Properties

Label 81.10.c.h.55.3
Level $81$
Weight $10$
Character 81.55
Analytic conductor $41.718$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 119x^{4} - 154x^{3} + 14060x^{2} - 16048x + 18496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.3
Root \(5.38886 - 9.33377i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.10.c.h.28.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(16.1666 - 28.0013i) q^{2} +(-266.716 - 461.965i) q^{4} +(-1035.81 - 1794.08i) q^{5} +(5258.56 - 9108.09i) q^{7} -692.954 q^{8} -66982.2 q^{10} +(15810.3 - 27384.2i) q^{11} +(-23811.1 - 41242.0i) q^{13} +(-170026. - 294493. i) q^{14} +(125356. - 217123. i) q^{16} +34440.3 q^{17} +763166. q^{19} +(-552535. + 957020. i) q^{20} +(-511196. - 885417. i) q^{22} +(-742671. - 1.28634e6i) q^{23} +(-1.16925e6 + 2.02521e6i) q^{25} -1.53977e6 q^{26} -5.61016e6 q^{28} +(-2.40253e6 + 4.16130e6i) q^{29} +(3.91152e6 + 6.77496e6i) q^{31} +(-4.23054e6 - 7.32752e6i) q^{32} +(556781. - 964373. i) q^{34} -2.17875e7 q^{35} +9.43456e6 q^{37} +(1.23378e7 - 2.13696e7i) q^{38} +(717771. + 1.24322e6i) q^{40} +(-6.14495e6 - 1.06434e7i) q^{41} +(-1.87211e7 + 3.24260e7i) q^{43} -1.68674e7 q^{44} -4.80258e7 q^{46} +(-9.91171e6 + 1.71676e7i) q^{47} +(-3.51280e7 - 6.08435e7i) q^{49} +(3.78057e7 + 6.54813e7i) q^{50} +(-1.27016e7 + 2.19998e7i) q^{52} +5.78978e7 q^{53} -6.55059e7 q^{55} +(-3.64394e6 + 6.31149e6i) q^{56} +(7.76813e7 + 1.34548e8i) q^{58} +(1.42494e7 + 2.46807e7i) q^{59} +(-2.22571e7 + 3.85504e7i) q^{61} +2.52944e8 q^{62} -1.45209e8 q^{64} +(-4.93277e7 + 8.54380e7i) q^{65} +(9.09671e7 + 1.57560e8i) q^{67} +(-9.18576e6 - 1.59102e7i) q^{68} +(-3.52229e8 + 6.10079e8i) q^{70} +1.53722e8 q^{71} +1.55706e7 q^{73} +(1.52524e8 - 2.64180e8i) q^{74} +(-2.03548e8 - 3.52556e8i) q^{76} +(-1.66278e8 - 2.88003e8i) q^{77} +(1.63085e8 - 2.82471e8i) q^{79} -5.19381e8 q^{80} -3.97371e8 q^{82} +(-2.50591e7 + 4.34036e7i) q^{83} +(-3.56737e7 - 6.17886e7i) q^{85} +(6.05313e8 + 1.04843e9i) q^{86} +(-1.09558e7 + 1.89760e7i) q^{88} -1.59066e8 q^{89} -5.00848e8 q^{91} +(-3.96164e8 + 6.86177e8i) q^{92} +(3.20477e8 + 5.55082e8i) q^{94} +(-7.90497e8 - 1.36918e9i) q^{95} +(7.46865e7 - 1.29361e8i) q^{97} -2.27160e9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 597 q^{4} - 1983 q^{5} + 3693 q^{7} + 9006 q^{8} - 37962 q^{10} - 16863 q^{11} - 116916 q^{13} - 503463 q^{14} + 239919 q^{16} + 2028096 q^{17} - 30444 q^{19} - 2548407 q^{20} - 305721 q^{22}+ \cdots - 5184364572 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.1666 28.0013i 0.714468 1.23750i −0.248696 0.968582i \(-0.580002\pi\)
0.963164 0.268914i \(-0.0866646\pi\)
\(3\) 0 0
\(4\) −266.716 461.965i −0.520929 0.902276i
\(5\) −1035.81 1794.08i −0.741167 1.28374i −0.951964 0.306210i \(-0.900939\pi\)
0.210797 0.977530i \(-0.432394\pi\)
\(6\) 0 0
\(7\) 5258.56 9108.09i 0.827800 1.43379i −0.0719610 0.997407i \(-0.522926\pi\)
0.899761 0.436384i \(-0.143741\pi\)
\(8\) −692.954 −0.0598136
\(9\) 0 0
\(10\) −66982.2 −2.11816
\(11\) 15810.3 27384.2i 0.325591 0.563940i −0.656041 0.754725i \(-0.727770\pi\)
0.981632 + 0.190785i \(0.0611035\pi\)
\(12\) 0 0
\(13\) −23811.1 41242.0i −0.231225 0.400493i 0.726944 0.686697i \(-0.240940\pi\)
−0.958169 + 0.286204i \(0.907607\pi\)
\(14\) −170026. 294493.i −1.18287 2.04880i
\(15\) 0 0
\(16\) 125356. 217123.i 0.478195 0.828257i
\(17\) 34440.3 0.100011 0.0500053 0.998749i \(-0.484076\pi\)
0.0500053 + 0.998749i \(0.484076\pi\)
\(18\) 0 0
\(19\) 763166. 1.34347 0.671735 0.740792i \(-0.265550\pi\)
0.671735 + 0.740792i \(0.265550\pi\)
\(20\) −552535. + 957020.i −0.772192 + 1.33748i
\(21\) 0 0
\(22\) −511196. 885417.i −0.465249 0.805834i
\(23\) −742671. 1.28634e6i −0.553377 0.958477i −0.998028 0.0627734i \(-0.980005\pi\)
0.444651 0.895704i \(-0.353328\pi\)
\(24\) 0 0
\(25\) −1.16925e6 + 2.02521e6i −0.598658 + 1.03691i
\(26\) −1.53977e6 −0.660811
\(27\) 0 0
\(28\) −5.61016e6 −1.72490
\(29\) −2.40253e6 + 4.16130e6i −0.630780 + 1.09254i 0.356613 + 0.934252i \(0.383931\pi\)
−0.987393 + 0.158290i \(0.949402\pi\)
\(30\) 0 0
\(31\) 3.91152e6 + 6.77496e6i 0.760708 + 1.31759i 0.942486 + 0.334246i \(0.108482\pi\)
−0.181777 + 0.983340i \(0.558185\pi\)
\(32\) −4.23054e6 7.32752e6i −0.713216 1.23533i
\(33\) 0 0
\(34\) 556781. 964373.i 0.0714544 0.123763i
\(35\) −2.17875e7 −2.45415
\(36\) 0 0
\(37\) 9.43456e6 0.827587 0.413794 0.910371i \(-0.364204\pi\)
0.413794 + 0.910371i \(0.364204\pi\)
\(38\) 1.23378e7 2.13696e7i 0.959866 1.66254i
\(39\) 0 0
\(40\) 717771. + 1.24322e6i 0.0443319 + 0.0767850i
\(41\) −6.14495e6 1.06434e7i −0.339618 0.588236i 0.644743 0.764400i \(-0.276965\pi\)
−0.984361 + 0.176164i \(0.943631\pi\)
\(42\) 0 0
\(43\) −1.87211e7 + 3.24260e7i −0.835072 + 1.44639i 0.0588992 + 0.998264i \(0.481241\pi\)
−0.893972 + 0.448124i \(0.852092\pi\)
\(44\) −1.68674e7 −0.678439
\(45\) 0 0
\(46\) −4.80258e7 −1.58148
\(47\) −9.91171e6 + 1.71676e7i −0.296284 + 0.513179i −0.975283 0.220960i \(-0.929081\pi\)
0.678999 + 0.734139i \(0.262414\pi\)
\(48\) 0 0
\(49\) −3.51280e7 6.08435e7i −0.870505 1.50776i
\(50\) 3.78057e7 + 6.54813e7i 0.855444 + 1.48167i
\(51\) 0 0
\(52\) −1.27016e7 + 2.19998e7i −0.240903 + 0.417257i
\(53\) 5.78978e7 1.00791 0.503953 0.863731i \(-0.331878\pi\)
0.503953 + 0.863731i \(0.331878\pi\)
\(54\) 0 0
\(55\) −6.55059e7 −0.965269
\(56\) −3.64394e6 + 6.31149e6i −0.0495136 + 0.0857602i
\(57\) 0 0
\(58\) 7.76813e7 + 1.34548e8i 0.901344 + 1.56117i
\(59\) 1.42494e7 + 2.46807e7i 0.153095 + 0.265169i 0.932364 0.361521i \(-0.117742\pi\)
−0.779268 + 0.626690i \(0.784409\pi\)
\(60\) 0 0
\(61\) −2.22571e7 + 3.85504e7i −0.205818 + 0.356487i −0.950393 0.311051i \(-0.899319\pi\)
0.744575 + 0.667539i \(0.232652\pi\)
\(62\) 2.52944e8 2.17401
\(63\) 0 0
\(64\) −1.45209e8 −1.08189
\(65\) −4.93277e7 + 8.54380e7i −0.342752 + 0.593665i
\(66\) 0 0
\(67\) 9.09671e7 + 1.57560e8i 0.551503 + 0.955231i 0.998166 + 0.0605292i \(0.0192788\pi\)
−0.446663 + 0.894702i \(0.647388\pi\)
\(68\) −9.18576e6 1.59102e7i −0.0520985 0.0902372i
\(69\) 0 0
\(70\) −3.52229e8 + 6.10079e8i −1.75341 + 3.03700i
\(71\) 1.53722e8 0.717915 0.358958 0.933354i \(-0.383132\pi\)
0.358958 + 0.933354i \(0.383132\pi\)
