Properties

Label 81.10.c.h.28.1
Level $81$
Weight $10$
Character 81.28
Analytic conductor $41.718$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 119x^{4} - 154x^{3} + 14060x^{2} - 16048x + 18496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 28.1
Root \(-5.46600 - 9.46739i\) of defining polynomial
Character \(\chi\) \(=\) 81.28
Dual form 81.10.c.h.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-16.3980 - 28.4022i) q^{2} +(-281.788 + 488.072i) q^{4} +(-657.691 + 1139.16i) q^{5} +(-2579.27 - 4467.43i) q^{7} +1691.52 q^{8} +43139.3 q^{10} +(7567.52 + 13107.3i) q^{11} +(-90251.7 + 156321. i) q^{13} +(-84589.7 + 146514. i) q^{14} +(116538. + 201850. i) q^{16} +595825. q^{17} -785830. q^{19} +(-370660. - 642002. i) q^{20} +(248184. - 429868. i) q^{22} +(587721. - 1.01796e6i) q^{23} +(111446. + 193031. i) q^{25} +5.91979e6 q^{26} +2.90723e6 q^{28} +(-771411. - 1.33612e6i) q^{29} +(1.13524e6 - 1.96630e6i) q^{31} +(4.25501e6 - 7.36990e6i) q^{32} +(-9.77034e6 - 1.69227e7i) q^{34} +6.78546e6 q^{35} -1.12928e7 q^{37} +(1.28860e7 + 2.23193e7i) q^{38} +(-1.11250e6 + 1.92690e6i) q^{40} +(8.36372e6 - 1.44864e7i) q^{41} +(1.55938e7 + 2.70093e7i) q^{43} -8.52976e6 q^{44} -3.85498e7 q^{46} +(-9.67768e6 - 1.67622e7i) q^{47} +(6.87153e6 - 1.19018e7i) q^{49} +(3.65499e6 - 6.33063e6i) q^{50} +(-5.08638e7 - 8.80986e7i) q^{52} -3.77611e7 q^{53} -1.99084e7 q^{55} +(-4.36288e6 - 7.55673e6i) q^{56} +(-2.52992e7 + 4.38195e7i) q^{58} +(-6.88542e7 + 1.19259e8i) q^{59} +(-9.22233e7 - 1.59735e8i) q^{61} -7.44629e7 q^{62} -1.59760e8 q^{64} +(-1.18716e8 - 2.05621e8i) q^{65} +(7.19072e7 - 1.24547e8i) q^{67} +(-1.67897e8 + 2.90806e8i) q^{68} +(-1.11268e8 - 1.92722e8i) q^{70} -2.34392e7 q^{71} -1.57666e8 q^{73} +(1.85179e8 + 3.20739e8i) q^{74} +(2.21438e8 - 3.83541e8i) q^{76} +(3.90373e7 - 6.76147e7i) q^{77} +(-2.34797e7 - 4.06680e7i) q^{79} -3.06585e8 q^{80} -5.48593e8 q^{82} +(-1.22748e8 - 2.12605e8i) q^{83} +(-3.91869e8 + 6.78737e8i) q^{85} +(5.11415e8 - 8.85797e8i) q^{86} +(1.28006e7 + 2.21713e7i) q^{88} +1.10618e9 q^{89} +9.31134e8 q^{91} +(3.31226e8 + 5.73700e8i) q^{92} +(-3.17389e8 + 5.49734e8i) q^{94} +(5.16833e8 - 8.95182e8i) q^{95} +(-1.48493e8 - 2.57197e8i) q^{97} -4.50717e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 597 q^{4} - 1983 q^{5} + 3693 q^{7} + 9006 q^{8} - 37962 q^{10} - 16863 q^{11} - 116916 q^{13} - 503463 q^{14} + 239919 q^{16} + 2028096 q^{17} - 30444 q^{19} - 2548407 q^{20} - 305721 q^{22}+ \cdots - 5184364572 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.3980 28.4022i −0.724696 1.25521i −0.959099 0.283071i \(-0.908647\pi\)
0.234403 0.972139i \(-0.424686\pi\)
\(3\) 0 0
\(4\) −281.788 + 488.072i −0.550368 + 0.953266i
\(5\) −657.691 + 1139.16i −0.470606 + 0.815113i −0.999435 0.0336153i \(-0.989298\pi\)
0.528829 + 0.848728i \(0.322631\pi\)
\(6\) 0 0
\(7\) −2579.27 4467.43i −0.406028 0.703261i 0.588413 0.808561i \(-0.299753\pi\)
−0.994440 + 0.105300i \(0.966420\pi\)
\(8\) 1691.52 0.146006
\(9\) 0 0
\(10\) 43139.3 1.36418
\(11\) 7567.52 + 13107.3i 0.155843 + 0.269927i 0.933366 0.358927i \(-0.116857\pi\)
−0.777523 + 0.628855i \(0.783524\pi\)
\(12\) 0 0
\(13\) −90251.7 + 156321.i −0.876416 + 1.51800i −0.0211694 + 0.999776i \(0.506739\pi\)
−0.855247 + 0.518221i \(0.826594\pi\)
\(14\) −84589.7 + 146514.i −0.588493 + 1.01930i
\(15\) 0 0
\(16\) 116538. + 201850.i 0.444558 + 0.769997i
\(17\) 595825. 1.73021 0.865105 0.501591i \(-0.167252\pi\)
0.865105 + 0.501591i \(0.167252\pi\)
\(18\) 0 0
\(19\) −785830. −1.38337 −0.691683 0.722201i \(-0.743131\pi\)
−0.691683 + 0.722201i \(0.743131\pi\)
\(20\) −370660. 642002.i −0.518013 0.897224i
\(21\) 0 0
\(22\) 248184. 429868.i 0.225877 0.391231i
\(23\) 587721. 1.01796e6i 0.437921 0.758502i −0.559608 0.828757i \(-0.689048\pi\)
0.997529 + 0.0702559i \(0.0223816\pi\)
\(24\) 0 0
\(25\) 111446. + 193031.i 0.0570605 + 0.0988317i
