Properties

Label 81.10.c.j.55.1
Level $81$
Weight $10$
Character 81.55
Analytic conductor $41.718$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 83x^{6} + 5449x^{4} + 119520x^{2} + 2073600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{16} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(3.81773 - 6.61251i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.10.c.j.28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-22.2386 + 38.5183i) q^{2} +(-733.108 - 1269.78i) q^{4} +(525.311 + 909.865i) q^{5} +(-3295.93 + 5708.72i) q^{7} +42440.8 q^{8} -46728.6 q^{10} +(-7232.96 + 12527.8i) q^{11} +(-2501.75 - 4333.15i) q^{13} +(-146594. - 253908. i) q^{14} +(-568471. + 984621. i) q^{16} -444500. q^{17} -487431. q^{19} +(770219. - 1.33406e6i) q^{20} +(-321701. - 557203. i) q^{22} +(33652.3 + 58287.4i) q^{23} +(424660. - 735532. i) q^{25} +222541. q^{26} +9.66510e6 q^{28} +(1.70907e6 - 2.96019e6i) q^{29} +(-1.72962e6 - 2.99578e6i) q^{31} +(-1.44191e7 - 2.49747e7i) q^{32} +(9.88504e6 - 1.71214e7i) q^{34} -6.92555e6 q^{35} -3.94510e6 q^{37} +(1.08398e7 - 1.87750e7i) q^{38} +(2.22946e7 + 3.86154e7i) q^{40} +(8.80305e6 + 1.52473e7i) q^{41} +(-1.65115e7 + 2.85988e7i) q^{43} +2.12102e7 q^{44} -2.99351e6 q^{46} +(1.85636e7 - 3.21530e7i) q^{47} +(-1.54953e6 - 2.68387e6i) q^{49} +(1.88876e7 + 3.27144e7i) q^{50} +(-3.66810e6 + 6.35334e6i) q^{52} -7.86818e7 q^{53} -1.51982e7 q^{55} +(-1.39882e8 + 2.42283e8i) q^{56} +(7.60144e7 + 1.31661e8i) q^{58} +(-2.56527e7 - 4.44318e7i) q^{59} +(9.63615e6 - 1.66903e7i) q^{61} +1.53857e8 q^{62} +7.00529e8 q^{64} +(2.62839e6 - 4.55250e6i) q^{65} +(-1.07419e8 - 1.86055e8i) q^{67} +(3.25866e8 + 5.64417e8i) q^{68} +(1.54014e8 - 2.66761e8i) q^{70} +3.25802e8 q^{71} +1.57548e8 q^{73} +(8.77334e7 - 1.51959e8i) q^{74} +(3.57340e8 + 6.18931e8i) q^{76} +(-4.76787e7 - 8.25819e7i) q^{77} +(-1.79317e7 + 3.10586e7i) q^{79} -1.19450e9 q^{80} -7.83069e8 q^{82} +(-4.03992e6 + 6.99735e6i) q^{83} +(-2.33501e8 - 4.04435e8i) q^{85} +(-7.34386e8 - 1.27199e9i) q^{86} +(-3.06972e8 + 5.31692e8i) q^{88} +9.43654e8 q^{89} +3.29823e7 q^{91} +(4.93415e7 - 8.54620e7i) q^{92} +(8.25654e8 + 1.43008e9i) q^{94} +(-2.56053e8 - 4.43497e8i) q^{95} +(-4.83526e8 + 8.37491e8i) q^{97} +1.37838e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2236 q^{4} - 11852 q^{7} - 83520 q^{10} - 179684 q^{13} - 2348680 q^{16} + 2022856 q^{19} - 3473568 q^{22} - 2554060 q^{25} + 39587848 q^{28} - 889136 q^{31} + 43111008 q^{34} - 7610312 q^{37} + 133649280 q^{40}+ \cdots - 1935734516 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −22.2386 + 38.5183i −0.982815 + 1.70229i −0.331546 + 0.943439i \(0.607570\pi\)
−0.651269 + 0.758847i \(0.725763\pi\)
\(3\) 0 0
\(4\) −733.108 1269.78i −1.43185 2.48004i
\(5\) 525.311 + 909.865i 0.375882 + 0.651046i 0.990459 0.137811i \(-0.0440065\pi\)
−0.614577 + 0.788857i \(0.710673\pi\)
\(6\) 0 0
\(7\) −3295.93 + 5708.72i −0.518844 + 0.898665i 0.480916 + 0.876767i \(0.340304\pi\)
−0.999760 + 0.0218980i \(0.993029\pi\)
\(8\) 42440.8 3.66335
\(9\) 0 0
\(10\) −46728.6 −1.47769
\(11\) −7232.96 + 12527.8i −0.148953 + 0.257994i −0.930841 0.365425i \(-0.880924\pi\)
0.781888 + 0.623419i \(0.214257\pi\)
\(12\) 0 0
\(13\) −2501.75 4333.15i −0.0242940 0.0420784i 0.853623 0.520892i \(-0.174400\pi\)
−0.877917 + 0.478813i \(0.841067\pi\)
\(14\) −146594. 253908.i −1.01986 1.76644i
\(15\) 0 0
\(16\) −568471. + 984621.i −2.16855 + 3.75603i
\(17\) −444500. −1.29078 −0.645389 0.763854i \(-0.723305\pi\)
−0.645389 + 0.763854i \(0.723305\pi\)
\(18\) 0 0
\(19\) −487431. −0.858069 −0.429035 0.903288i \(-0.641146\pi\)
−0.429035 + 0.903288i \(0.641146\pi\)
\(20\) 770219. 1.33406e6i 1.07641 1.86440i
\(21\) 0 0
\(22\) −321701. 557203.i −0.292786 0.507121i
\(23\) 33652.3 + 58287.4i 0.0250749 + 0.0434310i 0.878291 0.478127i \(-0.158684\pi\)
−0.853216 + 0.521558i \(0.825351\pi\)
\(24\) 0 0
\(25\) 424660. 735532.i 0.217426 0.376592i
\(26\) 222541. 0.0955059
\(27\) 0 0
\(28\) 9.66510e6 2.97163
\(29\) 1.70907e6 2.96019e6i 0.448712 0.777193i −0.549590 0.835434i \(-0.685216\pi\)
0.998303 + 0.0582417i \(0.0185494\pi\)
\(30\) 0 0
\(31\) −1.72962e6 2.99578e6i −0.336374 0.582616i 0.647374 0.762172i \(-0.275867\pi\)
−0.983748 + 0.179556i \(0.942534\pi\)
\(32\) −1.44191e7 2.49747e7i −2.43089 4.21042i
\(33\) 0 0
\(34\) 9.88504e6 1.71214e7i 1.26860 2.19727i
\(35\) −6.92555e6 −0.780097
\(36\) 0 0
\(37\) −3.94510e6 −0.346059 −0.173030 0.984917i \(-0.555356\pi\)
−0.173030 + 0.984917i \(0.555356\pi\)
\(38\) 1.08398e7 1.87750e7i 0.843323 1.46068i
\(39\) 0 0
\(40\) 2.22946e7 + 3.86154e7i 1.37699 + 2.38501i
\(41\) 8.80305e6 + 1.52473e7i 0.486526 + 0.842687i 0.999880 0.0154894i \(-0.00493064\pi\)
−0.513354 + 0.858177i \(0.671597\pi\)
\(42\) 0 0
\(43\) −1.65115e7 + 2.85988e7i −0.736512 + 1.27568i 0.217545 + 0.976050i \(0.430195\pi\)
−0.954057 + 0.299625i \(0.903138\pi\)
\(44\) 2.12102e7 0.853113
\(45\) 0 0
\(46\) −2.99351e6 −0.0985759
\(47\) 1.85636e7 3.21530e7i 0.554908 0.961129i −0.443003 0.896520i \(-0.646087\pi\)
0.997911 0.0646087i \(-0.0205799\pi\)
\(48\) 0 0
\(49\) −1.54953e6 2.68387e6i −0.0383989 0.0665088i
\(50\) 1.88876e7 + 3.27144e7i 0.427379 + 0.740242i
\(51\) 0 0
\(52\) −3.66810e6 + 6.35334e6i −0.0695707 + 0.120500i
\(53\) −7.86818e7 −1.36972 −0.684861 0.728673i \(-0.740137\pi\)
−0.684861 + 0.728673i \(0.740137\pi\)
\(54\) 0 0
\(55\) −1.51982e7 −0.223955
\(56\) −1.39882e8 + 2.42283e8i −1.90071 + 3.29213i
\(57\) 0 0
\(58\) 7.60144e7 + 1.31661e8i 0.882003 + 1.52767i
\(59\) −2.56527e7 4.44318e7i −0.275613 0.477375i 0.694677 0.719322i \(-0.255547\pi\)
−0.970290 + 0.241947i \(0.922214\pi\)
\(60\) 0 0
\(61\) 9.63615e6 1.66903e7i 0.0891085 0.154340i −0.818026 0.575181i \(-0.804932\pi\)
0.907135 + 0.420841i \(0.138265\pi\)
\(62\) 1.53857e8 1.32237
\(63\) 0 0
\(64\) 7.00529e8 5.21935
\(65\) 2.62839e6 4.55250e6i 0.0182633 0.0316330i
\(66\) 0 0
\(67\) −1.07419e8 1.86055e8i −0.651245 1.12799i −0.982821 0.184562i \(-0.940913\pi\)
0.331575 0.943429i \(-0.392420\pi\)
\(68\) 3.25866e8 + 5.64417e8i 1.84820 + 3.20118i
\(69\) 0 0
\(70\) 1.54014e8 2.66761e8i 0.766691 1.32795i
\(71\) 3.25802e8 1.52157 0.760784 0.649006i \(-0.224815\pi\)
