Properties

Label 81.10.c.j.55.4
Level $81$
Weight $10$
Character 81.55
Analytic conductor $41.718$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 83x^{6} + 5449x^{4} + 119520x^{2} + 2073600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{16} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.4
Root \(-3.81773 + 6.61251i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.10.c.j.28.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(22.2386 - 38.5183i) q^{2} +(-733.108 - 1269.78i) q^{4} +(-525.311 - 909.865i) q^{5} +(-3295.93 + 5708.72i) q^{7} -42440.8 q^{8} -46728.6 q^{10} +(7232.96 - 12527.8i) q^{11} +(-2501.75 - 4333.15i) q^{13} +(146594. + 253908. i) q^{14} +(-568471. + 984621. i) q^{16} +444500. q^{17} -487431. q^{19} +(-770219. + 1.33406e6i) q^{20} +(-321701. - 557203. i) q^{22} +(-33652.3 - 58287.4i) q^{23} +(424660. - 735532. i) q^{25} -222541. q^{26} +9.66510e6 q^{28} +(-1.70907e6 + 2.96019e6i) q^{29} +(-1.72962e6 - 2.99578e6i) q^{31} +(1.44191e7 + 2.49747e7i) q^{32} +(9.88504e6 - 1.71214e7i) q^{34} +6.92555e6 q^{35} -3.94510e6 q^{37} +(-1.08398e7 + 1.87750e7i) q^{38} +(2.22946e7 + 3.86154e7i) q^{40} +(-8.80305e6 - 1.52473e7i) q^{41} +(-1.65115e7 + 2.85988e7i) q^{43} -2.12102e7 q^{44} -2.99351e6 q^{46} +(-1.85636e7 + 3.21530e7i) q^{47} +(-1.54953e6 - 2.68387e6i) q^{49} +(-1.88876e7 - 3.27144e7i) q^{50} +(-3.66810e6 + 6.35334e6i) q^{52} +7.86818e7 q^{53} -1.51982e7 q^{55} +(1.39882e8 - 2.42283e8i) q^{56} +(7.60144e7 + 1.31661e8i) q^{58} +(2.56527e7 + 4.44318e7i) q^{59} +(9.63615e6 - 1.66903e7i) q^{61} -1.53857e8 q^{62} +7.00529e8 q^{64} +(-2.62839e6 + 4.55250e6i) q^{65} +(-1.07419e8 - 1.86055e8i) q^{67} +(-3.25866e8 - 5.64417e8i) q^{68} +(1.54014e8 - 2.66761e8i) q^{70} -3.25802e8 q^{71} +1.57548e8 q^{73} +(-8.77334e7 + 1.51959e8i) q^{74} +(3.57340e8 + 6.18931e8i) q^{76} +(4.76787e7 + 8.25819e7i) q^{77} +(-1.79317e7 + 3.10586e7i) q^{79} +1.19450e9 q^{80} -7.83069e8 q^{82} +(4.03992e6 - 6.99735e6i) q^{83} +(-2.33501e8 - 4.04435e8i) q^{85} +(7.34386e8 + 1.27199e9i) q^{86} +(-3.06972e8 + 5.31692e8i) q^{88} -9.43654e8 q^{89} +3.29823e7 q^{91} +(-4.93415e7 + 8.54620e7i) q^{92} +(8.25654e8 + 1.43008e9i) q^{94} +(2.56053e8 + 4.43497e8i) q^{95} +(-4.83526e8 + 8.37491e8i) q^{97} -1.37838e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2236 q^{4} - 11852 q^{7} - 83520 q^{10} - 179684 q^{13} - 2348680 q^{16} + 2022856 q^{19} - 3473568 q^{22} - 2554060 q^{25} + 39587848 q^{28} - 889136 q^{31} + 43111008 q^{34} - 7610312 q^{37} + 133649280 q^{40}+ \cdots - 1935734516 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 22.2386 38.5183i 0.982815 1.70229i 0.331546 0.943439i \(-0.392430\pi\)
0.651269 0.758847i \(-0.274237\pi\)
\(3\) 0 0
\(4\) −733.108 1269.78i −1.43185 2.48004i
\(5\) −525.311 909.865i −0.375882 0.651046i 0.614577 0.788857i \(-0.289327\pi\)
−0.990459 + 0.137811i \(0.955993\pi\)
\(6\) 0 0
\(7\) −3295.93 + 5708.72i −0.518844 + 0.898665i 0.480916 + 0.876767i \(0.340304\pi\)
−0.999760 + 0.0218980i \(0.993029\pi\)
\(8\) −42440.8 −3.66335
\(9\) 0 0
\(10\) −46728.6 −1.47769
\(11\) 7232.96 12527.8i 0.148953 0.257994i −0.781888 0.623419i \(-0.785743\pi\)
0.930841 + 0.365425i \(0.119076\pi\)
\(12\) 0 0
\(13\) −2501.75 4333.15i −0.0242940 0.0420784i 0.853623 0.520892i \(-0.174400\pi\)
−0.877917 + 0.478813i \(0.841067\pi\)
\(14\) 146594. + 253908.i 1.01986 + 1.76644i
\(15\) 0 0
\(16\) −568471. + 984621.i −2.16855 + 3.75603i
\(17\) 444500. 1.29078 0.645389 0.763854i \(-0.276695\pi\)
0.645389 + 0.763854i \(0.276695\pi\)
\(18\) 0 0
\(19\) −487431. −0.858069 −0.429035 0.903288i \(-0.641146\pi\)
−0.429035 + 0.903288i \(0.641146\pi\)
\(20\) −770219. + 1.33406e6i −1.07641 + 1.86440i
\(21\) 0 0
\(22\) −321701. 557203.i −0.292786 0.507121i
\(23\) −33652.3 58287.4i −0.0250749 0.0434310i 0.853216 0.521558i \(-0.174649\pi\)
−0.878291 + 0.478127i \(0.841316\pi\)
\(24\) 0 0
\(25\) 424660. 735532.i 0.217426 0.376592i
\(26\) −222541. −0.0955059
\(27\) 0 0
\(28\) 9.66510e6 2.97163
\(29\) −1.70907e6 + 2.96019e6i −0.448712 + 0.777193i −0.998303 0.0582417i \(-0.981451\pi\)
0.549590 + 0.835434i \(0.314784\pi\)
\(30\) 0 0
\(31\) −1.72962e6 2.99578e6i −0.336374 0.582616i 0.647374 0.762172i \(-0.275867\pi\)
−0.983748 + 0.179556i \(0.942534\pi\)
\(32\) 1.44191e7 + 2.49747e7i 2.43089 + 4.21042i
\(33\) 0 0
\(34\) 9.88504e6 1.71214e7i 1.26860 2.19727i
\(35\) 6.92555e6 0.780097
\(36\) 0 0
\(37\) −3.94510e6 −0.346059 −0.173030 0.984917i \(-0.555356\pi\)
−0.173030 + 0.984917i \(0.555356\pi\)
\(38\) −1.08398e7 + 1.87750e7i −0.843323 + 1.46068i
\(39\) 0 0
\(40\) 2.22946e7 + 3.86154e7i 1.37699 + 2.38501i
\(41\) −8.80305e6 1.52473e7i −0.486526 0.842687i 0.513354 0.858177i \(-0.328403\pi\)
−0.999880 + 0.0154894i \(0.995069\pi\)
\(42\) 0 0
\(43\) −1.65115e7 + 2.85988e7i −0.736512 + 1.27568i 0.217545 + 0.976050i \(0.430195\pi\)
−0.954057 + 0.299625i \(0.903138\pi\)
\(44\) −2.12102e7 −0.853113
\(45\) 0 0
\(46\) −2.99351e6 −0.0985759
\(47\) −1.85636e7 + 3.21530e7i −0.554908 + 0.961129i 0.443003 + 0.896520i \(0.353913\pi\)
−0.997911 + 0.0646087i \(0.979420\pi\)
\(48\) 0 0
\(49\) −1.54953e6 2.68387e6i −0.0383989 0.0665088i
\(50\) −1.88876e7 3.27144e7i −0.427379 0.740242i
\(51\) 0 0
\(52\) −3.66810e6 + 6.35334e6i −0.0695707 + 0.120500i
\(53\) 7.86818e7 1.36972 0.684861 0.728673i \(-0.259863\pi\)
0.684861 + 0.728673i \(0.259863\pi\)
\(54\) 0 0
\(55\) −1.51982e7 −0.223955
\(56\) 1.39882e8 2.42283e8i 1.90071 3.29213i
\(57\) 0 0
\(58\) 7.60144e7 + 1.31661e8i 0.882003 + 1.52767i
\(59\) 2.56527e7 + 4.44318e7i 0.275613 + 0.477375i 0.970290 0.241947i \(-0.0777859\pi\)
−0.694677 + 0.719322i \(0.744453\pi\)
\(60\) 0 0
\(61\) 9.63615e6 1.66903e7i 0.0891085 0.154340i −0.818026 0.575181i \(-0.804932\pi\)
0.907135 + 0.420841i \(0.138265\pi\)
\(62\) −1.53857e8 −1.32237
\(63\) 0 0
\(64\) 7.00529e8 5.21935
\(65\) −2.62839e6 + 4.55250e6i −0.0182633 + 0.0316330i
\(66\) 0 0
\(67\) −1.07419e8 1.86055e8i −0.651245 1.12799i −0.982821 0.184562i \(-0.940913\pi\)
0.331575 0.943429i \(-0.392420\pi\)
\(68\) −3.25866e8 5.64417e8i −1.84820 3.20118i
\(69\) 0 0
\(70\) 1.54014e8 2.66761e8i 0.766691 1.32795i
\(71\) −3.25802e8 −1.52157 −0.760784 0.649006i \(-0.775185\pi\)