\(72\) 0 0
\(73\) 1.55706e7 0.0641729 0.0320864 0.999485i \(-0.489785\pi\)
0.0320864 + 0.999485i \(0.489785\pi\)
\(74\) 1.52524e8 2.64180e8i 0.591285 1.02414i
\(75\) 0 0
\(76\) −2.03548e8 3.52556e8i −0.699853 1.21218i
\(77\) −1.66278e8 2.88003e8i −0.539048 0.933659i
\(78\) 0 0
\(79\) 1.63085e8 2.82471e8i 0.471077 0.815929i −0.528376 0.849011i \(-0.677199\pi\)
0.999453 + 0.0330816i \(0.0105321\pi\)
\(80\) −5.19381e8 −1.41769
\(81\) 0 0
\(82\) −3.97371e8 −0.970586
\(83\) −2.50591e7 + 4.34036e7i −0.0579580 + 0.100386i −0.893549 0.448966i \(-0.851792\pi\)
0.835591 + 0.549353i \(0.185126\pi\)
\(84\) 0 0
\(85\) −3.56737e7 6.17886e7i −0.0741246 0.128388i
\(86\) 6.05313e8 + 1.04843e9i 1.19327 + 2.06680i
\(87\) 0 0
\(88\) −1.09558e7 + 1.89760e7i −0.0194747 + 0.0337313i
\(89\) −1.59066e8 −0.268735 −0.134367 0.990932i \(-0.542900\pi\)
−0.134367 + 0.990932i \(0.542900\pi\)
\(90\) 0 0
\(91\) −5.00848e8 −0.765631
\(92\) −3.96164e8 + 6.86177e8i −0.576541 + 0.998598i
\(93\) 0 0
\(94\) 3.20477e8 + 5.55082e8i 0.423371 + 0.733300i
\(95\) −7.90497e8 1.36918e9i −0.995736 1.72466i
\(96\) 0 0
\(97\) 7.46865e7 1.29361e8i 0.0856583 0.148365i −0.820013 0.572345i \(-0.806034\pi\)
0.905672 + 0.423980i \(0.139367\pi\)
\(98\) −2.27160e9 −2.48779
\(99\) 0 0
\(100\) 1.24743e9 1.24743
\(101\) 9.21325e8 1.59578e9i 0.880981 1.52590i 0.0307293 0.999528i \(-0.490217\pi\)
0.850252 0.526376i \(-0.176450\pi\)
\(102\) 0 0
\(103\) 1.75215e8 + 3.03481e8i 0.153392 + 0.265683i 0.932472 0.361241i \(-0.117647\pi\)
−0.779080 + 0.626924i \(0.784314\pi\)
\(104\) 1.65000e7 + 2.85788e7i 0.0138304 + 0.0239549i
\(105\) 0 0
\(106\) 9.36008e8 1.62121e9i 0.720117 1.24728i
\(107\) 7.93460e8 0.585192 0.292596 0.956236i \(-0.405481\pi\)
0.292596 + 0.956236i \(0.405481\pi\)
\(108\) 0 0
\(109\) 1.09944e9 0.746020 0.373010 0.927827i \(-0.378326\pi\)
0.373010 + 0.927827i \(0.378326\pi\)
\(110\) −1.05901e9 + 1.83425e9i −0.689654 + 1.19452i
\(111\) 0 0
\(112\) −1.31838e9 2.28350e9i −0.791699 1.37126i
\(113\) −1.45685e9 2.52334e9i −0.840547 1.45587i −0.889433 0.457065i \(-0.848901\pi\)
0.0488867 0.998804i \(-0.484433\pi\)
\(114\) 0 0
\(115\) −1.53854e9 + 2.66482e9i −0.820290 + 1.42078i
\(116\) 2.56317e9 1.31437
\(117\) 0 0
\(118\) 9.21455e8 0.437527
\(119\) 1.81106e8 3.13685e8i 0.0827888 0.143394i
\(120\) 0 0
\(121\) 6.79045e8 + 1.17614e9i 0.287981 + 0.498798i
\(122\) 7.19640e8 + 1.24645e9i 0.294101 + 0.509398i
\(123\) 0 0
\(124\) 2.08653e9 3.61398e9i 0.792551 1.37274i
\(125\) 7.98371e8 0.292489
\(126\) 0 0
\(127\) 1.58765e9 0.541551 0.270776 0.962643i \(-0.412720\pi\)
0.270776 + 0.962643i \(0.412720\pi\)
\(128\) −1.81495e8 + 3.14358e8i −0.0597612 + 0.103509i
\(129\) 0 0
\(130\) 1.59492e9 + 2.76248e9i 0.489771 + 0.848309i
\(131\) 1.88000e9 + 3.25625e9i 0.557745 + 0.966043i 0.997684 + 0.0680156i \(0.0216668\pi\)
−0.439939 + 0.898028i \(0.645000\pi\)
\(132\) 0 0
\(133\) 4.01315e9 6.95098e9i 1.11212 1.92625i
\(134\) 5.88251e9 1.57613
\(135\) 0 0
\(136\) −2.38655e7 −0.00598199
\(137\) −4.94173e8 + 8.55933e8i −0.119850 + 0.207586i −0.919708 0.392603i \(-0.871575\pi\)
0.799858 + 0.600189i \(0.204908\pi\)
\(138\) 0 0
\(139\) −2.35800e9 4.08418e9i −0.535769 0.927979i −0.999126 0.0418075i \(-0.986688\pi\)
0.463356 0.886172i \(-0.346645\pi\)
\(140\) 5.81108e9 + 1.00651e10i 1.27844 + 2.21432i
\(141\) 0 0
\(142\) 2.48515e9 4.30441e9i 0.512927 0.888416i
\(143\) −1.50584e9 −0.301139
\(144\) 0 0
\(145\) 9.95428e9 1.87005
\(146\) 2.51723e8 4.35996e8i 0.0458495 0.0794136i
\(147\) 0 0
\(148\) −2.51635e9 4.35844e9i −0.431115 0.746712i
\(149\) −2.18439e9 3.78347e9i −0.363071 0.628858i 0.625393 0.780310i \(-0.284939\pi\)
−0.988465 + 0.151452i \(0.951605\pi\)
\(150\) 0 0
\(151\) −3.23754e9 + 5.60758e9i −0.506779 + 0.877767i 0.493190 + 0.869922i \(0.335831\pi\)
−0.999969 + 0.00784581i \(0.997503\pi\)
\(152\) −5.28839e8 −0.0803577
\(153\) 0 0
\(154\) −1.07526e10 −1.54053
\(155\) 8.10321e9 1.40352e10i 1.12762 1.95310i
\(156\) 0 0
\(157\) 4.25430e8 + 7.36866e8i 0.0558830 + 0.0967922i 0.892614 0.450823i \(-0.148869\pi\)
−0.836731 + 0.547615i \(0.815536\pi\)
\(158\) −5.27305e9 9.13318e9i −0.673139 1.16591i
\(159\) 0 0
\(160\) −8.76410e9 + 1.51799e10i −1.05723 + 1.83117i
\(161\) −1.56215e10 −1.83234
\(162\) 0 0
\(163\) −8.54283e9 −0.947889 −0.473945 0.880555i \(-0.657170\pi\)
−0.473945 + 0.880555i \(0.657170\pi\)
\(164\) −3.27791e9 + 5.67751e9i −0.353834 + 0.612859i
\(165\) 0 0
\(166\) 8.10238e8 + 1.40337e9i 0.0828183 + 0.143445i
\(167\) −2.28606e8 3.95957e8i −0.0227438 0.0393934i 0.854429 0.519567i \(-0.173907\pi\)
−0.877173 + 0.480174i \(0.840574\pi\)
\(168\) 0 0
\(169\) 4.16831e9 7.21973e9i 0.393070 0.680818i
\(170\) −2.30688e9 −0.211839
\(171\) 0 0
\(172\) 1.99729e10 1.74005
\(173\) −4.56554e9 + 7.90775e9i −0.387511 + 0.671190i −0.992114 0.125338i \(-0.959999\pi\)
0.604603 + 0.796527i \(0.293332\pi\)
\(174\) 0 0
\(175\) 1.22972e10 + 2.12993e10i 0.991138 + 1.71670i
\(176\) −3.96382e9 6.86554e9i −0.311392 0.539346i
\(177\) 0 0
\(178\) −2.57156e9 + 4.45407e9i −0.192002 + 0.332558i
\(179\) 1.84541e9 0.134355 0.0671777 0.997741i \(-0.478601\pi\)
0.0671777 + 0.997741i \(0.478601\pi\)
\(180\) 0 0
\(181\) −1.02105e10 −0.707123 −0.353562 0.935411i \(-0.615030\pi\)
−0.353562 + 0.935411i \(0.615030\pi\)
\(182\) −8.09699e9 + 1.40244e10i −0.547019 + 0.947464i
\(183\) 0 0
\(184\) 5.14637e8 + 8.91378e8i 0.0330995 + 0.0573300i
\(185\) −9.77244e9 1.69264e10i −0.613381 1.06241i
\(186\) 0 0
\(187\) 5.44510e8 9.43119e8i 0.0325626 0.0564000i
\(188\) 1.05744e10 0.617372
\(189\) 0 0
\(190\) −5.11185e10 −2.84569
\(191\) −5.01150e9 + 8.68017e9i −0.272469 + 0.471931i −0.969494 0.245117i \(-0.921174\pi\)
0.697024 + 0.717048i \(0.254507\pi\)
\(192\) 0 0
\(193\) −2.93622e9 5.08568e9i −0.152328 0.263840i 0.779755 0.626085i \(-0.215344\pi\)
−0.932083 + 0.362245i \(0.882010\pi\)
\(194\) −2.41485e9 4.18264e9i −0.122400 0.212003i
\(195\) 0 0
\(196\) −1.87384e10 + 3.24558e10i −0.906943 + 1.57087i
\(197\) −2.73628e10 −1.29438 −0.647191 0.762328i \(-0.724056\pi\)
−0.647191 + 0.762328i \(0.724056\pi\)
\(198\) 0 0
\(199\) 2.21639e9 0.100186 0.0500930 0.998745i \(-0.484048\pi\)
0.0500930 + 0.998745i \(0.484048\pi\)