0.760784 + 0.649006i \(0.224815\pi\)
\(72\) 0 0
\(73\) 1.57548e8 0.649322 0.324661 0.945830i \(-0.394750\pi\)
0.324661 + 0.945830i \(0.394750\pi\)
\(74\) 8.77334e7 1.51959e8i 0.340112 0.589092i
\(75\) 0 0
\(76\) 3.57340e8 + 6.18931e8i 1.22863 + 2.12805i
\(77\) −4.76787e7 8.25819e7i −0.154567 0.267717i
\(78\) 0 0
\(79\) −1.79317e7 + 3.10586e7i −0.0517964 + 0.0897140i −0.890761 0.454472i \(-0.849828\pi\)
0.838965 + 0.544186i \(0.183161\pi\)
\(80\) −1.19450e9 −3.26047
\(81\) 0 0
\(82\) −7.83069e8 −1.91266
\(83\) −4.03992e6 + 6.99735e6i −0.00934375 + 0.0161839i −0.870659 0.491886i \(-0.836308\pi\)
0.861316 + 0.508070i \(0.169641\pi\)
\(84\) 0 0
\(85\) −2.33501e8 4.04435e8i −0.485180 0.840356i
\(86\) −7.34386e8 1.27199e9i −1.44771 2.50751i
\(87\) 0 0
\(88\) −3.06972e8 + 5.31692e8i −0.545667 + 0.945122i
\(89\) 9.43654e8 1.59425 0.797127 0.603812i \(-0.206352\pi\)
0.797127 + 0.603812i \(0.206352\pi\)
\(90\) 0 0
\(91\) 3.29823e7 0.0504191
\(92\) 4.93415e7 8.54620e7i 0.0718070 0.124373i
\(93\) 0 0
\(94\) 8.25654e8 + 1.43008e9i 1.09074 + 1.88922i
\(95\) −2.56053e8 4.43497e8i −0.322533 0.558643i
\(96\) 0 0
\(97\) −4.83526e8 + 8.37491e8i −0.554558 + 0.960522i 0.443380 + 0.896334i \(0.353779\pi\)
−0.997938 + 0.0641886i \(0.979554\pi\)
\(98\) 1.37838e8 0.150956
\(99\) 0 0
\(100\) −1.24529e9 −1.24529
\(101\) 8.41991e8 1.45837e9i 0.805121 1.39451i −0.111088 0.993811i \(-0.535434\pi\)
0.916209 0.400700i \(-0.131233\pi\)
\(102\) 0 0
\(103\) −5.03057e7 8.71321e7i −0.0440403 0.0762800i 0.843165 0.537655i \(-0.180690\pi\)
−0.887205 + 0.461375i \(0.847356\pi\)
\(104\) −1.06176e8 1.83902e8i −0.0889973 0.154148i
\(105\) 0 0
\(106\) 1.74977e9 3.03069e9i 1.34618 2.33166i
\(107\) 5.50494e8 0.406000 0.203000 0.979179i \(-0.434931\pi\)
0.203000 + 0.979179i \(0.434931\pi\)
\(108\) 0 0
\(109\) 1.31023e9 0.889055 0.444527 0.895765i \(-0.353372\pi\)
0.444527 + 0.895765i \(0.353372\pi\)
\(110\) 3.37986e8 5.85409e8i 0.220106 0.381235i
\(111\) 0 0
\(112\) −3.74729e9 6.49049e9i −2.25028 3.89759i
\(113\) 3.87701e7 + 6.71518e7i 0.0223689 + 0.0387440i 0.876993 0.480503i \(-0.159546\pi\)
−0.854624 + 0.519247i \(0.826213\pi\)
\(114\) 0 0
\(115\) −3.53558e7 + 6.12380e7i −0.0188504 + 0.0326498i
\(116\) −5.01172e9 −2.56996
\(117\) 0 0
\(118\) 2.28192e9 1.08351
\(119\) 1.46504e9 2.53753e9i 0.669713 1.15998i
\(120\) 0 0
\(121\) 1.07434e9 + 1.86082e9i 0.455626 + 0.789168i
\(122\) 4.28588e8 + 7.42337e8i 0.175154 + 0.303376i
\(123\) 0 0
\(124\) −2.53599e9 + 4.39246e9i −0.963274 + 1.66844i
\(125\) 2.94431e9 1.07867
\(126\) 0 0
\(127\) −1.89287e9 −0.645661 −0.322830 0.946457i \(-0.604634\pi\)
−0.322830 + 0.946457i \(0.604634\pi\)
\(128\) −8.19617e9 + 1.41962e10i −2.69877 + 4.67441i
\(129\) 0 0
\(130\) 1.16903e8 + 2.02482e8i 0.0358989 + 0.0621788i
\(131\) 2.31093e9 + 4.00265e9i 0.685593 + 1.18748i 0.973250 + 0.229749i \(0.0737904\pi\)
−0.287657 + 0.957734i \(0.592876\pi\)
\(132\) 0 0
\(133\) 1.60654e9 2.78261e9i 0.445204 0.771116i
\(134\) 9.55538e9 2.56022
\(135\) 0 0
\(136\) −1.88649e10 −4.72857
\(137\) 3.41347e9 5.91231e9i 0.827854 1.43389i −0.0718644 0.997414i \(-0.522895\pi\)
0.899718 0.436471i \(-0.143772\pi\)
\(138\) 0 0
\(139\) −2.43834e9 4.22333e9i −0.554023 0.959596i −0.997979 0.0635471i \(-0.979759\pi\)
0.443956 0.896049i \(-0.353575\pi\)
\(140\) 5.07718e9 + 8.79393e9i 1.11698 + 1.93467i
\(141\) 0 0
\(142\) −7.24537e9 + 1.25493e10i −1.49542 + 2.59014i
\(143\) 7.23801e7 0.0144746
\(144\) 0 0
\(145\) 3.59117e9 0.674651
\(146\) −3.50364e9 + 6.06849e9i −0.638163 + 1.10533i
\(147\) 0 0
\(148\) 2.89219e9 + 5.00941e9i 0.495506 + 0.858241i
\(149\) −3.82468e9 6.62455e9i −0.635708 1.10108i −0.986365 0.164574i \(-0.947375\pi\)
0.350657 0.936504i \(-0.385958\pi\)
\(150\) 0 0
\(151\) 2.09794e9 3.63374e9i 0.328396 0.568798i −0.653798 0.756669i \(-0.726825\pi\)
0.982194 + 0.187871i \(0.0601587\pi\)
\(152\) −2.06870e10 −3.14341
\(153\) 0 0
\(154\) 4.24122e9 0.607642
\(155\) 1.81717e9 3.14743e9i 0.252873 0.437990i
\(156\) 0 0
\(157\) 3.80239e8 + 6.58594e8i 0.0499469 + 0.0865106i 0.889918 0.456121i \(-0.150761\pi\)
−0.839971 + 0.542631i \(0.817428\pi\)
\(158\) −7.97550e8 1.38140e9i −0.101813 0.176344i
\(159\) 0 0
\(160\) 1.51491e10 2.62389e10i 1.82745 3.16524i
\(161\) −4.43662e8 −0.0520398
\(162\) 0 0
\(163\) −7.55113e9 −0.837853 −0.418926 0.908020i \(-0.637593\pi\)
−0.418926 + 0.908020i \(0.637593\pi\)
\(164\) 1.29072e10 2.23559e10i 1.39327 2.41321i
\(165\) 0 0
\(166\) −1.79684e8 3.11222e8i −0.0183664 0.0318115i
\(167\) −4.02882e9 6.97812e9i −0.400824 0.694248i 0.593002 0.805201i \(-0.297943\pi\)
−0.993826 + 0.110954i \(0.964609\pi\)
\(168\) 0 0
\(169\) 5.28973e9 9.16208e9i 0.498820 0.863981i
\(170\) 2.07709e10 1.90737
\(171\) 0 0
\(172\) 4.84190e10 4.21830
\(173\) −2.06159e9 + 3.57078e9i −0.174982 + 0.303079i −0.940155 0.340747i \(-0.889320\pi\)
0.765173 + 0.643825i \(0.222654\pi\)
\(174\) 0 0
\(175\) 2.79930e9 + 4.84853e9i 0.225620 + 0.390786i
\(176\) −8.22346e9 1.42434e10i −0.646022 1.11894i
\(177\) 0 0
\(178\) −2.09855e10 + 3.63480e10i −1.56686 + 2.71388i
\(179\) 2.46170e10 1.79224 0.896120 0.443811i \(-0.146374\pi\)
0.896120 + 0.443811i \(0.146374\pi\)
\(180\) 0 0
\(181\) −4.17661e9 −0.289248 −0.144624 0.989487i \(-0.546197\pi\)
−0.144624 + 0.989487i \(0.546197\pi\)
\(182\) −7.33480e8 + 1.27043e9i −0.0495527 + 0.0858278i
\(183\) 0 0
\(184\) 1.42823e9 + 2.47376e9i 0.0918581 + 0.159103i
\(185\) −2.07240e9 3.58951e9i −0.130077 0.225301i
\(186\) 0 0
\(187\) 3.21505e9 5.56862e9i 0.192265 0.333013i
\(188\) −5.44364e10 −3.17818
\(189\) 0 0
\(190\) 2.27770e10 1.26796
\(191\) −7.32150e9 + 1.26812e10i −0.398061 + 0.689462i −0.993487 0.113948i \(-0.963650\pi\)
0.595426 + 0.803411i \(0.296983\pi\)
\(192\) 0 0
\(193\) −7.93330e9 1.37409e10i −0.411572 0.712864i 0.583490 0.812120i \(-0.301687\pi\)
−0.995062 + 0.0992567i \(0.968354\pi\)
\(194\) −2.15058e10 3.72492e10i −1.09006 1.88803i
\(195\) 0 0
\(196\) −2.27195e9 + 3.93514e9i −0.109963 + 0.190462i
\(197\) −4.01582e9 −0.189966 −0.0949832 0.995479i \(-0.530280\pi\)
−0.0949832 + 0.995479i \(0.530280\pi\)
\(198\) 0 0
\(199\) −3.90309e10 −1.76429 −0.882144 0.470980i \(-0.843901\pi\)
−0.882144 + 0.470980i \(0.843901\pi\)