\(26\) 5.91979e6 2.54054
\(27\) 0 0
\(28\) 2.90723e6 0.893859
\(29\) −771411. 1.33612e6i −0.202533 0.350797i 0.746811 0.665036i \(-0.231584\pi\)
−0.949344 + 0.314239i \(0.898251\pi\)
\(30\) 0 0
\(31\) 1.13524e6 1.96630e6i 0.220781 0.382404i −0.734264 0.678864i \(-0.762473\pi\)
0.955045 + 0.296460i \(0.0958061\pi\)
\(32\) 4.25501e6 7.36990e6i 0.717342 1.24247i
\(33\) 0 0
\(34\) −9.77034e6 1.69227e7i −1.25388 2.17178i
\(35\) 6.78546e6 0.764316
\(36\) 0 0
\(37\) −1.12928e7 −0.990586 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(38\) 1.28860e7 + 2.23193e7i 1.00252 + 1.73642i
\(39\) 0 0
\(40\) −1.11250e6 + 1.92690e6i −0.0687114 + 0.119012i
\(41\) 8.36372e6 1.44864e7i 0.462245 0.800631i −0.536828 0.843692i \(-0.680378\pi\)
0.999072 + 0.0430606i \(0.0137109\pi\)
\(42\) 0 0
\(43\) 1.55938e7 + 2.70093e7i 0.695576 + 1.20477i 0.969986 + 0.243160i \(0.0781841\pi\)
−0.274410 + 0.961613i \(0.588483\pi\)
\(44\) −8.52976e6 −0.343083
\(45\) 0 0
\(46\) −3.85498e7 −1.26944
\(47\) −9.67768e6 1.67622e7i −0.289288 0.501062i 0.684352 0.729152i \(-0.260085\pi\)
−0.973640 + 0.228090i \(0.926752\pi\)
\(48\) 0 0
\(49\) 6.87153e6 1.19018e7i 0.170283 0.294939i
\(50\) 3.65499e6 6.33063e6i 0.0827031 0.143246i
\(51\) 0 0
\(52\) −5.08638e7 8.80986e7i −0.964703 1.67091i
\(53\) −3.77611e7 −0.657360 −0.328680 0.944441i \(-0.606604\pi\)
−0.328680 + 0.944441i \(0.606604\pi\)
\(54\) 0 0
\(55\) −1.99084e7 −0.293362
\(56\) −4.36288e6 7.55673e6i −0.0592826 0.102680i
\(57\) 0 0
\(58\) −2.52992e7 + 4.38195e7i −0.293549 + 0.508442i
\(59\) −6.88542e7 + 1.19259e8i −0.739770 + 1.28132i 0.212829 + 0.977089i \(0.431732\pi\)
−0.952599 + 0.304229i \(0.901601\pi\)
\(60\) 0 0
\(61\) −9.22233e7 1.59735e8i −0.852818 1.47712i −0.878655 0.477458i \(-0.841558\pi\)
0.0258369 0.999666i \(-0.491775\pi\)
\(62\) −7.44629e7 −0.639996
\(63\) 0 0
\(64\) −1.59760e8 −1.19030
\(65\) −1.18716e8 2.05621e8i −0.824893 1.42876i
\(66\) 0 0
\(67\) 7.19072e7 1.24547e8i 0.435949 0.755086i −0.561423 0.827529i \(-0.689746\pi\)
0.997373 + 0.0724426i \(0.0230794\pi\)
\(68\) −1.67897e8 + 2.90806e8i −0.952252 + 1.64935i
\(69\) 0 0
\(70\) −1.11268e8 1.92722e8i −0.553897 0.959377i
\(71\) −2.34392e7 −0.109466 −0.0547332 0.998501i \(-0.517431\pi\)
−0.0547332 + 0.998501i \(0.517431\pi\)
\(72\) 0 0
\(73\) −1.57666e8 −0.649808 −0.324904 0.945747i \(-0.605332\pi\)
−0.324904 + 0.945747i \(0.605332\pi\)
\(74\) 1.85179e8 + 3.20739e8i 0.717873 + 1.24339i
\(75\) 0 0
\(76\) 2.21438e8 3.83541e8i 0.761361 1.31872i
\(77\) 3.90373e7 6.76147e7i 0.126553 0.219196i
\(78\) 0 0
\(79\) −2.34797e7 4.06680e7i −0.0678220 0.117471i 0.830120 0.557584i \(-0.188272\pi\)
−0.897942 + 0.440113i \(0.854938\pi\)
\(80\) −3.06585e8 −0.836846
\(81\) 0 0
\(82\) −5.48593e8 −1.33995
\(83\) −1.22748e8 2.12605e8i −0.283898 0.491725i 0.688444 0.725290i \(-0.258294\pi\)
−0.972341 + 0.233565i \(0.924961\pi\)
\(84\) 0 0
\(85\) −3.91869e8 + 6.78737e8i −0.814246 + 1.41032i
\(86\) 5.11415e8 8.85797e8i 1.00816 1.74619i
\(87\) 0 0
\(88\) 1.28006e7 + 2.21713e7i 0.0227540 + 0.0394111i
\(89\) 1.10618e9 1.86883 0.934415 0.356185i \(-0.115923\pi\)
0.934415 + 0.356185i \(0.115923\pi\)
\(90\) 0 0
\(91\) 9.31134e8 1.42340
\(92\) 3.31226e8 + 5.73700e8i 0.482036 + 0.834910i
\(93\) 0 0
\(94\) −3.17389e8 + 5.49734e8i −0.419292 + 0.726235i
\(95\) 5.16833e8 8.95182e8i 0.651020 1.12760i
\(96\) 0 0
\(97\) −1.48493e8 2.57197e8i −0.170307 0.294980i 0.768220 0.640186i \(-0.221143\pi\)
−0.938527 + 0.345205i \(0.887809\pi\)
\(98\) −4.50717e8 −0.493613
\(99\) 0 0
\(100\) −1.25617e8 −0.125617
\(101\) −5.02284e7 8.69981e7i −0.0480289 0.0831886i 0.841011 0.541017i \(-0.181961\pi\)
−0.889040 + 0.457829i \(0.848627\pi\)
\(102\) 0 0
\(103\) 4.47262e8 7.74681e8i 0.391557 0.678196i −0.601098 0.799175i \(-0.705270\pi\)
0.992655 + 0.120979i \(0.0386034\pi\)
\(104\) −1.52662e8 + 2.64419e8i −0.127962 + 0.221637i
\(105\) 0 0