\(200\) 8.10240e8 1.40338e9i 0.0358079 0.0620211i
\(201\) 0 0
\(202\) −2.97893e10 5.15966e10i −1.25887 2.18042i
\(203\) 2.52677e10 + 4.37649e10i 1.04432 + 1.80881i
\(204\) 0 0
\(205\) −1.27300e10 + 2.20491e10i −0.503428 + 0.871963i
\(206\) 1.13305e10 0.438376
\(207\) 0 0
\(208\) −1.19394e10 −0.442281
\(209\) 1.20659e10 2.08987e10i 0.437421 0.757636i
\(210\) 0 0
\(211\) 6.76033e9 + 1.17092e10i 0.234799 + 0.406685i 0.959214 0.282680i \(-0.0912233\pi\)
−0.724415 + 0.689364i \(0.757890\pi\)
\(212\) −1.54423e10 2.67468e10i −0.525048 0.909410i
\(213\) 0 0
\(214\) 1.28275e10 2.22179e10i 0.418101 0.724172i
\(215\) 7.75664e10 2.47571
\(216\) 0 0
\(217\) 8.22758e10 2.51886
\(218\) 1.77741e10 3.07856e10i 0.533007 0.923196i
\(219\) 0 0
\(220\) 1.74715e10 + 3.02615e10i 0.502837 + 0.870940i
\(221\) −8.20060e8 1.42039e9i −0.0231249 0.0400536i
\(222\) 0 0
\(223\) 1.48641e9 2.57454e9i 0.0402502 0.0697154i −0.845199 0.534452i \(-0.820518\pi\)
0.885449 + 0.464737i \(0.153851\pi\)
\(224\) −8.89862e10 −2.36160
\(225\) 0 0
\(226\) −9.42090e10 −2.40218
\(227\) 1.67299e10 2.89771e10i 0.418194 0.724333i −0.577564 0.816345i \(-0.695997\pi\)
0.995758 + 0.0920123i \(0.0293299\pi\)
\(228\) 0 0
\(229\) 3.80393e10 + 6.58859e10i 0.914055 + 1.58319i 0.808279 + 0.588800i \(0.200399\pi\)
0.105776 + 0.994390i \(0.466267\pi\)
\(230\) 4.97457e10 + 8.61621e10i 1.17214 + 2.03021i
\(231\) 0 0
\(232\) 1.66484e9 2.88359e9i 0.0377292 0.0653489i
\(233\) 6.49552e10 1.44382 0.721909 0.691988i \(-0.243265\pi\)
0.721909 + 0.691988i \(0.243265\pi\)
\(234\) 0 0
\(235\) 4.10667e10 0.878384
\(236\) 7.60108e9 1.31655e10i 0.159504 0.276269i
\(237\) 0 0
\(238\) −5.85573e9 1.01424e10i −0.118300 0.204901i
\(239\) 1.99236e10 + 3.45086e10i 0.394981 + 0.684128i 0.993099 0.117281i \(-0.0374177\pi\)
−0.598117 + 0.801408i \(0.704084\pi\)
\(240\) 0 0
\(241\) −5.93072e9 + 1.02723e10i −0.113248 + 0.196151i −0.917078 0.398708i \(-0.869459\pi\)
0.803830 + 0.594859i \(0.202792\pi\)
\(242\) 4.39113e10 0.823014
\(243\) 0 0
\(244\) 2.37452e10 0.428867
\(245\) −7.27721e10 + 1.26045e11i −1.29038 + 2.23500i
\(246\) 0 0
\(247\) −1.81718e10 3.14745e10i −0.310643 0.538050i
\(248\) −2.71051e9 4.69474e9i −0.0455007 0.0788095i
\(249\) 0 0
\(250\) 1.29069e10 2.23554e10i 0.208974 0.361954i
\(251\) −6.51966e10 −1.03680 −0.518398 0.855139i \(-0.673471\pi\)
−0.518398 + 0.855139i \(0.673471\pi\)
\(252\) 0 0
\(253\) −4.69673e10 −0.720698
\(254\) 2.56669e10 4.44564e10i 0.386921 0.670167i
\(255\) 0 0
\(256\) −3.13052e10 5.42223e10i −0.455551 0.789038i
\(257\) −1.90082e10 3.29232e10i −0.271796 0.470764i 0.697526 0.716559i \(-0.254284\pi\)
−0.969322 + 0.245796i \(0.920951\pi\)
\(258\) 0 0
\(259\) 4.96121e10 8.59307e10i 0.685076 1.18659i
\(260\) 5.26259e10 0.714199
\(261\) 0 0
\(262\) 1.21572e11 1.59397
\(263\) −1.76962e10 + 3.06508e10i −0.228076 + 0.395039i −0.957238 0.289302i \(-0.906577\pi\)
0.729162 + 0.684341i \(0.239910\pi\)
\(264\) 0 0
\(265\) −5.99713e10 1.03873e11i −0.747028 1.29389i
\(266\) −1.29758e11 2.24747e11i −1.58915 2.75249i
\(267\) 0 0
\(268\) 4.85248e10 8.40473e10i 0.574588 0.995216i
\(269\) −6.44475e9 −0.0750448 −0.0375224 0.999296i \(-0.511947\pi\)
−0.0375224 + 0.999296i \(0.511947\pi\)
\(270\) 0 0
\(271\) 1.68603e11 1.89890 0.949452 0.313912i \(-0.101640\pi\)
0.949452 + 0.313912i \(0.101640\pi\)
\(272\) 4.31729e9 7.47776e9i 0.0478246 0.0828346i
\(273\) 0 0
\(274\) 1.59782e10 + 2.76750e10i 0.171257 + 0.296627i
\(275\) 3.69725e10 + 6.40382e10i 0.389835 + 0.675215i
\(276\) 0 0
\(277\) 2.43561e10 4.21860e10i 0.248570 0.430536i −0.714559 0.699575i \(-0.753373\pi\)
0.963129 + 0.269039i \(0.0867060\pi\)
\(278\) −1.52483e11 −1.53116
\(279\) 0 0
\(280\) 1.50978e10 0.146792
\(281\) −7.56804e10 + 1.31082e11i −0.724110 + 1.25420i 0.235229 + 0.971940i \(0.424416\pi\)
−0.959339 + 0.282256i \(0.908917\pi\)
\(282\) 0 0
\(283\) 3.57141e10 + 6.18586e10i 0.330979 + 0.573273i 0.982704 0.185183i \(-0.0592876\pi\)
−0.651725 + 0.758455i \(0.725954\pi\)
\(284\) −4.10001e10 7.10142e10i −0.373983 0.647758i
\(285\) 0 0
\(286\) −2.43442e10 + 4.21655e10i −0.215154 + 0.372657i
\(287\) −1.29254e11 −1.12454
\(288\) 0 0
\(289\) −1.17402e11 −0.989998
\(290\) 1.60927e11 2.78733e11i 1.33609 2.31418i
\(291\) 0 0
\(292\) −4.15292e9 7.19306e9i −0.0334295 0.0579017i
\(293\) −1.11136e11 1.92493e11i −0.880945 1.52584i −0.850291 0.526312i \(-0.823574\pi\)
−0.0306540 0.999530i \(-0.509759\pi\)
\(294\) 0 0
\(295\) 2.95194e10 5.11291e10i 0.226939 0.393069i
\(296\) −6.53772e9 −0.0495009
\(297\) 0 0
\(298\) −1.41256e11 −1.03761
\(299\) −3.53676e10 + 6.12585e10i −0.255909 + 0.443247i
\(300\) 0 0
\(301\) 1.96892e11 + 3.41027e11i 1.38255 + 2.39464i
\(302\) 1.04680e11 + 1.81311e11i 0.724155 + 1.25427i
\(303\) 0 0
\(304\) 9.56673e10 1.65701e11i 0.642440 1.11274i
\(305\) 9.22166e10 0.610183
\(306\) 0 0
\(307\) 2.24657e11 1.44343 0.721717 0.692188i \(-0.243353\pi\)
0.721717 + 0.692188i \(0.243353\pi\)
\(308\) −8.86981e10 + 1.53630e11i −0.561612 + 0.972740i
\(309\) 0 0
\(310\) −2.62002e11 4.53801e11i −1.61130 2.79086i
\(311\) 1.49945e11 + 2.59712e11i 0.908886 + 1.57424i 0.815615 + 0.578595i \(0.196399\pi\)
0.0932707 + 0.995641i \(0.470268\pi\)
\(312\) 0 0
\(313\) −7.52510e10 + 1.30339e11i −0.443162 + 0.767580i −0.997922 0.0644309i \(-0.979477\pi\)
0.554760 + 0.832011i \(0.312810\pi\)
\(314\) 2.75110e10 0.159706
\(315\) 0 0
\(316\) −1.73989e11 −0.981591
\(317\) 1.24948e11 2.16417e11i 0.694966 1.20372i −0.275227 0.961379i \(-0.588753\pi\)
0.970192 0.242336i \(-0.0779137\pi\)
\(318\) 0 0
\(319\) 7.59693e10 + 1.31583e11i 0.410752 + 0.711444i
\(320\) 1.50409e11 + 2.60517e11i 0.801863 + 1.38887i
\(321\) 0 0
\(322\) −2.52546e11 + 4.37423e11i −1.30915 + 2.26751i
\(323\) 2.62836e10 0.134361
\(324\) 0 0
\(325\) 1.11365e11 0.553698
\(326\) −1.38108e11 + 2.39211e11i −0.677237 + 1.17301i
\(327\) 0 0
\(328\) 4.25817e9 + 7.37537e9i 0.0203138 + 0.0351845i
\(329\) 1.04243e11 + 1.80553e11i 0.490528 + 0.849619i
\(330\) 0 0
\(331\) −2.66225e10 + 4.61115e10i −0.121905 + 0.211146i −0.920519 0.390698i \(-0.872234\pi\)
0.798614 + 0.601844i \(0.205567\pi\)
\(332\) 2.67346e10 0.120768
\(333\) 0 0
\(334\) −1.47831e10 −0.0649989