\(200\) 1.80229e10 3.12166e10i 0.796507 1.37959i
\(201\) 0 0
\(202\) 3.74493e10 + 6.48642e10i 1.58257 + 2.74109i
\(203\) 1.12659e10 + 1.95132e10i 0.465624 + 0.806484i
\(204\) 0 0
\(205\) −9.24867e9 + 1.60192e10i −0.365752 + 0.633502i
\(206\) 4.47491e9 0.173134
\(207\) 0 0
\(208\) 5.68869e9 0.210730
\(209\) 3.52557e9 6.10647e9i 0.127812 0.221377i
\(210\) 0 0
\(211\) −1.35050e10 2.33913e10i −0.469054 0.812425i 0.530320 0.847797i \(-0.322072\pi\)
−0.999374 + 0.0353723i \(0.988738\pi\)
\(212\) 5.76822e10 + 9.99086e10i 1.96124 + 3.39697i
\(213\) 0 0
\(214\) −1.22422e10 + 2.12041e10i −0.399023 + 0.691128i
\(215\) −3.46948e10 −1.10737
\(216\) 0 0
\(217\) 2.28028e10 0.698102
\(218\) −2.91377e10 + 5.04679e10i −0.873776 + 1.51343i
\(219\) 0 0
\(220\) 1.11419e10 + 1.92984e10i 0.320670 + 0.555416i
\(221\) 1.11203e9 + 1.92608e9i 0.0313581 + 0.0543138i
\(222\) 0 0
\(223\) 2.86518e10 4.96264e10i 0.775854 1.34382i −0.158459 0.987366i \(-0.550653\pi\)
0.934313 0.356453i \(-0.116014\pi\)
\(224\) 1.90098e11 5.04500
\(225\) 0 0
\(226\) −3.44877e9 −0.0879379
\(227\) −1.75028e10 + 3.03158e10i −0.437514 + 0.757797i −0.997497 0.0707073i \(-0.977474\pi\)
0.559983 + 0.828504i \(0.310808\pi\)
\(228\) 0 0
\(229\) −3.23765e10 5.60778e10i −0.777984 1.34751i −0.933102 0.359611i \(-0.882909\pi\)
0.155118 0.987896i \(-0.450424\pi\)
\(230\) −1.57252e9 2.72369e9i −0.0370529 0.0641775i
\(231\) 0 0
\(232\) 7.25342e10 1.25633e11i 1.64379 2.84713i
\(233\) −5.91061e10 −1.31380 −0.656902 0.753976i \(-0.728134\pi\)
−0.656902 + 0.753976i \(0.728134\pi\)
\(234\) 0 0
\(235\) 3.90066e10 0.834319
\(236\) −3.76124e10 + 6.51466e10i −0.789273 + 1.36706i
\(237\) 0 0
\(238\) 6.51608e10 + 1.12862e11i 1.31641 + 2.28008i
\(239\) 2.02351e10 + 3.50482e10i 0.401158 + 0.694825i 0.993866 0.110592i \(-0.0352746\pi\)
−0.592708 + 0.805417i \(0.701941\pi\)
\(240\) 0 0
\(241\) −1.68545e9 + 2.91928e9i −0.0321839 + 0.0557441i −0.881669 0.471869i \(-0.843580\pi\)
0.849485 + 0.527613i \(0.176913\pi\)
\(242\) −9.55674e10 −1.79119
\(243\) 0 0
\(244\) −2.82573e10 −0.510361
\(245\) 1.62797e9 2.81973e9i 0.0288669 0.0499989i
\(246\) 0 0
\(247\) 1.21943e9 + 2.11211e9i 0.0208459 + 0.0361061i
\(248\) −7.34063e10 1.27143e11i −1.23225 2.13433i
\(249\) 0 0
\(250\) −6.54772e10 + 1.13410e11i −1.06013 + 1.83620i
\(251\) −4.69295e10 −0.746301 −0.373151 0.927771i \(-0.621723\pi\)
−0.373151 + 0.927771i \(0.621723\pi\)
\(252\) 0 0
\(253\) −9.73621e8 −0.0149399
\(254\) 4.20947e10 7.29102e10i 0.634565 1.09910i
\(255\) 0 0
\(256\) −1.85207e11 3.20788e11i −2.69511 4.66808i
\(257\) 8.74728e9 + 1.51507e10i 0.125076 + 0.216638i 0.921763 0.387755i \(-0.126749\pi\)
−0.796687 + 0.604393i \(0.793416\pi\)
\(258\) 0 0
\(259\) 1.30028e10 2.25215e10i 0.179551 0.310991i
\(260\) −7.70757e9 −0.104601
\(261\) 0 0
\(262\) −2.05567e11 −2.69525
\(263\) −5.03147e10 + 8.71475e10i −0.648476 + 1.12319i 0.335011 + 0.942214i \(0.391260\pi\)
−0.983487 + 0.180979i \(0.942073\pi\)
\(264\) 0 0
\(265\) −4.13324e10 7.15898e10i −0.514854 0.891753i
\(266\) 7.14543e10 + 1.23763e11i 0.875107 + 1.51573i
\(267\) 0 0
\(268\) −1.57500e11 + 2.72797e11i −1.86497 + 3.23023i
\(269\) 2.18445e10 0.254365 0.127182 0.991879i \(-0.459407\pi\)
0.127182 + 0.991879i \(0.459407\pi\)
\(270\) 0 0
\(271\) 5.19462e10 0.585049 0.292524 0.956258i \(-0.405505\pi\)
0.292524 + 0.956258i \(0.405505\pi\)
\(272\) 2.52685e11 4.37664e11i 2.79911 4.84820i
\(273\) 0 0
\(274\) 1.51821e11 + 2.62962e11i 1.62726 + 2.81849i
\(275\) 6.14309e9 + 1.06401e10i 0.0647724 + 0.112189i
\(276\) 0 0
\(277\) 4.18852e9 7.25473e9i 0.0427466 0.0740393i −0.843861 0.536563i \(-0.819723\pi\)
0.886607 + 0.462523i \(0.153056\pi\)
\(278\) 2.16901e11 2.17801
\(279\) 0 0
\(280\) −2.93926e11 −2.85777
\(281\) −4.08163e10 + 7.06959e10i −0.390530 + 0.676419i −0.992520 0.122086i \(-0.961042\pi\)
0.601989 + 0.798504i \(0.294375\pi\)
\(282\) 0 0
\(283\) 3.05738e10 + 5.29553e10i 0.283341 + 0.490762i 0.972206 0.234129i \(-0.0752237\pi\)
−0.688864 + 0.724890i \(0.741890\pi\)
\(284\) −2.38848e11 4.13697e11i −2.17866 3.77355i
\(285\) 0 0
\(286\) −1.60963e9 + 2.78796e9i −0.0142259 + 0.0246399i
\(287\) −1.16057e11 −1.00972
\(288\) 0 0
\(289\) 7.89921e10 0.666106
\(290\) −7.98624e10 + 1.38326e11i −0.663058 + 1.14845i
\(291\) 0 0
\(292\) −1.15500e11 2.00051e11i −0.929732 1.61034i
\(293\) −8.67297e10 1.50220e11i −0.687486 1.19076i −0.972649 0.232281i \(-0.925381\pi\)
0.285163 0.958479i \(-0.407952\pi\)
\(294\) 0 0
\(295\) 2.69513e10 4.66810e10i 0.207196 0.358873i
\(296\) −1.67433e11 −1.26774
\(297\) 0 0
\(298\) 3.40222e11 2.49913
\(299\) 1.68379e8 2.91641e8i 0.00121834 0.00211022i
\(300\) 0 0
\(301\) −1.08842e11 1.88520e11i −0.764270 1.32375i
\(302\) 9.33105e10 + 1.61619e11i 0.645505 + 1.11805i
\(303\) 0 0
\(304\) 2.77091e11 4.79935e11i 1.86076 3.22294i
\(305\) 2.02479e10 0.133977
\(306\) 0 0
\(307\) −1.89397e11 −1.21689 −0.608443 0.793598i \(-0.708205\pi\)
−0.608443 + 0.793598i \(0.708205\pi\)
\(308\) −6.99072e10 + 1.21083e11i −0.442633 + 0.766663i
\(309\) 0 0
\(310\) 8.08226e10 + 1.39989e11i 0.497056 + 0.860926i
\(311\) −7.38382e10 1.27892e11i −0.447569 0.775212i 0.550659 0.834731i \(-0.314377\pi\)
−0.998227 + 0.0595190i \(0.981043\pi\)
\(312\) 0 0
\(313\) −2.32124e9 + 4.02051e9i −0.0136701 + 0.0236773i −0.872780 0.488115i \(-0.837685\pi\)
0.859109 + 0.511792i \(0.171018\pi\)
\(314\) −3.38239e10 −0.196354
\(315\) 0 0
\(316\) 5.25835e10 0.296659
\(317\) −8.81821e10 + 1.52736e11i −0.490471 + 0.849521i −0.999940 0.0109679i \(-0.996509\pi\)
0.509468 + 0.860489i \(0.329842\pi\)
\(318\) 0 0
\(319\) 2.47232e10 + 4.28219e10i 0.133674 + 0.231530i
\(320\) 3.67996e11 + 6.37387e11i 1.96186 + 3.39804i
\(321\) 0 0
\(322\) 9.86641e9 1.70891e10i 0.0511456 0.0885867i
\(323\) 2.16663e11 1.10758
\(324\) 0 0
\(325\) −4.24956e9 −0.0211285
\(326\) 1.67926e11 2.90857e11i 0.823454 1.42626i
\(327\) 0 0
\(328\) 3.73609e11 + 6.47109e11i 1.78232 + 3.08706i
\(329\) 1.22369e11 + 2.11948e11i 0.575822 + 0.997353i
\(330\) 0 0
\(331\) 1.54928e11 2.68344e11i 0.709423 1.22876i −0.255649 0.966770i \(-0.582289\pi\)
0.965072 0.261987i \(-0.0843776\pi\)
\(332\) 1.18468e10 0.0535155
\(333\) 0 0
\(334\) 3.58381e11 1.57574