−0.760784 + 0.649006i \(0.775185\pi\)
\(72\) 0 0
\(73\) 1.57548e8 0.649322 0.324661 0.945830i \(-0.394750\pi\)
0.324661 + 0.945830i \(0.394750\pi\)
\(74\) −8.77334e7 + 1.51959e8i −0.340112 + 0.589092i
\(75\) 0 0
\(76\) 3.57340e8 + 6.18931e8i 1.22863 + 2.12805i
\(77\) 4.76787e7 + 8.25819e7i 0.154567 + 0.267717i
\(78\) 0 0
\(79\) −1.79317e7 + 3.10586e7i −0.0517964 + 0.0897140i −0.890761 0.454472i \(-0.849828\pi\)
0.838965 + 0.544186i \(0.183161\pi\)
\(80\) 1.19450e9 3.26047
\(81\) 0 0
\(82\) −7.83069e8 −1.91266
\(83\) 4.03992e6 6.99735e6i 0.00934375 0.0161839i −0.861316 0.508070i \(-0.830359\pi\)
0.870659 + 0.491886i \(0.163692\pi\)
\(84\) 0 0
\(85\) −2.33501e8 4.04435e8i −0.485180 0.840356i
\(86\) 7.34386e8 + 1.27199e9i 1.44771 + 2.50751i
\(87\) 0 0
\(88\) −3.06972e8 + 5.31692e8i −0.545667 + 0.945122i
\(89\) −9.43654e8 −1.59425 −0.797127 0.603812i \(-0.793648\pi\)
−0.797127 + 0.603812i \(0.793648\pi\)
\(90\) 0 0
\(91\) 3.29823e7 0.0504191
\(92\) −4.93415e7 + 8.54620e7i −0.0718070 + 0.124373i
\(93\) 0 0
\(94\) 8.25654e8 + 1.43008e9i 1.09074 + 1.88922i
\(95\) 2.56053e8 + 4.43497e8i 0.322533 + 0.558643i
\(96\) 0 0
\(97\) −4.83526e8 + 8.37491e8i −0.554558 + 0.960522i 0.443380 + 0.896334i \(0.353779\pi\)
−0.997938 + 0.0641886i \(0.979554\pi\)
\(98\) −1.37838e8 −0.150956
\(99\) 0 0
\(100\) −1.24529e9 −1.24529
\(101\) −8.41991e8 + 1.45837e9i −0.805121 + 1.39451i 0.111088 + 0.993811i \(0.464566\pi\)
−0.916209 + 0.400700i \(0.868767\pi\)
\(102\) 0 0
\(103\) −5.03057e7 8.71321e7i −0.0440403 0.0762800i 0.843165 0.537655i \(-0.180690\pi\)
−0.887205 + 0.461375i \(0.847356\pi\)
\(104\) 1.06176e8 + 1.83902e8i 0.0889973 + 0.154148i
\(105\) 0 0
\(106\) 1.74977e9 3.03069e9i 1.34618 2.33166i
\(107\) −5.50494e8 −0.406000 −0.203000 0.979179i \(-0.565069\pi\)
−0.203000 + 0.979179i \(0.565069\pi\)
\(108\) 0 0
\(109\) 1.31023e9 0.889055 0.444527 0.895765i \(-0.353372\pi\)
0.444527 + 0.895765i \(0.353372\pi\)
\(110\) −3.37986e8 + 5.85409e8i −0.220106 + 0.381235i
\(111\) 0 0
\(112\) −3.74729e9 6.49049e9i −2.25028 3.89759i
\(113\) −3.87701e7 6.71518e7i −0.0223689 0.0387440i 0.854624 0.519247i \(-0.173787\pi\)
−0.876993 + 0.480503i \(0.840454\pi\)
\(114\) 0 0
\(115\) −3.53558e7 + 6.12380e7i −0.0188504 + 0.0326498i
\(116\) 5.01172e9 2.56996
\(117\) 0 0
\(118\) 2.28192e9 1.08351
\(119\) −1.46504e9 + 2.53753e9i −0.669713 + 1.15998i
\(120\) 0 0
\(121\) 1.07434e9 + 1.86082e9i 0.455626 + 0.789168i
\(122\) −4.28588e8 7.42337e8i −0.175154 0.303376i
\(123\) 0 0
\(124\) −2.53599e9 + 4.39246e9i −0.963274 + 1.66844i
\(125\) −2.94431e9 −1.07867
\(126\) 0 0
\(127\) −1.89287e9 −0.645661 −0.322830 0.946457i \(-0.604634\pi\)
−0.322830 + 0.946457i \(0.604634\pi\)
\(128\) 8.19617e9 1.41962e10i 2.69877 4.67441i
\(129\) 0 0
\(130\) 1.16903e8 + 2.02482e8i 0.0358989 + 0.0621788i
\(131\) −2.31093e9 4.00265e9i −0.685593 1.18748i −0.973250 0.229749i \(-0.926210\pi\)
0.287657 0.957734i \(-0.407124\pi\)
\(132\) 0 0
\(133\) 1.60654e9 2.78261e9i 0.445204 0.771116i
\(134\) −9.55538e9 −2.56022
\(135\) 0 0
\(136\) −1.88649e10 −4.72857
\(137\) −3.41347e9 + 5.91231e9i −0.827854 + 1.43389i 0.0718644 + 0.997414i \(0.477105\pi\)
−0.899718 + 0.436471i \(0.856228\pi\)
\(138\) 0 0
\(139\) −2.43834e9 4.22333e9i −0.554023 0.959596i −0.997979 0.0635471i \(-0.979759\pi\)
0.443956 0.896049i \(-0.353575\pi\)
\(140\) −5.07718e9 8.79393e9i −1.11698 1.93467i
\(141\) 0 0
\(142\) −7.24537e9 + 1.25493e10i −1.49542 + 2.59014i
\(143\) −7.23801e7 −0.0144746
\(144\) 0 0
\(145\) 3.59117e9 0.674651
\(146\) 3.50364e9 6.06849e9i 0.638163 1.10533i
\(147\) 0 0
\(148\) 2.89219e9 + 5.00941e9i 0.495506 + 0.858241i
\(149\) 3.82468e9 + 6.62455e9i 0.635708 + 1.10108i 0.986365 + 0.164574i \(0.0526250\pi\)
−0.350657 + 0.936504i \(0.614042\pi\)
\(150\) 0 0
\(151\) 2.09794e9 3.63374e9i 0.328396 0.568798i −0.653798 0.756669i \(-0.726825\pi\)
0.982194 + 0.187871i \(0.0601587\pi\)
\(152\) 2.06870e10 3.14341
\(153\) 0 0
\(154\) 4.24122e9 0.607642
\(155\) −1.81717e9 + 3.14743e9i −0.252873 + 0.437990i
\(156\) 0 0
\(157\) 3.80239e8 + 6.58594e8i 0.0499469 + 0.0865106i 0.889918 0.456121i \(-0.150761\pi\)
−0.839971 + 0.542631i \(0.817428\pi\)
\(158\) 7.97550e8 + 1.38140e9i 0.101813 + 0.176344i
\(159\) 0 0
\(160\) 1.51491e10 2.62389e10i 1.82745 3.16524i
\(161\) 4.43662e8 0.0520398
\(162\) 0 0
\(163\) −7.55113e9 −0.837853 −0.418926 0.908020i \(-0.637593\pi\)
−0.418926 + 0.908020i \(0.637593\pi\)
\(164\) −1.29072e10 + 2.23559e10i −1.39327 + 2.41321i
\(165\) 0 0
\(166\) −1.79684e8 3.11222e8i −0.0183664 0.0318115i
\(167\) 4.02882e9 + 6.97812e9i 0.400824 + 0.694248i 0.993826 0.110954i \(-0.0353905\pi\)
−0.593002 + 0.805201i \(0.702057\pi\)
\(168\) 0 0
\(169\) 5.28973e9 9.16208e9i 0.498820 0.863981i
\(170\) −2.07709e10 −1.90737
\(171\) 0 0
\(172\) 4.84190e10 4.21830
\(173\) 2.06159e9 3.57078e9i 0.174982 0.303079i −0.765173 0.643825i \(-0.777346\pi\)
0.940155 + 0.340747i \(0.110680\pi\)
\(174\) 0 0
\(175\) 2.79930e9 + 4.84853e9i 0.225620 + 0.390786i
\(176\) 8.22346e9 + 1.42434e10i 0.646022 + 1.11894i
\(177\) 0 0
\(178\) −2.09855e10 + 3.63480e10i −1.56686 + 2.71388i
\(179\) −2.46170e10 −1.79224 −0.896120 0.443811i \(-0.853626\pi\)
−0.896120 + 0.443811i \(0.853626\pi\)
\(180\) 0 0
\(181\) −4.17661e9 −0.289248 −0.144624 0.989487i \(-0.546197\pi\)
−0.144624 + 0.989487i \(0.546197\pi\)
\(182\) 7.33480e8 1.27043e9i 0.0495527 0.0858278i
\(183\) 0 0
\(184\) 1.42823e9 + 2.47376e9i 0.0918581 + 0.159103i
\(185\) 2.07240e9 + 3.58951e9i 0.130077 + 0.225301i
\(186\) 0 0
\(187\) 3.21505e9 5.56862e9i 0.192265 0.333013i
\(188\) 5.44364e10 3.17818
\(189\) 0 0
\(190\) 2.27770e10 1.26796
\(191\) 7.32150e9 1.26812e10i 0.398061 0.689462i −0.595426 0.803411i \(-0.703017\pi\)
0.993487 + 0.113948i \(0.0363499\pi\)
\(192\) 0 0
\(193\) −7.93330e9 1.37409e10i −0.411572 0.712864i 0.583490 0.812120i \(-0.301687\pi\)
−0.995062 + 0.0992567i \(0.968354\pi\)
\(194\) 2.15058e10 + 3.72492e10i 1.09006 + 1.88803i
\(195\) 0 0
\(196\) −2.27195e9 + 3.93514e9i −0.109963 + 0.190462i
\(197\) 4.01582e9 0.189966 0.0949832 0.995479i \(-0.469720\pi\)
0.0949832 + 0.995479i \(0.469720\pi\)
\(198\) 0 0
\(199\) −3.90309e10 −1.76429 −0.882144 0.470980i \(-0.843901\pi\)