\(335\) 1.88450e11 3.26405e11i 0.817512 1.41597i
\(336\) 0 0
\(337\) −1.77381e10 3.07233e10i −0.0749156 0.129758i 0.826134 0.563474i \(-0.190535\pi\)
−0.901050 + 0.433716i \(0.857202\pi\)
\(338\) −1.34775e11 2.33437e11i −0.561672 0.972845i
\(339\) 0 0
\(340\) −1.90295e10 + 3.29600e10i −0.0772274 + 0.133762i
\(341\) 2.47369e11 0.990719
\(342\) 0 0
\(343\) −3.14487e11 −1.22681
\(344\) 1.29729e10 2.24697e10i 0.0499486 0.0865136i
\(345\) 0 0
\(346\) 1.47618e11 + 2.55682e11i 0.553729 + 0.959087i
\(347\) −1.96079e11 3.39618e11i −0.726019 1.25750i −0.958553 0.284914i \(-0.908035\pi\)
0.232534 0.972588i \(-0.425298\pi\)
\(348\) 0 0
\(349\) 4.15073e10 7.18927e10i 0.149765 0.259400i −0.781376 0.624061i \(-0.785482\pi\)
0.931140 + 0.364661i \(0.118815\pi\)
\(350\) 7.95213e11 2.83255
\(351\) 0 0
\(352\) −2.67544e11 −0.928867
\(353\) −9.28123e10 + 1.60756e11i −0.318141 + 0.551036i −0.980100 0.198504i \(-0.936392\pi\)
0.661959 + 0.749540i \(0.269725\pi\)
\(354\) 0 0
\(355\) −1.59227e11 2.75789e11i −0.532095 0.921616i
\(356\) 4.24256e10 + 7.34832e10i 0.139992 + 0.242473i
\(357\) 0 0
\(358\) 2.98340e10 5.16740e10i 0.0959926 0.166264i
\(359\) −3.92754e11 −1.24794 −0.623972 0.781447i \(-0.714482\pi\)
−0.623972 + 0.781447i \(0.714482\pi\)
\(360\) 0 0
\(361\) 2.59734e11 0.804909
\(362\) −1.65069e11 + 2.85908e11i −0.505217 + 0.875061i
\(363\) 0 0
\(364\) 1.33584e11 + 2.31374e11i 0.398840 + 0.690810i
\(365\) −1.61282e10 2.79349e10i −0.0475629 0.0823813i
\(366\) 0 0
\(367\) −2.48729e10 + 4.30812e10i −0.0715698 + 0.123963i −0.899589 0.436737i \(-0.856134\pi\)
0.828020 + 0.560699i \(0.189468\pi\)
\(368\) −3.72393e11 −1.05849
\(369\) 0 0
\(370\) −6.31947e11 −1.75296
\(371\) 3.04459e11 5.27338e11i 0.834345 1.44513i
\(372\) 0 0
\(373\) −2.01578e11 3.49143e11i −0.539204 0.933929i −0.998947 0.0458766i \(-0.985392\pi\)
0.459743 0.888052i \(-0.347941\pi\)
\(374\) −1.76057e10 3.04940e10i −0.0465298 0.0805920i
\(375\) 0 0
\(376\) 6.86836e9 1.18964e10i 0.0177218 0.0306951i
\(377\) 2.28827e11 0.583407
\(378\) 0 0
\(379\) −3.41222e11 −0.849494 −0.424747 0.905312i \(-0.639637\pi\)
−0.424747 + 0.905312i \(0.639637\pi\)
\(380\) −4.21676e11 + 7.30365e11i −1.03742 + 1.79686i
\(381\) 0 0
\(382\) 1.62037e11 + 2.80657e11i 0.389341 + 0.674359i
\(383\) −1.58499e11 2.74529e11i −0.376385 0.651918i 0.614148 0.789191i \(-0.289500\pi\)
−0.990533 + 0.137273i \(0.956166\pi\)
\(384\) 0 0
\(385\) −3.44467e11 + 5.96634e11i −0.799050 + 1.38399i
\(386\) −1.89874e11 −0.435335
\(387\) 0 0
\(388\) −7.96803e10 −0.178488
\(389\) 5.59546e10 9.69163e10i 0.123898 0.214597i −0.797404 0.603446i \(-0.793794\pi\)
0.921301 + 0.388849i \(0.127127\pi\)
\(390\) 0 0
\(391\) −2.55778e10 4.43020e10i −0.0553436 0.0958580i
\(392\) 2.43421e10 + 4.21618e10i 0.0520680 + 0.0901844i
\(393\) 0 0
\(394\) −4.42362e11 + 7.66194e11i −0.924794 + 1.60179i
\(395\) −6.75702e11 −1.39659
\(396\) 0 0
\(397\) 3.48788e11 0.704700 0.352350 0.935868i \(-0.385383\pi\)
0.352350 + 0.935868i \(0.385383\pi\)
\(398\) 3.58314e10 6.20617e10i 0.0715796 0.123980i
\(399\) 0 0
\(400\) 2.93146e11 + 5.07743e11i 0.572550 + 0.991686i
\(401\) −1.27488e11 2.20816e11i −0.246218 0.426463i 0.716255 0.697839i \(-0.245855\pi\)
−0.962473 + 0.271376i \(0.912521\pi\)
\(402\) 0 0
\(403\) 1.86275e11 3.22638e11i 0.351789 0.609317i
\(404\) −9.82928e11 −1.83572
\(405\) 0 0
\(406\) 1.63397e12 2.98453
\(407\) 1.49163e11 2.58358e11i 0.269455 0.466709i
\(408\) 0 0
\(409\) −1.34167e10 2.32384e10i −0.0237078 0.0410631i 0.853928 0.520391i \(-0.174214\pi\)
−0.877636 + 0.479328i \(0.840880\pi\)
\(410\) 4.11602e11 + 7.12916e11i 0.719367 + 1.24598i
\(411\) 0 0
\(412\) 9.34652e10 1.61886e11i 0.159813 0.276804i
\(413\) 2.99725e11 0.506930
\(414\) 0 0
\(415\) 1.03826e11 0.171826
\(416\) −2.01468e11 + 3.48952e11i −0.329826 + 0.571276i
\(417\) 0 0
\(418\) −3.90127e11 6.75720e11i −0.625047 1.08261i
\(419\) 4.33610e9 + 7.51035e9i 0.00687284 + 0.0119041i 0.869441 0.494036i \(-0.164479\pi\)
−0.862569 + 0.505940i \(0.831146\pi\)
\(420\) 0 0
\(421\) 4.84053e11 8.38404e11i 0.750971 1.30072i −0.196382 0.980528i \(-0.562919\pi\)
0.947353 0.320192i \(-0.103747\pi\)
\(422\) 4.37166e11 0.671027
\(423\) 0 0
\(424\) −4.01205e10 −0.0602865
\(425\) −4.02694e10 + 6.97487e10i −0.0598722 + 0.103702i
\(426\) 0 0
\(427\) 2.34080e11 + 4.05438e11i 0.340752 + 0.590200i
\(428\) −2.11628e11 3.66551e11i −0.304844 0.528004i
\(429\) 0 0
\(430\) 1.25398e12 2.17196e12i 1.76882 3.06368i
\(431\) −1.38264e12 −1.93001 −0.965006 0.262227i \(-0.915543\pi\)
−0.965006 + 0.262227i \(0.915543\pi\)
\(432\) 0 0
\(433\) −1.26247e12 −1.72594 −0.862971 0.505254i \(-0.831399\pi\)
−0.862971 + 0.505254i \(0.831399\pi\)
\(434\) 1.33012e12 2.30383e12i 1.79964 3.11707i
\(435\) 0 0
\(436\) −2.93237e11 5.07901e11i −0.388624 0.673116i
\(437\) −5.66781e11 9.81694e11i −0.743445 1.28768i
\(438\) 0 0
\(439\) −2.18121e11 + 3.77796e11i −0.280290 + 0.485476i −0.971456 0.237220i \(-0.923764\pi\)
0.691166 + 0.722696i \(0.257097\pi\)
\(440\) 4.53926e10 0.0577362
\(441\) 0 0
\(442\) −5.30302e10 −0.0660881
\(443\) −2.53997e11 + 4.39936e11i −0.313337 + 0.542716i −0.979083 0.203463i \(-0.934780\pi\)
0.665745 + 0.746179i \(0.268114\pi\)
\(444\) 0 0
\(445\) 1.64763e11 + 2.85378e11i 0.199177 + 0.344985i
\(446\) −4.80604e10 8.32431e10i −0.0575149 0.0996188i
\(447\) 0 0
\(448\) −7.63590e11 + 1.32258e12i −0.895590 + 1.55121i
\(449\) 1.47077e12 1.70780 0.853899 0.520439i \(-0.174232\pi\)
0.853899 + 0.520439i \(0.174232\pi\)
\(450\) 0 0
\(451\) −3.88613e11 −0.442307
\(452\) −7.77130e11 + 1.34603e12i −0.875731 + 1.51681i
\(453\) 0 0
\(454\) −5.40931e11 9.36920e11i −0.597573 1.03503i
\(455\) 5.18785e11 + 8.98561e11i 0.567461 + 0.982871i
\(456\) 0 0
\(457\) 5.59957e11 9.69874e11i 0.600526 1.04014i −0.392215 0.919874i \(-0.628291\pi\)
0.992741 0.120268i \(-0.0383755\pi\)
\(458\) 2.45986e12 2.61225
\(459\) 0 0
\(460\) 1.64141e12 1.70925
\(461\) −8.63344e11 + 1.49535e12i −0.890286 + 1.54202i −0.0507531 + 0.998711i \(0.516162\pi\)
−0.839533 + 0.543309i \(0.817171\pi\)
\(462\) 0 0
\(463\) −1.37336e11 2.37874e11i −0.138890 0.240565i 0.788187 0.615436i \(-0.211020\pi\)
−0.927077 + 0.374871i \(0.877687\pi\)