\(335\) 1.12857e11 1.95474e11i 0.489583 0.847982i
\(336\) 0 0
\(337\) −1.56829e11 2.71636e11i −0.662356 1.14723i −0.979995 0.199023i \(-0.936223\pi\)
0.317639 0.948212i \(-0.397110\pi\)
\(338\) 2.35272e11 + 4.07503e11i 0.980495 + 1.69827i
\(339\) 0 0
\(340\) −3.42362e11 + 5.92989e11i −1.38941 + 2.40653i
\(341\) 5.00409e10 0.200415
\(342\) 0 0
\(343\) −2.45577e11 −0.957996
\(344\) −7.00763e11 + 1.21376e12i −2.69810 + 4.67325i
\(345\) 0 0
\(346\) −9.16936e10 1.58818e11i −0.343951 0.595740i
\(347\) 4.05420e10 + 7.02209e10i 0.150115 + 0.260006i 0.931269 0.364331i \(-0.118702\pi\)
−0.781155 + 0.624337i \(0.785369\pi\)
\(348\) 0 0
\(349\) −1.34389e11 + 2.32768e11i −0.484896 + 0.839864i −0.999849 0.0173540i \(-0.994476\pi\)
0.514954 + 0.857218i \(0.327809\pi\)
\(350\) −2.49010e11 −0.886972
\(351\) 0 0
\(352\) 4.17172e11 1.44835
\(353\) 1.96480e11 3.40313e11i 0.673491 1.16652i −0.303416 0.952858i \(-0.598127\pi\)
0.976907 0.213663i \(-0.0685395\pi\)
\(354\) 0 0
\(355\) 1.71147e11 + 2.96436e11i 0.571929 + 0.990611i
\(356\) −6.91800e11 1.19823e12i −2.28274 3.95381i
\(357\) 0 0
\(358\) −5.47447e11 + 9.48206e11i −1.76144 + 3.05091i
\(359\) 2.48781e11 0.790484 0.395242 0.918577i \(-0.370661\pi\)
0.395242 + 0.918577i \(0.370661\pi\)
\(360\) 0 0
\(361\) −8.50984e10 −0.263718
\(362\) 9.28819e10 1.60876e11i 0.284277 0.492383i
\(363\) 0 0
\(364\) −2.41796e10 4.18803e10i −0.0721927 0.125041i
\(365\) 8.27617e10 + 1.43347e11i 0.244068 + 0.422739i
\(366\) 0 0
\(367\) 1.62624e11 2.81673e11i 0.467937 0.810491i −0.531391 0.847126i \(-0.678331\pi\)
0.999329 + 0.0366351i \(0.0116639\pi\)
\(368\) −7.65214e10 −0.217504
\(369\) 0 0
\(370\) 1.84349e11 0.511368
\(371\) 2.59330e11 4.49172e11i 0.710673 1.23092i
\(372\) 0 0
\(373\) 1.77616e11 + 3.07640e11i 0.475108 + 0.822912i 0.999594 0.0285077i \(-0.00907553\pi\)
−0.524485 + 0.851420i \(0.675742\pi\)
\(374\) 1.42996e11 + 2.47677e11i 0.377922 + 0.654580i
\(375\) 0 0
\(376\) 7.87853e11 1.36460e12i 2.03282 3.52095i
\(377\) −1.71026e10 −0.0436040
\(378\) 0 0
\(379\) −4.17590e11 −1.03962 −0.519809 0.854283i \(-0.673997\pi\)
−0.519809 + 0.854283i \(0.673997\pi\)
\(380\) −3.75429e11 + 6.50262e11i −0.923637 + 1.59979i
\(381\) 0 0
\(382\) −3.25639e11 5.64024e11i −0.782441 1.35523i
\(383\) 4.19861e9 + 7.27221e9i 0.00997038 + 0.0172692i 0.870968 0.491341i \(-0.163493\pi\)
−0.860997 + 0.508610i \(0.830160\pi\)
\(384\) 0 0
\(385\) 5.00922e10 8.67623e10i 0.116198 0.201260i
\(386\) 7.05701e11 1.61800
\(387\) 0 0
\(388\) 1.41791e12 3.17618
\(389\) 2.23902e11 3.87809e11i 0.495774 0.858706i −0.504214 0.863579i \(-0.668218\pi\)
0.999988 + 0.00487245i \(0.00155095\pi\)
\(390\) 0 0
\(391\) −1.49584e10 2.59087e10i −0.0323661 0.0560597i
\(392\) −6.57635e10 1.13906e11i −0.140669 0.243645i
\(393\) 0 0
\(394\) 8.93062e10 1.54683e11i 0.186702 0.323377i
\(395\) −3.76788e10 −0.0778773
\(396\) 0 0
\(397\) 8.93449e11 1.80515 0.902573 0.430537i \(-0.141676\pi\)
0.902573 + 0.430537i \(0.141676\pi\)
\(398\) 8.67991e11 1.50340e12i 1.73397 3.00332i
\(399\) 0 0
\(400\) 4.82814e11 + 8.36258e11i 0.942996 + 1.63332i
\(401\) −1.10853e10 1.92004e10i −0.0214092 0.0370817i 0.855122 0.518426i \(-0.173482\pi\)
−0.876531 + 0.481345i \(0.840149\pi\)
\(402\) 0 0
\(403\) −8.65412e9 + 1.49894e10i −0.0163437 + 0.0283081i
\(404\) −2.46908e12 −4.61126
\(405\) 0 0
\(406\) −1.00215e12 −1.83049
\(407\) 2.85347e10 4.94236e10i 0.0515465 0.0892812i
\(408\) 0 0
\(409\) −2.39862e11 4.15453e11i −0.423844 0.734120i 0.572468 0.819927i \(-0.305986\pi\)
−0.996312 + 0.0858078i \(0.972653\pi\)
\(410\) −4.11355e11 7.12487e11i −0.718934 1.24523i
\(411\) 0 0
\(412\) −7.37590e10 + 1.27754e11i −0.126118 + 0.218443i
\(413\) 3.38198e11 0.572000
\(414\) 0 0
\(415\) −8.48885e9 −0.0140486
\(416\) −7.21461e10 + 1.24961e11i −0.118112 + 0.204575i
\(417\) 0 0
\(418\) 1.56807e11 + 2.71598e11i 0.251231 + 0.435144i
\(419\) −4.17661e11 7.23411e11i −0.662005 1.14663i −0.980088 0.198563i \(-0.936373\pi\)
0.318083 0.948063i \(-0.396961\pi\)
\(420\) 0 0
\(421\) −1.03140e11 + 1.78644e11i −0.160014 + 0.277153i −0.934874 0.354981i \(-0.884487\pi\)
0.774859 + 0.632134i \(0.217821\pi\)
\(422\) 1.20133e12 1.84397
\(423\) 0 0
\(424\) −3.33932e12 −5.01778
\(425\) −1.88761e11 + 3.26944e11i −0.280648 + 0.486097i
\(426\) 0 0
\(427\) 6.35202e10 + 1.10020e11i 0.0924669 + 0.160157i
\(428\) −4.03572e11 6.99007e11i −0.581332 1.00690i
\(429\) 0 0
\(430\) 7.71562e11 1.33638e12i 1.08834 1.88505i
\(431\) 3.46311e11 0.483414 0.241707 0.970349i \(-0.422293\pi\)
0.241707 + 0.970349i \(0.422293\pi\)
\(432\) 0 0
\(433\) −7.41282e9 −0.0101342 −0.00506708 0.999987i \(-0.501613\pi\)
−0.00506708 + 0.999987i \(0.501613\pi\)
\(434\) −5.07101e11 + 8.78325e11i −0.686105 + 1.18837i
\(435\) 0 0
\(436\) −9.60541e11 1.66370e12i −1.27299 2.20489i
\(437\) −1.64032e10 2.84111e10i −0.0215160 0.0372668i
\(438\) 0 0
\(439\) −4.79907e11 + 8.31224e11i −0.616690 + 1.06814i 0.373396 + 0.927672i \(0.378193\pi\)
−0.990085 + 0.140466i \(0.955140\pi\)
\(440\) −6.45024e11 −0.820425
\(441\) 0 0
\(442\) −9.89194e10 −0.123277
\(443\) −1.44256e11 + 2.49858e11i −0.177958 + 0.308232i −0.941181 0.337903i \(-0.890282\pi\)
0.763223 + 0.646135i \(0.223616\pi\)
\(444\) 0 0
\(445\) 4.95711e11 + 8.58597e11i 0.599251 + 1.03793i
\(446\) 1.27435e12 + 2.20724e12i 1.52504 + 2.64145i
\(447\) 0 0
\(448\) −2.30890e12 + 3.99913e12i −2.70803 + 4.69045i
\(449\) 1.00029e12 1.16150 0.580749 0.814083i \(-0.302760\pi\)
0.580749 + 0.814083i \(0.302760\pi\)
\(450\) 0 0
\(451\) −2.54688e11 −0.289878
\(452\) 5.68454e10 9.84591e10i 0.0640578 0.110951i
\(453\) 0 0
\(454\) −7.78476e11 1.34836e12i −0.859991 1.48955i
\(455\) 1.73260e10 + 3.00095e10i 0.0189516 + 0.0328252i
\(456\) 0 0
\(457\) −1.41927e11 + 2.45826e11i −0.152210 + 0.263636i −0.932040 0.362356i \(-0.881972\pi\)
0.779830 + 0.625992i \(0.215306\pi\)
\(458\) 2.88003e12 3.05846
\(459\) 0 0
\(460\) 1.03678e11 0.107964
\(461\) 3.22910e8 5.59296e8i 0.000332987 0.000576750i −0.865859 0.500288i \(-0.833227\pi\)
0.866192 + 0.499712i \(0.166561\pi\)
\(462\) 0 0
\(463\) 2.41535e11 + 4.18352e11i 0.244268 + 0.423084i 0.961926 0.273312i \(-0.0881190\pi\)
−0.717658 + 0.696396i \(0.754786\pi\)