−0.882144 + 0.470980i \(0.843901\pi\)
\(200\) −1.80229e10 + 3.12166e10i −0.796507 + 1.37959i
\(201\) 0 0
\(202\) 3.74493e10 + 6.48642e10i 1.58257 + 2.74109i
\(203\) −1.12659e10 1.95132e10i −0.465624 0.806484i
\(204\) 0 0
\(205\) −9.24867e9 + 1.60192e10i −0.365752 + 0.633502i
\(206\) −4.47491e9 −0.173134
\(207\) 0 0
\(208\) 5.68869e9 0.210730
\(209\) −3.52557e9 + 6.10647e9i −0.127812 + 0.221377i
\(210\) 0 0
\(211\) −1.35050e10 2.33913e10i −0.469054 0.812425i 0.530320 0.847797i \(-0.322072\pi\)
−0.999374 + 0.0353723i \(0.988738\pi\)
\(212\) −5.76822e10 9.99086e10i −1.96124 3.39697i
\(213\) 0 0
\(214\) −1.22422e10 + 2.12041e10i −0.399023 + 0.691128i
\(215\) 3.46948e10 1.10737
\(216\) 0 0
\(217\) 2.28028e10 0.698102
\(218\) 2.91377e10 5.04679e10i 0.873776 1.51343i
\(219\) 0 0
\(220\) 1.11419e10 + 1.92984e10i 0.320670 + 0.555416i
\(221\) −1.11203e9 1.92608e9i −0.0313581 0.0543138i
\(222\) 0 0
\(223\) 2.86518e10 4.96264e10i 0.775854 1.34382i −0.158459 0.987366i \(-0.550653\pi\)
0.934313 0.356453i \(-0.116014\pi\)
\(224\) −1.90098e11 −5.04500
\(225\) 0 0
\(226\) −3.44877e9 −0.0879379
\(227\) 1.75028e10 3.03158e10i 0.437514 0.757797i −0.559983 0.828504i \(-0.689192\pi\)
0.997497 + 0.0707073i \(0.0225256\pi\)
\(228\) 0 0
\(229\) −3.23765e10 5.60778e10i −0.777984 1.34751i −0.933102 0.359611i \(-0.882909\pi\)
0.155118 0.987896i \(-0.450424\pi\)
\(230\) 1.57252e9 + 2.72369e9i 0.0370529 + 0.0641775i
\(231\) 0 0
\(232\) 7.25342e10 1.25633e11i 1.64379 2.84713i
\(233\) 5.91061e10 1.31380 0.656902 0.753976i \(-0.271866\pi\)
0.656902 + 0.753976i \(0.271866\pi\)
\(234\) 0 0
\(235\) 3.90066e10 0.834319
\(236\) 3.76124e10 6.51466e10i 0.789273 1.36706i
\(237\) 0 0
\(238\) 6.51608e10 + 1.12862e11i 1.31641 + 2.28008i
\(239\) −2.02351e10 3.50482e10i −0.401158 0.694825i 0.592708 0.805417i \(-0.298059\pi\)
−0.993866 + 0.110592i \(0.964725\pi\)
\(240\) 0 0
\(241\) −1.68545e9 + 2.91928e9i −0.0321839 + 0.0557441i −0.881669 0.471869i \(-0.843580\pi\)
0.849485 + 0.527613i \(0.176913\pi\)
\(242\) 9.55674e10 1.79119
\(243\) 0 0
\(244\) −2.82573e10 −0.510361
\(245\) −1.62797e9 + 2.81973e9i −0.0288669 + 0.0499989i
\(246\) 0 0
\(247\) 1.21943e9 + 2.11211e9i 0.0208459 + 0.0361061i
\(248\) 7.34063e10 + 1.27143e11i 1.23225 + 2.13433i
\(249\) 0 0
\(250\) −6.54772e10 + 1.13410e11i −1.06013 + 1.83620i
\(251\) 4.69295e10 0.746301 0.373151 0.927771i \(-0.378277\pi\)
0.373151 + 0.927771i \(0.378277\pi\)
\(252\) 0 0
\(253\) −9.73621e8 −0.0149399
\(254\) −4.20947e10 + 7.29102e10i −0.634565 + 1.09910i
\(255\) 0 0
\(256\) −1.85207e11 3.20788e11i −2.69511 4.66808i
\(257\) −8.74728e9 1.51507e10i −0.125076 0.216638i 0.796687 0.604393i \(-0.206584\pi\)
−0.921763 + 0.387755i \(0.873251\pi\)
\(258\) 0 0
\(259\) 1.30028e10 2.25215e10i 0.179551 0.310991i
\(260\) 7.70757e9 0.104601
\(261\) 0 0
\(262\) −2.05567e11 −2.69525
\(263\) 5.03147e10 8.71475e10i 0.648476 1.12319i −0.335011 0.942214i \(-0.608740\pi\)
0.983487 0.180979i \(-0.0579265\pi\)
\(264\) 0 0
\(265\) −4.13324e10 7.15898e10i −0.514854 0.891753i
\(266\) −7.14543e10 1.23763e11i −0.875107 1.51573i
\(267\) 0 0
\(268\) −1.57500e11 + 2.72797e11i −1.86497 + 3.23023i
\(269\) −2.18445e10 −0.254365 −0.127182 0.991879i \(-0.540593\pi\)
−0.127182 + 0.991879i \(0.540593\pi\)
\(270\) 0 0
\(271\) 5.19462e10 0.585049 0.292524 0.956258i \(-0.405505\pi\)
0.292524 + 0.956258i \(0.405505\pi\)
\(272\) −2.52685e11 + 4.37664e11i −2.79911 + 4.84820i
\(273\) 0 0
\(274\) 1.51821e11 + 2.62962e11i 1.62726 + 2.81849i
\(275\) −6.14309e9 1.06401e10i −0.0647724 0.112189i
\(276\) 0 0
\(277\) 4.18852e9 7.25473e9i 0.0427466 0.0740393i −0.843861 0.536563i \(-0.819723\pi\)
0.886607 + 0.462523i \(0.153056\pi\)
\(278\) −2.16901e11 −2.17801
\(279\) 0 0
\(280\) −2.93926e11 −2.85777
\(281\) 4.08163e10 7.06959e10i 0.390530 0.676419i −0.601989 0.798504i \(-0.705625\pi\)
0.992520 + 0.122086i \(0.0389583\pi\)
\(282\) 0 0
\(283\) 3.05738e10 + 5.29553e10i 0.283341 + 0.490762i 0.972206 0.234129i \(-0.0752237\pi\)
−0.688864 + 0.724890i \(0.741890\pi\)
\(284\) 2.38848e11 + 4.13697e11i 2.17866 + 3.77355i
\(285\) 0 0
\(286\) −1.60963e9 + 2.78796e9i −0.0142259 + 0.0246399i
\(287\) 1.16057e11 1.00972
\(288\) 0 0
\(289\) 7.89921e10 0.666106
\(290\) 7.98624e10 1.38326e11i 0.663058 1.14845i
\(291\) 0 0
\(292\) −1.15500e11 2.00051e11i −0.929732 1.61034i
\(293\) 8.67297e10 + 1.50220e11i 0.687486 + 1.19076i 0.972649 + 0.232281i \(0.0746189\pi\)
−0.285163 + 0.958479i \(0.592048\pi\)
\(294\) 0 0
\(295\) 2.69513e10 4.66810e10i 0.207196 0.358873i
\(296\) 1.67433e11 1.26774
\(297\) 0 0
\(298\) 3.40222e11 2.49913
\(299\) −1.68379e8 + 2.91641e8i −0.00121834 + 0.00211022i
\(300\) 0 0
\(301\) −1.08842e11 1.88520e11i −0.764270 1.32375i
\(302\) −9.33105e10 1.61619e11i −0.645505 1.11805i
\(303\) 0 0
\(304\) 2.77091e11 4.79935e11i 1.86076 3.22294i
\(305\) −2.02479e10 −0.133977
\(306\) 0 0
\(307\) −1.89397e11 −1.21689 −0.608443 0.793598i \(-0.708205\pi\)
−0.608443 + 0.793598i \(0.708205\pi\)
\(308\) 6.99072e10 1.21083e11i 0.442633 0.766663i
\(309\) 0 0
\(310\) 8.08226e10 + 1.39989e11i 0.497056 + 0.860926i
\(311\) 7.38382e10 + 1.27892e11i 0.447569 + 0.775212i 0.998227 0.0595190i \(-0.0189567\pi\)
−0.550659 + 0.834731i \(0.685623\pi\)
\(312\) 0 0
\(313\) −2.32124e9 + 4.02051e9i −0.0136701 + 0.0236773i −0.872780 0.488115i \(-0.837685\pi\)
0.859109 + 0.511792i \(0.171018\pi\)
\(314\) 3.38239e10 0.196354
\(315\) 0 0
\(316\) 5.25835e10 0.296659
\(317\) 8.81821e10 1.52736e11i 0.490471 0.849521i −0.509468 0.860489i \(-0.670158\pi\)
0.999940 + 0.0109679i \(0.00349126\pi\)
\(318\) 0 0
\(319\) 2.47232e10 + 4.28219e10i 0.133674 + 0.231530i
\(320\) −3.67996e11 6.37387e11i −1.96186 3.39804i
\(321\) 0 0
\(322\) 9.86641e9 1.70891e10i 0.0511456 0.0885867i
\(323\) −2.16663e11 −1.10758
\(324\) 0 0
\(325\) −4.24956e9 −0.0211285
\(326\) −1.67926e11 + 2.90857e11i −0.823454 + 1.42626i
\(327\) 0 0
\(328\) 3.73609e11 + 6.47109e11i 1.78232 + 3.08706i
\(329\) −1.22369e11 2.11948e11i −0.575822 0.997353i
\(330\) 0 0
\(331\) 1.54928e11 2.68344e11i 0.709423 1.22876i −0.255649 0.966770i \(-0.582289\pi\)
0.965072 0.261987i \(-0.0843776\pi\)
\(332\) −1.18468e10 −0.0535155
\(333\) 0 0