\(464\) 6.02342e11 + 1.04329e12i 0.603271 + 1.04490i
\(465\) 0 0
\(466\) 1.05010e12 1.81883e12i 1.03156 1.78672i
\(467\) 1.14495e12 1.11394 0.556971 0.830532i \(-0.311964\pi\)
0.556971 + 0.830532i \(0.311964\pi\)
\(468\) 0 0
\(469\) 1.91342e12 1.82614
\(470\) 6.63908e11 1.14992e12i 0.627578 1.08700i
\(471\) 0 0
\(472\) −9.87418e9 1.71026e10i −0.00915719 0.0158607i
\(473\) 5.91972e11 + 1.02533e12i 0.543784 + 0.941861i
\(474\) 0 0
\(475\) −8.92335e11 + 1.54557e12i −0.804279 + 1.39305i
\(476\) −1.93215e11 −0.172508
\(477\) 0 0
\(478\) 1.28838e12 1.12881
\(479\) −4.66326e11 + 8.07701e11i −0.404744 + 0.701036i −0.994292 0.106697i \(-0.965973\pi\)
0.589548 + 0.807733i \(0.299306\pi\)
\(480\) 0 0
\(481\) −2.24647e11 3.89100e11i −0.191359 0.331443i
\(482\) 1.91759e11 + 3.32136e11i 0.161824 + 0.280288i
\(483\) 0 0
\(484\) 3.62224e11 6.27390e11i 0.300036 0.519677i
\(485\) −3.09445e11 −0.253949
\(486\) 0 0
\(487\) −1.02912e12 −0.829059 −0.414530 0.910036i \(-0.636054\pi\)
−0.414530 + 0.910036i \(0.636054\pi\)
\(488\) 1.54231e10 2.67136e10i 0.0123107 0.0213228i
\(489\) 0 0
\(490\) 2.35295e12 + 4.07543e12i 1.84387 + 3.19368i
\(491\) −8.64444e11 1.49726e12i −0.671228 1.16260i −0.977556 0.210675i \(-0.932434\pi\)
0.306328 0.951926i \(-0.400900\pi\)
\(492\) 0 0
\(493\) −8.27437e10 + 1.43316e11i −0.0630847 + 0.109266i
\(494\) −1.17510e12 −0.887779
\(495\) 0 0
\(496\) 1.96133e12 1.45507
\(497\) 8.08355e11 1.40011e12i 0.594290 1.02934i
\(498\) 0 0
\(499\) −1.19988e12 2.07826e12i −0.866336 1.50054i −0.865715 0.500538i \(-0.833136\pi\)
−0.000620882 1.00000i \(-0.500198\pi\)
\(500\) −2.12938e11 3.68820e11i −0.152366 0.263906i
\(501\) 0 0
\(502\) −1.05401e12 + 1.82559e12i −0.740758 + 1.28303i
\(503\) 1.98201e12 1.38054 0.690271 0.723551i \(-0.257491\pi\)
0.690271 + 0.723551i \(0.257491\pi\)
\(504\) 0 0
\(505\) −3.81728e12 −2.61182
\(506\) −7.59300e11 + 1.31515e12i −0.514916 + 0.891861i
\(507\) 0 0
\(508\) −4.23453e11 7.33442e11i −0.282110 0.488629i
\(509\) 1.12779e12 + 1.95340e12i 0.744731 + 1.28991i 0.950320 + 0.311274i \(0.100756\pi\)
−0.205589 + 0.978638i \(0.565911\pi\)
\(510\) 0 0
\(511\) 8.18787e10 1.41818e11i 0.0531223 0.0920105i
\(512\) −2.21024e12 −1.42143
\(513\) 0 0
\(514\) −1.22919e12 −0.776757
\(515\) 3.62980e11 6.28699e11i 0.227379 0.393831i
\(516\) 0 0
\(517\) 3.13414e11 + 5.42848e11i 0.192935 + 0.334173i
\(518\) −1.60412e12 2.77841e12i −0.978931 1.69556i
\(519\) 0 0
\(520\) 3.41818e10 5.92046e10i 0.0205012 0.0355092i
\(521\) −7.71315e11 −0.458630 −0.229315 0.973352i \(-0.573649\pi\)
−0.229315 + 0.973352i \(0.573649\pi\)
\(522\) 0 0
\(523\) −1.54315e12 −0.901886 −0.450943 0.892553i \(-0.648912\pi\)
−0.450943 + 0.892553i \(0.648912\pi\)
\(524\) 1.00285e12 1.73699e12i 0.581092 1.00648i
\(525\) 0 0
\(526\) 5.72174e11 + 9.91035e11i 0.325906 + 0.564486i
\(527\) 1.34714e11 + 2.33331e11i 0.0760790 + 0.131773i
\(528\) 0 0
\(529\) −2.02545e11 + 3.50817e11i −0.112453 + 0.194774i
\(530\) −3.87812e12 −2.13491
\(531\) 0 0
\(532\) −4.28148e12 −2.31735
\(533\) −2.92636e11 + 5.06860e11i −0.157056 + 0.272029i
\(534\) 0 0
\(535\) −8.21876e11 1.42353e12i −0.433725 0.751234i
\(536\) −6.30361e10 1.09182e11i −0.0329874 0.0571358i
\(537\) 0 0
\(538\) −1.04189e11 + 1.80461e11i −0.0536171 + 0.0928676i
\(539\) −2.22153e12 −1.13371
\(540\) 0 0
\(541\) 3.58683e12 1.80021 0.900105 0.435674i \(-0.143490\pi\)
0.900105 + 0.435674i \(0.143490\pi\)
\(542\) 2.72573e12 4.72110e12i 1.35671 2.34988i
\(543\) 0 0
\(544\) −1.45701e11 2.52362e11i −0.0713292 0.123546i
\(545\) −1.13881e12 1.97248e12i −0.552926 0.957695i
\(546\) 0 0
\(547\) 1.30505e12 2.26042e12i 0.623282 1.07956i −0.365588 0.930777i \(-0.619132\pi\)
0.988870 0.148780i \(-0.0475346\pi\)
\(548\) 5.27215e11 0.249733
\(549\) 0 0
\(550\) 2.39087e12 1.11410
\(551\) −1.83353e12 + 3.17576e12i −0.847433 + 1.46780i
\(552\) 0 0
\(553\) −1.71518e12 2.97078e12i −0.779915 1.35085i
\(554\) −7.87509e11 1.36401e12i −0.355191 0.615209i
\(555\) 0 0
\(556\) −1.25783e12 + 2.17863e12i −0.558196 + 0.966824i
\(557\) −1.44707e12 −0.637002 −0.318501 0.947923i \(-0.603179\pi\)
−0.318501 + 0.947923i \(0.603179\pi\)
\(558\) 0 0
\(559\) 1.78308e12 0.772357
\(560\) −2.73119e12 + 4.73056e12i −1.17356 + 2.03267i
\(561\) 0 0
\(562\) 2.44698e12 + 4.23830e12i 1.03471 + 1.79217i
\(563\) 1.51468e12 + 2.62351e12i 0.635380 + 1.10051i 0.986435 + 0.164155i \(0.0524898\pi\)
−0.351055 + 0.936355i \(0.614177\pi\)
\(564\) 0 0
\(565\) −3.01805e12 + 5.22741e12i −1.24597 + 2.15809i
\(566\) 2.30950e12 0.945897
\(567\) 0 0
\(568\) −1.06522e11 −0.0429411
\(569\) 4.11797e11 7.13253e11i 0.164694 0.285258i −0.771853 0.635802i \(-0.780670\pi\)
0.936547 + 0.350543i \(0.114003\pi\)
\(570\) 0 0
\(571\) 3.77466e11 + 6.53791e11i 0.148599 + 0.257381i 0.930710 0.365758i \(-0.119190\pi\)
−0.782111 + 0.623139i \(0.785857\pi\)
\(572\) 4.01631e11 + 6.95646e11i 0.156872 + 0.271710i
\(573\) 0 0
\(574\) −2.08960e12 + 3.61929e12i −0.803451 + 1.39162i
\(575\) 3.47349e12 1.32514
\(576\) 0 0
\(577\) −4.22193e12 −1.58569 −0.792847 0.609420i \(-0.791402\pi\)
−0.792847 + 0.609420i \(0.791402\pi\)
\(578\) −1.89798e12 + 3.28740e12i −0.707322 + 1.22512i
\(579\) 0 0
\(580\) −2.65497e12 4.59853e12i −0.974166 1.68730i
\(581\) 2.63549e11 + 4.56480e11i 0.0959552 + 0.166199i
\(582\) 0 0
\(583\) 9.15379e11 1.58548e12i 0.328165 0.568399i
\(584\) −1.07897e10 −0.00383841
\(585\) 0 0
\(586\) −7.18673e12 −2.51763
\(587\) 1.26363e12 2.18868e12i 0.439289 0.760870i −0.558346 0.829608i \(-0.688564\pi\)
0.997635 + 0.0687377i \(0.0218972\pi\)
\(588\) 0 0
\(589\) 2.98514e12 + 5.17041e12i 1.02199 + 1.77014i
\(590\) −9.54455e11 1.65317e12i −0.324281 0.561671i
\(591\) 0 0
\(592\) 1.18268e12 2.04846e12i 0.395748 0.685455i
\(593\) −2.59659e12 −0.862299 −0.431150 0.902280i \(-0.641892\pi\)
−0.431150 + 0.902280i \(0.641892\pi\)
\(594\) 0 0
\(595\) −7.50368e11 −0.245441
\(596\) −1.16522e12 + 2.01823e12i −0.378269 + 0.655181i
\(597\) 0 0
\(598\) 1.14355e12 + 1.98068e12i 0.365678 + 0.633372i
\(599\) 1.78002e12 + 3.08309e12i 0.564944 + 0.978511i 0.997055 + 0.0766909i \(0.0244355\pi\)
−0.432111 + 0.901820i \(0.642231\pi\)
\(600\) 0 0
