 0.626688i \(0.215590\pi\)
\(234\) 0 0
\(235\) 1.29742e10 + 2.24720e10i 0.277508 + 0.480658i
\(236\) 1.02924e11 + 3.74614e10i 2.15980 + 0.786104i
\(237\) 0 0
\(238\) −9.54568e10 8.00978e10i −1.92846 1.61817i
\(239\) 5.98955e10 2.18002e10i 1.18742 0.432185i 0.328602 0.944469i \(-0.393423\pi\)
0.858816 + 0.512284i \(0.171200\pi\)
\(240\) 0 0
\(241\) −5.53987e9 3.14182e10i −0.105785 0.599935i −0.990904 0.134571i \(-0.957034\pi\)
0.885119 0.465364i \(-0.154077\pi\)
\(242\) 8.81540e10 1.65224
\(243\) 0 0
\(244\) 1.04087e11 1.87994
\(245\) −2.36549e9 1.34153e10i −0.0419443 0.237878i
\(246\) 0 0
\(247\) 2.36292e10 8.60031e9i 0.403936 0.147021i
\(248\) −1.90591e11 1.59924e11i −3.19940 2.68462i
\(249\) 0 0
\(250\) −1.00787e11 3.66834e10i −1.63182 0.593935i
\(251\) −5.75801e9 9.97317e9i −0.0915674 0.158599i 0.816603 0.577199i \(-0.195854\pi\)
−0.908171 + 0.418600i \(0.862521\pi\)
\(252\) 0 0
\(253\) 1.69235e10 2.93124e10i 0.259686 0.449789i
\(254\) −6.18427e10 + 5.18922e10i −0.932259 + 0.782258i
\(255\) 0 0
\(256\) −1.88359e10 + 1.06823e11i −0.274098 + 1.55449i
\(257\) 1.22925e10 6.97140e10i 0.175768 0.996830i −0.761486 0.648182i \(-0.775530\pi\)
0.937254 0.348648i \(-0.113359\pi\)
\(258\) 0 0
\(259\) 3.65655e10 3.06821e10i 0.504920 0.423678i
\(260\) 3.30040e10 5.71646e10i 0.447905 0.775795i
\(261\) 0 0
\(262\) 5.84627e10 + 1.01260e11i 0.766519 + 1.32765i
\(263\) 2.74165e10 + 9.97877e9i 0.353354 + 0.128610i 0.512598 0.858629i \(-0.328683\pi\)
−0.159243 + 0.987239i \(0.550905\pi\)
\(264\) 0 0
\(265\) 2.15016e10 + 1.80420e10i 0.267833 + 0.224739i
\(266\) −6.68903e10 + 2.43461e10i −0.819212 + 0.298169i
\(267\) 0 0
\(268\) −4.61047e10 2.61473e11i −0.545932 3.09614i
\(269\) 4.39248e10 0.511475 0.255738 0.966746i \(-0.417682\pi\)
0.255738 + 0.966746i \(0.417682\pi\)
\(270\) 0 0
\(271\) 1.35029e11 1.52078 0.760390 0.649467i \(-0.225008\pi\)
0.760390 + 0.649467i \(0.225008\pi\)
\(272\) −5.78294e10 3.27967e11i −0.640603 3.63304i
\(273\) 0 0
\(274\) 2.39194e11 8.70596e10i 2.56374 0.933124i
\(275\) 1.48611e10 + 1.24699e10i 0.156694 + 0.131482i
\(276\) 0 0
\(277\) 8.87735e10 + 3.23109e10i 0.905992 + 0.329754i 0.752651 0.658419i \(-0.228775\pi\)
0.153341 + 0.988173i \(0.450997\pi\)
\(278\) 8.31383e9 + 1.44000e10i 0.0834833 + 0.144597i
\(279\) 0 0
\(280\) −5.29702e10 + 9.17470e10i −0.515015 + 0.892033i
\(281\) −3.60036e10 + 3.02106e10i −0.344483 + 0.289056i −0.798570 0.601902i \(-0.794410\pi\)
0.454087 + 0.890957i \(0.349965\pi\)
\(282\) 0 0
\(283\) −2.69725e10 + 1.52969e11i −0.249967 + 1.41763i 0.558702 + 0.829368i \(0.311299\pi\)
−0.808669 + 0.588264i \(0.799812\pi\)
\(284\) −7.38302e9 + 4.18712e10i −0.0673444 + 0.381929i
\(285\) 0 0
\(286\) −3.25143e10 + 2.72827e10i −0.287360 + 0.241124i
\(287\) 8.36995e10 1.44972e11i 0.728206 1.26129i
\(288\) 0 0
\(289\) −1.37816e11 2.38705e11i −1.16214 2.01289i
\(290\) −6.81834e9 2.48167e9i −0.0566093 0.0206041i
\(291\) 0 0
\(292\) −1.41338e11 1.18596e11i −1.13772 0.954659i
\(293\) −1.65217e11 + 6.01339e10i −1.30963 + 0.476667i −0.900122 0.435638i \(-0.856523\pi\)
−0.409510 + 0.912305i \(0.634300\pi\)
\(294\) 0 0
\(295\) −1.28101e10 7.26499e10i −0.0984815 0.558516i
\(296\) 2.73162e11 2.06827
\(297\) 0 0
\(298\) −3.44584e11 −2.53117
\(299\) −2.80160e10 1.58887e11i −0.202715 1.14965i
\(300\) 0 0
\(301\) 4.41209e9 1.60587e9i 0.0309809 0.0112761i
\(302\) 9.05018e10 + 7.59400e10i 0.626075 + 0.525339i
\(303\) 0 0
\(304\) −1.78768e11 6.50661e10i −1.20049 0.436942i
\(305\) −3.50525e10 6.07127e10i −0.231937 0.401726i
\(306\) 0 0
\(307\) −1.29034e11 + 2.23494e11i −0.829054 + 1.43596i 0.0697274 + 0.997566i \(0.477787\pi\)
−0.898781 + 0.438397i \(0.855546\pi\)
\(308\) 6.42288e10 5.38944e10i 0.406679 0.341244i
\(309\) 0 0
\(310\) −5.13238e10 + 2.91071e11i −0.315639 + 1.79008i
\(311\) −1.72714e10 + 9.79512e10i −0.104690 + 0.593729i 0.886653 + 0.462435i \(0.153024\pi\)
−0.991344 + 0.131294i \(0.958087\pi\)
\(312\) 0 0
\(313\) 1.92171e11 1.61251e11i 1.13172 0.949627i 0.132584 0.991172i \(-0.457672\pi\)
0.999137 + 0.0415451i \(0.0132280\pi\)
\(314\) −2.48415e11 + 4.30267e11i −1.44210 + 2.49778i
\(315\) 0 0
\(316\) 4.51123e10 + 7.81367e10i 0.254509 + 0.440822i
\(317\) 1.25214e9 + 4.55743e8i 0.00696446 + 0.00253486i 0.345500 0.938419i \(-0.387709\pi\)
−0.338536 + 0.940954i \(0.609932\pi\)
\(318\) 0 0
\(319\) 2.49408e9 + 2.09278e9i 0.0134851 + 0.0113153i
\(320\) −3.41276e10 + 1.24214e10i −0.181941 + 0.0662211i
\(321\) 0 0
\(322\) 7.93088e10 + 4.49782e11i 0.411121 + 2.33158i
\(323\) −2.25198e11 −1.15120
\(324\) 0 0
\(325\) 9.24722e10 0.459765
\(326\) −1.75614e10 9.95958e10i −0.0861154 0.488385i
\(327\) 0 0
\(328\) 9.00206e11 3.27648e11i 4.29447 1.56306i
\(329\) 1.20354e11 + 1.00989e11i 0.566342 + 0.475217i
\(330\) 0 0