\(464\) 1.94311e12 + 3.36557e12i 1.94611 + 3.37076i
\(465\) 0 0
\(466\) 1.31444e12 2.27667e12i 1.29123 2.23647i
\(467\) −7.10128e11 −0.690893 −0.345447 0.938438i \(-0.612273\pi\)
−0.345447 + 0.938438i \(0.612273\pi\)
\(468\) 0 0
\(469\) 1.41618e12 1.35158
\(470\) −8.67450e11 + 1.50247e12i −0.819982 + 1.42025i
\(471\) 0 0
\(472\) −1.08872e12 1.88572e12i −1.00967 1.74879i
\(473\) −2.38855e11 4.13708e11i −0.219411 0.380031i
\(474\) 0 0
\(475\) −2.06992e11 + 3.58521e11i −0.186566 + 0.323142i
\(476\) −4.29613e12 −3.83572
\(477\) 0 0
\(478\) −1.80000e12 −1.57706
\(479\) −7.73097e9 + 1.33904e10i −0.00671002 + 0.0116221i −0.869361 0.494178i \(-0.835469\pi\)
0.862651 + 0.505800i \(0.168803\pi\)
\(480\) 0 0
\(481\) 9.86964e9 + 1.70947e10i 0.00840715 + 0.0145616i
\(482\) −7.49638e10 1.29841e11i −0.0632616 0.109572i
\(483\) 0 0
\(484\) 1.57522e12 2.72836e12i 1.30478 2.25994i
\(485\) −1.01601e12 −0.833793
\(486\) 0 0
\(487\) −5.65405e11 −0.455490 −0.227745 0.973721i \(-0.573135\pi\)
−0.227745 + 0.973721i \(0.573135\pi\)
\(488\) 4.08966e11 7.08349e11i 0.326436 0.565403i
\(489\) 0 0
\(490\) 7.24076e10 + 1.25414e11i 0.0567416 + 0.0982794i
\(491\) 1.86366e11 + 3.22796e11i 0.144711 + 0.250646i 0.929265 0.369414i \(-0.120442\pi\)
−0.784554 + 0.620060i \(0.787108\pi\)
\(492\) 0 0
\(493\) −7.59680e11 + 1.31580e12i −0.579188 + 1.00318i
\(494\) −1.08473e11 −0.0819506
\(495\) 0 0
\(496\) 3.93295e12 2.91777
\(497\) −1.07382e12 + 1.85991e12i −0.789456 + 1.36738i
\(498\) 0 0
\(499\) 1.78807e11 + 3.09703e11i 0.129102 + 0.223611i 0.923329 0.384010i \(-0.125457\pi\)
−0.794227 + 0.607621i \(0.792124\pi\)
\(500\) −2.15850e12 3.73863e12i −1.54449 2.67514i
\(501\) 0 0
\(502\) 1.04365e12 1.80765e12i 0.733476 1.27042i
\(503\) −1.08145e12 −0.753267 −0.376633 0.926362i \(-0.622918\pi\)
−0.376633 + 0.926362i \(0.622918\pi\)
\(504\) 0 0
\(505\) 1.76923e12 1.21052
\(506\) 2.16519e10 3.75023e10i 0.0146832 0.0254320i
\(507\) 0 0
\(508\) 1.38768e12 + 2.40353e12i 0.924490 + 1.60126i
\(509\) 3.48650e11 + 6.03880e11i 0.230229 + 0.398768i 0.957875 0.287184i \(-0.0927192\pi\)
−0.727646 + 0.685952i \(0.759386\pi\)
\(510\) 0 0
\(511\) −5.19267e11 + 8.99398e11i −0.336897 + 0.583523i
\(512\) 8.08206e12 5.19765
\(513\) 0 0
\(514\) −7.78108e11 −0.491706
\(515\) 5.28523e10 9.15428e10i 0.0331079 0.0573445i
\(516\) 0 0
\(517\) 2.68539e11 + 4.65123e11i 0.165310 + 0.286326i
\(518\) 5.78327e11 + 1.00169e12i 0.352931 + 0.611294i
\(519\) 0 0
\(520\) 1.11551e11 1.93212e11i 0.0669049 0.115883i
\(521\) −1.96135e12 −1.16623 −0.583116 0.812389i \(-0.698167\pi\)
−0.583116 + 0.812389i \(0.698167\pi\)
\(522\) 0 0
\(523\) −6.03647e10 −0.0352797 −0.0176399 0.999844i \(-0.505615\pi\)
−0.0176399 + 0.999844i \(0.505615\pi\)
\(524\) 3.38833e12 5.86875e12i 1.96334 3.40060i
\(525\) 0 0
\(526\) −2.23785e12 3.87607e12i −1.27466 2.20778i
\(527\) 7.68814e11 + 1.33162e12i 0.434183 + 0.752028i
\(528\) 0 0
\(529\) 8.98311e11 1.55592e12i 0.498743 0.863847i
\(530\) 3.67669e12 2.02402
\(531\) 0 0
\(532\) −4.71107e12 −2.54987
\(533\) 4.40460e10 7.62899e10i 0.0236393 0.0409444i
\(534\) 0 0
\(535\) 2.89181e11 + 5.00876e11i 0.152608 + 0.264325i
\(536\) −4.55895e12 7.89633e12i −2.38574 4.13223i
\(537\) 0 0
\(538\) −4.85790e11 + 8.41413e11i −0.249993 + 0.433001i
\(539\) 4.48308e10 0.0228785
\(540\) 0 0
\(541\) −1.58437e12 −0.795185 −0.397592 0.917562i \(-0.630154\pi\)
−0.397592 + 0.917562i \(0.630154\pi\)
\(542\) −1.15521e12 + 2.00088e12i −0.574995 + 0.995920i
\(543\) 0 0
\(544\) 6.40930e12 + 1.11012e13i 3.13773 + 5.43471i
\(545\) 6.88278e11 + 1.19213e12i 0.334179 + 0.578816i
\(546\) 0 0
\(547\) −7.36182e11 + 1.27510e12i −0.351595 + 0.608980i −0.986529 0.163586i \(-0.947694\pi\)
0.634934 + 0.772566i \(0.281027\pi\)
\(548\) −1.00098e13 −4.74146
\(549\) 0 0
\(550\) −5.46454e11 −0.254637
\(551\) −8.33053e11 + 1.44289e12i −0.385026 + 0.666885i
\(552\) 0 0
\(553\) −1.18203e11 2.04734e11i −0.0537485 0.0930952i
\(554\) 1.86293e11 + 3.22669e11i 0.0840240 + 0.145534i
\(555\) 0 0
\(556\) −3.57513e12 + 6.19231e12i −1.58656 + 2.74800i
\(557\) −1.23459e12 −0.543470 −0.271735 0.962372i \(-0.587597\pi\)
−0.271735 + 0.962372i \(0.587597\pi\)
\(558\) 0 0
\(559\) 1.65231e11 0.0715711
\(560\) 3.93698e12 6.81905e12i 1.69168 2.93007i
\(561\) 0 0
\(562\) −1.81539e12 3.14435e12i −0.767638 1.32959i
\(563\) −1.61399e11 2.79551e11i −0.0677037 0.117266i 0.830186 0.557486i \(-0.188234\pi\)
−0.897890 + 0.440220i \(0.854901\pi\)
\(564\) 0 0
\(565\) −4.07327e10 + 7.05511e10i −0.0168161 + 0.0291263i
\(566\) −2.71967e12 −1.11389
\(567\) 0 0
\(568\) 1.38273e13 5.57404
\(569\) 7.58978e11 1.31459e12i 0.303546 0.525756i −0.673391 0.739287i \(-0.735163\pi\)
0.976936 + 0.213530i \(0.0684962\pi\)
\(570\) 0 0
\(571\) −3.02035e11 5.23139e11i −0.118903 0.205947i 0.800430 0.599426i \(-0.204605\pi\)
−0.919333 + 0.393480i \(0.871271\pi\)
\(572\) −5.30624e10 9.19068e10i −0.0207255 0.0358976i
\(573\) 0 0
\(574\) 2.58094e12 4.47032e12i 0.992373 1.71884i
\(575\) 5.71630e10 0.0218077
\(576\) 0 0
\(577\) −4.16132e12 −1.56293 −0.781466 0.623948i \(-0.785528\pi\)
−0.781466 + 0.623948i \(0.785528\pi\)
\(578\) −1.75667e12 + 3.04265e12i −0.654660 + 1.13390i
\(579\) 0 0
\(580\) −2.63271e12 4.55999e12i −0.966001 1.67316i
\(581\) −2.66306e10 4.61256e10i −0.00969591 0.0167938i
\(582\) 0 0
\(583\) 5.69102e11 9.85713e11i 0.204024 0.353380i
\(584\) 6.68646e12 2.37869
\(585\) 0 0
\(586\) 7.71498e12 2.70269
\(587\) −6.48959e11 + 1.12403e12i −0.225604 + 0.390757i −0.956500 0.291731i \(-0.905769\pi\)
0.730897 + 0.682488i \(0.239102\pi\)
\(588\) 0 0
\(589\) 8.43069e11 + 1.46024e12i 0.288632 + 0.499925i
\(590\) 1.19872e12 + 2.07624e12i 0.407270 + 0.705412i
\(591\) 0 0
\(592\) 2.24268e12 3.88443e12i 0.750446 1.29981i
\(593\) 6.89642e11 0.229022 0.114511 0.993422i \(-0.463470\pi\)
0.114511 + 0.993422i \(0.463470\pi\)
\(594\) 0 0
\(595\) 3.07841e12 1.00693
\(596\) −5.60781e12 + 9.71302e12i −1.82048 + 3.15316i
\(597\) 0 0
\(598\) 7.48901e9 + 1.29713e10i 0.00239480 + 0.00414791i
\(599\) 3.40832e11 + 5.90339e11i 0.108173 + 0.187362i 0.915030 0.403385i \(-0.132167\pi\)
−0.806857 + 0.590747i \(0.798833\pi\)
\(600\) 0 0