\(601\) −9.66732e11 + 1.67443e12i −0.302253 + 0.523518i −0.976646 0.214855i \(-0.931072\pi\)
0.674393 + 0.738373i \(0.264405\pi\)
\(602\) 1.27323e13 3.95114
\(603\) 0 0
\(604\) 3.45401e12 1.05598
\(605\) 1.40673e12 2.43652e12i 0.426885 0.739386i
\(606\) 0 0
\(607\) −6.61448e11 1.14566e12i −0.197764 0.342537i 0.750039 0.661393i \(-0.230035\pi\)
−0.947803 + 0.318856i \(0.896701\pi\)
\(608\) −3.22861e12 5.59211e12i −0.958184 1.65962i
\(609\) 0 0
\(610\) 1.49083e12 2.58219e12i 0.435956 0.755098i
\(611\) 9.44034e11 0.274033
\(612\) 0 0
\(613\) −9.74984e11 −0.278885 −0.139443 0.990230i \(-0.544531\pi\)
−0.139443 + 0.990230i \(0.544531\pi\)
\(614\) 3.63193e12 6.29069e12i 1.03129 1.78624i
\(615\) 0 0
\(616\) 1.15223e11 + 1.99573e11i 0.0322424 + 0.0558454i
\(617\) 1.43614e12 + 2.48746e12i 0.398945 + 0.690993i 0.993596 0.112991i \(-0.0360431\pi\)
−0.594651 + 0.803984i \(0.702710\pi\)
\(618\) 0 0
\(619\) 2.08071e12 3.60390e12i 0.569645 0.986655i −0.426956 0.904273i \(-0.640414\pi\)
0.996601 0.0823820i \(-0.0262528\pi\)
\(620\) −8.64502e12 −2.34965
\(621\) 0 0
\(622\) 9.69636e12 2.59748
\(623\) −8.36460e11 + 1.44879e12i −0.222458 + 0.385309i
\(624\) 0 0
\(625\) 1.45674e12 + 2.52314e12i 0.381875 + 0.661427i
\(626\) 2.43310e12 + 4.21425e12i 0.633251 + 1.09682i
\(627\) 0 0
\(628\) 2.26938e11 3.93068e11i 0.0582222 0.100844i
\(629\) 3.24929e11 0.0827675
\(630\) 0 0
\(631\) −3.22906e12 −0.810855 −0.405428 0.914127i \(-0.632877\pi\)
−0.405428 + 0.914127i \(0.632877\pi\)
\(632\) −1.13010e11 + 1.95740e11i −0.0281768 + 0.0488036i
\(633\) 0 0
\(634\) −4.03997e12 6.99743e12i −0.993061 1.72003i
\(635\) −1.64451e12 2.84838e12i −0.401380 0.695210i
\(636\) 0 0
\(637\) −1.67287e12 + 2.89750e12i −0.402564 + 0.697262i
\(638\) 4.91265e12 1.17388
\(639\) 0 0
\(640\) 7.51978e11 0.177172
\(641\) −2.45653e12 + 4.25484e12i −0.574727 + 0.995456i 0.421345 + 0.906901i \(0.361558\pi\)
−0.996071 + 0.0885551i \(0.971775\pi\)
\(642\) 0 0
\(643\) −5.92873e11 1.02689e12i −0.136777 0.236904i 0.789498 0.613753i \(-0.210341\pi\)
−0.926275 + 0.376849i \(0.877008\pi\)
\(644\) 4.16650e12 + 7.21660e12i 0.954521 + 1.65328i
\(645\) 0 0
\(646\) 4.24916e11 7.35976e11i 0.0959968 0.166271i
\(647\) 6.72898e12 1.50966 0.754832 0.655919i \(-0.227719\pi\)
0.754832 + 0.655919i \(0.227719\pi\)
\(648\) 0 0
\(649\) 9.01147e11 0.199386
\(650\) 1.80039e12 3.11836e12i 0.395600 0.685199i
\(651\) 0 0
\(652\) 2.27851e12 + 3.94649e12i 0.493783 + 0.855258i
\(653\) −3.62463e11 6.27804e11i −0.0780107 0.135119i 0.824381 0.566036i \(-0.191524\pi\)
−0.902392 + 0.430917i \(0.858190\pi\)
\(654\) 0 0
\(655\) 3.89465e12 6.74573e12i 0.826765 1.43200i
\(656\) −3.08122e12 −0.649615
\(657\) 0 0
\(658\) 6.74098e12 1.40187
\(659\) 3.01262e12 5.21801e12i 0.622242 1.07776i −0.366825 0.930290i \(-0.619555\pi\)
0.989067 0.147465i \(-0.0471115\pi\)
\(660\) 0 0
\(661\) −8.74869e11 1.51532e12i −0.178253 0.308743i 0.763029 0.646364i \(-0.223711\pi\)
−0.941282 + 0.337621i \(0.890378\pi\)
\(662\) 8.60788e11 + 1.49093e12i 0.174195 + 0.301714i
\(663\) 0 0
\(664\) 1.73648e10 3.00767e10i 0.00346667 0.00600446i
\(665\) −1.66275e13 −3.29708
\(666\) 0 0
\(667\) 7.13716e12 1.39624
\(668\) −1.21946e11 + 2.11216e11i −0.0236958 + 0.0410424i
\(669\) 0 0
\(670\) −6.09318e12 1.05537e13i −1.16817 2.02333i
\(671\) 7.03780e11 + 1.21898e12i 0.134025 + 0.232138i
\(672\) 0 0
\(673\) 1.79733e12 3.11307e12i 0.337722 0.584952i −0.646282 0.763099i \(-0.723677\pi\)
0.984004 + 0.178147i \(0.0570102\pi\)
\(674\) −1.14706e12 −0.214099
\(675\) 0 0
\(676\) −4.44702e12 −0.819048
\(677\) 1.16956e12 2.02573e12i 0.213980 0.370624i −0.738977 0.673731i \(-0.764691\pi\)
0.952957 + 0.303107i \(0.0980240\pi\)
\(678\) 0 0
\(679\) −7.85487e11 1.36050e12i −0.141816 0.245632i
\(680\) 2.47202e10 + 4.28167e10i 0.00443366 + 0.00767932i
\(681\) 0 0
\(682\) 3.99911e12 6.92666e12i 0.707837 1.22601i
\(683\) 4.03165e11 0.0708907 0.0354453 0.999372i \(-0.488715\pi\)
0.0354453 + 0.999372i \(0.488715\pi\)
\(684\) 0 0
\(685\) 2.04748e12 0.355315
\(686\) −5.08417e12 + 8.80605e12i −0.876520 + 1.51818i
\(687\) 0 0
\(688\) 4.69361e12 + 8.12956e12i 0.798654 + 1.38331i
\(689\) −1.37861e12 2.38782e12i −0.233053 0.403660i
\(690\) 0 0
\(691\) −3.89736e12 + 6.75043e12i −0.650308 + 1.12637i 0.332740 + 0.943019i \(0.392027\pi\)
−0.983048 + 0.183348i \(0.941306\pi\)
\(692\) 4.87081e12 0.807465
\(693\) 0 0
\(694\) −1.26797e13 −2.07487
\(695\) −4.88490e12 + 8.46089e12i −0.794189 + 1.37558i
\(696\) 0 0
\(697\) −2.11634e11 3.66560e11i −0.0339655 0.0588299i
\(698\) −1.34206e12 2.32452e12i −0.214004 0.370666i
\(699\) 0 0
\(700\) 6.55970e12 1.13617e13i 1.03263 1.78856i
\(701\) −2.40116e12 −0.375569 −0.187784 0.982210i \(-0.560131\pi\)
−0.187784 + 0.982210i \(0.560131\pi\)
\(702\) 0 0
\(703\) 7.20013e12 1.11184
\(704\) −2.29580e12 + 3.97643e12i −0.352254 + 0.610122i
\(705\) 0 0
\(706\) 3.00091e12 + 5.19773e12i 0.454603 + 0.787395i
\(707\) −9.68967e12 1.67830e13i −1.45855 2.52629i
\(708\) 0 0
\(709\) 2.68067e12 4.64306e12i 0.398415 0.690075i −0.595115 0.803640i \(-0.702894\pi\)
0.993531 + 0.113565i \(0.0362270\pi\)
\(710\) −1.02966e13 −1.52066
\(711\) 0 0
\(712\) 1.10226e11 0.0160740
\(713\) 5.80995e12 1.00631e13i 0.841917 1.45824i
\(714\) 0 0
\(715\) 1.55977e12 + 2.70160e12i 0.223194 + 0.386583i
\(716\) −4.92201e11 8.52517e11i −0.0699897 0.121226i
\(717\) 0 0
\(718\) −6.34948e12 + 1.09976e13i −0.891617 + 1.54433i
\(719\) 5.40289e12 0.753956 0.376978 0.926222i \(-0.376963\pi\)
0.376978 + 0.926222i \(0.376963\pi\)
\(720\) 0 0
\(721\) 3.68551e12 0.507912
\(722\) 4.19901e12 7.27290e12i 0.575082 0.996071i
\(723\) 0 0
\(724\) 2.72331e12 + 4.71692e12i 0.368361 + 0.638020i
\(725\) −5.61834e12 9.73124e12i −0.755243 1.30812i
\(726\) 0 0
\(727\) −1.57786e12 + 2.73293e12i −0.209490 + 0.362847i −0.951554 0.307482i \(-0.900514\pi\)
0.742064 + 0.670329i \(0.233847\pi\)
\(728\) 3.47065e11 0.0457951
\(729\) 0 0
\(730\) −1.04295e12 −0.135929
\(731\) −6.44761e11 + 1.11676e12i −0.0835161 + 0.144654i
\(732\) 0 0
\(733\) 6.03203e12 + 1.04478e13i 0.771784 + 1.33677i 0.936584 + 0.350442i \(0.113969\pi\)
−0.164800 + 0.986327i \(0.552698\pi\)
\(734\) 8.04220e11 + 1.39295e12i 0.102269 + 0.177135i
\(735\) 0 0