\(331\) 9.39293e10 + 3.41875e10i 0.430105 + 0.156546i 0.547996 0.836481i \(-0.315391\pi\)
−0.117890 + 0.993027i \(0.537613\pi\)
\(332\) 3.65846e11 + 6.33663e11i 1.65263 + 2.86245i
\(333\) 0 0
\(334\) −5.65728e10 + 9.79869e10i −0.248742 + 0.430833i
\(335\) −1.36987e11 + 1.14946e11i −0.594263 + 0.498645i
\(336\) 0 0
\(337\) 3.50356e10 1.98697e11i 0.147970 0.839182i −0.816964 0.576689i \(-0.804344\pi\)
0.964934 0.262493i \(-0.0845445\pi\)
\(338\) 4.06660e10 2.30629e11i 0.169475 0.961143i
\(339\) 0 0
\(340\) −4.52847e11 + 3.79984e11i −1.83779 + 1.54209i
\(341\) 6.63105e10 1.14853e11i 0.265575 0.459990i
\(342\) 0 0
\(343\) −1.38523e11 2.39928e11i −0.540378 0.935962i
\(344\) 2.52492e10 + 9.18994e9i 0.0972151 + 0.0353834i
\(345\) 0 0
\(346\) −3.38490e10 2.84026e10i −0.126970 0.106541i
\(347\) 3.25761e11 1.18567e11i 1.20619 0.439018i 0.340811 0.940132i \(-0.389298\pi\)
0.865381 + 0.501114i \(0.167076\pi\)
\(348\) 0 0
\(349\) 3.72094e10 + 2.11025e11i 0.134257 + 0.761411i 0.975374 + 0.220557i \(0.0707876\pi\)
−0.841117 + 0.540854i \(0.818101\pi\)
\(350\) −2.61774e11 −0.932438
\(351\) 0 0
\(352\) 1.13332e11 0.393469
\(353\) 3.27725e10 + 1.85862e11i 0.112337 + 0.637096i 0.988034 + 0.154235i \(0.0492912\pi\)
−0.875697 + 0.482861i \(0.839598\pi\)
\(354\) 0 0
\(355\) 2.69092e10 9.79414e9i 0.0899234 0.0327295i
\(356\) 3.60624e11 + 3.02599e11i 1.18995 + 0.998489i
\(357\) 0 0
\(358\) −7.77574e10 2.83014e10i −0.250189 0.0910614i
\(359\) −2.94795e11 5.10600e11i −0.936688 1.62239i −0.771596 0.636113i \(-0.780541\pi\)
−0.165093 0.986278i \(-0.552792\pi\)
\(360\) 0 0
\(361\) 9.70220e10 1.68047e11i 0.300669 0.520773i
\(362\) 7.81022e10 6.55355e10i 0.239042 0.200580i
\(363\) 0 0
\(364\) 6.94004e10 3.93589e11i 0.207208 1.17513i
\(365\) −2.15787e10 + 1.22379e11i −0.0636366 + 0.360901i
\(366\) 0 0
\(367\) 1.05932e11 8.88876e10i 0.304811 0.255767i −0.477532 0.878614i \(-0.658469\pi\)
0.782343 + 0.622847i \(0.214024\pi\)
\(368\) −6.10304e11 + 1.05708e12i −1.73473 + 3.00464i
\(369\) 0 0
\(370\) −1.62252e11 2.81029e11i −0.450074 0.779550i
\(371\) 1.59698e11 + 5.81252e10i 0.437639 + 0.159287i
\(372\) 0 0
\(373\) −2.03146e11 1.70460e11i −0.543399 0.455966i 0.329299 0.944226i \(-0.393188\pi\)
−0.872699 + 0.488259i \(0.837632\pi\)
\(374\) 3.57196e11 1.30009e11i 0.944028 0.343598i
\(375\) 0 0
\(376\) 1.56127e11 + 8.85443e11i 0.402841 + 2.28463i
\(377\) 1.55193e10 0.0395673
\(378\) 0 0
\(379\) −7.58515e11 −1.88837 −0.944186 0.329413i \(-0.893149\pi\)
−0.944186 + 0.329413i \(0.893149\pi\)
\(380\) 5.86398e10 + 3.32563e11i 0.144267 + 0.818177i
\(381\) 0 0
\(382\) −4.12873e11 + 1.50273e11i −0.992044 + 0.361074i
\(383\) −6.74536e10 5.66003e10i −0.160181 0.134408i 0.559174 0.829050i \(-0.311118\pi\)
−0.719355 + 0.694642i \(0.755563\pi\)
\(384\) 0 0
\(385\) −5.30655e10 1.93143e10i −0.123095 0.0448028i
\(386\) −3.13227e11 5.42525e11i −0.718152 1.24388i
\(387\) 0 0
\(388\) 5.06289e11 8.76918e11i 1.13411 1.96434i
\(389\) −4.64860e11 + 3.90064e11i −1.02932 + 0.863700i −0.990770 0.135557i \(-0.956718\pi\)
−0.0385478 + 0.999257i \(0.512273\pi\)
\(390\) 0 0
\(391\) −2.50904e11 + 1.42295e12i −0.542890 + 3.07888i
\(392\) 8.19632e10 4.64836e11i 0.175320 0.994289i
\(393\) 0 0
\(394\) −4.45356e11 + 3.73698e11i −0.931053 + 0.781247i
\(395\) 3.03840e10 5.26267e10i 0.0627998 0.108772i
\(396\) 0 0
\(397\) −2.20373e10 3.81697e10i −0.0445246 0.0771189i 0.842904 0.538064i \(-0.180844\pi\)
−0.887429 + 0.460945i \(0.847511\pi\)
\(398\) −1.43773e12 5.23292e11i −2.87213 1.04537i
\(399\) 0 0
\(400\) −5.35927e11 4.49697e11i −1.04673 0.878314i
\(401\) 5.04373e11 1.83577e11i 0.974096 0.354542i 0.194554 0.980892i \(-0.437674\pi\)
0.779542 + 0.626350i \(0.215452\pi\)
\(402\) 0 0
\(403\) −1.09774e11 6.22558e11i −0.207313 1.17573i
\(404\) 1.60321e12 2.99415
\(405\) 0 0
\(406\) −4.39327e10 −0.0802455
\(407\) 2.52846e10 + 1.43396e11i 0.0456752 + 0.259037i
\(408\) 0 0
\(409\) −1.01606e12 + 3.69816e11i −1.79541 + 0.653477i −0.796614 + 0.604489i \(0.793378\pi\)
−0.998799 + 0.0489884i \(0.984400\pi\)
\(410\) −8.71788e11 7.31517e11i −1.52364 1.27849i
\(411\) 0 0
\(412\) 2.26381e11 + 8.23960e10i 0.387082 + 0.140886i
\(413\) −2.23331e11 3.86820e11i −0.377723 0.654235i
\(414\) 0 0
\(415\) 2.46405e11 4.26785e11i 0.407786 0.706306i
\(416\) 4.13831e11 3.47245e11i 0.677490 0.568481i
\(417\) 0 0
\(418\) 3.77065e10 2.13844e11i 0.0604119 0.342613i
\(419\) 7.68804e10 4.36011e11i 0.121858 0.691089i −0.861267 0.508153i \(-0.830329\pi\)
0.983125 0.182936i \(-0.0585603\pi\)
\(420\) 0 0
\(421\) 3.12954e11 2.62599e11i 0.485524 0.407403i −0.366895 0.930262i \(-0.619579\pi\)
0.852419 + 0.522859i \(0.175135\pi\)
\(422\) 3.40090e11 5.89053e11i 0.522021 0.904167i
\(423\) 0 0
\(424\) 4.86279e11 + 8.42260e11i 0.730700 + 1.26561i