\(601\) 2.36698e12 4.09974e12i 0.740049 1.28180i −0.212424 0.977178i \(-0.568136\pi\)
0.952473 0.304624i \(-0.0985309\pi\)
\(602\) 9.68195e12 3.00454
\(603\) 0 0
\(604\) −6.15208e12 −1.88086
\(605\) −1.12873e12 + 1.95501e12i −0.342523 + 0.593267i
\(606\) 0 0
\(607\) 1.69211e12 + 2.93082e12i 0.505917 + 0.876273i 0.999977 + 0.00684543i \(0.00217898\pi\)
−0.494060 + 0.869428i \(0.664488\pi\)
\(608\) 7.02834e12 + 1.21734e13i 2.08587 + 3.61283i
\(609\) 0 0
\(610\) −4.50284e11 + 7.79915e11i −0.131675 + 0.228067i
\(611\) −1.85765e11 −0.0539237
\(612\) 0 0
\(613\) −2.77900e12 −0.794906 −0.397453 0.917622i \(-0.630106\pi\)
−0.397453 + 0.917622i \(0.630106\pi\)
\(614\) 4.21191e12 7.29525e12i 1.19597 2.07149i
\(615\) 0 0
\(616\) −2.02352e12 3.50484e12i −0.566232 0.980743i
\(617\) −2.85307e12 4.94166e12i −0.792554 1.37274i −0.924381 0.381470i \(-0.875418\pi\)
0.131827 0.991273i \(-0.457916\pi\)
\(618\) 0 0
\(619\) −2.85011e12 + 4.93653e12i −0.780285 + 1.35149i 0.151490 + 0.988459i \(0.451593\pi\)
−0.931776 + 0.363035i \(0.881741\pi\)
\(620\) −5.32873e12 −1.44831
\(621\) 0 0
\(622\) 6.56823e12 1.75951
\(623\) −3.11022e12 + 5.38706e12i −0.827170 + 1.43270i
\(624\) 0 0
\(625\) 7.17264e11 + 1.24234e12i 0.188026 + 0.325671i
\(626\) −1.03242e11 1.78821e11i −0.0268703 0.0465408i
\(627\) 0 0
\(628\) 5.57513e11 9.65641e11i 0.143033 0.247741i
\(629\) 1.75360e12 0.446685
\(630\) 0 0
\(631\) −7.58053e11 −0.190356 −0.0951782 0.995460i \(-0.530342\pi\)
−0.0951782 + 0.995460i \(0.530342\pi\)
\(632\) −7.61035e11 + 1.31815e12i −0.189748 + 0.328654i
\(633\) 0 0
\(634\) −3.92209e12 6.79325e12i −0.964086 1.66985i
\(635\) −9.94346e11 1.72226e12i −0.242692 0.420355i
\(636\) 0 0
\(637\) −7.75308e9 + 1.34287e10i −0.00186572 + 0.00323153i
\(638\) −2.19924e12 −0.525507
\(639\) 0 0
\(640\) −1.72222e13 −4.05768
\(641\) 1.53875e12 2.66519e12i 0.360003 0.623544i −0.627958 0.778248i \(-0.716109\pi\)
0.987961 + 0.154703i \(0.0494422\pi\)
\(642\) 0 0
\(643\) −1.05213e12 1.82234e12i −0.242727 0.420416i 0.718763 0.695255i \(-0.244709\pi\)
−0.961490 + 0.274839i \(0.911375\pi\)
\(644\) 3.25252e11 + 5.63354e11i 0.0745133 + 0.129061i
\(645\) 0 0
\(646\) −4.81828e12 + 8.34550e12i −1.08854 + 1.88541i
\(647\) −1.41884e12 −0.318319 −0.159160 0.987253i \(-0.550878\pi\)
−0.159160 + 0.987253i \(0.550878\pi\)
\(648\) 0 0
\(649\) 7.42180e11 0.164213
\(650\) 9.45042e10 1.63686e11i 0.0207654 0.0359668i
\(651\) 0 0
\(652\) 5.53579e12 + 9.58827e12i 1.19968 + 2.07791i
\(653\) −1.70144e11 2.94698e11i −0.0366191 0.0634262i 0.847135 0.531378i \(-0.178326\pi\)
−0.883754 + 0.467952i \(0.844992\pi\)
\(654\) 0 0
\(655\) −2.42792e12 + 4.20527e12i −0.515404 + 0.892706i
\(656\) −2.00171e13 −4.22022
\(657\) 0 0
\(658\) −1.08852e13 −2.26371
\(659\) 2.31012e12 4.00125e12i 0.477145 0.826440i −0.522512 0.852632i \(-0.675005\pi\)
0.999657 + 0.0261924i \(0.00833826\pi\)
\(660\) 0 0
\(661\) 2.31748e12 + 4.01400e12i 0.472183 + 0.817845i 0.999493 0.0318281i \(-0.0101329\pi\)
−0.527311 + 0.849673i \(0.676800\pi\)
\(662\) 6.89077e12 + 1.19352e13i 1.39446 + 2.41528i
\(663\) 0 0
\(664\) −1.71457e11 + 2.96973e11i −0.0342295 + 0.0592872i
\(665\) 3.37573e12 0.669377
\(666\) 0 0
\(667\) 2.30056e11 0.0450057
\(668\) −5.90712e12 + 1.02314e13i −1.14784 + 1.98812i
\(669\) 0 0
\(670\) 5.01955e12 + 8.69411e12i 0.962339 + 1.66682i
\(671\) 1.39396e11 + 2.41440e11i 0.0265459 + 0.0459789i
\(672\) 0 0
\(673\) 5.02585e12 8.70503e12i 0.944370 1.63570i 0.187361 0.982291i \(-0.440007\pi\)
0.757009 0.653405i \(-0.226660\pi\)
\(674\) 1.39506e13 2.60390
\(675\) 0 0
\(676\) −1.55118e13 −2.85694
\(677\) 4.41589e12 7.64855e12i 0.807922 1.39936i −0.106378 0.994326i \(-0.533925\pi\)
0.914300 0.405037i \(-0.132741\pi\)
\(678\) 0 0
\(679\) −3.18734e12 5.52063e12i −0.575458 0.996723i
\(680\) −9.90995e12 1.71645e13i −1.77738 3.07852i
\(681\) 0 0
\(682\) −1.11284e12 + 1.92749e12i −0.196971 + 0.341164i
\(683\) 1.10788e13 1.94805 0.974027 0.226430i \(-0.0727055\pi\)
0.974027 + 0.226430i \(0.0727055\pi\)
\(684\) 0 0
\(685\) 7.17253e12 1.24470
\(686\) 5.46128e12 9.45921e12i 0.941534 1.63078i
\(687\) 0 0
\(688\) −1.87727e13 3.25152e13i −3.19432 5.53272i
\(689\) 1.96842e11 + 3.40940e11i 0.0332760 + 0.0576357i
\(690\) 0 0
\(691\) 3.16465e11 5.48134e11i 0.0528050 0.0914609i −0.838415 0.545033i \(-0.816517\pi\)
0.891220 + 0.453572i \(0.149850\pi\)
\(692\) 6.04547e12 1.00220
\(693\) 0 0
\(694\) −3.60639e12 −0.590140
\(695\) 2.56177e12 4.43712e12i 0.416494 0.721389i
\(696\) 0 0
\(697\) −3.91295e12 6.77743e12i −0.627996 1.08772i
\(698\) −5.97723e12 1.03529e13i −0.953126 1.65086i
\(699\) 0 0
\(700\) 4.10438e12 7.10899e12i 0.646109 1.11909i
\(701\) −3.84382e12 −0.601219 −0.300609 0.953747i \(-0.597190\pi\)
−0.300609 + 0.953747i \(0.597190\pi\)
\(702\) 0 0
\(703\) 1.92297e12 0.296943
\(704\) −5.06690e12 + 8.77613e12i −0.777437 + 1.34656i
\(705\) 0 0
\(706\) 8.73887e12 + 1.51362e13i 1.32384 + 2.29295i
\(707\) 5.55029e12 + 9.61338e12i 0.835465 + 1.44707i
\(708\) 0 0
\(709\) 3.07967e12 5.33415e12i 0.457716 0.792788i −0.541123 0.840943i \(-0.682001\pi\)
0.998840 + 0.0481550i \(0.0153341\pi\)
\(710\) −1.52243e13 −2.24840
\(711\) 0 0
\(712\) 4.00494e13 5.84031
\(713\) 1.16411e11 2.01630e11i 0.0168691 0.0292181i
\(714\) 0 0
\(715\) 3.80220e10 + 6.58561e10i 0.00544074 + 0.00942364i
\(716\) −1.80469e13 3.12582e13i −2.56622 4.44483i
\(717\) 0 0
\(718\) −5.53254e12 + 9.58265e12i −0.776900 + 1.34563i
\(719\) −6.51194e12 −0.908721 −0.454361 0.890818i \(-0.650132\pi\)
−0.454361 + 0.890818i \(0.650132\pi\)
\(720\) 0 0
\(721\) 6.63217e11 0.0914001
\(722\) 1.89247e12 3.27785e12i 0.259186 0.448923i
\(723\) 0 0
\(724\) 3.06191e12 + 5.30338e12i 0.414160 + 0.717347i
\(725\) −1.45154e12 2.51415e12i −0.195123 0.337963i
\(726\) 0 0
\(727\) −1.02893e12 + 1.78215e12i −0.136609 + 0.236614i −0.926211 0.377006i \(-0.876954\pi\)
0.789602 + 0.613620i \(0.210287\pi\)
\(728\) 1.39980e12 0.184703
\(729\) 0 0
\(730\) −7.36200e12 −0.959496
\(731\) 7.33938e12 1.27122e13i 0.950673 1.64661i
\(732\) 0 0
\(733\) −3.98122e12 6.89568e12i −0.509388 0.882286i −0.999941 0.0108743i \(-0.996539\pi\)
0.490553 0.871411i \(-0.336795\pi\)
\(734\) 7.23306e12 + 1.25280e13i 0.919792 + 1.59313i
\(735\) 0 0