\(736\) −6.28380e12 + 1.08839e13i −0.789355 + 1.36720i
\(737\) 5.75286e12 0.718257
\(738\) 0 0
\(739\) 8.39060e12 1.03489 0.517444 0.855717i \(-0.326884\pi\)
0.517444 + 0.855717i \(0.326884\pi\)
\(740\) −5.21293e12 + 9.02906e12i −0.639056 + 1.10688i
\(741\) 0 0
\(742\) −9.84410e12 1.70505e13i −1.19223 2.06500i
\(743\) −3.70497e11 6.41720e11i −0.0446001 0.0772496i 0.842864 0.538127i \(-0.180868\pi\)
−0.887464 + 0.460878i \(0.847535\pi\)
\(744\) 0 0
\(745\) −4.52524e12 + 7.83794e12i −0.538193 + 0.932178i
\(746\) −1.30353e13 −1.54098
\(747\) 0 0
\(748\) −5.80918e11 −0.0678512
\(749\) 4.17245e12 7.22690e12i 0.484421 0.839043i
\(750\) 0 0
\(751\) −7.05624e12 1.22218e13i −0.809457 1.40202i −0.913241 0.407420i \(-0.866428\pi\)
0.103784 0.994600i \(-0.466905\pi\)
\(752\) 2.48498e12 + 4.30411e12i 0.283363 + 0.490799i
\(753\) 0 0
\(754\) 3.69935e12 6.40747e12i 0.416826 0.721964i
\(755\) 1.34139e13 1.50243
\(756\) 0 0
\(757\) 5.66623e12 0.627138 0.313569 0.949565i \(-0.398475\pi\)
0.313569 + 0.949565i \(0.398475\pi\)
\(758\) −5.51639e12 + 9.55466e12i −0.606936 + 1.05124i
\(759\) 0 0
\(760\) 5.47778e11 + 9.48780e11i 0.0595585 + 0.103158i
\(761\) 6.70655e12 + 1.16161e13i 0.724883 + 1.25553i 0.959022 + 0.283332i \(0.0914397\pi\)
−0.234139 + 0.972203i \(0.575227\pi\)
\(762\) 0 0
\(763\) 5.78144e12 1.00137e13i 0.617555 1.06964i
\(764\) 5.34658e12 0.567749
\(765\) 0 0
\(766\) −1.02495e13 −1.07566
\(767\) 6.78587e11 1.17535e12i 0.0707989 0.122627i
\(768\) 0 0
\(769\) 3.32364e12 + 5.75672e12i 0.342725 + 0.593617i 0.984938 0.172909i \(-0.0553167\pi\)
−0.642213 + 0.766527i \(0.721983\pi\)
\(770\) 1.11377e13 + 1.92910e13i 1.14179 + 1.97764i
\(771\) 0 0
\(772\) −1.56627e12 + 2.71286e12i −0.158705 + 0.274884i
\(773\) 1.79549e13 1.80874 0.904369 0.426752i \(-0.140342\pi\)
0.904369 + 0.426752i \(0.140342\pi\)
\(774\) 0 0
\(775\) −1.82943e13 −1.82162
\(776\) −5.17544e10 + 8.96412e10i −0.00512353 + 0.00887421i
\(777\) 0 0
\(778\) −1.80919e12 3.13361e12i −0.177042 0.306645i
\(779\) −4.68962e12 8.12266e12i −0.456267 0.790277i
\(780\) 0 0
\(781\) 2.43038e12 4.20955e12i 0.233747 0.404861i
\(782\) −1.65402e12 −0.158165
\(783\) 0 0
\(784\) −1.76140e13 −1.66508
\(785\) 8.81332e11 1.52651e12i 0.0828373 0.143478i
\(786\) 0 0
\(787\) −4.68003e12 8.10604e12i −0.434873 0.753221i 0.562413 0.826857i \(-0.309873\pi\)
−0.997285 + 0.0736353i \(0.976540\pi\)
\(788\) 7.29809e12 + 1.26407e13i 0.674281 + 1.16789i
\(789\) 0 0
\(790\) −1.09238e13 + 1.89205e13i −0.997817 + 1.72827i
\(791\) −3.06437e13 −2.78322
\(792\) 0 0
\(793\) 2.11986e12 0.190361
\(794\) 5.63871e12 9.76652e12i 0.503486 0.872063i
\(795\) 0 0
\(796\) −5.91145e11 1.02389e12i −0.0521898 0.0903954i
\(797\) 8.00565e12 + 1.38662e13i 0.702803 + 1.21729i 0.967478 + 0.252954i \(0.0814020\pi\)
−0.264675 + 0.964338i \(0.585265\pi\)
\(798\) 0 0
\(799\) −3.41362e11 + 5.91256e11i −0.0296316 + 0.0513234i
\(800\) 1.97863e13 1.70789
\(801\) 0 0
\(802\) −8.24419e12 −0.703661
\(803\) 2.46175e11 4.26387e11i 0.0208941 0.0361897i
\(804\) 0 0
\(805\) 1.61810e13 + 2.80262e13i 1.35807 + 2.35225i
\(806\) −6.02286e12 1.04319e13i −0.502684 0.870675i
\(807\) 0 0
\(808\) −6.38436e11 + 1.10580e12i −0.0526946 + 0.0912697i
\(809\) 1.53912e13 1.26329 0.631645 0.775258i \(-0.282380\pi\)
0.631645 + 0.775258i \(0.282380\pi\)
\(810\) 0 0
\(811\) −1.81531e13 −1.47352 −0.736760 0.676154i \(-0.763645\pi\)
−0.736760 + 0.676154i \(0.763645\pi\)
\(812\) 1.34786e13 2.33456e13i 1.08803 1.88453i
\(813\) 0 0
\(814\) −4.82290e12 8.35352e12i −0.385034 0.666898i
\(815\) 8.84877e12 + 1.53265e13i 0.702545 + 1.21684i
\(816\) 0 0
\(817\) −1.42873e13 + 2.47464e13i −1.12189 + 1.94318i
\(818\) −8.67609e11 −0.0677539
\(819\) 0 0
\(820\) 1.35812e13 1.04900
\(821\) −1.10104e13 + 1.90706e13i −0.845786 + 1.46494i 0.0391513 + 0.999233i \(0.487535\pi\)
−0.884937 + 0.465711i \(0.845799\pi\)
\(822\) 0 0
\(823\) 8.62069e12 + 1.49315e13i 0.655002 + 1.13450i 0.981893 + 0.189435i \(0.0606657\pi\)
−0.326891 + 0.945062i \(0.606001\pi\)
\(824\) −1.21416e11 2.10299e11i −0.00917494 0.0158915i
\(825\) 0 0
\(826\) 4.84552e12 8.39269e12i 0.362185 0.627323i
\(827\) −3.54008e12 −0.263171 −0.131585 0.991305i \(-0.542007\pi\)
−0.131585 + 0.991305i \(0.542007\pi\)
\(828\) 0 0
\(829\) 1.85206e13 1.36194 0.680971 0.732310i \(-0.261558\pi\)
0.680971 + 0.732310i \(0.261558\pi\)
\(830\) 1.67851e12 2.90727e12i 0.122764 0.212634i
\(831\) 0 0
\(832\) 3.45759e12 + 5.98872e12i 0.250160 + 0.433290i
\(833\) −1.20982e12 2.09547e12i −0.0870598 0.150792i
\(834\) 0 0
\(835\) −4.73586e11 + 8.20274e11i −0.0337139 + 0.0583942i
\(836\) −1.28726e13 −0.911462
\(837\) 0 0
\(838\) 2.80399e11 0.0196417
\(839\) −5.50126e12 + 9.52847e12i −0.383295 + 0.663887i −0.991531 0.129869i \(-0.958544\pi\)
0.608236 + 0.793756i \(0.291878\pi\)
\(840\) 0 0
\(841\) −4.29072e12 7.43175e12i −0.295766 0.512282i
\(842\) −1.56509e13 2.71082e13i −1.07309 1.85865i
\(843\) 0 0
\(844\) 3.60618e12 6.24608e12i 0.244628 0.423708i
\(845\) −1.72704e13 −1.16532
\(846\) 0 0
\(847\) 1.42832e13 0.953563
\(848\) 7.25782e12 1.25709e13i 0.481976 0.834806i
\(849\) 0 0
\(850\) 1.30204e12 + 2.25519e12i 0.0855536 + 0.148183i
\(851\) −7.00677e12 1.21361e13i −0.457968 0.793224i
\(852\) 0 0
\(853\) 7.41174e12 1.28375e13i 0.479347 0.830253i −0.520373 0.853939i \(-0.674207\pi\)
0.999719 + 0.0236864i \(0.00754032\pi\)
\(854\) 1.51371e13 0.973826
\(855\) 0 0
\(856\) −5.49832e11 −0.0350024
\(857\) 3.84200e12 6.65453e12i 0.243301 0.421409i −0.718352 0.695680i \(-0.755103\pi\)
0.961652 + 0.274271i \(0.0884365\pi\)
\(858\) 0 0
\(859\) 9.52142e11 + 1.64916e12i 0.0596667 + 0.103346i 0.894316 0.447436i \(-0.147663\pi\)
−0.834649 + 0.550782i \(0.814330\pi\)
\(860\) −2.06882e13 3.58330e13i −1.28967 2.23378i
\(861\) 0 0
\(862\) −2.23525e13 + 3.87156e13i −1.37893 + 2.38838i
\(863\) 3.09626e12 0.190015 0.0950077 0.995477i \(-0.469712\pi\)
0.0950077 + 0.995477i \(0.469712\pi\)
\(864\) 0 0
\(865\) 1.89162e13 1.14884
\(866\) −2.04098e13 + 3.53509e13i −1.23313 + 2.13584i
\(867\) 0 0
\(868\) −2.19443e13 3.80086e13i −1.31215 2.27270i
\(869\) −5.15683e12 8.93189e12i −0.306757 0.531318i
\(870\) 0 0
\(871\) 4.33205e12 7.50334e12i 0.255042 0.441746i