\(425\) −7.78213e11 2.83246e11i −1.15704 0.421128i
\(426\) 0 0
\(427\) −3.25160e11 2.72842e11i −0.473339 0.397179i
\(428\) 5.86116e11 2.13329e11i 0.844280 0.307293i
\(429\) 0 0
\(430\) −5.54284e9 3.14350e10i −0.00781851 0.0443410i
\(431\) −5.82971e11 −0.813765 −0.406882 0.913481i \(-0.633384\pi\)
−0.406882 + 0.913481i \(0.633384\pi\)
\(432\) 0 0
\(433\) −1.16880e11 −0.159788 −0.0798941 0.996803i \(-0.525458\pi\)
−0.0798941 + 0.996803i \(0.525458\pi\)
\(434\) 3.10752e11 + 1.76236e12i 0.420446 + 2.38447i
\(435\) 0 0
\(436\) 1.32693e12 4.82964e11i 1.75857 0.640067i
\(437\) 6.32289e11 + 5.30553e11i 0.829371 + 0.695925i
\(438\) 0 0
\(439\) 5.71311e11 + 2.07940e11i 0.734145 + 0.267207i 0.681918 0.731428i \(-0.261146\pi\)
0.0522269 + 0.998635i \(0.483368\pi\)
\(440\) −1.61584e11 2.79872e11i −0.205524 0.355978i
\(441\) 0 0
\(442\) 9.05956e11 1.56916e12i 1.12903 1.95554i
\(443\) 5.52540e11 4.63636e11i 0.681628 0.571954i −0.234854 0.972031i \(-0.575461\pi\)
0.916481 + 0.400077i \(0.131017\pi\)
\(444\) 0 0
\(445\) 5.50582e10 3.12250e11i 0.0665582 0.377470i
\(446\) 2.16418e11 1.22737e12i 0.258992 1.46882i
\(447\) 0 0
\(448\) −1.68449e11 + 1.41346e11i −0.197568 + 0.165780i
\(449\) −1.42233e11 + 2.46354e11i −0.165155 + 0.286056i −0.936710 0.350106i \(-0.886146\pi\)
0.771556 + 0.636162i \(0.219479\pi\)
\(450\) 0 0
\(451\) 2.55324e11 + 4.42233e11i 0.290601 + 0.503335i
\(452\) 5.43384e11 + 1.97776e11i 0.612328 + 0.222869i
\(453\) 0 0
\(454\) 1.57096e12 + 1.31819e12i 1.73546 + 1.45622i
\(455\) −2.52946e11 + 9.20649e10i −0.276679 + 0.100703i
\(456\) 0 0
\(457\) 2.06323e11 + 1.17011e12i 0.221271 + 1.25489i 0.869688 + 0.493603i \(0.164320\pi\)
−0.648417 + 0.761285i \(0.724569\pi\)
\(458\) 4.47220e11 0.474927
\(459\) 0 0
\(460\) 2.16668e12 2.25624
\(461\) 2.17478e11 + 1.23338e12i 0.224265 + 1.27187i 0.864085 + 0.503346i \(0.167898\pi\)
−0.639820 + 0.768525i \(0.720991\pi\)
\(462\) 0 0
\(463\) 1.83754e11 6.68811e10i 0.185833 0.0676377i −0.247428 0.968906i \(-0.579585\pi\)
0.433261 + 0.901269i \(0.357363\pi\)
\(464\) −8.99430e10 7.54712e10i −0.0900817 0.0755875i
\(465\) 0 0
\(466\) 5.32807e11 + 1.93926e11i 0.523399 + 0.190502i
\(467\) −7.42753e10 1.28649e11i −0.0722634 0.125164i 0.827630 0.561275i \(-0.189689\pi\)
−0.899893 + 0.436111i \(0.856356\pi\)
\(468\) 0 0
\(469\) −5.41366e11 + 9.37674e11i −0.516670 + 0.894899i
\(470\) 8.18208e11 6.86558e11i 0.773434 0.648989i
\(471\) 0 0
\(472\) 4.43866e11 2.51729e12i 0.411635 2.33450i
\(473\) −2.48712e9 + 1.41051e10i −0.00228466 + 0.0129569i
\(474\) 0 0
\(475\) −3.62402e11 + 3.04092e11i −0.326640 + 0.274084i
\(476\) −1.78963e12 + 3.09973e12i −1.59783 + 2.76753i
\(477\) 0 0
\(478\) −1.31183e12 2.27215e12i −1.14935 1.99073i
\(479\) −3.91658e11 1.42552e11i −0.339936 0.123727i 0.166411 0.986057i \(-0.446782\pi\)
−0.506347 + 0.862330i \(0.669004\pi\)
\(480\) 0 0
\(481\) 5.31686e11 + 4.46138e11i 0.452900 + 0.380028i
\(482\) −1.23400e12 + 4.49139e11i −1.04136 + 0.379026i
\(483\) 0 0
\(484\) −4.39695e11 2.49364e12i −0.364207 2.06552i
\(485\) −6.81992e11 −0.559682
\(486\) 0 0
\(487\) 8.13106e11 0.655038 0.327519 0.944845i \(-0.393787\pi\)
0.327519 + 0.944845i \(0.393787\pi\)
\(488\) −4.21810e11 2.39220e12i −0.336688 1.90945i
\(489\) 0 0
\(490\) −5.26908e11 + 1.91779e11i −0.412908 + 0.150286i
\(491\) 7.40724e11 + 6.21541e11i 0.575161 + 0.482618i 0.883354 0.468706i \(-0.155280\pi\)
−0.308193 + 0.951324i \(0.599724\pi\)
\(492\) 0 0
\(493\) −1.30605e11 4.75363e10i −0.0995746 0.0362422i
\(494\) −5.17525e11 8.96380e11i −0.390985 0.677206i
\(495\) 0 0
\(496\) −2.39133e12 + 4.14190e12i −1.77407 + 3.07278i
\(497\) 1.32820e11 1.11449e11i 0.0976472 0.0819358i
\(498\) 0 0
\(499\) 8.23566e10 4.67068e11i 0.0594629 0.337231i −0.940534 0.339699i \(-0.889675\pi\)
0.999997 + 0.00246860i \(0.000785780\pi\)
\(500\) −5.34967e11 + 3.03395e12i −0.382792 + 2.17092i
\(501\) 0 0
\(502\) −3.63125e11 + 3.04698e11i −0.255205 + 0.214142i
\(503\) 3.26449e11 5.65427e11i 0.227384 0.393840i −0.729648 0.683823i \(-0.760316\pi\)
0.957032 + 0.289982i \(0.0936495\pi\)
\(504\) 0 0
\(505\) −5.39896e11 9.35127e11i −0.369402 0.639823i
\(506\) −1.30920e12 4.76509e11i −0.887825 0.323142i
\(507\) 0 0
\(508\) 1.77635e12 + 1.49053e12i 1.18343 + 0.993013i
\(509\) 2.59505e12 9.44520e11i 1.71362 0.623708i 0.716367 0.697724i \(-0.245804\pi\)
0.997257 + 0.0740162i \(0.0235816\pi\)
\(510\) 0 0
\(511\) 1.30653e11 + 7.40971e11i 0.0847668 + 0.480737i
\(512\) 3.40614e12 2.19052
\(513\) 0 0
\(514\) −2.91385e12 −1.84134
\(515\) −2.81757e10 1.59793e11i −0.0176499 0.100098i
\(516\) 0 0
\(517\) −4.50360e11 + 1.63918e11i −0.277238 + 0.100906i
\(518\) −1.50512e12 1.26294e12i −0.918515 0.770726i
\(519\) 0 0
\(520\) −1.44754e12 5.26862e11i −0.868193 0.315996i