\(736\) 9.70473e11 1.68091e12i 0.121908 0.211151i
\(737\) 3.10783e12 0.388019
\(738\) 0 0
\(739\) −4.20258e12 −0.518341 −0.259171 0.965832i \(-0.583449\pi\)
−0.259171 + 0.965832i \(0.583449\pi\)
\(740\) −3.03859e12 + 5.26300e12i −0.372503 + 0.645194i
\(741\) 0 0
\(742\) 1.15342e13 + 1.99779e13i 1.39692 + 2.41954i
\(743\) −2.73405e12 4.73551e12i −0.329122 0.570056i 0.653216 0.757172i \(-0.273419\pi\)
−0.982338 + 0.187116i \(0.940086\pi\)
\(744\) 0 0
\(745\) 4.01830e12 6.95989e12i 0.477902 0.827750i
\(746\) −1.57997e13 −1.86777
\(747\) 0 0
\(748\) −9.42791e12 −1.10118
\(749\) −1.81439e12 + 3.14262e12i −0.210651 + 0.364858i
\(750\) 0 0
\(751\) −3.73761e12 6.47374e12i −0.428760 0.742635i 0.568003 0.823026i \(-0.307716\pi\)
−0.996763 + 0.0803918i \(0.974383\pi\)
\(752\) 2.11057e13 + 3.65562e13i 2.40669 + 4.16851i
\(753\) 0 0
\(754\) 3.80338e11 6.58764e11i 0.0428547 0.0742265i
\(755\) 4.40829e12 0.493752
\(756\) 0 0
\(757\) 1.40395e12 0.155389 0.0776947 0.996977i \(-0.475244\pi\)
0.0776947 + 0.996977i \(0.475244\pi\)
\(758\) 9.28661e12 1.60849e13i 1.02175 1.76973i
\(759\) 0 0
\(760\) −1.08671e13 1.88224e13i −1.18155 2.04650i
\(761\) 3.97524e12 + 6.88531e12i 0.429667 + 0.744205i 0.996844 0.0793912i \(-0.0252976\pi\)
−0.567177 + 0.823596i \(0.691964\pi\)
\(762\) 0 0
\(763\) −4.31843e12 + 7.47974e12i −0.461281 + 0.798962i
\(764\) 2.14698e13 2.27986
\(765\) 0 0
\(766\) −3.73485e11 −0.0391961
\(767\) −1.28353e11 + 2.22314e11i −0.0133914 + 0.0231947i
\(768\) 0 0
\(769\) 3.47949e12 + 6.02666e12i 0.358796 + 0.621453i 0.987760 0.155982i \(-0.0498541\pi\)
−0.628964 + 0.777434i \(0.716521\pi\)
\(770\) 2.22796e12 + 3.85894e12i 0.228402 + 0.395603i
\(771\) 0 0
\(772\) −1.16319e13 + 2.01471e13i −1.17862 + 2.04143i
\(773\) 1.22597e13 1.23501 0.617506 0.786566i \(-0.288143\pi\)
0.617506 + 0.786566i \(0.288143\pi\)
\(774\) 0 0
\(775\) −2.93799e12 −0.292545
\(776\) −2.05212e13 + 3.55438e13i −2.03154 + 3.51873i
\(777\) 0 0
\(778\) 9.95851e12 + 1.72486e13i 0.974509 + 1.68790i
\(779\) −4.29088e12 7.43203e12i −0.417473 0.723084i
\(780\) 0 0
\(781\) −2.35651e12 + 4.08160e12i −0.226642 + 0.392555i
\(782\) 1.33062e12 0.127240
\(783\) 0 0
\(784\) 3.52346e12 0.333079
\(785\) −3.99488e11 + 6.91933e11i −0.0375483 + 0.0650355i
\(786\) 0 0
\(787\) −5.99070e12 1.03762e13i −0.556662 0.964167i −0.997772 0.0667139i \(-0.978749\pi\)
0.441110 0.897453i \(-0.354585\pi\)
\(788\) 2.94403e12 + 5.09921e12i 0.272004 + 0.471124i
\(789\) 0 0
\(790\) 8.37924e11 1.45133e12i 0.0765390 0.132569i
\(791\) −5.11135e11 −0.0464238
\(792\) 0 0
\(793\) −9.64288e10 −0.00865919
\(794\) −1.98690e13 + 3.44142e13i −1.77413 + 3.07288i
\(795\) 0 0
\(796\) 2.86139e13 + 4.95606e13i 2.52620 + 4.37550i
\(797\) 1.45080e12 + 2.51285e12i 0.127363 + 0.220599i 0.922654 0.385628i \(-0.126015\pi\)
−0.795291 + 0.606228i \(0.792682\pi\)
\(798\) 0 0
\(799\) −8.25150e12 + 1.42920e13i −0.716263 + 1.24060i
\(800\) −2.44929e13 −2.11415
\(801\) 0 0
\(802\) 9.86089e11 0.0841650
\(803\) −1.13954e12 + 1.97374e12i −0.0967183 + 0.167521i
\(804\) 0 0
\(805\) −2.33061e11 4.03673e11i −0.0195608 0.0338804i
\(806\) −3.84910e11 6.66684e11i −0.0321257 0.0556433i
\(807\) 0 0
\(808\) 3.57348e13 6.18944e13i 2.94944 5.10858i
\(809\) −1.25435e13 −1.02956 −0.514779 0.857323i \(-0.672126\pi\)
−0.514779 + 0.857323i \(0.672126\pi\)
\(810\) 0 0
\(811\) −1.31788e13 −1.06975 −0.534874 0.844932i \(-0.679641\pi\)
−0.534874 + 0.844932i \(0.679641\pi\)
\(812\) 1.65183e13 2.86105e13i 1.33341 2.30953i
\(813\) 0 0
\(814\) 1.26914e12 + 2.19822e12i 0.101321 + 0.175494i
\(815\) −3.96669e12 6.87051e12i −0.314934 0.545481i
\(816\) 0 0
\(817\) 8.04824e12 1.39400e13i 0.631978 1.09462i
\(818\) 2.13367e13 1.66624
\(819\) 0 0
\(820\) 2.71211e13 2.09481
\(821\) −6.97251e12 + 1.20767e13i −0.535606 + 0.927696i 0.463528 + 0.886082i \(0.346583\pi\)
−0.999134 + 0.0416139i \(0.986750\pi\)
\(822\) 0 0
\(823\) −9.05731e12 1.56877e13i −0.688177 1.19196i −0.972427 0.233207i \(-0.925078\pi\)
0.284250 0.958750i \(-0.408255\pi\)
\(824\) −2.13501e12 3.69795e12i −0.161335 0.279440i
\(825\) 0 0
\(826\) −7.52105e12 + 1.30268e13i −0.562171 + 0.973708i
\(827\) 9.15727e12 0.680756 0.340378 0.940289i \(-0.389445\pi\)
0.340378 + 0.940289i \(0.389445\pi\)
\(828\) 0 0
\(829\) 1.41975e13 1.04404 0.522020 0.852933i \(-0.325179\pi\)
0.522020 + 0.852933i \(0.325179\pi\)
\(830\) 1.88780e11 3.26976e11i 0.0138072 0.0239147i
\(831\) 0 0
\(832\) −1.75255e12 3.03550e12i −0.126799 0.219622i
\(833\) 6.88767e11 + 1.19298e12i 0.0495644 + 0.0858481i
\(834\) 0 0
\(835\) 4.23276e12 7.33136e12i 0.301325 0.521910i
\(836\) −1.03385e13 −0.732030
\(837\) 0 0
\(838\) 3.71528e13 2.60251
\(839\) −1.13179e13 + 1.96031e13i −0.788561 + 1.36583i 0.138287 + 0.990392i \(0.455840\pi\)
−0.926848 + 0.375436i \(0.877493\pi\)
\(840\) 0 0
\(841\) 1.41175e12 + 2.44523e12i 0.0973143 + 0.168553i
\(842\) −4.58739e12 7.94559e12i −0.314529 0.544781i
\(843\) 0 0
\(844\) −1.98012e13 + 3.42967e13i −1.34323 + 2.32654i
\(845\) 1.11150e13 0.749989
\(846\) 0 0
\(847\) −1.41638e13 −0.945596
\(848\) 4.47283e13 7.74718e13i 2.97031 5.14472i
\(849\) 0 0
\(850\) −8.39555e12 1.45415e13i −0.551651 0.955487i
\(851\) −1.32762e11 2.29950e11i −0.00867740 0.0150297i
\(852\) 0 0
\(853\) 1.37739e13 2.38571e13i 0.890813 1.54293i 0.0519103 0.998652i \(-0.483469\pi\)
0.838903 0.544281i \(-0.183198\pi\)
\(854\) −5.65039e12 −0.363511
\(855\) 0 0
\(856\) 2.33634e13 1.48732
\(857\) 5.97538e12 1.03497e13i 0.378401 0.655409i −0.612429 0.790526i \(-0.709807\pi\)
0.990830 + 0.135116i \(0.0431408\pi\)
\(858\) 0 0
\(859\) 8.43166e12 + 1.46041e13i 0.528377 + 0.915176i 0.999453 + 0.0330829i \(0.0105326\pi\)
−0.471076 + 0.882093i \(0.656134\pi\)
\(860\) 2.54350e13 + 4.40547e13i 1.58558 + 2.74631i
\(861\) 0 0
\(862\) −7.70147e12 + 1.33393e13i −0.475107 + 0.822909i
\(863\) −2.70257e13 −1.65855 −0.829275 0.558840i \(-0.811247\pi\)
−0.829275 + 0.558840i \(0.811247\pi\)
\(864\) 0 0
\(865\) −4.33190e12 −0.263091
\(866\) 1.64851e11 2.85530e11i 0.00996001 0.0172512i
\(867\) 0 0
\(868\) −1.67169e13 2.89545e13i −0.999579 1.73132i
\(869\) −2.59398e11 4.49291e11i −0.0154304 0.0267263i
\(870\) 0 0
\(871\) −5.37470e11 + 9.30926e11i −0.0316427 + 0.0548067i