\(334\) 3.58381e11 1.57574
\(335\) −1.12857e11 + 1.95474e11i −0.489583 + 0.847982i
\(336\) 0 0
\(337\) −1.56829e11 2.71636e11i −0.662356 1.14723i −0.979995 0.199023i \(-0.936223\pi\)
0.317639 0.948212i \(-0.397110\pi\)
\(338\) −2.35272e11 4.07503e11i −0.980495 1.69827i
\(339\) 0 0
\(340\) −3.42362e11 + 5.92989e11i −1.38941 + 2.40653i
\(341\) −5.00409e10 −0.200415
\(342\) 0 0
\(343\) −2.45577e11 −0.957996
\(344\) 7.00763e11 1.21376e12i 2.69810 4.67325i
\(345\) 0 0
\(346\) −9.16936e10 1.58818e11i −0.343951 0.595740i
\(347\) −4.05420e10 7.02209e10i −0.150115 0.260006i 0.781155 0.624337i \(-0.214631\pi\)
−0.931269 + 0.364331i \(0.881298\pi\)
\(348\) 0 0
\(349\) −1.34389e11 + 2.32768e11i −0.484896 + 0.839864i −0.999849 0.0173540i \(-0.994476\pi\)
0.514954 + 0.857218i \(0.327809\pi\)
\(350\) 2.49010e11 0.886972
\(351\) 0 0
\(352\) 4.17172e11 1.44835
\(353\) −1.96480e11 + 3.40313e11i −0.673491 + 1.16652i 0.303416 + 0.952858i \(0.401873\pi\)
−0.976907 + 0.213663i \(0.931461\pi\)
\(354\) 0 0
\(355\) 1.71147e11 + 2.96436e11i 0.571929 + 0.990611i
\(356\) 6.91800e11 + 1.19823e12i 2.28274 + 3.95381i
\(357\) 0 0
\(358\) −5.47447e11 + 9.48206e11i −1.76144 + 3.05091i
\(359\) −2.48781e11 −0.790484 −0.395242 0.918577i \(-0.629339\pi\)
−0.395242 + 0.918577i \(0.629339\pi\)
\(360\) 0 0
\(361\) −8.50984e10 −0.263718
\(362\) −9.28819e10 + 1.60876e11i −0.284277 + 0.492383i
\(363\) 0 0
\(364\) −2.41796e10 4.18803e10i −0.0721927 0.125041i
\(365\) −8.27617e10 1.43347e11i −0.244068 0.422739i
\(366\) 0 0
\(367\) 1.62624e11 2.81673e11i 0.467937 0.810491i −0.531391 0.847126i \(-0.678331\pi\)
0.999329 + 0.0366351i \(0.0116639\pi\)
\(368\) 7.65214e10 0.217504
\(369\) 0 0
\(370\) 1.84349e11 0.511368
\(371\) −2.59330e11 + 4.49172e11i −0.710673 + 1.23092i
\(372\) 0 0
\(373\) 1.77616e11 + 3.07640e11i 0.475108 + 0.822912i 0.999594 0.0285077i \(-0.00907553\pi\)
−0.524485 + 0.851420i \(0.675742\pi\)
\(374\) −1.42996e11 2.47677e11i −0.377922 0.654580i
\(375\) 0 0
\(376\) 7.87853e11 1.36460e12i 2.03282 3.52095i
\(377\) 1.71026e10 0.0436040
\(378\) 0 0
\(379\) −4.17590e11 −1.03962 −0.519809 0.854283i \(-0.673997\pi\)
−0.519809 + 0.854283i \(0.673997\pi\)
\(380\) 3.75429e11 6.50262e11i 0.923637 1.59979i
\(381\) 0 0
\(382\) −3.25639e11 5.64024e11i −0.782441 1.35523i
\(383\) −4.19861e9 7.27221e9i −0.00997038 0.0172692i 0.860997 0.508610i \(-0.169840\pi\)
−0.870968 + 0.491341i \(0.836507\pi\)
\(384\) 0 0
\(385\) 5.00922e10 8.67623e10i 0.116198 0.201260i
\(386\) −7.05701e11 −1.61800
\(387\) 0 0
\(388\) 1.41791e12 3.17618
\(389\) −2.23902e11 + 3.87809e11i −0.495774 + 0.858706i −0.999988 0.00487245i \(-0.998449\pi\)
0.504214 + 0.863579i \(0.331782\pi\)
\(390\) 0 0
\(391\) −1.49584e10 2.59087e10i −0.0323661 0.0560597i
\(392\) 6.57635e10 + 1.13906e11i 0.140669 + 0.243645i
\(393\) 0 0
\(394\) 8.93062e10 1.54683e11i 0.186702 0.323377i
\(395\) 3.76788e10 0.0778773
\(396\) 0 0
\(397\) 8.93449e11 1.80515 0.902573 0.430537i \(-0.141676\pi\)
0.902573 + 0.430537i \(0.141676\pi\)
\(398\) −8.67991e11 + 1.50340e12i −1.73397 + 3.00332i
\(399\) 0 0
\(400\) 4.82814e11 + 8.36258e11i 0.942996 + 1.63332i
\(401\) 1.10853e10 + 1.92004e10i 0.0214092 + 0.0370817i 0.876531 0.481345i \(-0.159851\pi\)
−0.855122 + 0.518426i \(0.826518\pi\)
\(402\) 0 0
\(403\) −8.65412e9 + 1.49894e10i −0.0163437 + 0.0283081i
\(404\) 2.46908e12 4.61126
\(405\) 0 0
\(406\) −1.00215e12 −1.83049
\(407\) −2.85347e10 + 4.94236e10i −0.0515465 + 0.0892812i
\(408\) 0 0
\(409\) −2.39862e11 4.15453e11i −0.423844 0.734120i 0.572468 0.819927i \(-0.305986\pi\)
−0.996312 + 0.0858078i \(0.972653\pi\)
\(410\) 4.11355e11 + 7.12487e11i 0.718934 + 1.24523i
\(411\) 0 0
\(412\) −7.37590e10 + 1.27754e11i −0.126118 + 0.218443i
\(413\) −3.38198e11 −0.572000
\(414\) 0 0
\(415\) −8.48885e9 −0.0140486
\(416\) 7.21461e10 1.24961e11i 0.118112 0.204575i
\(417\) 0 0
\(418\) 1.56807e11 + 2.71598e11i 0.251231 + 0.435144i
\(419\) 4.17661e11 + 7.23411e11i 0.662005 + 1.14663i 0.980088 + 0.198563i \(0.0636275\pi\)
−0.318083 + 0.948063i \(0.603039\pi\)
\(420\) 0 0
\(421\) −1.03140e11 + 1.78644e11i −0.160014 + 0.277153i −0.934874 0.354981i \(-0.884487\pi\)
0.774859 + 0.632134i \(0.217821\pi\)
\(422\) −1.20133e12 −1.84397
\(423\) 0 0
\(424\) −3.33932e12 −5.01778
\(425\) 1.88761e11 3.26944e11i 0.280648 0.486097i
\(426\) 0 0
\(427\) 6.35202e10 + 1.10020e11i 0.0924669 + 0.160157i
\(428\) 4.03572e11 + 6.99007e11i 0.581332 + 1.00690i
\(429\) 0 0
\(430\) 7.71562e11 1.33638e12i 1.08834 1.88505i
\(431\) −3.46311e11 −0.483414 −0.241707 0.970349i \(-0.577707\pi\)
−0.241707 + 0.970349i \(0.577707\pi\)
\(432\) 0 0
\(433\) −7.41282e9 −0.0101342 −0.00506708 0.999987i \(-0.501613\pi\)
−0.00506708 + 0.999987i \(0.501613\pi\)
\(434\) 5.07101e11 8.78325e11i 0.686105 1.18837i
\(435\) 0 0
\(436\) −9.60541e11 1.66370e12i −1.27299 2.20489i
\(437\) 1.64032e10 + 2.84111e10i 0.0215160 + 0.0372668i
\(438\) 0 0
\(439\) −4.79907e11 + 8.31224e11i −0.616690 + 1.06814i 0.373396 + 0.927672i \(0.378193\pi\)
−0.990085 + 0.140466i \(0.955140\pi\)
\(440\) 6.45024e11 0.820425
\(441\) 0 0
\(442\) −9.89194e10 −0.123277
\(443\) 1.44256e11 2.49858e11i 0.177958 0.308232i −0.763223 0.646135i \(-0.776384\pi\)
0.941181 + 0.337903i \(0.109718\pi\)
\(444\) 0 0
\(445\) 4.95711e11 + 8.58597e11i 0.599251 + 1.03793i
\(446\) −1.27435e12 2.20724e12i −1.52504 2.64145i
\(447\) 0 0
\(448\) −2.30890e12 + 3.99913e12i −2.70803 + 4.69045i
\(449\) −1.00029e12 −1.16150 −0.580749 0.814083i \(-0.697240\pi\)
−0.580749 + 0.814083i \(0.697240\pi\)
\(450\) 0 0
\(451\) −2.54688e11 −0.289878
\(452\) −5.68454e10 + 9.84591e10i −0.0640578 + 0.110951i
\(453\) 0 0
\(454\) −7.78476e11 1.34836e12i −0.859991 1.48955i
\(455\) −1.73260e10 3.00095e10i −0.0189516 0.0328252i
\(456\) 0 0
\(457\) −1.41927e11 + 2.45826e11i −0.152210 + 0.263636i −0.932040 0.362356i \(-0.881972\pi\)
0.779830 + 0.625992i \(0.215306\pi\)
\(458\) −2.88003e12 −3.05846
\(459\) 0 0
\(460\) 1.03678e11 0.107964
\(461\) −3.22910e8 + 5.59296e8i −0.000332987 + 0.000576750i −0.866192 0.499712i \(-0.833439\pi\)
0.865859 + 0.500288i \(0.166773\pi\)
\(462\) 0 0
\(463\) 2.41535e11 + 4.18352e11i 0.244268 + 0.423084i 0.961926 0.273312i \(-0.0881190\pi\)