\(521\) 8.13033e11 + 1.40821e12i 0.483436 + 0.837335i 0.999819 0.0190225i \(-0.00605542\pi\)
−0.516384 + 0.856357i \(0.672722\pi\)
\(522\) 0 0
\(523\) −1.51821e12 + 2.62962e12i −0.887310 + 1.53687i −0.0442670 + 0.999020i \(0.514095\pi\)
−0.843043 + 0.537846i \(0.819238\pi\)
\(524\) 2.57278e12 2.15882e12i 1.49077 1.25091i
\(525\) 0 0
\(526\) 2.08543e11 1.18270e12i 0.118784 0.673659i
\(527\) −9.83104e11 + 5.57546e12i −0.555203 + 3.14871i
\(528\) 0 0
\(529\) 2.67709e12 2.24634e12i 1.48632 1.24717i
\(530\) 5.77679e11 1.00057e12i 0.318013 0.550815i
\(531\) 0 0
\(532\) 1.02232e12 + 1.77071e12i 0.553331 + 0.958397i
\(533\) 2.28730e12 + 8.32508e11i 1.22758 + 0.446803i
\(534\) 0 0
\(535\) −3.21812e11 2.70032e11i −0.169828 0.142503i
\(536\) −5.82251e12 + 2.11922e12i −3.04697 + 1.10901i
\(537\) 0 0
\(538\) −3.13963e11 1.78058e12i −0.161569 0.916305i
\(539\) 2.51602e11 0.128400
\(540\) 0 0
\(541\) −1.58146e12 −0.793726 −0.396863 0.917878i \(-0.629901\pi\)
−0.396863 + 0.917878i \(0.629901\pi\)
\(542\) −9.65155e11 5.47367e12i −0.480397 2.72447i
\(543\) 0 0
\(544\) −4.54627e12 + 1.65471e12i −2.22567 + 0.810077i
\(545\) −7.28564e11 6.11338e11i −0.353739 0.296823i
\(546\) 0 0
\(547\) 1.15222e12 + 4.19374e11i 0.550292 + 0.200290i 0.602176 0.798363i \(-0.294300\pi\)
−0.0518842 + 0.998653i \(0.516523\pi\)
\(548\) −3.65573e12 6.33192e12i −1.73166 2.99932i
\(549\) 0 0
\(550\) 3.99268e11 6.91552e11i 0.186051 0.322250i
\(551\) −6.08209e10 + 5.10348e10i −0.0281106 + 0.0235876i
\(552\) 0 0
\(553\) 6.38912e10 3.62345e11i 0.0290521 0.164763i
\(554\) 6.75253e11 3.82955e12i 0.304560 1.72725i
\(555\) 0 0
\(556\) 3.65868e11 3.07000e11i 0.162363 0.136239i
\(557\) 1.21100e11 2.09751e11i 0.0533083 0.0923327i −0.838140 0.545455i \(-0.816357\pi\)
0.891448 + 0.453123i \(0.149690\pi\)
\(558\) 0 0
\(559\) 3.41360e10 + 5.91252e10i 0.0147863 + 0.0256106i
\(560\) 1.91368e12 + 6.96522e11i 0.822286 + 0.299288i
\(561\) 0 0
\(562\) 1.48199e12 + 1.24354e12i 0.626660 + 0.525830i
\(563\) −1.16668e12 + 4.24637e11i −0.489401 + 0.178127i −0.574921 0.818209i \(-0.694967\pi\)
0.0855200 + 0.996336i \(0.472745\pi\)
\(564\) 0 0
\(565\) −6.76304e10 3.83551e11i −0.0279205 0.158345i
\(566\) 6.39367e12 2.61864
\(567\) 0 0
\(568\) 9.92231e11 0.399986
\(569\) −1.46981e11 8.33569e11i −0.0587835 0.333378i 0.941207 0.337832i \(-0.109693\pi\)
−0.999990 + 0.00445380i \(0.998582\pi\)
\(570\) 0 0
\(571\) −2.22536e12 + 8.09964e11i −0.876068 + 0.318862i −0.740622 0.671922i \(-0.765469\pi\)
−0.135446 + 0.990785i \(0.543247\pi\)
\(572\) 9.33929e11 + 7.83659e11i 0.364780 + 0.306087i
\(573\) 0 0
\(574\) −6.47497e12 2.35670e12i −2.48963 0.906150i
\(575\) 1.51768e12 + 2.62870e12i 0.578995 + 1.00285i
\(576\) 0 0
\(577\) 1.15852e12 2.00661e12i 0.435122 0.753653i −0.562184 0.827012i \(-0.690039\pi\)
0.997306 + 0.0733595i \(0.0233720\pi\)
\(578\) −8.69127e12 + 7.29284e12i −3.23898 + 2.71783i
\(579\) 0 0
\(580\) −3.61912e10 + 2.05250e11i −0.0132793 + 0.0753109i
\(581\) 5.18136e11 2.93850e12i 0.188648 1.06987i
\(582\) 0 0
\(583\) −3.97132e11 + 3.33233e11i −0.142372 + 0.119465i
\(584\) −2.15289e12 + 3.72892e12i −0.765887 + 1.32656i
\(585\) 0 0
\(586\) 3.61857e12 + 6.26754e12i 1.26764 + 2.19562i
\(587\) 3.32608e12 + 1.21060e12i 1.15628 + 0.420850i 0.847766 0.530370i \(-0.177947\pi\)
0.308511 + 0.951221i \(0.400169\pi\)
\(588\) 0 0
\(589\) 2.47747e12 + 2.07884e12i 0.848182 + 0.711709i
\(590\) −2.85344e12 + 1.03857e12i −0.969469 + 0.352858i
\(591\) 0 0
\(592\) −9.11827e11 5.17123e12i −0.305116 1.73040i
\(593\) −3.05373e12 −1.01411 −0.507055 0.861914i \(-0.669266\pi\)
−0.507055 + 0.861914i \(0.669266\pi\)
\(594\) 0 0
\(595\) 2.41070e12 0.788528
\(596\) 1.71872e12 + 9.74734e12i 0.557952 + 3.16430i
\(597\) 0 0
\(598\) −6.24052e12 + 2.27136e12i −1.99556 + 0.726325i
\(599\) 3.81742e12 + 3.20319e12i 1.21157 + 1.01663i 0.999222 + 0.0394356i \(0.0125560\pi\)
0.212350 + 0.977194i \(0.431888\pi\)
\(600\) 0 0
\(601\) −1.37297e12 4.99720e11i −0.429265 0.156240i 0.118347 0.992972i \(-0.462241\pi\)
−0.547612 + 0.836733i \(0.684463\pi\)
\(602\) −9.66334e10 1.67374e11i −0.0299877 0.0519402i
\(603\) 0 0
\(604\) 1.69673e12 2.93882e12i 0.518736 0.898478i
\(605\) −1.30643e12 + 1.09623e12i −0.396449 + 0.332660i
\(606\) 0 0
\(607\) 4.76637e11 2.70314e12i 0.142508 0.808201i −0.826827 0.562457i \(-0.809856\pi\)
0.969335 0.245745i \(-0.0790325\pi\)
\(608\) −4.79915e11 + 2.72173e12i −0.142429 + 0.807755i
\(609\) 0 0
\(610\) −2.21056e12 + 1.85488e12i −0.646424 + 0.542414i
\(611\) −1.14225e12 + 1.97843e12i −0.331569 + 0.574295i
\(612\) 0 0
\(613\) 2.20008e12 + 3.81065e12i 0.629312 + 1.09000i 0.987690 + 0.156424i \(0.0499966\pi\)
−0.358378 + 0.933577i \(0.616670\pi\)
\(614\) 9.98206e12 + 3.63317e12i 2.83441 + 1.03164i
\(615\) 0 0
\(616\) −1.49892e12 1.25774e12i −0.419436 0.351948i