\(872\) 5.56072e13 3.25692
\(873\) 0 0
\(874\) 1.45913e12 0.0845849
\(875\) −9.70424e12 + 1.68082e13i −0.559661 + 0.969362i
\(876\) 0 0
\(877\) −7.36962e12 1.27646e13i −0.420675 0.728631i 0.575331 0.817921i \(-0.304873\pi\)
−0.996006 + 0.0892904i \(0.971540\pi\)
\(878\) −2.13449e13 3.69704e13i −1.21218 2.09957i
\(879\) 0 0
\(880\) 8.63974e12 1.49645e13i 0.485656 0.841181i
\(881\) −2.25153e13 −1.25918 −0.629589 0.776928i \(-0.716777\pi\)
−0.629589 + 0.776928i \(0.716777\pi\)
\(882\) 0 0
\(883\) −2.11103e13 −1.16861 −0.584307 0.811533i \(-0.698634\pi\)
−0.584307 + 0.811533i \(0.698634\pi\)
\(884\) 1.63047e12 2.82406e12i 0.0898003 0.155539i
\(885\) 0 0
\(886\) −6.41609e12 1.11130e13i −0.349799 0.605870i
\(887\) −2.36351e12 4.09372e12i −0.128204 0.222056i 0.794777 0.606902i \(-0.207588\pi\)
−0.922981 + 0.384846i \(0.874255\pi\)
\(888\) 0 0
\(889\) 6.23877e12 1.08059e13i 0.334997 0.580232i
\(890\) −4.40956e13 −2.35581
\(891\) 0 0
\(892\) −8.40195e13 −4.44363
\(893\) −9.04846e12 + 1.56724e13i −0.476149 + 0.824715i
\(894\) 0 0
\(895\) 1.29316e13 + 2.23981e13i 0.673671 + 1.16683i
\(896\) −5.40281e13 9.35794e13i −2.80049 4.85058i
\(897\) 0 0
\(898\) −2.22451e13 + 3.85296e13i −1.14154 + 1.97720i
\(899\) −1.18241e13 −0.603740
\(900\) 0 0
\(901\) 3.49740e13 1.76801
\(902\) 5.66390e12 9.81017e12i 0.284896 0.493454i
\(903\) 0 0
\(904\) 1.64543e12 + 2.84998e12i 0.0819450 + 0.141933i
\(905\) −2.19402e12 3.80015e12i −0.108723 0.188314i
\(906\) 0 0
\(907\) −6.64325e12 + 1.15064e13i −0.325948 + 0.564558i −0.981704 0.190415i \(-0.939017\pi\)
0.655756 + 0.754973i \(0.272350\pi\)
\(908\) 5.13259e13 2.50582
\(909\) 0 0
\(910\) −1.54122e12 −0.0745038
\(911\) 1.04554e13 1.81093e13i 0.502930 0.871100i −0.497064 0.867714i \(-0.665589\pi\)
0.999994 0.00338636i \(-0.00107791\pi\)
\(912\) 0 0
\(913\) −5.84411e10 1.01223e11i −0.00278356 0.00482126i
\(914\) −6.31253e12 1.09336e13i −0.299189 0.518210i
\(915\) 0 0
\(916\) −4.74710e13 + 8.22221e13i −2.22791 + 3.85886i
\(917\) −3.04667e13 −1.42286
\(918\) 0 0
\(919\) −1.12670e13 −0.521060 −0.260530 0.965466i \(-0.583897\pi\)
−0.260530 + 0.965466i \(0.583897\pi\)
\(920\) −1.50053e12 + 2.59899e12i −0.0690556 + 0.119608i
\(921\) 0 0
\(922\) 1.43621e10 + 2.48759e10i 0.000654529 + 0.00113368i
\(923\) −8.15074e11 1.41175e12i −0.0369649 0.0640250i
\(924\) 0 0
\(925\) −1.67533e12 + 2.90175e12i −0.0752422 + 0.130323i
\(926\) −2.14856e13 −0.960281
\(927\) 0 0
\(928\) −9.85731e13 −4.36307
\(929\) −1.24126e13 + 2.14992e13i −0.546752 + 0.947003i 0.451742 + 0.892149i \(0.350803\pi\)
−0.998494 + 0.0548543i \(0.982531\pi\)
\(930\) 0 0
\(931\) 7.55291e11 + 1.30820e12i 0.0329489 + 0.0570692i
\(932\) 4.33312e13 + 7.50518e13i 1.88117 + 3.25829i
\(933\) 0 0
\(934\) 1.57922e13 2.73530e13i 0.679020 1.17610i
\(935\) 6.75560e12 0.289076
\(936\) 0 0
\(937\) 2.05299e13 0.870081 0.435040 0.900411i \(-0.356734\pi\)
0.435040 + 0.900411i \(0.356734\pi\)
\(938\) −3.14939e13 + 5.45490e13i −1.32835 + 2.30078i
\(939\) 0 0
\(940\) −2.85960e13 4.95298e13i −1.19462 2.06915i
\(941\) 1.44919e13 + 2.51006e13i 0.602519 + 1.04359i 0.992438 + 0.122745i \(0.0391697\pi\)
−0.389919 + 0.920849i \(0.627497\pi\)
\(942\) 0 0
\(943\) −5.92485e11 + 1.02621e12i −0.0243992 + 0.0422606i
\(944\) 5.83313e13 2.39072
\(945\) 0 0
\(946\) 2.12471e13 0.862562
\(947\) 1.39104e13 2.40935e13i 0.562036 0.973475i −0.435283 0.900294i \(-0.643352\pi\)
0.997319 0.0731809i \(-0.0233150\pi\)
\(948\) 0 0
\(949\) −3.94145e11 6.82679e11i −0.0157746 0.0273224i
\(950\) −9.20643e12 1.59460e13i −0.366720 0.635178i
\(951\) 0 0
\(952\) 6.21775e13 1.07695e14i 2.45339 4.24940i
\(953\) 2.85882e13 1.12271 0.561357 0.827573i \(-0.310279\pi\)
0.561357 + 0.827573i \(0.310279\pi\)
\(954\) 0 0
\(955\) −1.53842e13 −0.598496
\(956\) 2.96690e13 5.13883e13i 1.14880 1.98977i
\(957\) 0 0
\(958\) −3.43851e11 5.95568e11i −0.0131894 0.0228448i
\(959\) 2.25011e13 + 3.89731e13i 0.859055 + 1.48793i
\(960\) 0 0
\(961\) 7.23667e12 1.25343e13i 0.273706 0.474072i
\(962\) −8.77947e11 −0.0330507
\(963\) 0 0
\(964\) 4.94246e12 0.184330
\(965\) 8.33489e12 1.44365e13i 0.309405 0.535905i
\(966\) 0 0
\(967\) 2.57467e13 + 4.45947e13i 0.946898 + 1.64008i 0.751906 + 0.659271i \(0.229135\pi\)
0.194993 + 0.980805i \(0.437532\pi\)
\(968\) 4.55960e13 + 7.89745e13i 1.66912 + 2.89100i
\(969\) 0 0
\(970\) 2.25945e13 3.91348e13i 0.819464 1.41935i
\(971\) −3.75474e13 −1.35548 −0.677740 0.735301i \(-0.737041\pi\)
−0.677740 + 0.735301i \(0.737041\pi\)
\(972\) 0 0
\(973\) 3.21464e13 1.14981
\(974\) 1.25738e13 2.17784e13i 0.447663 0.775374i
\(975\) 0 0
\(976\) 1.09557e13 + 1.89759e13i 0.386472 + 0.669389i
\(977\) 1.62693e13 + 2.81792e13i 0.571271 + 0.989470i 0.996436 + 0.0843544i \(0.0268828\pi\)
−0.425165 + 0.905116i \(0.639784\pi\)
\(978\) 0 0
\(979\) −6.82540e12 + 1.18219e13i −0.237469 + 0.411308i
\(980\) −4.77392e12 −0.165332
\(981\) 0 0
\(982\) −1.65781e13 −0.568895
\(983\) −2.81683e13 + 4.87889e13i −0.962209 + 1.66660i −0.245277 + 0.969453i \(0.578879\pi\)
−0.716932 + 0.697143i \(0.754454\pi\)
\(984\) 0 0
\(985\) −2.10956e12 3.65386e12i −0.0714049 0.123677i
\(986\) −3.37884e13 5.85232e13i −1.13847 1.97189i
\(987\) 0 0
\(988\) 1.78795e12 3.09682e12i 0.0596964 0.103397i
\(989\) −2.22260e12 −0.0738718
\(990\) 0 0
\(991\) −2.09674e13 −0.690578 −0.345289 0.938496i \(-0.612219\pi\)
−0.345289 + 0.938496i \(0.612219\pi\)
\(992\) −4.98791e13 + 8.63932e13i −1.63537 + 2.83255i
\(993\) 0 0
\(994\) −4.77605e13 8.27236e13i −1.55178 2.68776i
\(995\) −2.05033e13 3.55128e13i −0.663164 1.14863i
\(996\) 0 0
\(997\) −2.42890e13 + 4.20698e13i −0.778541 + 1.34847i 0.154241 + 0.988033i \(0.450707\pi\)
−0.932782 + 0.360440i \(0.882627\pi\)
\(998\) −1.59057e13 −0.507533
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.c.j.55.1 8
3.2 odd 2 inner 81.10.c.j.55.4 8
9.2 odd 6 27.10.a.d.1.1 4
9.4 even 3 inner 81.10.c.j.28.1 8
9.5 odd 6 inner 81.10.c.j.28.4 8
9.7 even 3 27.10.a.d.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.a.d.1.1 4 9.2 odd 6
27.10.a.d.1.4 yes 4 9.7 even 3
81.10.c.j.28.1 8 9.4 even 3 inner
81.10.c.j.28.4 8 9.5 odd 6 inner
81.10.c.j.55.1 8 1.1 even 1 trivial
81.10.c.j.55.4 8 3.2 odd 2 inner