\(106\) 6.19207e8 + 1.07250e9i 0.476386 + 0.825125i
\(107\) 1.67004e9 1.23168 0.615841 0.787870i \(-0.288816\pi\)
0.615841 + 0.787870i \(0.288816\pi\)
\(108\) 0 0
\(109\) −7.93643e8 −0.538525 −0.269263 0.963067i \(-0.586780\pi\)
−0.269263 + 0.963067i \(0.586780\pi\)
\(110\) 3.26457e8 + 5.65441e8i 0.212598 + 0.368231i
\(111\) 0 0
\(112\) 6.01167e8 1.04125e9i 0.361006 0.625280i
\(113\) −2.91841e8 + 5.05483e8i −0.168381 + 0.291644i −0.937851 0.347039i \(-0.887187\pi\)
0.769470 + 0.638683i \(0.220521\pi\)
\(114\) 0 0
\(115\) 7.73078e8 + 1.33901e9i 0.412176 + 0.713910i
\(116\) 8.69499e8 0.445870
\(117\) 0 0
\(118\) 4.51629e9 2.14443
\(119\) −1.53679e9 2.66181e9i −0.702513 1.21679i
\(120\) 0 0
\(121\) 1.06444e9 1.84366e9i 0.451426 0.781893i
\(122\) −3.02455e9 + 5.23868e9i −1.23607 + 2.14093i
\(123\) 0 0
\(124\) 6.39797e8 + 1.10816e9i 0.243021 + 0.420926i
\(125\) −2.86230e9 −1.04862
\(126\) 0 0
\(127\) 1.00303e9 0.342133 0.171067 0.985259i \(-0.445279\pi\)
0.171067 + 0.985259i \(0.445279\pi\)
\(128\) 4.41171e8 + 7.64131e8i 0.145265 + 0.251607i
\(129\) 0 0
\(130\) −3.89339e9 + 6.74356e9i −1.19559 + 2.07083i
\(131\) 2.33390e9 4.04243e9i 0.692406 1.19928i −0.278642 0.960395i \(-0.589884\pi\)
0.971047 0.238887i \(-0.0767825\pi\)
\(132\) 0 0
\(133\) 2.02687e9 + 3.51064e9i 0.561685 + 0.972867i
\(134\) −4.71654e9 −1.26372
\(135\) 0 0
\(136\) 1.00785e9 0.252621
\(137\) −1.70061e9 2.94555e9i −0.412442 0.714370i 0.582714 0.812677i \(-0.301991\pi\)
−0.995156 + 0.0983069i \(0.968657\pi\)
\(138\) 0 0
\(139\) −2.30714e9 + 3.99609e9i −0.524213 + 0.907963i 0.475390 + 0.879775i \(0.342307\pi\)
−0.999603 + 0.0281879i \(0.991026\pi\)
\(140\) −1.91206e9 + 3.31179e9i −0.420655 + 0.728596i
\(141\) 0 0
\(142\) 3.84357e8 + 6.65725e8i 0.0793299 + 0.137403i
\(143\) −2.73193e9 −0.546332
\(144\) 0 0
\(145\) 2.02940e9 0.381252
\(146\) 2.58540e9 + 4.47805e9i 0.470913 + 0.815645i
\(147\) 0 0
\(148\) 3.18217e9 5.51168e9i 0.545187 0.944291i
\(149\) 1.13584e9 1.96733e9i 0.188790 0.326994i −0.756057 0.654506i \(-0.772877\pi\)
0.944847 + 0.327512i \(0.106210\pi\)
\(150\) 0 0
\(151\) 4.97484e8 + 8.61668e8i 0.0778723 + 0.134879i 0.902332 0.431042i \(-0.141854\pi\)
−0.824459 + 0.565921i \(0.808521\pi\)
\(152\) −1.32924e9 −0.201980
\(153\) 0 0
\(154\) −2.56054e9 −0.366849
\(155\) 1.49328e9 + 2.58644e9i 0.207801 + 0.359923i
\(156\) 0 0
\(157\) 5.96575e9 1.03330e10i 0.783640 1.35730i −0.146169 0.989260i \(-0.546694\pi\)
0.929808 0.368044i \(-0.119972\pi\)
\(158\) −7.70039e8 + 1.33375e9i −0.0983006 + 0.170262i
\(159\) 0 0
\(160\) 5.59697e9 + 9.69424e9i 0.675170 + 1.16943i
\(161\) −6.06356e9 −0.711232
\(162\) 0 0
\(163\) 2.02118e9 0.224264 0.112132 0.993693i \(-0.464232\pi\)
0.112132 + 0.993693i \(0.464232\pi\)
\(164\) 4.71360e9 + 8.16419e9i 0.508809 + 0.881284i
\(165\) 0 0
\(166\) −4.02563e9 + 6.97260e9i −0.411479 + 0.712702i
\(167\) 6.34711e9 1.09935e10i 0.631468 1.09374i −0.355783 0.934569i \(-0.615786\pi\)
0.987252 0.159167i \(-0.0508808\pi\)
\(168\) 0 0
\(169\) −1.09885e10 1.90326e10i −1.03621 1.79477i
\(170\) 2.57035e10 2.36032
\(171\) 0 0
\(172\) −1.75766e10 −1.53129
\(173\) −2.86139e9 4.95608e9i −0.242868 0.420659i 0.718662 0.695359i \(-0.244755\pi\)
−0.961530 + 0.274700i \(0.911421\pi\)
\(174\) 0 0
\(175\) 5.74901e8 9.95757e8i 0.0463363 0.0802568i
\(176\) −1.76381e9 + 3.05501e9i −0.138562 + 0.239997i
\(177\) 0 0
\(178\) −1.81391e10 3.14178e10i −1.35433 2.34578i
\(179\) 1.53037e10 1.11419 0.557093 0.830450i \(-0.311917\pi\)
0.557093 + 0.830450i \(0.311917\pi\)
\(180\) 0 0
\(181\) 1.52538e10 1.05639 0.528197 0.849122i \(-0.322868\pi\)
0.528197 + 0.849122i \(0.322868\pi\)
\(182\) −1.52687e10 2.64462e10i −1.03153 1.78666i
\(183\) 0 0
\(184\) 9.94140e8 1.72190e9i 0.0639392 0.110746i
\(185\) 7.42715e9 1.28642e10i 0.466175 0.807439i
\(186\) 0 0
\(187\) 4.50892e9 + 7.80967e9i 0.269640 + 0.467031i
\(188\) 1.09082e10 0.636860