\(617\) −5.67443e12 + 2.06532e12i −1.57630 + 0.573727i −0.974395 0.224841i \(-0.927814\pi\)
−0.601905 + 0.798568i \(0.705592\pi\)
\(618\) 0 0
\(619\) −7.79984e11 4.42351e12i −0.213539 1.21104i −0.883423 0.468575i \(-0.844767\pi\)
0.669884 0.742466i \(-0.266344\pi\)
\(620\) 8.48961e12 2.30741
\(621\) 0 0
\(622\) 4.09409e12 1.09673
\(623\) −3.33363e11 1.89059e12i −0.0886585 0.502808i
\(624\) 0 0
\(625\) −4.70983e11 + 1.71424e11i −0.123465 + 0.0449377i
\(626\) −7.91021e12 6.63745e12i −2.05875 1.72750i
\(627\) 0 0
\(628\) 1.34101e13 + 4.88089e12i 3.44044 + 1.25222i
\(629\) −3.10794e12 5.38311e12i −0.791671 1.37121i
\(630\) 0 0
\(631\) 3.92801e11 6.80352e11i 0.0986372 0.170845i −0.812484 0.582984i \(-0.801885\pi\)
0.911121 + 0.412139i \(0.135218\pi\)
\(632\) 1.61297e12 1.35345e12i 0.402162 0.337454i
\(633\) 0 0
\(634\) 9.52440e9 5.40156e10i 0.00234119 0.0132775i
\(635\) 2.71203e11 1.53807e12i 0.0661932 0.375400i
\(636\) 0 0
\(637\) 9.18720e11 7.70898e11i 0.221083 0.185511i
\(638\) 6.70079e10 1.16061e11i 0.0160115 0.0277328i
\(639\) 0 0
\(640\) −8.23371e11 1.42612e12i −0.193993 0.336005i
\(641\) −5.14577e12 1.87291e12i −1.20390 0.438182i −0.339314 0.940673i \(-0.610195\pi\)
−0.864582 + 0.502491i \(0.832417\pi\)
\(642\) 0 0
\(643\) 1.99073e12 + 1.67042e12i 0.459265 + 0.385369i 0.842861 0.538132i \(-0.180870\pi\)
−0.383595 + 0.923501i \(0.625314\pi\)
\(644\) 1.23275e13 4.48686e12i 2.82416 1.02791i
\(645\) 0 0
\(646\) 1.60966e12 + 9.12881e12i 0.363652 + 2.06238i
\(647\) 3.38270e12 0.758917 0.379459 0.925209i \(-0.376110\pi\)
0.379459 + 0.925209i \(0.376110\pi\)
\(648\) 0 0
\(649\) 1.36253e12 0.301471
\(650\) −6.60968e11 3.74854e12i −0.145235 0.823667i
\(651\) 0 0
\(652\) −2.72970e12 + 9.93530e11i −0.591563 + 0.215311i
\(653\) −2.24365e10 1.88264e10i −0.00482886 0.00405190i 0.640370 0.768067i \(-0.278781\pi\)
−0.645199 + 0.764015i \(0.723225\pi\)
\(654\) 0 0
\(655\) −2.12562e12 7.73661e11i −0.451231 0.164235i
\(656\) −9.20762e12 1.59481e13i −1.94124 3.36233i
\(657\) 0 0
\(658\) 3.23352e12 5.60061e12i 0.672448 1.16471i
\(659\) 2.47399e12 2.07592e12i 0.510991 0.428772i −0.350487 0.936568i \(-0.613984\pi\)
0.861478 + 0.507795i \(0.169539\pi\)
\(660\) 0 0
\(661\) 7.10451e11 4.02917e12i 0.144753 0.820935i −0.822812 0.568313i \(-0.807596\pi\)
0.967565 0.252622i \(-0.0812928\pi\)
\(662\) 7.14470e11 4.05196e12i 0.144585 0.819982i
\(663\) 0 0
\(664\) 1.30807e13 1.09760e13i 2.61141 2.19123i
\(665\) 6.88554e11 1.19261e12i 0.136534 0.236484i
\(666\) 0 0
\(667\) 2.54708e11 + 4.41166e11i 0.0498282 + 0.0863051i
\(668\) 3.05396e12 + 1.11155e12i 0.593429 + 0.215991i
\(669\) 0 0
\(670\) 5.63870e12 + 4.73143e12i 1.08104 + 0.907101i
\(671\) 1.21674e12 4.42857e11i 0.231711 0.0843359i
\(672\) 0 0
\(673\) 1.44153e12 + 8.17531e12i 0.270867 + 1.53616i 0.751793 + 0.659399i \(0.229189\pi\)
−0.480926 + 0.876761i \(0.659700\pi\)
\(674\) −8.30497e12 −1.55013
\(675\) 0 0
\(676\) −6.72669e12 −1.23891
\(677\) −9.57817e11 5.43205e12i −0.175240 0.993836i −0.937866 0.346997i \(-0.887202\pi\)
0.762626 0.646839i \(-0.223910\pi\)
\(678\) 0 0
\(679\) −3.88025e12 + 1.41230e12i −0.700561 + 0.254983i
\(680\) 1.05682e13 + 8.86776e12i 1.89544 + 1.59046i
\(681\) 0 0
\(682\) −5.12976e12 1.86708e12i −0.907962 0.330471i
\(683\) 1.71604e12 + 2.97227e12i 0.301741 + 0.522631i 0.976530 0.215379i \(-0.0690988\pi\)
−0.674789 + 0.738010i \(0.735766\pi\)
\(684\) 0 0
\(685\) −2.46221e12 + 4.26468e12i −0.427285 + 0.740080i
\(686\) −8.73582e12 + 7.33023e12i −1.50607 + 1.26374i
\(687\) 0 0
\(688\) 8.96918e10 5.08668e11i 0.0152618 0.0865538i
\(689\) −4.29108e11 + 2.43359e12i −0.0725404 + 0.411397i
\(690\) 0 0
\(691\) −1.96927e12 + 1.65242e12i −0.328590 + 0.275720i −0.792125 0.610359i \(-0.791025\pi\)
0.463535 + 0.886079i \(0.346581\pi\)
\(692\) −6.34601e11 + 1.09916e12i −0.105202 + 0.182215i
\(693\) 0 0
\(694\) −7.13481e12 1.23579e13i −1.16752 2.02221i
\(695\) −3.02278e11 1.10020e11i −0.0491446 0.0178872i
\(696\) 0 0
\(697\) −1.66991e13 1.40122e13i −2.68006 2.24884i
\(698\) 8.28833e12 3.01670e12i 1.32165 0.481042i
\(699\) 0 0
\(700\) 1.30568e12 + 7.40487e12i 0.205539 + 1.16567i
\(701\) −7.21141e12 −1.12795 −0.563974 0.825793i \(-0.690728\pi\)
−0.563974 + 0.825793i \(0.690728\pi\)
\(702\) 0 0
\(703\) −3.55081e12 −0.548312
\(704\) −1.16480e11 6.60593e11i −0.0178721 0.101358i
\(705\) 0 0
\(706\) 7.30002e12 2.65699e12i 1.10587 0.402503i
\(707\) −5.00829e12 4.20245e12i −0.753879 0.632580i
\(708\) 0 0
\(709\) −3.71627e12 1.35261e12i −0.552331 0.201032i 0.0507508 0.998711i \(-0.483839\pi\)
−0.603082 + 0.797679i \(0.706061\pi\)
\(710\) −5.89364e11 1.02081e12i −0.0870404 0.150758i
\(711\) 0 0
\(712\) 5.49313e12 9.51437e12i 0.801050 1.38746i
\(713\) 1.58958e13 1.33381e13i 2.30345 1.93282i