−0.717658 + 0.696396i \(0.754786\pi\)
\(464\) −1.94311e12 3.36557e12i −1.94611 3.37076i
\(465\) 0 0
\(466\) 1.31444e12 2.27667e12i 1.29123 2.23647i
\(467\) 7.10128e11 0.690893 0.345447 0.938438i \(-0.387727\pi\)
0.345447 + 0.938438i \(0.387727\pi\)
\(468\) 0 0
\(469\) 1.41618e12 1.35158
\(470\) 8.67450e11 1.50247e12i 0.819982 1.42025i
\(471\) 0 0
\(472\) −1.08872e12 1.88572e12i −1.00967 1.74879i
\(473\) 2.38855e11 + 4.13708e11i 0.219411 + 0.380031i
\(474\) 0 0
\(475\) −2.06992e11 + 3.58521e11i −0.186566 + 0.323142i
\(476\) 4.29613e12 3.83572
\(477\) 0 0
\(478\) −1.80000e12 −1.57706
\(479\) 7.73097e9 1.33904e10i 0.00671002 0.0116221i −0.862651 0.505800i \(-0.831197\pi\)
0.869361 + 0.494178i \(0.164531\pi\)
\(480\) 0 0
\(481\) 9.86964e9 + 1.70947e10i 0.00840715 + 0.0145616i
\(482\) 7.49638e10 + 1.29841e11i 0.0632616 + 0.109572i
\(483\) 0 0
\(484\) 1.57522e12 2.72836e12i 1.30478 2.25994i
\(485\) 1.01601e12 0.833793
\(486\) 0 0
\(487\) −5.65405e11 −0.455490 −0.227745 0.973721i \(-0.573135\pi\)
−0.227745 + 0.973721i \(0.573135\pi\)
\(488\) −4.08966e11 + 7.08349e11i −0.326436 + 0.565403i
\(489\) 0 0
\(490\) 7.24076e10 + 1.25414e11i 0.0567416 + 0.0982794i
\(491\) −1.86366e11 3.22796e11i −0.144711 0.250646i 0.784554 0.620060i \(-0.212892\pi\)
−0.929265 + 0.369414i \(0.879558\pi\)
\(492\) 0 0
\(493\) −7.59680e11 + 1.31580e12i −0.579188 + 1.00318i
\(494\) 1.08473e11 0.0819506
\(495\) 0 0
\(496\) 3.93295e12 2.91777
\(497\) 1.07382e12 1.85991e12i 0.789456 1.36738i
\(498\) 0 0
\(499\) 1.78807e11 + 3.09703e11i 0.129102 + 0.223611i 0.923329 0.384010i \(-0.125457\pi\)
−0.794227 + 0.607621i \(0.792124\pi\)
\(500\) 2.15850e12 + 3.73863e12i 1.54449 + 2.67514i
\(501\) 0 0
\(502\) 1.04365e12 1.80765e12i 0.733476 1.27042i
\(503\) 1.08145e12 0.753267 0.376633 0.926362i \(-0.377082\pi\)
0.376633 + 0.926362i \(0.377082\pi\)
\(504\) 0 0
\(505\) 1.76923e12 1.21052
\(506\) −2.16519e10 + 3.75023e10i −0.0146832 + 0.0254320i
\(507\) 0 0
\(508\) 1.38768e12 + 2.40353e12i 0.924490 + 1.60126i
\(509\) −3.48650e11 6.03880e11i −0.230229 0.398768i 0.727646 0.685952i \(-0.240614\pi\)
−0.957875 + 0.287184i \(0.907281\pi\)
\(510\) 0 0
\(511\) −5.19267e11 + 8.99398e11i −0.336897 + 0.583523i
\(512\) −8.08206e12 −5.19765
\(513\) 0 0
\(514\) −7.78108e11 −0.491706
\(515\) −5.28523e10 + 9.15428e10i −0.0331079 + 0.0573445i
\(516\) 0 0
\(517\) 2.68539e11 + 4.65123e11i 0.165310 + 0.286326i
\(518\) −5.78327e11 1.00169e12i −0.352931 0.611294i
\(519\) 0 0
\(520\) 1.11551e11 1.93212e11i 0.0669049 0.115883i
\(521\) 1.96135e12 1.16623 0.583116 0.812389i \(-0.301833\pi\)
0.583116 + 0.812389i \(0.301833\pi\)
\(522\) 0 0
\(523\) −6.03647e10 −0.0352797 −0.0176399 0.999844i \(-0.505615\pi\)
−0.0176399 + 0.999844i \(0.505615\pi\)
\(524\) −3.38833e12 + 5.86875e12i −1.96334 + 3.40060i
\(525\) 0 0
\(526\) −2.23785e12 3.87607e12i −1.27466 2.20778i
\(527\) −7.68814e11 1.33162e12i −0.434183 0.752028i
\(528\) 0 0
\(529\) 8.98311e11 1.55592e12i 0.498743 0.863847i
\(530\) −3.67669e12 −2.02402
\(531\) 0 0
\(532\) −4.71107e12 −2.54987
\(533\) −4.40460e10 + 7.62899e10i −0.0236393 + 0.0409444i
\(534\) 0 0
\(535\) 2.89181e11 + 5.00876e11i 0.152608 + 0.264325i
\(536\) 4.55895e12 + 7.89633e12i 2.38574 + 4.13223i
\(537\) 0 0
\(538\) −4.85790e11 + 8.41413e11i −0.249993 + 0.433001i
\(539\) −4.48308e10 −0.0228785
\(540\) 0 0
\(541\) −1.58437e12 −0.795185 −0.397592 0.917562i \(-0.630154\pi\)
−0.397592 + 0.917562i \(0.630154\pi\)
\(542\) 1.15521e12 2.00088e12i 0.574995 0.995920i
\(543\) 0 0
\(544\) 6.40930e12 + 1.11012e13i 3.13773 + 5.43471i
\(545\) −6.88278e11 1.19213e12i −0.334179 0.578816i
\(546\) 0 0
\(547\) −7.36182e11 + 1.27510e12i −0.351595 + 0.608980i −0.986529 0.163586i \(-0.947694\pi\)
0.634934 + 0.772566i \(0.281027\pi\)
\(548\) 1.00098e13 4.74146
\(549\) 0 0
\(550\) −5.46454e11 −0.254637
\(551\) 8.33053e11 1.44289e12i 0.385026 0.666885i
\(552\) 0 0
\(553\) −1.18203e11 2.04734e11i −0.0537485 0.0930952i
\(554\) −1.86293e11 3.22669e11i −0.0840240 0.145534i
\(555\) 0 0
\(556\) −3.57513e12 + 6.19231e12i −1.58656 + 2.74800i
\(557\) 1.23459e12 0.543470 0.271735 0.962372i \(-0.412403\pi\)
0.271735 + 0.962372i \(0.412403\pi\)
\(558\) 0 0
\(559\) 1.65231e11 0.0715711
\(560\) −3.93698e12 + 6.81905e12i −1.69168 + 2.93007i
\(561\) 0 0
\(562\) −1.81539e12 3.14435e12i −0.767638 1.32959i
\(563\) 1.61399e11 + 2.79551e11i 0.0677037 + 0.117266i 0.897890 0.440220i \(-0.145099\pi\)
−0.830186 + 0.557486i \(0.811766\pi\)
\(564\) 0 0
\(565\) −4.07327e10 + 7.05511e10i −0.0168161 + 0.0291263i
\(566\) 2.71967e12 1.11389
\(567\) 0 0
\(568\) 1.38273e13 5.57404
\(569\) −7.58978e11 + 1.31459e12i −0.303546 + 0.525756i −0.976936 0.213530i \(-0.931504\pi\)
0.673391 + 0.739287i \(0.264837\pi\)
\(570\) 0 0
\(571\) −3.02035e11 5.23139e11i −0.118903 0.205947i 0.800430 0.599426i \(-0.204605\pi\)
−0.919333 + 0.393480i \(0.871271\pi\)
\(572\) 5.30624e10 + 9.19068e10i 0.0207255 + 0.0358976i
\(573\) 0 0
\(574\) 2.58094e12 4.47032e12i 0.992373 1.71884i
\(575\) −5.71630e10 −0.0218077
\(576\) 0 0
\(577\) −4.16132e12 −1.56293 −0.781466 0.623948i \(-0.785528\pi\)
−0.781466 + 0.623948i \(0.785528\pi\)
\(578\) 1.75667e12 3.04265e12i 0.654660 1.13390i
\(579\) 0 0
\(580\) −2.63271e12 4.55999e12i −0.966001 1.67316i
\(581\) 2.66306e10 + 4.61256e10i 0.00969591 + 0.0167938i
\(582\) 0 0
\(583\) 5.69102e11 9.85713e11i 0.204024 0.353380i
\(584\) −6.68646e12 −2.37869
\(585\) 0 0
\(586\) 7.71498e12 2.70269
\(587\) 6.48959e11 1.12403e12i 0.225604 0.390757i −0.730897 0.682488i \(-0.760898\pi\)
0.956500 + 0.291731i \(0.0942312\pi\)
\(588\) 0 0
\(589\) 8.43069e11 + 1.46024e12i 0.288632 + 0.499925i
\(590\) −1.19872e12 2.07624e12i −0.407270 0.705412i
\(591\) 0 0
\(592\) 2.24268e12 3.88443e12i 0.750446 1.29981i
\(593\) −6.89642e11 −0.229022 −0.114511 0.993422i \(-0.536530\pi\)
−0.114511 + 0.993422i \(0.536530\pi\)
\(594\) 0 0
\(595\) 3.07841e12 1.00693
\(596\) 5.60781e12 9.71302e12i 1.82048 3.15316i
\(597\) 0 0
\(598\) 7.48901e9 + 1.29713e10i 0.00239480 + 0.00414791i
\(599\) −3.40832e11 5.90339e11i −0.108173 0.187362i 0.806857 0.590747i \(-0.201167\pi\)
−0.915030 + 0.403385i \(0.867833\pi\)
\(600\) 0 0