\(189\) 0 0
\(190\) −3.39001e10 −1.88717
\(191\) 9.64613e9 + 1.67076e10i 0.524448 + 0.908371i 0.999595 + 0.0284646i \(0.00906177\pi\)
−0.475146 + 0.879907i \(0.657605\pi\)
\(192\) 0 0
\(193\) −4.40967e9 + 7.63777e9i −0.228769 + 0.396240i −0.957444 0.288620i \(-0.906803\pi\)
0.728674 + 0.684860i \(0.240137\pi\)
\(194\) −4.86996e9 + 8.43503e9i −0.246841 + 0.427542i
\(195\) 0 0
\(196\) 3.87264e9 + 6.70760e9i 0.187437 + 0.324650i
\(197\) 6.14540e9 0.290705 0.145352 0.989380i \(-0.453568\pi\)
0.145352 + 0.989380i \(0.453568\pi\)
\(198\) 0 0
\(199\) 1.32275e10 0.597916 0.298958 0.954266i \(-0.403361\pi\)
0.298958 + 0.954266i \(0.403361\pi\)
\(200\) 1.88513e8 + 3.26515e8i 0.00833119 + 0.0144300i
\(201\) 0 0
\(202\) −1.64729e9 + 2.85319e9i −0.0696127 + 0.120573i
\(203\) −3.97936e9 + 6.89245e9i −0.164468 + 0.284866i
\(204\) 0 0
\(205\) 1.10015e10 + 1.90551e10i 0.435070 + 0.753563i
\(206\) −2.93368e10 −1.13504
\(207\) 0 0
\(208\) −4.20711e10 −1.55847
\(209\) −5.94678e9 1.03001e10i −0.215587 0.373408i
\(210\) 0 0
\(211\) 1.23858e10 2.14529e10i 0.430184 0.745100i −0.566705 0.823921i \(-0.691782\pi\)
0.996889 + 0.0788207i \(0.0251155\pi\)
\(212\) 1.06406e10 1.84301e10i 0.361790 0.626639i
\(213\) 0 0
\(214\) −2.73852e10 4.74326e10i −0.892596 1.54602i
\(215\) −4.10237e10 −1.30937
\(216\) 0 0
\(217\) −1.17124e10 −0.358573
\(218\) 1.30142e10 + 2.25412e10i 0.390267 + 0.675962i
\(219\) 0 0
\(220\) 5.60995e9 9.71671e9i 0.161457 0.279652i
\(221\) −5.37742e10 + 9.31397e10i −1.51638 + 2.62645i
\(222\) 0 0
\(223\) −6.92407e9 1.19928e10i −0.187495 0.324751i 0.756919 0.653508i \(-0.226704\pi\)
−0.944414 + 0.328757i \(0.893370\pi\)
\(224\) −4.38993e10 −1.16504
\(225\) 0 0
\(226\) 1.91424e10 0.488100
\(227\) 2.77456e10 + 4.80568e10i 0.693550 + 1.20126i 0.970667 + 0.240428i \(0.0772877\pi\)
−0.277117 + 0.960836i \(0.589379\pi\)
\(228\) 0 0
\(229\) −1.60003e9 + 2.77133e9i −0.0384475 + 0.0665930i −0.884609 0.466334i \(-0.845575\pi\)
0.846161 + 0.532927i \(0.178908\pi\)
\(230\) 2.53539e10 4.39142e10i 0.597405 1.03474i
\(231\) 0 0
\(232\) −1.30485e9 2.26008e9i −0.0295710 0.0512185i
\(233\) −1.45987e10 −0.324498 −0.162249 0.986750i \(-0.551875\pi\)
−0.162249 + 0.986750i \(0.551875\pi\)
\(234\) 0 0
\(235\) 2.54597e10 0.544563
\(236\) −3.88047e10 6.72116e10i −0.814291 1.41039i
\(237\) 0 0
\(238\) −5.04007e10 + 8.72965e10i −1.01822 + 1.76360i
\(239\) 2.28625e10 3.95989e10i 0.453244 0.785042i −0.545341 0.838214i \(-0.683600\pi\)
0.998585 + 0.0531722i \(0.0169332\pi\)
\(240\) 0 0
\(241\) −9.31249e8 1.61297e9i −0.0177824 0.0307999i 0.856997 0.515321i \(-0.172327\pi\)
−0.874780 + 0.484521i \(0.838994\pi\)
\(242\) −6.98187e10 −1.30859
\(243\) 0 0
\(244\) 1.03950e11 1.87745
\(245\) 9.03870e9 + 1.56555e10i 0.160272 + 0.277600i
\(246\) 0 0
\(247\) 7.09225e10 1.22841e11i 1.21240 2.09995i
\(248\) 1.92028e9 3.32603e9i 0.0322354 0.0558333i
\(249\) 0 0
\(250\) 4.69359e10 + 8.12954e10i 0.759933 + 1.31624i
\(251\) 1.02269e11 1.62634 0.813171 0.582025i \(-0.197739\pi\)
0.813171 + 0.582025i \(0.197739\pi\)
\(252\) 0 0
\(253\) 1.77904e10 0.272987
\(254\) −1.64476e10 2.84881e10i −0.247943 0.429449i
\(255\) 0 0
\(256\) −2.64298e10 + 4.57778e10i −0.384605 + 0.666155i
\(257\) −6.31941e10 + 1.09455e11i −0.903603 + 1.56509i −0.0808220 + 0.996729i \(0.525755\pi\)
−0.822781 + 0.568358i \(0.807579\pi\)
\(258\) 0 0
\(259\) 2.91271e10 + 5.04496e10i 0.402205 + 0.696640i
\(260\) 1.33811e11 1.81598
\(261\) 0 0
\(262\) −1.53085e11 −2.00713
\(263\) −4.57881e10 7.93073e10i −0.590135 1.02214i −0.994214 0.107420i \(-0.965741\pi\)
0.404078 0.914724i \(-0.367592\pi\)
\(264\) 0 0
\(265\) 2.48352e10 4.30158e10i 0.309358 0.535823i
\(266\) 6.64731e10 1.15135e11i 0.814102 1.41007i
\(267\) 0 0
\(268\) 4.05252e10 + 7.01918e10i 0.479865 + 0.831151i
\(269\) 3.86326e9 0.0449851 0.0224925 0.999747i \(-0.492840\pi\)
0.0224925 + 0.999747i \(0.492840\pi\)