\(714\) 0 0
\(715\) 1.42587e11 8.08652e11i 0.0204034 0.115714i
\(716\) −4.12730e11 + 2.34071e12i −0.0586891 + 0.332842i
\(717\) 0 0
\(718\) −1.85910e13 + 1.55997e13i −2.61062 + 2.19057i
\(719\) −4.77880e12 + 8.27713e12i −0.666867 + 1.15505i 0.311909 + 0.950112i \(0.399032\pi\)
−0.978776 + 0.204935i \(0.934302\pi\)
\(720\) 0 0
\(721\) −4.91213e11 8.50806e11i −0.0676957 0.117252i
\(722\) −7.50560e12 2.73181e12i −1.02794 0.374140i
\(723\) 0 0
\(724\) −2.24338e12 1.88242e12i −0.303445 0.254620i
\(725\) −2.74368e11 + 9.98617e10i −0.0368818 + 0.0134239i
\(726\) 0 0
\(727\) 2.15322e11 + 1.22115e12i 0.0285880 + 0.162131i 0.995760 0.0919936i \(-0.0293239\pi\)
−0.967172 + 0.254124i \(0.918213\pi\)
\(728\) −9.32697e12 −1.23069
\(729\) 0 0
\(730\) 5.11509e12 0.666654
\(731\) −1.06173e11 6.02136e11i −0.0137526 0.0779949i
\(732\) 0 0
\(733\) 6.07778e12 2.21213e12i 0.777637 0.283037i 0.0774499 0.996996i \(-0.475322\pi\)
0.700187 + 0.713960i \(0.253100\pi\)
\(734\) −4.36040e12 3.65881e12i −0.554491 0.465273i
\(735\) 0 0
\(736\) 1.66630e13 + 6.06484e12i 2.09316 + 0.761849i
\(737\) −1.65143e12 2.86035e12i −0.206184 0.357122i
\(738\) 0 0
\(739\) −6.23321e12 + 1.07962e13i −0.768798 + 1.33160i 0.169418 + 0.985544i \(0.445811\pi\)
−0.938215 + 0.346052i \(0.887522\pi\)
\(740\) −7.14027e12 + 5.99140e12i −0.875331 + 0.734490i
\(741\) 0 0
\(742\) 1.21474e12 6.88911e12i 0.147117 0.834344i
\(743\) 6.92503e11 3.92738e12i 0.0833627 0.472773i −0.914335 0.404958i \(-0.867286\pi\)
0.997698 0.0678152i \(-0.0216028\pi\)
\(744\) 0 0
\(745\) 5.10669e12 4.28502e12i 0.607346 0.509624i
\(746\) −5.45788e12 + 9.45333e12i −0.645207 + 1.11753i
\(747\) 0 0
\(748\) −5.45922e12 9.45565e12i −0.637637 1.10442i
\(749\) −2.39017e12 8.69952e11i −0.277499 0.101001i
\(750\) 0 0
\(751\) 9.84947e11 + 8.26468e11i 0.112988 + 0.0948083i 0.697531 0.716554i \(-0.254282\pi\)
−0.584543 + 0.811363i \(0.698726\pi\)
\(752\) 1.62411e13 5.91129e12i 1.85198 0.674065i
\(753\) 0 0
\(754\) −1.10928e11 6.29105e11i −0.0124989 0.0708847i
\(755\) −2.28557e12 −0.255996
\(756\) 0 0
\(757\) 1.42968e13 1.58237 0.791183 0.611580i \(-0.209466\pi\)
0.791183 + 0.611580i \(0.209466\pi\)
\(758\) 5.42167e12 + 3.07478e13i 0.596516 + 3.38301i
\(759\) 0 0
\(760\) 7.40554e12 2.69540e12i 0.805185 0.293063i
\(761\) −7.85692e11 6.59273e11i −0.0849222 0.0712582i 0.599338 0.800496i \(-0.295430\pi\)
−0.684260 + 0.729238i \(0.739875\pi\)
\(762\) 0 0
\(763\) −5.41121e12 1.96952e12i −0.578009 0.210378i
\(764\) 6.31015e12 + 1.09295e13i 0.670069 + 1.16059i
\(765\) 0 0
\(766\) −1.81226e12 + 3.13892e12i −0.190191 + 0.329421i
\(767\) 4.97527e12 4.17474e12i 0.519083 0.435563i
\(768\) 0 0
\(769\) −7.73705e11 + 4.38790e12i −0.0797824 + 0.452468i 0.918579 + 0.395238i \(0.129338\pi\)
−0.998361 + 0.0572301i \(0.981773\pi\)
\(770\) −4.03641e11 + 2.28916e12i −0.0413797 + 0.234676i
\(771\) 0 0
\(772\) −1.37842e13 + 1.15664e13i −1.39671 + 1.17198i
\(773\) 5.03971e12 8.72904e12i 0.507690 0.879344i −0.492271 0.870442i \(-0.663833\pi\)
0.999960 0.00890202i \(-0.00283364\pi\)
\(774\) 0 0
\(775\) 5.94666e12 + 1.02999e13i 0.592127 + 1.02559i
\(776\) −2.22056e13 8.08219e12i −2.19829 0.800113i
\(777\) 0 0
\(778\) 1.91347e13 + 1.60559e13i 1.87246 + 1.57118i
\(779\) −1.17017e13 + 4.25906e12i −1.13849 + 0.414377i
\(780\) 0 0
\(781\) 9.18434e10 + 5.20870e11i 0.00883321 + 0.0500956i
\(782\) 5.94752e13 5.68729
\(783\) 0 0
\(784\) −9.07340e12 −0.857725
\(785\) −1.66905e12 9.46563e12i −0.156875 0.889684i
\(786\) 0 0
\(787\) 6.00349e12 2.18509e12i 0.557850 0.203041i −0.0476808 0.998863i \(-0.515183\pi\)
0.605531 + 0.795822i \(0.292961\pi\)
\(788\) 1.27923e13 + 1.07340e13i 1.18190 + 0.991728i
\(789\) 0 0
\(790\) −2.35050e12 8.55512e11i −0.214703 0.0781455i
\(791\) −1.17906e12 2.04220e12i −0.107088 0.185483i
\(792\) 0 0
\(793\) 3.08601e12 5.34513e12i 0.277120 0.479986i
\(794\) −1.38976e12 + 1.16615e12i −0.124093 + 0.104127i
\(795\) 0 0
\(796\) −7.63137e12 + 4.32796e13i −0.673742 + 3.82098i
\(797\) 7.92225e11 4.49293e12i 0.0695483 0.394428i −0.930085 0.367345i \(-0.880267\pi\)
0.999633 0.0270832i \(-0.00862191\pi\)
\(798\) 0 0
\(799\) 1.56727e13 1.31510e13i 1.36046 1.14156i
\(800\) −5.08175e12 + 8.80185e12i −0.438640 + 0.759747i
\(801\) 0 0
\(802\) −1.10468e13 1.91335e13i −0.942866 1.63309i
\(803\) −2.15677e12 7.85000e11i −0.183056 0.0666269i
\(804\) 0 0
\(805\) −6.76854e12 5.67948e12i −0.568086 0.476681i
\(806\) −2.44519e13 + 8.89977e12i −2.04082 + 0.742799i
\(807\) 0 0
\(808\) −6.49693e12 3.68459e13i −0.536238 3.04115i
\(809\) −3.65686e12 −0.300151 −0.150076 0.988675i \(-0.547952\pi\)
−0.150076 + 0.988675i \(0.547952\pi\)
\(810\) 0 0
\(811\) −3.09618e12 −0.251323 −0.125662 0.992073i \(-0.540105\pi\)
−0.125662 + 0.992073i \(0.540105\pi\)