\(601\) 2.36698e12 4.09974e12i 0.740049 1.28180i −0.212424 0.977178i \(-0.568136\pi\)
0.952473 0.304624i \(-0.0985309\pi\)
\(602\) −9.68195e12 −3.00454
\(603\) 0 0
\(604\) −6.15208e12 −1.88086
\(605\) 1.12873e12 1.95501e12i 0.342523 0.593267i
\(606\) 0 0
\(607\) 1.69211e12 + 2.93082e12i 0.505917 + 0.876273i 0.999977 + 0.00684543i \(0.00217898\pi\)
−0.494060 + 0.869428i \(0.664488\pi\)
\(608\) −7.02834e12 1.21734e13i −2.08587 3.61283i
\(609\) 0 0
\(610\) −4.50284e11 + 7.79915e11i −0.131675 + 0.228067i
\(611\) 1.85765e11 0.0539237
\(612\) 0 0
\(613\) −2.77900e12 −0.794906 −0.397453 0.917622i \(-0.630106\pi\)
−0.397453 + 0.917622i \(0.630106\pi\)
\(614\) −4.21191e12 + 7.29525e12i −1.19597 + 2.07149i
\(615\) 0 0
\(616\) −2.02352e12 3.50484e12i −0.566232 0.980743i
\(617\) 2.85307e12 + 4.94166e12i 0.792554 + 1.37274i 0.924381 + 0.381470i \(0.124582\pi\)
−0.131827 + 0.991273i \(0.542084\pi\)
\(618\) 0 0
\(619\) −2.85011e12 + 4.93653e12i −0.780285 + 1.35149i 0.151490 + 0.988459i \(0.451593\pi\)
−0.931776 + 0.363035i \(0.881741\pi\)
\(620\) 5.32873e12 1.44831
\(621\) 0 0
\(622\) 6.56823e12 1.75951
\(623\) 3.11022e12 5.38706e12i 0.827170 1.43270i
\(624\) 0 0
\(625\) 7.17264e11 + 1.24234e12i 0.188026 + 0.325671i
\(626\) 1.03242e11 + 1.78821e11i 0.0268703 + 0.0465408i
\(627\) 0 0
\(628\) 5.57513e11 9.65641e11i 0.143033 0.247741i
\(629\) −1.75360e12 −0.446685
\(630\) 0 0
\(631\) −7.58053e11 −0.190356 −0.0951782 0.995460i \(-0.530342\pi\)
−0.0951782 + 0.995460i \(0.530342\pi\)
\(632\) 7.61035e11 1.31815e12i 0.189748 0.328654i
\(633\) 0 0
\(634\) −3.92209e12 6.79325e12i −0.964086 1.66985i
\(635\) 9.94346e11 + 1.72226e12i 0.242692 + 0.420355i
\(636\) 0 0
\(637\) −7.75308e9 + 1.34287e10i −0.00186572 + 0.00323153i
\(638\) 2.19924e12 0.525507
\(639\) 0 0
\(640\) −1.72222e13 −4.05768
\(641\) −1.53875e12 + 2.66519e12i −0.360003 + 0.623544i −0.987961 0.154703i \(-0.950558\pi\)
0.627958 + 0.778248i \(0.283891\pi\)
\(642\) 0 0
\(643\) −1.05213e12 1.82234e12i −0.242727 0.420416i 0.718763 0.695255i \(-0.244709\pi\)
−0.961490 + 0.274839i \(0.911375\pi\)
\(644\) −3.25252e11 5.63354e11i −0.0745133 0.129061i
\(645\) 0 0
\(646\) −4.81828e12 + 8.34550e12i −1.08854 + 1.88541i
\(647\) 1.41884e12 0.318319 0.159160 0.987253i \(-0.449122\pi\)
0.159160 + 0.987253i \(0.449122\pi\)
\(648\) 0 0
\(649\) 7.42180e11 0.164213
\(650\) −9.45042e10 + 1.63686e11i −0.0207654 + 0.0359668i
\(651\) 0 0
\(652\) 5.53579e12 + 9.58827e12i 1.19968 + 2.07791i
\(653\) 1.70144e11 + 2.94698e11i 0.0366191 + 0.0634262i 0.883754 0.467952i \(-0.155008\pi\)
−0.847135 + 0.531378i \(0.821674\pi\)
\(654\) 0 0
\(655\) −2.42792e12 + 4.20527e12i −0.515404 + 0.892706i
\(656\) 2.00171e13 4.22022
\(657\) 0 0
\(658\) −1.08852e13 −2.26371
\(659\) −2.31012e12 + 4.00125e12i −0.477145 + 0.826440i −0.999657 0.0261924i \(-0.991662\pi\)
0.522512 + 0.852632i \(0.324995\pi\)
\(660\) 0 0
\(661\) 2.31748e12 + 4.01400e12i 0.472183 + 0.817845i 0.999493 0.0318281i \(-0.0101329\pi\)
−0.527311 + 0.849673i \(0.676800\pi\)
\(662\) −6.89077e12 1.19352e13i −1.39446 2.41528i
\(663\) 0 0
\(664\) −1.71457e11 + 2.96973e11i −0.0342295 + 0.0592872i
\(665\) −3.37573e12 −0.669377
\(666\) 0 0
\(667\) 2.30056e11 0.0450057
\(668\) 5.90712e12 1.02314e13i 1.14784 1.98812i
\(669\) 0 0
\(670\) 5.01955e12 + 8.69411e12i 0.962339 + 1.66682i
\(671\) −1.39396e11 2.41440e11i −0.0265459 0.0459789i
\(672\) 0 0
\(673\) 5.02585e12 8.70503e12i 0.944370 1.63570i 0.187361 0.982291i \(-0.440007\pi\)
0.757009 0.653405i \(-0.226660\pi\)
\(674\) −1.39506e13 −2.60390
\(675\) 0 0
\(676\) −1.55118e13 −2.85694
\(677\) −4.41589e12 + 7.64855e12i −0.807922 + 1.39936i 0.106378 + 0.994326i \(0.466075\pi\)
−0.914300 + 0.405037i \(0.867259\pi\)
\(678\) 0 0
\(679\) −3.18734e12 5.52063e12i −0.575458 0.996723i
\(680\) 9.90995e12 + 1.71645e13i 1.77738 + 3.07852i
\(681\) 0 0
\(682\) −1.11284e12 + 1.92749e12i −0.196971 + 0.341164i
\(683\) −1.10788e13 −1.94805 −0.974027 0.226430i \(-0.927294\pi\)
−0.974027 + 0.226430i \(0.927294\pi\)
\(684\) 0 0
\(685\) 7.17253e12 1.24470
\(686\) −5.46128e12 + 9.45921e12i −0.941534 + 1.63078i
\(687\) 0 0
\(688\) −1.87727e13 3.25152e13i −3.19432 5.53272i
\(689\) −1.96842e11 3.40940e11i −0.0332760 0.0576357i
\(690\) 0 0
\(691\) 3.16465e11 5.48134e11i 0.0528050 0.0914609i −0.838415 0.545033i \(-0.816517\pi\)
0.891220 + 0.453572i \(0.149850\pi\)
\(692\) −6.04547e12 −1.00220
\(693\) 0 0
\(694\) −3.60639e12 −0.590140
\(695\) −2.56177e12 + 4.43712e12i −0.416494 + 0.721389i
\(696\) 0 0
\(697\) −3.91295e12 6.77743e12i −0.627996 1.08772i
\(698\) 5.97723e12 + 1.03529e13i 0.953126 + 1.65086i
\(699\) 0 0
\(700\) 4.10438e12 7.10899e12i 0.646109 1.11909i
\(701\) 3.84382e12 0.601219 0.300609 0.953747i \(-0.402810\pi\)
0.300609 + 0.953747i \(0.402810\pi\)
\(702\) 0 0
\(703\) 1.92297e12 0.296943
\(704\) 5.06690e12 8.77613e12i 0.777437 1.34656i
\(705\) 0 0
\(706\) 8.73887e12 + 1.51362e13i 1.32384 + 2.29295i
\(707\) −5.55029e12 9.61338e12i −0.835465 1.44707i
\(708\) 0 0
\(709\) 3.07967e12 5.33415e12i 0.457716 0.792788i −0.541123 0.840943i \(-0.682001\pi\)
0.998840 + 0.0481550i \(0.0153341\pi\)
\(710\) 1.52243e13 2.24840
\(711\) 0 0
\(712\) 4.00494e13 5.84031
\(713\) −1.16411e11 + 2.01630e11i −0.0168691 + 0.0292181i
\(714\) 0 0
\(715\) 3.80220e10 + 6.58561e10i 0.00544074 + 0.00942364i
\(716\) 1.80469e13 + 3.12582e13i 2.56622 + 4.44483i
\(717\) 0 0
\(718\) −5.53254e12 + 9.58265e12i −0.776900 + 1.34563i
\(719\) 6.51194e12 0.908721 0.454361 0.890818i \(-0.349868\pi\)
0.454361 + 0.890818i \(0.349868\pi\)
\(720\) 0 0
\(721\) 6.63217e11 0.0914001
\(722\) −1.89247e12 + 3.27785e12i −0.259186 + 0.448923i
\(723\) 0 0
\(724\) 3.06191e12 + 5.30338e12i 0.414160 + 0.717347i
\(725\) 1.45154e12 + 2.51415e12i 0.195123 + 0.337963i
\(726\) 0 0
\(727\) −1.02893e12 + 1.78215e12i −0.136609 + 0.236614i −0.926211 0.377006i \(-0.876954\pi\)
0.789602 + 0.613620i \(0.210287\pi\)
\(728\) −1.39980e12 −0.184703
\(729\) 0 0
\(730\) −7.36200e12 −0.959496
\(731\) −7.33938e12 + 1.27122e13i −0.950673 + 1.64661i
\(732\) 0 0
\(733\) −3.98122e12 6.89568e12i −0.509388 0.882286i −0.999941 0.0108743i \(-0.996539\pi\)
0.490553 0.871411i \(-0.336795\pi\)
\(734\) −7.23306e12 1.25280e13i −0.919792 1.59313i