\(270\) 0 0
\(271\) 1.26432e11 1.42395 0.711976 0.702203i \(-0.247800\pi\)
0.711976 + 0.702203i \(0.247800\pi\)
\(272\) 6.94364e10 + 1.20267e11i 0.769178 + 1.33226i
\(273\) 0 0
\(274\) −5.57733e10 + 9.66021e10i −0.597790 + 1.03540i
\(275\) −1.68674e9 + 2.92153e9i −0.0177849 + 0.0308044i
\(276\) 0 0
\(277\) 6.11376e10 + 1.05893e11i 0.623949 + 1.08071i 0.988743 + 0.149623i \(0.0478061\pi\)
−0.364794 + 0.931088i \(0.618861\pi\)
\(278\) 1.51330e11 1.51958
\(279\) 0 0
\(280\) 1.14777e10 0.111595
\(281\) −8.94966e9 1.55013e10i −0.0856305 0.148316i 0.820029 0.572322i \(-0.193957\pi\)
−0.905660 + 0.424005i \(0.860624\pi\)
\(282\) 0 0
\(283\) −9.98248e10 + 1.72902e11i −0.925123 + 1.60236i −0.133761 + 0.991014i \(0.542705\pi\)
−0.791363 + 0.611347i \(0.790628\pi\)
\(284\) 6.60491e9 1.14400e10i 0.0602468 0.104351i
\(285\) 0 0
\(286\) 4.47981e10 + 7.75926e10i 0.395925 + 0.685761i
\(287\) −8.62891e10 −0.750737
\(288\) 0 0
\(289\) 2.36420e11 1.99362
\(290\) −3.32781e10 5.76394e10i −0.276292 0.478551i
\(291\) 0 0
\(292\) 4.44284e10 7.69523e10i 0.357634 0.619439i
\(293\) 2.64701e10 4.58476e10i 0.209822 0.363423i −0.741836 0.670581i \(-0.766045\pi\)
0.951658 + 0.307158i \(0.0993781\pi\)
\(294\) 0 0
\(295\) −9.05697e10 1.56871e11i −0.696280 1.20599i
\(296\) −1.91019e10 −0.144632
\(297\) 0 0
\(298\) −7.45020e10 −0.547261
\(299\) 1.06086e11 + 1.83746e11i 0.767602 + 1.32953i
\(300\) 0 0
\(301\) 8.04414e10 1.39329e11i 0.564846 0.978343i
\(302\) 1.63155e10 2.82593e10i 0.112868 0.195492i
\(303\) 0 0
\(304\) −9.15792e10 1.58620e11i −0.614987 1.06519i
\(305\) 2.42618e11 1.60536
\(306\) 0 0
\(307\) −6.10366e10 −0.392164 −0.196082 0.980587i \(-0.562822\pi\)
−0.196082 + 0.980587i \(0.562822\pi\)
\(308\) 2.20005e10 + 3.81061e10i 0.139301 + 0.241277i
\(309\) 0 0
\(310\) 4.89736e10 8.48248e10i 0.301186 0.521669i
\(311\) 1.87762e10 3.25214e10i 0.113812 0.197128i −0.803492 0.595315i \(-0.797027\pi\)
0.917304 + 0.398187i \(0.130361\pi\)
\(312\) 0 0
\(313\) −4.47739e10 7.75506e10i −0.263679 0.456705i 0.703538 0.710658i \(-0.251603\pi\)
−0.967217 + 0.253953i \(0.918269\pi\)
\(314\) −3.91305e11 −2.27160
\(315\) 0 0
\(316\) 2.64652e10 0.149308
\(317\) −1.09931e11 1.90407e11i −0.611442 1.05905i −0.990998 0.133880i \(-0.957256\pi\)
0.379555 0.925169i \(-0.376077\pi\)
\(318\) 0 0
\(319\) 1.16753e10 2.02223e10i 0.0631264 0.109338i
\(320\) 1.05073e11 1.81991e11i 0.560163 0.970231i
\(321\) 0 0
\(322\) 9.94303e10 + 1.72218e11i 0.515427 + 0.892746i
\(323\) −4.68217e11 −2.39351
\(324\) 0 0
\(325\) −4.02329e10 −0.200035
\(326\) −3.31432e10 5.74058e10i −0.162523 0.281499i
\(327\) 0 0
\(328\) 1.41474e10 2.45040e10i 0.0674906 0.116897i
\(329\) −4.99227e10 + 8.64687e10i −0.234918 + 0.406890i
\(330\) 0 0
\(331\) 8.34457e10 + 1.44532e11i 0.382101 + 0.661818i 0.991362 0.131151i \(-0.0418674\pi\)
−0.609262 + 0.792969i \(0.708534\pi\)
\(332\) 1.38356e11 0.624993
\(333\) 0 0
\(334\) −4.16319e11 −1.83049
\(335\) 9.45855e10 + 1.63827e11i 0.410320 + 0.710696i
\(336\) 0 0
\(337\) 1.43012e9 2.47704e9i 0.00604000 0.0104616i −0.862990 0.505222i \(-0.831411\pi\)
0.869030 + 0.494760i \(0.164744\pi\)
\(338\) −3.60378e11 + 6.24194e11i −1.50187 + 2.60132i
\(339\) 0 0
\(340\) −2.20848e11 3.82521e11i −0.896270 1.55239i
\(341\) 3.43639e10 0.137628
\(342\) 0 0
\(343\) −2.79060e11 −1.08861
\(344\) 2.63772e10 + 4.56867e10i 0.101558 + 0.175904i
\(345\) 0 0
\(346\) −9.38422e10 + 1.62539e11i −0.352011 + 0.609700i
\(347\) 7.83192e10 1.35653e11i 0.289992 0.502280i −0.683816 0.729655i \(-0.739681\pi\)
0.973807 + 0.227374i \(0.0730141\pi\)
\(348\) 0 0
\(349\) 1.59376e10 + 2.76047e10i 0.0575054 + 0.0996022i 0.893345 0.449371i \(-0.148352\pi\)
−0.835840 + 0.548974i \(0.815019\pi\)
\(350\) −3.77089e10 −0.134319
\(351\) 0 0
\(352\) 1.28800e11 0.447170
\(353\) −9.98160e10 1.72886e11i −0.342148 0.592618i 0.642683 0.766132i \(-0.277821\pi\)
−0.984831 + 0.173514i \(0.944488\pi\)