\(812\) 2.19128e11 + 1.24274e12i 0.0176887 + 0.100318i
\(813\) 0 0
\(814\) 5.63210e12 2.04992e12i 0.449635 0.163654i
\(815\) 1.49877e12 + 1.25761e12i 0.118994 + 0.0998478i
\(816\) 0 0
\(817\) −3.28211e11 1.19459e11i −0.0257724 0.00938037i
\(818\) 2.22537e13 + 3.85446e13i 1.73785 + 3.01005i
\(819\) 0 0
\(820\) −1.63443e13 + 2.83092e13i −1.26242 + 2.18658i
\(821\) 8.97341e11 7.52958e11i 0.0689308 0.0578398i −0.607671 0.794189i \(-0.707896\pi\)
0.676602 + 0.736349i \(0.263452\pi\)
\(822\) 0 0
\(823\) 2.93059e12 1.66202e13i 0.222667 1.26281i −0.644429 0.764664i \(-0.722905\pi\)
0.867096 0.498142i \(-0.165984\pi\)
\(824\) 9.76278e11 5.53674e12i 0.0737736 0.418391i
\(825\) 0 0
\(826\) −1.40842e13 + 1.18180e13i −1.05274 + 0.883354i
\(827\) −2.26487e12 + 3.92288e12i −0.168372 + 0.291629i −0.937848 0.347047i \(-0.887184\pi\)
0.769476 + 0.638676i \(0.220518\pi\)
\(828\) 0 0
\(829\) 1.26865e13 + 2.19737e13i 0.932926 + 1.61588i 0.778291 + 0.627904i \(0.216087\pi\)
0.154635 + 0.987972i \(0.450580\pi\)
\(830\) −1.90618e13 6.93792e12i −1.39416 0.507432i
\(831\) 0 0
\(832\) −2.44936e12 2.05526e12i −0.177214 0.148700i
\(833\) −1.00929e13 + 3.67352e12i −0.726296 + 0.264350i
\(834\) 0 0
\(835\) −3.80100e11 2.15566e12i −0.0270588 0.153458i
\(836\) −6.23714e12 −0.441629
\(837\) 0 0
\(838\) −1.82240e13 −1.27658
\(839\) −4.69997e11 2.66548e12i −0.0327466 0.185715i 0.964047 0.265732i \(-0.0856137\pi\)
−0.996794 + 0.0800170i \(0.974503\pi\)
\(840\) 0 0
\(841\) 1.35862e13 4.94498e12i 0.936519 0.340865i
\(842\) −1.28819e13 1.08092e13i −0.883232 0.741120i
\(843\) 0 0
\(844\) −1.83590e13 6.68213e12i −1.24540 0.453288i
\(845\) 2.26528e12 + 3.92358e12i 0.152850 + 0.264745i
\(846\) 0 0
\(847\) −5.16295e12 + 8.94249e12i −0.344685 + 0.597012i
\(848\) 1.43216e13 1.20172e13i 0.951064 0.798037i
\(849\) 0 0
\(850\) −5.91945e12 + 3.35709e13i −0.388952 + 2.20586i
\(851\) −3.95613e12 + 2.24363e13i −0.258576 + 1.46646i
\(852\) 0 0
\(853\) 4.30098e12 3.60895e12i 0.278161 0.233405i −0.493024 0.870016i \(-0.664109\pi\)
0.771185 + 0.636611i \(0.219664\pi\)
\(854\) −8.73600e12 + 1.51312e13i −0.562021 + 0.973448i
\(855\) 0 0
\(856\) −7.27808e12 1.26060e13i −0.463324 0.802501i
\(857\) 7.89606e12 + 2.87393e12i 0.500030 + 0.181996i 0.579708 0.814825i \(-0.303167\pi\)
−0.0796772 + 0.996821i \(0.525389\pi\)
\(858\) 0 0
\(859\) −9.99505e12 8.38684e12i −0.626348 0.525568i 0.273444 0.961888i \(-0.411837\pi\)
−0.899792 + 0.436320i \(0.856282\pi\)
\(860\) −8.61564e11 + 3.13584e11i −0.0537087 + 0.0195484i
\(861\) 0 0
\(862\) 4.16693e12 + 2.36318e13i 0.257059 + 1.45786i
\(863\) 6.93129e12 0.425368 0.212684 0.977121i \(-0.431779\pi\)
0.212684 + 0.977121i \(0.431779\pi\)
\(864\) 0 0
\(865\) 8.54834e11 0.0519170
\(866\) 8.35429e11 + 4.73795e12i 0.0504753 + 0.286260i
\(867\) 0 0
\(868\) 4.83024e13 1.75806e13i 2.88822 1.05123i
\(869\) 8.59790e11 + 7.21450e11i 0.0511450 + 0.0429158i
\(870\) 0 0
\(871\) −1.47942e13 5.38464e12i −0.870982 0.317011i
\(872\) −1.64771e13 2.85392e13i −0.965067 1.67155i
\(873\) 0 0
\(874\) 1.69875e13 2.94233e13i 0.984757 1.70565i
\(875\) 9.62403e12 8.07552e12i 0.555036 0.465730i
\(876\) 0 0
\(877\) 1.47539e12 8.36735e12i 0.0842187 0.477628i −0.913304 0.407279i \(-0.866478\pi\)
0.997522 0.0703488i \(-0.0224112\pi\)
\(878\) 4.34566e12 2.46455e13i 0.246792 1.39963i
\(879\) 0 0
\(880\) −4.75888e12 + 3.99318e12i −0.267506 + 0.224464i
\(881\) −8.66150e12 + 1.50022e13i −0.484397 + 0.839000i −0.999839 0.0179240i \(-0.994294\pi\)
0.515442 + 0.856924i \(0.327628\pi\)
\(882\) 0 0
\(883\) 6.59120e12 + 1.14163e13i 0.364873 + 0.631978i 0.988756 0.149540i \(-0.0477791\pi\)
−0.623883 + 0.781518i \(0.714446\pi\)
\(884\) −4.89060e13 1.78003e13i −2.69356 0.980377i
\(885\) 0 0
\(886\) −2.27438e13 1.90843e13i −1.23997 1.04046i
\(887\) 2.56149e13 9.32307e12i 1.38943 0.505712i 0.464408 0.885622i \(-0.346267\pi\)
0.925023 + 0.379910i \(0.124045\pi\)
\(888\) 0 0
\(889\) −1.64206e12 9.31261e12i −0.0881723 0.500050i
\(890\) −1.30512e13 −0.697261
\(891\) 0 0
\(892\) −3.57983e13 −1.89331
\(893\) −2.02949e12 1.15098e13i −0.106796 0.605669i
\(894\) 0 0
\(895\) 1.50429e12 5.47518e11i 0.0783662 0.0285230i
\(896\) −7.63791e12 6.40897e12i −0.395903 0.332202i
\(897\) 0 0
\(898\) 1.10031e13 + 4.00479e12i 0.564638 + 0.205512i
\(899\) 9.98009e11 + 1.72860e12i 0.0509584 + 0.0882625i
\(900\) 0 0
\(901\) 1.10654e13 1.91658e13i 0.559379 0.968872i
\(902\) 1.61018e13 1.35110e13i 0.809924 0.679607i
\(903\) 0 0
\(904\) 2.34337e12 1.32899e13i 0.116703 0.661856i
\(905\) −3.42507e11 + 1.94246e12i −0.0169727 + 0.0962571i
\(906\) 0 0
\(907\) 9.62927e10 8.07992e10i 0.00472455 0.00396437i −0.640422 0.768023i \(-0.721241\pi\)
0.645147 + 0.764059i \(0.276796\pi\)
\(908\) 2.94524e13 5.10130e13i 1.43792 2.49055i
\(909\) 0 0
