Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [81,10,Mod(10,81)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(81, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([8]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("81.10");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.e (of order \(9\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(41.7179027293\) |
Analytic rank: | \(0\) |
Dimension: | \(156\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{9})\) |
Twist minimal: | no (minimal twist has level 27) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 | −7.14775 | − | 40.5369i | 0 | −1111.03 | + | 404.381i | 610.019 | + | 511.867i | 0 | 4530.75 | + | 1649.06i | 13796.1 | + | 23895.6i | 0 | 16389.2 | − | 28387.0i | ||||||
10.2 | −6.66051 | − | 37.7736i | 0 | −901.361 | + | 328.069i | −1267.19 | − | 1063.30i | 0 | −6241.55 | − | 2271.74i | 8576.64 | + | 14855.2i | 0 | −31724.5 | + | 54948.4i | ||||||
10.3 | −6.61278 | − | 37.5029i | 0 | −881.618 | + | 320.883i | −1241.60 | − | 1041.82i | 0 | 9160.78 | + | 3334.25i | 8115.13 | + | 14055.8i | 0 | −30861.0 | + | 53452.8i | ||||||
10.4 | −6.40153 | − | 36.3049i | 0 | −795.940 | + | 289.699i | 170.489 | + | 143.057i | 0 | −5644.86 | − | 2054.56i | 6175.28 | + | 10695.9i | 0 | 4102.29 | − | 7105.37i | ||||||
10.5 | −6.21254 | − | 35.2331i | 0 | −721.652 | + | 262.660i | 1770.10 | + | 1485.29i | 0 | 1506.43 | + | 548.294i | 4578.80 | + | 7930.71i | 0 | 41334.5 | − | 71593.4i | ||||||
10.6 | −3.96930 | − | 22.5110i | 0 | −9.86871 | + | 3.59192i | −1862.39 | − | 1562.73i | 0 | 7319.38 | + | 2664.03i | −5731.70 | − | 9927.59i | 0 | −27786.2 | + | 48127.2i | ||||||
10.7 | −3.81300 | − | 21.6246i | 0 | 28.0377 | − | 10.2049i | −47.8760 | − | 40.1728i | 0 | −9290.87 | − | 3381.60i | −5948.89 | − | 10303.8i | 0 | −686.169 | + | 1188.48i | ||||||
10.8 | −3.56307 | − | 20.2072i | 0 | 85.4874 | − | 31.1149i | 748.976 | + | 628.466i | 0 | −3373.46 | − | 1227.84i | −6186.19 | − | 10714.8i | 0 | 10030.9 | − | 17374.0i | ||||||
10.9 | −3.47036 | − | 19.6814i | 0 | 105.808 | − | 38.5110i | 245.404 | + | 205.919i | 0 | 4352.22 | + | 1584.08i | −6241.31 | − | 10810.3i | 0 | 3201.13 | − | 5544.51i | ||||||
10.10 | −2.61607 | − | 14.8364i | 0 | 267.846 | − | 97.4881i | −1174.80 | − | 985.775i | 0 | −3599.21 | − | 1310.01i | −6003.80 | − | 10398.9i | 0 | −11552.0 | + | 20008.7i | ||||||
10.11 | −2.60890 | − | 14.7958i | 0 | 269.014 | − | 97.9130i | 1952.85 | + | 1638.63i | 0 | 7550.25 | + | 2748.07i | −5996.68 | − | 10386.6i | 0 | 19150.1 | − | 33168.9i | ||||||
10.12 | −0.0974639 | − | 0.552746i | 0 | 480.827 | − | 175.007i | −567.016 | − | 475.783i | 0 | 1109.98 | + | 404.000i | −287.283 | − | 497.589i | 0 | −207.723 | + | 359.787i | ||||||
10.13 | 0.622466 | + | 3.53018i | 0 | 469.048 | − | 170.719i | −22.7101 | − | 19.0560i | 0 | 10919.6 | + | 3974.40i | 1812.30 | + | 3139.00i | 0 | 53.1349 | − | 92.0324i | ||||||
10.14 | 0.725207 | + | 4.11285i | 0 | 464.733 | − | 169.149i | 1430.66 | + | 1200.46i | 0 | −10647.4 | − | 3875.35i | 2101.85 | + | 3640.50i | 0 | −3899.81 | + | 6754.67i | ||||||
10.15 | 0.907148 | + | 5.14469i | 0 | 455.478 | − | 165.780i | 1094.11 | + | 918.064i | 0 | 184.507 | + | 67.1550i | 2603.43 | + | 4509.28i | 0 | −3730.64 | + | 6461.66i | ||||||
10.16 | 1.50531 | + | 8.53705i | 0 | 410.507 | − | 149.412i | −1797.12 | − | 1507.96i | 0 | 1.39853 | + | 0.509023i | 4112.68 | + | 7123.37i | 0 | 10168.3 | − | 17612.1i | ||||||
10.17 | 1.82927 | + | 10.3743i | 0 | 376.843 | − | 137.160i | −469.551 | − | 394.000i | 0 | −6352.63 | − | 2312.17i | 4809.06 | + | 8329.54i | 0 | 3228.53 | − | 5591.99i | ||||||
10.18 | 3.18108 | + | 18.0408i | 0 | 165.772 | − | 60.3360i | 1375.78 | + | 1154.42i | 0 | 2117.11 | + | 770.566i | 6305.53 | + | 10921.5i | 0 | −16450.1 | + | 28492.4i | ||||||
10.19 | 4.45544 | + | 25.2681i | 0 | −137.502 | + | 50.0467i | 84.0511 | + | 70.5273i | 0 | 7618.26 | + | 2772.82i | 4691.20 | + | 8125.40i | 0 | −1407.60 | + | 2438.04i | ||||||
10.20 | 4.55647 | + | 25.8410i | 0 | −165.874 | + | 60.3733i | −1409.37 | − | 1182.60i | 0 | −8682.75 | − | 3160.26i | 4401.44 | + | 7623.52i | 0 | 24137.8 | − | 41807.9i | ||||||
See next 80 embeddings (of 156 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 81.10.e.a | 156 | |
3.b | odd | 2 | 1 | 27.10.e.a | ✓ | 156 | |
27.e | even | 9 | 1 | inner | 81.10.e.a | 156 | |
27.f | odd | 18 | 1 | 27.10.e.a | ✓ | 156 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.10.e.a | ✓ | 156 | 3.b | odd | 2 | 1 | |
27.10.e.a | ✓ | 156 | 27.f | odd | 18 | 1 | |
81.10.e.a | 156 | 1.a | even | 1 | 1 | trivial | |
81.10.e.a | 156 | 27.e | even | 9 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(81, [\chi])\).