\(354\) 0 0
\(355\) 1.54158e10 2.67009e10i 0.0515155 0.0892275i
\(356\) −3.11708e11 + 5.39894e11i −1.02854 + 1.78149i
\(357\) 0 0
\(358\) −2.50950e11 4.34658e11i −0.807446 1.39854i
\(359\) −4.79288e10 −0.152290 −0.0761451 0.997097i \(-0.524261\pi\)
−0.0761451 + 0.997097i \(0.524261\pi\)
\(360\) 0 0
\(361\) 2.94840e11 0.913702
\(362\) −2.50133e11 4.33242e11i −0.765564 1.32600i
\(363\) 0 0
\(364\) −2.62383e11 + 4.54460e11i −0.783392 + 1.35688i
\(365\) 1.03696e11 1.79606e11i 0.305803 0.529667i
\(366\) 0 0
\(367\) −9.46312e10 1.63906e11i −0.272293 0.471626i 0.697155 0.716920i \(-0.254449\pi\)
−0.969449 + 0.245294i \(0.921115\pi\)
\(368\) 2.73968e11 0.778725
\(369\) 0 0
\(370\) −4.87161e11 −1.35134
\(371\) 9.73962e10 + 1.68695e11i 0.266907 + 0.462296i
\(372\) 0 0
\(373\) 4.99125e10 8.64509e10i 0.133512 0.231249i −0.791516 0.611148i \(-0.790708\pi\)
0.925028 + 0.379899i \(0.124041\pi\)
\(374\) 1.47874e11 2.56126e11i 0.390815 0.676911i
\(375\) 0 0
\(376\) −1.63700e10 2.83536e10i −0.0422379 0.0731582i
\(377\) 2.78485e11 0.710011
\(378\) 0 0
\(379\) 6.79275e10 0.169110 0.0845550 0.996419i \(-0.473053\pi\)
0.0845550 + 0.996419i \(0.473053\pi\)
\(380\) 2.91275e11 + 5.04504e11i 0.716601 + 1.24119i
\(381\) 0 0
\(382\) 3.16354e11 5.47942e11i 0.760131 1.31659i
\(383\) 2.57757e11 4.46448e11i 0.612091 1.06017i −0.378796 0.925480i \(-0.623662\pi\)
0.990887 0.134693i \(-0.0430048\pi\)
\(384\) 0 0
\(385\) 5.13491e10 + 8.89392e10i 0.119113 + 0.206310i
\(386\) 2.89239e11 0.663153
\(387\) 0 0
\(388\) 1.67374e11 0.374926
\(389\) −9.85027e10 1.70612e11i −0.218110 0.377777i 0.736120 0.676851i \(-0.236656\pi\)
−0.954230 + 0.299074i \(0.903322\pi\)
\(390\) 0 0
\(391\) 3.50179e11 6.06528e11i 0.757695 1.31237i
\(392\) 1.16233e10 2.01322e10i 0.0248624 0.0430629i
\(393\) 0 0
\(394\) −1.00772e11 1.74543e11i −0.210672 0.364895i
\(395\) 6.17696e10 0.127670
\(396\) 0 0
\(397\) −5.86747e11 −1.18548 −0.592739 0.805395i \(-0.701953\pi\)
−0.592739 + 0.805395i \(0.701953\pi\)
\(398\) −2.16905e11 3.75691e11i −0.433307 0.750510i
\(399\) 0 0
\(400\) −2.59755e10 + 4.49909e10i −0.0507334 + 0.0878729i
\(401\) 2.77848e11 4.81247e11i 0.536609 0.929434i −0.462475 0.886633i \(-0.653038\pi\)
0.999084 0.0428016i \(-0.0136283\pi\)
\(402\) 0 0
\(403\) 2.04915e11 + 3.54924e11i 0.386992 + 0.670289i
\(404\) 5.66151e10 0.105734
\(405\) 0 0
\(406\) 2.61014e11 0.476756
\(407\) −8.54581e10 1.48018e11i −0.154376 0.267386i
\(408\) 0 0
\(409\) −9.48608e10 + 1.64304e11i −0.167622 + 0.290330i −0.937583 0.347761i \(-0.886942\pi\)
0.769961 + 0.638091i \(0.220276\pi\)
\(410\) 3.60805e11 6.24932e11i 0.630587 1.09221i
\(411\) 0 0
\(412\) 2.52067e11 + 4.36592e11i 0.431001 + 0.746515i
\(413\) 7.10375e11 1.20147
\(414\) 0 0
\(415\) 3.22920e11 0.534416
\(416\) 7.68045e11 + 1.33029e12i 1.25738 + 2.17785i
\(417\) 0 0
\(418\) −1.95031e11 + 3.37803e11i −0.312471 + 0.541215i
\(419\) 3.62080e11 6.27142e11i 0.573907 0.994037i −0.422252 0.906479i \(-0.638760\pi\)
0.996159 0.0875584i \(-0.0279064\pi\)
\(420\) 0 0
\(421\) −5.47488e11 9.48278e11i −0.849387 1.47118i −0.881756 0.471705i \(-0.843639\pi\)
0.0323695 0.999476i \(-0.489695\pi\)
\(422\) −8.12411e11 −1.24701
\(423\) 0 0
\(424\) −6.38736e10 −0.0959787
\(425\) 6.64025e10 + 1.15013e11i 0.0987267 + 0.171000i
\(426\) 0 0
\(427\) −4.75738e11 + 8.24002e11i −0.692535 + 1.19951i
\(428\) −4.70597e11 + 8.15098e11i −0.677879 + 1.17412i
\(429\) 0 0
\(430\) 6.72707e11 + 1.16516e12i 0.948894 + 1.64353i
\(431\) −5.24483e11 −0.732123 −0.366061 0.930591i \(-0.619294\pi\)
−0.366061 + 0.930591i \(0.619294\pi\)
\(432\) 0 0
\(433\) −5.33682e11 −0.729604 −0.364802 0.931085i \(-0.618863\pi\)
−0.364802 + 0.931085i \(0.618863\pi\)
\(434\) 1.92060e11 + 3.32657e11i 0.259856 + 0.450084i
\(435\) 0 0
\(436\) 2.23639e11 3.87355e11i 0.296387 0.513357i
\(437\) −4.61848e11 + 7.99945e11i −0.605805 + 1.04929i
\(438\) 0 0