\(910\) 5.54002e12 + 9.59560e12i 0.267809 + 0.463859i
\(911\) 2.64073e13 + 9.61148e12i 1.27026 + 0.462336i 0.887198 0.461388i \(-0.152648\pi\)
0.383059 + 0.923724i \(0.374871\pi\)
\(912\) 0 0
\(913\) 6.97262e12 + 5.85072e12i 0.332107 + 0.278670i
\(914\) 4.59580e13 1.67273e13i 2.17823 0.792810i
\(915\) 0 0
\(916\) −2.23065e12 1.26506e13i −0.104689 0.593721i
\(917\) −1.36960e13 −0.639635
\(918\) 0 0
\(919\) −3.22440e12 −0.149118 −0.0745589 0.997217i \(-0.523755\pi\)
−0.0745589 + 0.997217i \(0.523755\pi\)
\(920\) −8.78041e12 4.97962e13i −0.404082 2.29166i
\(921\) 0 0
\(922\) 4.84429e13 1.76318e13i 2.20771 0.803539i
\(923\) 1.93129e12 + 1.62055e12i 0.0875871 + 0.0734943i
\(924\) 0 0
\(925\) −1.22705e13 4.46609e12i −0.551092 0.200581i
\(926\) −4.02458e12 6.97078e12i −0.179875 0.311553i
\(927\) 0 0
\(928\) −8.52854e11 + 1.47719e12i −0.0377493 + 0.0653837i
\(929\) 1.64090e12 1.37688e12i 0.0722787 0.0606490i −0.605933 0.795516i \(-0.707200\pi\)
0.678211 + 0.734867i \(0.262755\pi\)
\(930\) 0 0
\(931\) −1.06543e12 + 6.04236e12i −0.0464785 + 0.263592i
\(932\) 2.82809e12 1.60389e13i 0.122778 0.696311i
\(933\) 0 0
\(934\) −4.68411e12 + 3.93044e12i −0.201403 + 0.168997i
\(935\) −3.67690e12 + 6.36857e12i −0.157336 + 0.272515i
\(936\) 0 0
\(937\) −1.17509e13 2.03532e13i −0.498017 0.862591i 0.501980 0.864879i \(-0.332605\pi\)
−0.999997 + 0.00228788i \(0.999272\pi\)
\(938\) 4.18799e13 + 1.52430e13i 1.76642 + 0.642923i
\(939\) 0 0
\(940\) −2.35019e13 1.97205e13i −0.981812 0.823838i
\(941\) −2.17577e13 + 7.91915e12i −0.904606 + 0.329250i −0.752097 0.659053i \(-0.770957\pi\)
−0.152509 + 0.988302i \(0.548735\pi\)
\(942\) 0 0
\(943\) 1.38741e13 + 7.86842e13i 0.571352 + 3.24030i
\(944\) −4.91364e13 −2.01386
\(945\) 0 0
\(946\) 5.89556e11 0.0239340
\(947\) 3.55631e12 + 2.01689e13i 0.143690 + 0.814904i 0.968410 + 0.249363i \(0.0802214\pi\)
−0.824720 + 0.565541i \(0.808668\pi\)
\(948\) 0 0
\(949\) −1.02806e13 + 3.74184e12i −0.411454 + 0.149757i
\(950\) 1.49173e13 + 1.25171e13i 0.594202 + 0.498594i
\(951\) 0 0
\(952\) 7.84924e13 + 2.85689e13i 3.09714 + 1.12727i
\(953\) 8.68246e12 + 1.50385e13i 0.340977 + 0.590589i 0.984614 0.174741i \(-0.0559090\pi\)
−0.643638 + 0.765330i \(0.722576\pi\)
\(954\) 0 0
\(955\) 4.25002e12 7.36124e12i 0.165339 0.286376i
\(956\) −5.77299e13 + 4.84412e13i −2.23532 + 1.87566i
\(957\) 0 0
\(958\) −2.97914e12 + 1.68955e13i −0.114274 + 0.648078i
\(959\) −5.17751e12 + 2.93631e13i −0.197668 + 1.12103i
\(960\) 0 0
\(961\) 4.20297e13 3.52671e13i 1.58965 1.33387i
\(962\) 1.42847e13 2.47418e13i 0.537753 0.931415i
\(963\) 0 0
\(964\) 1.88599e13 + 3.26662e13i 0.703383 + 1.21829i
\(965\) 1.13885e13 + 4.14506e12i 0.422759 + 0.153872i
\(966\) 0 0
\(967\) 1.09647e12 + 9.20050e11i 0.0403254 + 0.0338370i 0.662728 0.748861i \(-0.269399\pi\)
−0.622402 + 0.782698i \(0.713843\pi\)
\(968\) −5.55286e13 + 2.02107e13i −2.03272 + 0.739849i
\(969\) 0 0
\(970\) 4.87471e12 + 2.76458e13i 0.176797 + 1.00267i
\(971\) 6.08099e12 0.219527 0.109763 0.993958i \(-0.464991\pi\)
0.109763 + 0.993958i \(0.464991\pi\)
\(972\) 0 0
\(973\) −1.94768e12 −0.0696641
\(974\) −5.81187e12 3.29608e13i −0.206919 1.17350i
\(975\) 0 0
\(976\) −4.38787e13 + 1.59706e13i −1.54785 + 0.563373i
\(977\) 2.77256e13 + 2.32645e13i 0.973544 + 0.816900i 0.983103 0.183054i \(-0.0585983\pi\)
−0.00955887 + 0.999954i \(0.503043\pi\)
\(978\) 0 0
\(979\) 5.50301e12 + 2.00293e12i 0.191460 + 0.0696858i
\(980\) 8.05302e12 + 1.39482e13i 0.278896 + 0.483061i
\(981\) 0 0
\(982\) 1.99008e13 3.44693e13i 0.682920 1.18285i
\(983\) −8.25505e12 + 6.92681e12i −0.281987 + 0.236615i −0.772800 0.634650i \(-0.781144\pi\)
0.490813 + 0.871265i \(0.336700\pi\)
\(984\) 0 0
\(985\) 1.95305e12 1.10763e13i 0.0661076 0.374915i
\(986\) −9.93443e11 + 5.63410e12i −0.0334732 + 0.189836i
\(987\) 0 0
\(988\) −2.27748e13 + 1.91104e13i −0.760412 + 0.638061i
\(989\) −1.12050e12 + 1.94076e12i −0.0372416 + 0.0645043i
\(990\) 0 0
\(991\) 1.32194e13 + 2.28967e13i 0.435393 + 0.754122i 0.997328 0.0730591i \(-0.0232762\pi\)
−0.561935 + 0.827181i \(0.689943\pi\)
\(992\) 6.52899e13 + 2.37636e13i 2.14064 + 0.779129i
\(993\) 0 0
\(994\) −5.46717e12 4.58750e12i −0.177633 0.149052i
\(995\) 2.78143e13 1.01236e13i 0.899632 0.327439i
\(996\) 0 0
\(997\) −8.72942e12 4.95070e13i −0.279806 1.58686i −0.723269 0.690567i \(-0.757361\pi\)
0.443462 0.896293i \(-0.353750\pi\)
\(998\) −1.95221e13 −0.622931
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.e.a.10.1 156
3.2 odd 2 27.10.e.a.13.26 156
27.2 odd 18 27.10.e.a.25.26 yes 156
27.25 even 9 inner 81.10.e.a.73.1 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.e.a.13.26 156 3.2 odd 2
27.10.e.a.25.26 yes 156 27.2 odd 18
81.10.e.a.10.1 156 1.1 even 1 trivial
81.10.e.a.73.1 156 27.25 even 9 inner