\(872\) −7.61858e11 −0.0446221
\(873\) 0 0
\(874\) −3.66516e13 −2.12467
\(875\) 4.19828e12 7.27163e12i 0.242122 0.419368i
\(876\) 0 0
\(877\) −2.07463e12 3.59336e12i −0.118425 0.205117i 0.800719 0.599040i \(-0.204451\pi\)
−0.919144 + 0.393923i \(0.871118\pi\)
\(878\) 7.05253e12 + 1.22153e13i 0.400516 + 0.693714i
\(879\) 0 0
\(880\) −8.21155e12 + 1.42228e13i −0.461586 + 0.799491i
\(881\) −1.36244e13 −0.761948 −0.380974 0.924586i \(-0.624411\pi\)
−0.380974 + 0.924586i \(0.624411\pi\)
\(882\) 0 0
\(883\) −1.83775e13 −1.01734 −0.508668 0.860963i \(-0.669862\pi\)
−0.508668 + 0.860963i \(0.669862\pi\)
\(884\) −4.37446e11 + 7.57679e11i −0.0240929 + 0.0417302i
\(885\) 0 0
\(886\) 8.21253e12 + 1.42245e13i 0.447739 + 0.775507i
\(887\) 1.48912e13 + 2.57922e13i 0.807741 + 1.39905i 0.914425 + 0.404755i \(0.132643\pi\)
−0.106684 + 0.994293i \(0.534023\pi\)
\(888\) 0 0
\(889\) 8.34877e12 1.44605e13i 0.448296 0.776471i
\(890\) 1.06546e13 0.569223
\(891\) 0 0
\(892\) −1.58580e12 −0.0838700
\(893\) −7.56428e12 + 1.31017e13i −0.398048 + 0.689440i
\(894\) 0 0
\(895\) −1.91150e12 3.31082e12i −0.0995798 0.172477i
\(896\) 1.90880e12 + 3.30614e12i 0.0989405 + 0.171370i
\(897\) 0 0
\(898\) 2.37773e13 4.11835e13i 1.22017 2.11339i
\(899\) −3.75902e13 −1.91936
\(900\) 0 0
\(901\) 1.99401e12 0.100801
\(902\) −6.28255e12 + 1.08817e13i −0.316014 + 0.547352i
\(903\) 0 0
\(904\) 1.00953e12 + 1.74856e12i 0.0502761 + 0.0870807i
\(905\) 1.05762e13 + 1.83185e13i 0.524097 + 0.907762i
\(906\) 0 0
\(907\) 1.74771e13 3.02712e13i 0.857504 1.48524i −0.0167986 0.999859i \(-0.505347\pi\)
0.874303 0.485381i \(-0.161319\pi\)
\(908\) −1.78486e13 −0.871398
\(909\) 0 0
\(910\) 3.35479e13 1.62173
\(911\) −1.01137e13 + 1.75175e13i −0.486494 + 0.842633i −0.999879 0.0155252i \(-0.995058\pi\)
0.513385 + 0.858158i \(0.328391\pi\)
\(912\) 0 0
\(913\) 7.92381e11 + 1.37244e12i 0.0377412 + 0.0653697i
\(914\) −1.81052e13 3.13591e13i −0.858114 1.48630i
\(915\) 0 0
\(916\) 2.02913e13 3.51456e13i 0.952316 1.64946i
\(917\) 3.95442e13 1.84681
\(918\) 0 0
\(919\) 4.43929e12 0.205302 0.102651 0.994717i \(-0.467268\pi\)
0.102651 + 0.994717i \(0.467268\pi\)
\(920\) 1.06614e12 1.84660e12i 0.0490645 0.0849822i
\(921\) 0 0
\(922\) 2.79146e13 + 4.83495e13i 1.27216 + 2.20345i
\(923\) −3.66028e12 6.33980e12i −0.166000 0.287520i
\(924\) 0 0
\(925\) −1.10314e13 + 1.91069e13i −0.495442 + 0.858131i
\(926\) −8.88104e12 −0.396930
\(927\) 0 0
\(928\) 4.06560e13 1.79953
\(929\) 5.82256e12 1.00850e13i 0.256474 0.444226i −0.708821 0.705388i \(-0.750773\pi\)
0.965295 + 0.261163i \(0.0841059\pi\)
\(930\) 0 0
\(931\) −2.68085e13 4.64337e13i −1.16950 2.02563i
\(932\) −1.73246e13 3.00071e13i −0.752127 1.30272i
\(933\) 0 0
\(934\) 1.85100e13 3.20602e13i 0.795876 1.37850i
\(935\) −2.25604e12 −0.0965372
\(936\) 0 0
\(937\) −6.68375e12 −0.283265 −0.141632 0.989919i \(-0.545235\pi\)
−0.141632 + 0.989919i \(0.545235\pi\)
\(938\) 3.09335e13 5.35784e13i 1.30472 2.25983i
\(939\) 0 0
\(940\) −1.09531e13 1.89714e13i −0.457576 0.792545i
\(941\) 1.38922e13 + 2.40619e13i 0.577586 + 1.00041i 0.995755 + 0.0920387i \(0.0293383\pi\)
−0.418170 + 0.908369i \(0.637328\pi\)
\(942\) 0 0
\(943\) −9.12736e12 + 1.58090e13i −0.375874 + 0.651033i
\(944\) 7.14498e12 0.292838
\(945\) 0 0
\(946\) 3.82806e13 1.55406
\(947\) 1.01127e13 1.75157e13i 0.408595 0.707707i −0.586138 0.810211i \(-0.699352\pi\)
0.994733 + 0.102505i \(0.0326857\pi\)
\(948\) 0 0
\(949\) −3.70752e11 6.42162e11i −0.0148384 0.0257008i
\(950\) 2.88520e13 + 4.99731e13i 1.14926 + 1.99058i
\(951\) 0 0
\(952\) −1.25498e11 + 2.17369e11i −0.00495189 + 0.00857693i
\(953\) −1.95165e13 −0.766450 −0.383225 0.923655i \(-0.625187\pi\)
−0.383225 + 0.923655i \(0.625187\pi\)
\(954\) 0 0
\(955\) 2.07639e13 0.807781
\(956\) 1.06279e13 1.84080e13i 0.411515 0.712765i
\(957\) 0 0
\(958\) 1.50778e13 + 2.61155e13i 0.578353 + 1.00174i
\(959\) 5.19728e12 + 9.00195e12i 0.198423 + 0.343679i
\(960\) 0 0
\(961\) −1.73802e13 + 3.01034e13i −0.657355 + 1.13857i
\(962\) −1.45271e13 −0.546878
\(963\) 0 0
\(964\) 6.32727e12 0.235977
\(965\) −6.08275e12 + 1.05356e13i −0.225802 + 0.391100i
\(966\) 0 0
\(967\) −2.10162e13 3.64011e13i −0.772919 1.33874i −0.935956 0.352116i \(-0.885462\pi\)
0.163037 0.986620i \(-0.447871\pi\)
\(968\) −4.70547e11 8.15011e11i −0.0172252 0.0298349i
\(969\) 0 0
\(970\) −5.00267e12 + 8.66487e12i −0.181438 + 0.314260i
\(971\) 8.15237e12 0.294305 0.147152 0.989114i \(-0.452989\pi\)
0.147152 + 0.989114i \(0.452989\pi\)
\(972\) 0 0
\(973\) −4.95988e13 −1.77404
\(974\) −1.66373e13 + 2.88167e13i −0.592336 + 1.02596i
\(975\) 0 0
\(976\) 5.58010e12 + 9.66502e12i 0.196842 + 0.340941i
\(977\) 7.42874e12 + 1.28670e13i 0.260849 + 0.451804i 0.966468 0.256788i \(-0.0826641\pi\)
−0.705618 + 0.708592i \(0.749331\pi\)
\(978\) 0 0
\(979\) −2.51488e12 + 4.35591e12i −0.0874975 + 0.151550i
\(980\) 7.76379e13 2.68879
\(981\) 0 0
\(982\) −5.59004e13 −1.91828
\(983\) 4.19117e12 7.25931e12i 0.143167 0.247973i −0.785520 0.618836i \(-0.787605\pi\)
0.928688 + 0.370863i \(0.120938\pi\)
\(984\) 0 0
\(985\) 2.83427e13 + 4.90910e13i 0.959353 + 1.66165i
\(986\) 2.67536e12 + 4.63387e12i 0.0901440 + 0.156134i
\(987\) 0 0
\(988\) −9.69342e12 + 1.67895e13i −0.323646 + 0.560572i
\(989\) 5.56146e13 1.84844
\(990\) 0 0
\(991\) 3.54621e13 1.16797 0.583986 0.811763i \(-0.301492\pi\)
0.583986 + 0.811763i \(0.301492\pi\)
\(992\) 3.30957e13 5.73235e13i 1.08510 1.87945i
\(993\) 0 0
\(994\) −2.61366e13 4.52700e13i −0.849202 1.47086i
\(995\) −2.29576e12 3.97638e12i −0.0742545 0.128613i
\(996\) 0 0
\(997\) −2.08978e13 + 3.61960e13i −0.669841 + 1.16020i 0.308108 + 0.951351i \(0.400304\pi\)
−0.977948 + 0.208846i \(0.933029\pi\)
\(998\) −7.75919e13 −2.47588
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.c.h.55.3 6
3.2 odd 2 81.10.c.g.55.1 6
9.2 odd 6 27.10.a.c.1.3 yes 3
9.4 even 3 inner 81.10.c.h.28.3 6
9.5 odd 6 81.10.c.g.28.1 6
9.7 even 3 27.10.a.b.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.a.b.1.1 3 9.7 even 3
27.10.a.c.1.3 yes 3 9.2 odd 6
81.10.c.g.28.1 6 9.5 odd 6
81.10.c.g.55.1 6 3.2 odd 2
81.10.c.h.28.3 6 9.4 even 3 inner
81.10.c.h.55.3 6 1.1 even 1 trivial