\(439\) 2.71250e11 + 4.69819e11i 0.348562 + 0.603727i 0.985994 0.166780i \(-0.0533368\pi\)
−0.637432 + 0.770506i \(0.720004\pi\)
\(440\) −3.36753e10 −0.0428326
\(441\) 0 0
\(442\) 3.52716e12 4.39567
\(443\) −5.08428e11 8.80622e11i −0.627209 1.08636i −0.988109 0.153753i \(-0.950864\pi\)
0.360900 0.932604i \(-0.382470\pi\)
\(444\) 0 0
\(445\) −7.27524e11 + 1.26011e12i −0.879483 + 1.52331i
\(446\) −2.27082e11 + 3.93317e11i −0.271754 + 0.470691i
\(447\) 0 0
\(448\) 4.12063e11 + 7.13715e11i 0.483296 + 0.837093i
\(449\) −7.68289e10 −0.0892105 −0.0446053 0.999005i \(-0.514203\pi\)
−0.0446053 + 0.999005i \(0.514203\pi\)
\(450\) 0 0
\(451\) 2.53170e11 0.288150
\(452\) −1.64475e11 2.84879e11i −0.185343 0.321024i
\(453\) 0 0
\(454\) 9.09944e11 1.57607e12i 1.00523 1.74110i
\(455\) −6.12399e11 + 1.06071e12i −0.669859 + 1.16023i
\(456\) 0 0
\(457\) 2.77147e11 + 4.80033e11i 0.297226 + 0.514811i 0.975500 0.219998i \(-0.0706050\pi\)
−0.678274 + 0.734809i \(0.737272\pi\)
\(458\) 1.04949e11 0.111451
\(459\) 0 0
\(460\) −8.71378e11 −0.907395
\(461\) −5.46732e11 9.46968e11i −0.563794 0.976520i −0.997161 0.0753023i \(-0.976008\pi\)
0.433367 0.901218i \(-0.357326\pi\)
\(462\) 0 0
\(463\) −7.00157e11 + 1.21271e12i −0.708077 + 1.22643i 0.257492 + 0.966280i \(0.417104\pi\)
−0.965569 + 0.260145i \(0.916229\pi\)
\(464\) 1.79798e11 3.11419e11i 0.180075 0.311899i
\(465\) 0 0
\(466\) 2.39389e11 + 4.14634e11i 0.235163 + 0.407313i
\(467\) −1.59376e12 −1.55059 −0.775296 0.631599i \(-0.782399\pi\)
−0.775296 + 0.631599i \(0.782399\pi\)
\(468\) 0 0
\(469\) −7.41873e11 −0.708030
\(470\) −4.17488e11 7.23111e11i −0.394643 0.683541i
\(471\) 0 0
\(472\) −1.16468e11 + 2.01729e11i −0.108011 + 0.187081i
\(473\) −2.36013e11 + 4.08787e11i −0.216801 + 0.375510i
\(474\) 0 0
\(475\) −8.75778e10 1.51689e11i −0.0789356 0.136720i
\(476\) 1.73220e12 1.54656
\(477\) 0 0
\(478\) −1.49959e12 −1.31386
\(479\) 4.06062e11 + 7.03319e11i 0.352438 + 0.610440i 0.986676 0.162698i \(-0.0520196\pi\)
−0.634238 + 0.773138i \(0.718686\pi\)
\(480\) 0 0
\(481\) 1.01919e12 1.76529e12i 0.868165 1.50371i
\(482\) −3.05412e10 + 5.28990e10i −0.0257736 + 0.0446412i
\(483\) 0 0
\(484\) 5.99893e11 + 1.03905e12i 0.496901 + 0.860658i
\(485\) 3.90650e11 0.320590
\(486\) 0 0
\(487\) 8.95090e11 0.721085 0.360542 0.932743i \(-0.382592\pi\)
0.360542 + 0.932743i \(0.382592\pi\)
\(488\) −1.55997e11 2.70195e11i −0.124517 0.215669i
\(489\) 0 0
\(490\) 2.96433e11 5.13437e11i 0.232297 0.402351i
\(491\) −7.05747e11 + 1.22239e12i −0.548002 + 0.949168i 0.450409 + 0.892822i \(0.351278\pi\)
−0.998411 + 0.0563453i \(0.982055\pi\)
\(492\) 0 0
\(493\) −4.59626e11 7.96096e11i −0.350424 0.606952i
\(494\) −4.65194e12 −3.51450
\(495\) 0 0
\(496\) 5.29197e11 0.392600
\(497\) 6.04562e10 + 1.04713e11i 0.0444464 + 0.0769834i
\(498\) 0 0
\(499\) 9.12138e10 1.57987e11i 0.0658580 0.114069i −0.831216 0.555949i \(-0.812355\pi\)
0.897074 + 0.441880i \(0.145688\pi\)
\(500\) 8.06562e11 1.39701e12i 0.577129 0.999617i
\(501\) 0 0
\(502\) −1.67701e12 2.90466e12i −1.17860 2.04140i
\(503\) 2.33627e12 1.62730 0.813649 0.581357i \(-0.197478\pi\)
0.813649 + 0.581357i \(0.197478\pi\)
\(504\) 0 0
\(505\) 1.32139e11 0.0904108
\(506\) −2.91726e11 5.05284e11i −0.197833 0.342656i
\(507\) 0 0
\(508\) −2.82641e11 + 4.89549e11i −0.188299 + 0.326144i
\(509\) −1.57931e11 + 2.73544e11i −0.104289 + 0.180633i −0.913447 0.406957i \(-0.866590\pi\)
0.809159 + 0.587590i \(0.199923\pi\)
\(510\) 0 0
\(511\) 4.06663e11 + 7.04361e11i 0.263840 + 0.456984i
\(512\) 2.18534e12 1.40542
\(513\) 0 0
\(514\) 4.14503e12 2.61935
\(515\) 5.88321e11 + 1.01900e12i 0.368538 + 0.638326i
\(516\) 0 0
\(517\) 1.46472e11 2.53697e11i 0.0901669 0.156174i
\(518\) 9.55251e11 1.65454e12i 0.582953 1.00970i
\(519\) 0 0
\(520\) −2.00809e11 3.47812e11i −0.120439 0.208607i
\(521\) 7.03557e11 0.418340 0.209170 0.977879i \(-0.432924\pi\)