\(735\) 0 0
\(736\) 9.70473e11 1.68091e12i 0.121908 0.211151i
\(737\) −3.10783e12 −0.388019
\(738\) 0 0
\(739\) −4.20258e12 −0.518341 −0.259171 0.965832i \(-0.583449\pi\)
−0.259171 + 0.965832i \(0.583449\pi\)
\(740\) 3.03859e12 5.26300e12i 0.372503 0.645194i
\(741\) 0 0
\(742\) 1.15342e13 + 1.99779e13i 1.39692 + 2.41954i
\(743\) 2.73405e12 + 4.73551e12i 0.329122 + 0.570056i 0.982338 0.187116i \(-0.0599139\pi\)
−0.653216 + 0.757172i \(0.726581\pi\)
\(744\) 0 0
\(745\) 4.01830e12 6.95989e12i 0.477902 0.827750i
\(746\) 1.57997e13 1.86777
\(747\) 0 0
\(748\) −9.42791e12 −1.10118
\(749\) 1.81439e12 3.14262e12i 0.210651 0.364858i
\(750\) 0 0
\(751\) −3.73761e12 6.47374e12i −0.428760 0.742635i 0.568003 0.823026i \(-0.307716\pi\)
−0.996763 + 0.0803918i \(0.974383\pi\)
\(752\) −2.11057e13 3.65562e13i −2.40669 4.16851i
\(753\) 0 0
\(754\) 3.80338e11 6.58764e11i 0.0428547 0.0742265i
\(755\) −4.40829e12 −0.493752
\(756\) 0 0
\(757\) 1.40395e12 0.155389 0.0776947 0.996977i \(-0.475244\pi\)
0.0776947 + 0.996977i \(0.475244\pi\)
\(758\) −9.28661e12 + 1.60849e13i −1.02175 + 1.76973i
\(759\) 0 0
\(760\) −1.08671e13 1.88224e13i −1.18155 2.04650i
\(761\) −3.97524e12 6.88531e12i −0.429667 0.744205i 0.567177 0.823596i \(-0.308036\pi\)
−0.996844 + 0.0793912i \(0.974702\pi\)
\(762\) 0 0
\(763\) −4.31843e12 + 7.47974e12i −0.461281 + 0.798962i
\(764\) −2.14698e13 −2.27986
\(765\) 0 0
\(766\) −3.73485e11 −0.0391961
\(767\) 1.28353e11 2.22314e11i 0.0133914 0.0231947i
\(768\) 0 0
\(769\) 3.47949e12 + 6.02666e12i 0.358796 + 0.621453i 0.987760 0.155982i \(-0.0498541\pi\)
−0.628964 + 0.777434i \(0.716521\pi\)
\(770\) −2.22796e12 3.85894e12i −0.228402 0.395603i
\(771\) 0 0
\(772\) −1.16319e13 + 2.01471e13i −1.17862 + 2.04143i
\(773\) −1.22597e13 −1.23501 −0.617506 0.786566i \(-0.711857\pi\)
−0.617506 + 0.786566i \(0.711857\pi\)
\(774\) 0 0
\(775\) −2.93799e12 −0.292545
\(776\) 2.05212e13 3.55438e13i 2.03154 3.51873i
\(777\) 0 0
\(778\) 9.95851e12 + 1.72486e13i 0.974509 + 1.68790i
\(779\) 4.29088e12 + 7.43203e12i 0.417473 + 0.723084i
\(780\) 0 0
\(781\) −2.35651e12 + 4.08160e12i −0.226642 + 0.392555i
\(782\) −1.33062e12 −0.127240
\(783\) 0 0
\(784\) 3.52346e12 0.333079
\(785\) 3.99488e11 6.91933e11i 0.0375483 0.0650355i
\(786\) 0 0
\(787\) −5.99070e12 1.03762e13i −0.556662 0.964167i −0.997772 0.0667139i \(-0.978749\pi\)
0.441110 0.897453i \(-0.354585\pi\)
\(788\) −2.94403e12 5.09921e12i −0.272004 0.471124i
\(789\) 0 0
\(790\) 8.37924e11 1.45133e12i 0.0765390 0.132569i
\(791\) 5.11135e11 0.0464238
\(792\) 0 0
\(793\) −9.64288e10 −0.00865919
\(794\) 1.98690e13 3.44142e13i 1.77413 3.07288i
\(795\) 0 0
\(796\) 2.86139e13 + 4.95606e13i 2.52620 + 4.37550i
\(797\) −1.45080e12 2.51285e12i −0.127363 0.220599i 0.795291 0.606228i \(-0.207318\pi\)
−0.922654 + 0.385628i \(0.873985\pi\)
\(798\) 0 0
\(799\) −8.25150e12 + 1.42920e13i −0.716263 + 1.24060i
\(800\) 2.44929e13 2.11415
\(801\) 0 0
\(802\) 9.86089e11 0.0841650
\(803\) 1.13954e12 1.97374e12i 0.0967183 0.167521i
\(804\) 0 0
\(805\) −2.33061e11 4.03673e11i −0.0195608 0.0338804i
\(806\) 3.84910e11 + 6.66684e11i 0.0321257 + 0.0556433i
\(807\) 0 0
\(808\) 3.57348e13 6.18944e13i 2.94944 5.10858i
\(809\) 1.25435e13 1.02956 0.514779 0.857323i \(-0.327874\pi\)
0.514779 + 0.857323i \(0.327874\pi\)
\(810\) 0 0
\(811\) −1.31788e13 −1.06975 −0.534874 0.844932i \(-0.679641\pi\)
−0.534874 + 0.844932i \(0.679641\pi\)
\(812\) −1.65183e13 + 2.86105e13i −1.33341 + 2.30953i
\(813\) 0 0
\(814\) 1.26914e12 + 2.19822e12i 0.101321 + 0.175494i
\(815\) 3.96669e12 + 6.87051e12i 0.314934 + 0.545481i
\(816\) 0 0
\(817\) 8.04824e12 1.39400e13i 0.631978 1.09462i
\(818\) −2.13367e13 −1.66624
\(819\) 0 0
\(820\) 2.71211e13 2.09481
\(821\) 6.97251e12 1.20767e13i 0.535606 0.927696i −0.463528 0.886082i \(-0.653417\pi\)
0.999134 0.0416139i \(-0.0132500\pi\)
\(822\) 0 0
\(823\) −9.05731e12 1.56877e13i −0.688177 1.19196i −0.972427 0.233207i \(-0.925078\pi\)
0.284250 0.958750i \(-0.408255\pi\)
\(824\) 2.13501e12 + 3.69795e12i 0.161335 + 0.279440i
\(825\) 0 0
\(826\) −7.52105e12 + 1.30268e13i −0.562171 + 0.973708i
\(827\) −9.15727e12 −0.680756 −0.340378 0.940289i \(-0.610555\pi\)
−0.340378 + 0.940289i \(0.610555\pi\)
\(828\) 0 0
\(829\) 1.41975e13 1.04404 0.522020 0.852933i \(-0.325179\pi\)
0.522020 + 0.852933i \(0.325179\pi\)
\(830\) −1.88780e11 + 3.26976e11i −0.0138072 + 0.0239147i
\(831\) 0 0
\(832\) −1.75255e12 3.03550e12i −0.126799 0.219622i
\(833\) −6.88767e11 1.19298e12i −0.0495644 0.0858481i
\(834\) 0 0
\(835\) 4.23276e12 7.33136e12i 0.301325 0.521910i
\(836\) 1.03385e13 0.732030
\(837\) 0 0
\(838\) 3.71528e13 2.60251
\(839\) 1.13179e13 1.96031e13i 0.788561 1.36583i −0.138287 0.990392i \(-0.544160\pi\)
0.926848 0.375436i \(-0.122507\pi\)
\(840\) 0 0
\(841\) 1.41175e12 + 2.44523e12i 0.0973143 + 0.168553i
\(842\) 4.58739e12 + 7.94559e12i 0.314529 + 0.544781i
\(843\) 0 0
\(844\) −1.98012e13 + 3.42967e13i −1.34323 + 2.32654i
\(845\) −1.11150e13 −0.749989
\(846\) 0 0
\(847\) −1.41638e13 −0.945596
\(848\) −4.47283e13 + 7.74718e13i −2.97031 + 5.14472i
\(849\) 0 0
\(850\) −8.39555e12 1.45415e13i −0.551651 0.955487i
\(851\) 1.32762e11 + 2.29950e11i 0.00867740 + 0.0150297i
\(852\) 0 0
\(853\) 1.37739e13 2.38571e13i 0.890813 1.54293i 0.0519103 0.998652i \(-0.483469\pi\)
0.838903 0.544281i \(-0.183198\pi\)
\(854\) 5.65039e12 0.363511
\(855\) 0 0
\(856\) 2.33634e13 1.48732
\(857\) −5.97538e12 + 1.03497e13i −0.378401 + 0.655409i −0.990830 0.135116i \(-0.956859\pi\)
0.612429 + 0.790526i \(0.290193\pi\)
\(858\) 0 0
\(859\) 8.43166e12 + 1.46041e13i 0.528377 + 0.915176i 0.999453 + 0.0330829i \(0.0105326\pi\)
−0.471076 + 0.882093i \(0.656134\pi\)
\(860\) −2.54350e13 4.40547e13i −1.58558 2.74631i
\(861\) 0 0
\(862\) −7.70147e12 + 1.33393e13i −0.475107 + 0.822909i
\(863\) 2.70257e13 1.65855 0.829275 0.558840i \(-0.188753\pi\)
0.829275 + 0.558840i \(0.188753\pi\)
\(864\) 0 0
\(865\) −4.33190e12 −0.263091
\(866\) −1.64851e11 + 2.85530e11i −0.00996001 + 0.0172512i
\(867\) 0 0
\(868\) −1.67169e13 2.89545e13i −0.999579 1.73132i
\(869\) 2.59398e11 + 4.49291e11i 0.0154304 + 0.0267263i
\(870\) 0 0
\(871\) −5.37470e11 + 9.30926e11i −0.0316427 + 0.0548067i
\(872\) −5.56072e13 −3.25692
\(873\) 0 0
\(874\) 1.45913e12 0.0845849
\(875\) 9.70424e12 1.68082e13i 0.559661 0.969362i
\(876\) 0 0
\(877\) −7.36962e12 1.27646e13i −0.420675 0.728631i 0.575331 0.817921i \(-0.304873\pi\)
−0.996006 + 0.0892904i \(0.971540\pi\)
\(878\) 2.13449e13 + 3.69704e13i 1.21218 + 2.09957i
\(879\) 0 0
\(880\) 8.63974e12 1.49645e13i 0.485656 0.841181i
\(881\) 2.25153e13 1.25918 0.629589 0.776928i \(-0.283223\pi\)
0.629589 + 0.776928i \(0.283223\pi\)
\(882\) 0 0
\(883\) −2.11103e13 −1.16861 −0.584307 0.811533i \(-0.698634\pi\)
−0.584307 + 0.811533i \(0.698634\pi\)
\(884\) −1.63047e12 + 2.82406e12i −0.0898003 + 0.155539i
\(885\) 0 0
\(886\) −6.41609e12 1.11130e13i −0.349799 0.605870i
\(887\) 2.36351e12 + 4.09372e12i 0.128204 + 0.222056i 0.922981 0.384846i \(-0.125745\pi\)
−0.794777 + 0.606902i \(0.792412\pi\)
\(888\) 0 0
\(889\) 6.23877e12 1.08059e13i 0.334997 0.580232i
\(890\) 4.40956e13 2.35581
\(891\) 0 0
\(892\) −8.40195e13 −4.44363
\(893\) 9.04846e12 1.56724e13i 0.476149 0.824715i
\(894\) 0 0
\(895\) 1.29316e13 + 2.23981e13i 0.673671 + 1.16683i
\(896\) 5.40281e13 + 9.35794e13i 2.80049 + 4.85058i
\(897\) 0 0
\(898\) −2.22451e13 + 3.85296e13i −1.14154 + 1.97720i
\(899\) 1.18241e13 0.603740
\(900\) 0 0
\(901\) 3.49740e13 1.76801
\(902\) −5.66390e12 + 9.81017e12i −0.284896 + 0.493454i
\(903\) 0 0
\(904\) 1.64543e12 + 2.84998e12i 0.0819450 + 0.141933i
\(905\) 2.19402e12 + 3.80015e12i 0.108723 + 0.188314i
\(906\) 0 0
\(907\) −6.64325e12 + 1.15064e13i −0.325948 + 0.564558i −0.981704 0.190415i \(-0.939017\pi\)
0.655756 + 0.754973i \(0.272350\pi\)
\(908\) −5.13259e13 −2.50582
\(909\) 0 0
\(910\) −1.54122e12 −0.0745038
\(911\) −1.04554e13 + 1.81093e13i −0.502930 + 0.871100i 0.497064 + 0.867714i \(0.334411\pi\)
−0.999994 + 0.00338636i \(0.998922\pi\)
\(912\) 0 0
\(913\) −5.84411e10 1.01223e11i −0.00278356 0.00482126i
\(914\) 6.31253e12 + 1.09336e13i 0.299189 + 0.518210i
\(915\) 0 0
\(916\) −4.74710e13 + 8.22221e13i −2.22791 + 3.85886i
\(917\) 3.04667e13 1.42286
\(918\) 0 0
\(919\) −1.12670e13 −0.521060 −0.260530 0.965466i \(-0.583897\pi\)
−0.260530 + 0.965466i \(0.583897\pi\)
\(920\) 1.50053e12 2.59899e12i 0.0690556 0.119608i
\(921\) 0 0
\(922\) 1.43621e10 + 2.48759e10i 0.000654529 + 0.00113368i
\(923\) 8.15074e11 + 1.41175e12i 0.0369649 + 0.0640250i
\(924\) 0 0
\(925\) −1.67533e12 + 2.90175e12i −0.0752422 + 0.130323i
\(926\) 2.14856e13 0.960281
\(927\) 0 0
\(928\) −9.85731e13 −4.36307
\(929\) 1.24126e13 2.14992e13i 0.546752 0.947003i −0.451742 0.892149i \(-0.649197\pi\)
0.998494 0.0548543i \(-0.0174694\pi\)
\(930\) 0 0
\(931\) 7.55291e11 + 1.30820e12i 0.0329489 + 0.0570692i
\(932\) −4.33312e13 7.50518e13i −1.88117 3.25829i
\(933\) 0 0
\(934\) 1.57922e13 2.73530e13i 0.679020 1.17610i
\(935\) −6.75560e12 −0.289076
\(936\) 0 0
\(937\) 2.05299e13 0.870081 0.435040 0.900411i \(-0.356734\pi\)
0.435040 + 0.900411i \(0.356734\pi\)
\(938\) 3.14939e13 5.45490e13i 1.32835 2.30078i
\(939\) 0 0
\(940\) −2.85960e13 4.95298e13i −1.19462 2.06915i
\(941\) −1.44919e13 2.51006e13i −0.602519 1.04359i −0.992438 0.122745i \(-0.960830\pi\)
0.389919 0.920849i \(-0.372503\pi\)
\(942\) 0 0
\(943\) −5.92485e11 + 1.02621e12i −0.0243992 + 0.0422606i
\(944\) −5.83313e13 −2.39072
\(945\) 0 0
\(946\) 2.12471e13 0.862562
\(947\) −1.39104e13 + 2.40935e13i −0.562036 + 0.973475i 0.435283 + 0.900294i \(0.356648\pi\)
−0.997319 + 0.0731809i \(0.976685\pi\)
\(948\) 0 0
\(949\) −3.94145e11 6.82679e11i −0.0157746 0.0273224i
\(950\) 9.20643e12 + 1.59460e13i 0.366720 + 0.635178i
\(951\) 0 0
\(952\) 6.21775e13 1.07695e14i 2.45339 4.24940i
\(953\) −2.85882e13 −1.12271 −0.561357 0.827573i \(-0.689721\pi\)
−0.561357 + 0.827573i \(0.689721\pi\)
\(954\) 0 0
\(955\) −1.53842e13 −0.598496
\(956\) −2.96690e13 + 5.13883e13i −1.14880 + 1.98977i
\(957\) 0 0
\(958\) −3.43851e11 5.95568e11i −0.0131894 0.0228448i
\(959\) −2.25011e13 3.89731e13i −0.859055 1.48793i
\(960\) 0 0
\(961\) 7.23667e12 1.25343e13i 0.273706 0.474072i
\(962\) 8.77947e11 0.0330507
\(963\) 0 0
\(964\) 4.94246e12 0.184330
\(965\) −8.33489e12 + 1.44365e13i −0.309405 + 0.535905i
\(966\) 0 0
\(967\) 2.57467e13 + 4.45947e13i 0.946898 + 1.64008i 0.751906 + 0.659271i \(0.229135\pi\)
0.194993 + 0.980805i \(0.437532\pi\)
\(968\) −4.55960e13 7.89745e13i −1.66912 2.89100i
\(969\) 0 0
\(970\) 2.25945e13 3.91348e13i 0.819464 1.41935i
\(971\) 3.75474e13 1.35548 0.677740 0.735301i \(-0.262959\pi\)
0.677740 + 0.735301i \(0.262959\pi\)
\(972\) 0 0
\(973\) 3.21464e13 1.14981
\(974\) −1.25738e13 + 2.17784e13i −0.447663 + 0.775374i
\(975\) 0 0
\(976\) 1.09557e13 + 1.89759e13i 0.386472 + 0.669389i
\(977\) −1.62693e13 2.81792e13i −0.571271 0.989470i −0.996436 0.0843544i \(-0.973117\pi\)
0.425165 0.905116i \(-0.360216\pi\)
\(978\) 0 0
\(979\) −6.82540e12 + 1.18219e13i −0.237469 + 0.411308i
\(980\) 4.77392e12 0.165332
\(981\) 0 0
\(982\) −1.65781e13 −0.568895
\(983\) 2.81683e13 4.87889e13i 0.962209 1.66660i 0.245277 0.969453i \(-0.421121\pi\)
0.716932 0.697143i \(-0.245546\pi\)
\(984\) 0 0
\(985\) −2.10956e12 3.65386e12i −0.0714049 0.123677i
\(986\) 3.37884e13 + 5.85232e13i 1.13847 + 1.97189i
\(987\) 0 0
\(988\) 1.78795e12 3.09682e12i 0.0596964 0.103397i
\(989\) 2.22260e12 0.0738718
\(990\) 0 0
\(991\) −2.09674e13 −0.690578 −0.345289 0.938496i \(-0.612219\pi\)
−0.345289 + 0.938496i \(0.612219\pi\)
\(992\) 4.98791e13 8.63932e13i 1.63537 2.83255i
\(993\) 0 0
\(994\) −4.77605e13 8.27236e13i −1.55178 2.68776i
\(995\) 2.05033e13 + 3.55128e13i 0.663164 + 1.14863i
\(996\) 0 0
\(997\) −2.42890e13 + 4.20698e13i −0.778541 + 1.34847i 0.154241 + 0.988033i \(0.450707\pi\)
−0.932782 + 0.360440i \(0.882627\pi\)
\(998\) 1.59057e13 0.507533
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.c.j.55.4 8
3.2 odd 2 inner 81.10.c.j.55.1 8
9.2 odd 6 27.10.a.d.1.4 yes 4
9.4 even 3 inner 81.10.c.j.28.4 8
9.5 odd 6 inner 81.10.c.j.28.1 8
9.7 even 3 27.10.a.d.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.a.d.1.1 4 9.7 even 3
27.10.a.d.1.4 yes 4 9.2 odd 6
81.10.c.j.28.1 8 9.5 odd 6 inner
81.10.c.j.28.4 8 9.4 even 3 inner
81.10.c.j.55.1 8 3.2 odd 2 inner
81.10.c.j.55.4 8 1.1 even 1 trivial