0.209170 + 0.977879i \(0.432924\pi\)
\(522\) 0 0
\(523\) −3.23536e12 −1.89088 −0.945441 0.325793i \(-0.894369\pi\)
−0.945441 + 0.325793i \(0.894369\pi\)
\(524\) 1.31533e12 + 2.27822e12i 0.762156 + 1.32009i
\(525\) 0 0
\(526\) −1.50167e12 + 2.60096e12i −0.855337 + 1.48149i
\(527\) 6.76407e11 1.17157e12i 0.381997 0.661638i
\(528\) 0 0
\(529\) 2.09745e11 + 3.63288e11i 0.116450 + 0.201698i
\(530\) −1.62899e12 −0.896760
\(531\) 0 0
\(532\) −2.28459e12 −1.23653
\(533\) 1.50968e12 + 2.61484e12i 0.810237 + 1.40337i
\(534\) 0 0
\(535\) −1.09837e12 + 1.90243e12i −0.579637 + 1.00396i
\(536\) 1.21632e11 2.10673e11i 0.0636513 0.110247i
\(537\) 0 0
\(538\) −6.33497e10 1.09725e11i −0.0326005 0.0564657i
\(539\) 2.08002e11 0.106149
\(540\) 0 0
\(541\) −1.71900e12 −0.862759 −0.431379 0.902171i \(-0.641973\pi\)
−0.431379 + 0.902171i \(0.641973\pi\)
\(542\) −2.07323e12 3.59095e12i −1.03193 1.78736i
\(543\) 0 0
\(544\) 2.53524e12 4.39117e12i 1.24115 2.14974i
\(545\) 5.21972e11 9.04082e11i 0.253433 0.438959i
\(546\) 0 0
\(547\) −6.93110e11 1.20050e12i −0.331024 0.573350i 0.651689 0.758486i \(-0.274061\pi\)
−0.982713 + 0.185136i \(0.940727\pi\)
\(548\) 1.91685e12 0.907979
\(549\) 0 0
\(550\) 1.10637e11 0.0515547
\(551\) 6.06198e11 + 1.04997e12i 0.280177 + 0.485280i
\(552\) 0 0
\(553\) −1.21121e11 + 2.09788e11i −0.0550752 + 0.0953930i
\(554\) 2.00507e12 3.47288e12i 0.904347 1.56637i
\(555\) 0 0
\(556\) −1.30025e12 2.25210e12i −0.577020 0.999428i
\(557\) −1.75428e12 −0.772236 −0.386118 0.922449i \(-0.626184\pi\)
−0.386118 + 0.922449i \(0.626184\pi\)
\(558\) 0 0
\(559\) −5.62948e12 −2.43846
\(560\) 7.90765e11 + 1.36965e12i 0.339783 + 0.588521i
\(561\) 0 0
\(562\) −2.93513e11 + 5.08380e11i −0.124112 + 0.214968i
\(563\) −1.77696e12 + 3.07778e12i −0.745399 + 1.29107i 0.204609 + 0.978844i \(0.434408\pi\)
−0.950008 + 0.312226i \(0.898926\pi\)
\(564\) 0 0
\(565\) −3.83882e11 6.64904e11i −0.158482 0.274499i
\(566\) 6.54771e12 2.68173
\(567\) 0 0
\(568\) −3.96479e10 −0.0159828
\(569\) −5.74797e11 9.95577e11i −0.229884 0.398171i 0.727889 0.685695i \(-0.240501\pi\)
−0.957774 + 0.287523i \(0.907168\pi\)
\(570\) 0 0
\(571\) 8.37800e11 1.45111e12i 0.329821 0.571266i −0.652655 0.757655i \(-0.726345\pi\)
0.982476 + 0.186389i \(0.0596784\pi\)
\(572\) 7.69825e11 1.33338e12i 0.300684 0.520799i
\(573\) 0 0
\(574\) 1.41497e12 + 2.45080e12i 0.544056 + 0.942332i
\(575\) 2.61997e11 0.0999520
\(576\) 0 0
\(577\) 2.71422e12 1.01942 0.509712 0.860345i \(-0.329752\pi\)
0.509712 + 0.860345i \(0.329752\pi\)
\(578\) −3.87681e12 6.71483e12i −1.44477 2.50242i
\(579\) 0 0
\(580\) −5.71862e11 + 9.90494e11i −0.209829 + 0.363434i
\(581\) −6.33199e11 + 1.09673e12i −0.230541 + 0.399308i
\(582\) 0 0
\(583\) −2.85758e11 4.94947e11i −0.102445 0.177440i
\(584\) −2.66695e11 −0.0948760
\(585\) 0 0
\(586\) −1.73623e12 −0.608230
\(587\) 2.88822e11 + 5.00254e11i 0.100406 + 0.173908i 0.911852 0.410519i \(-0.134653\pi\)
−0.811446 + 0.584427i \(0.801319\pi\)
\(588\) 0 0
\(589\) −8.92108e11 + 1.54518e12i −0.305421 + 0.529004i
\(590\) −2.97032e12 + 5.14475e12i −1.00918 + 1.74795i
\(591\) 0 0
\(592\) −1.31604e12 2.27944e12i −0.440373 0.762748i
\(593\) −3.92531e12 −1.30355 −0.651776 0.758411i \(-0.725976\pi\)
−0.651776 + 0.758411i \(0.725976\pi\)
\(594\) 0 0
\(595\) 4.04295e12 1.32243
\(596\) 6.40133e11 + 1.10874e12i 0.207808 + 0.359934i
\(597\) 0 0
\(598\) 3.47918e12 6.02612e12i 1.11256 1.92700i
\(599\) 1.87955e12 3.25548e12i 0.596532 1.03322i −0.396797 0.917906i \(-0.629878\pi\)
0.993329 0.115317i \(-0.0367883\pi\)
\(600\) 0 0
\(601\) −7.16159e11 1.24042e12i −0.223910 0.387824i 0.732082 0.681217i \(-0.238549\pi\)
−0.955992 + 0.293393i \(0.905216\pi\)
\(602\) −5.27631e12 −1.63737
\(603\) 0 0
\(604\) −5.60741e11 −0.171434
\(605\) 1.40015e12 + 2.42512e12i 0.424887 + 0.735927i
\(606\) 0 0
\(607\) −1.84111e12 + 3.18889e12i −0.550465 + 0.953434i 0.447776 + 0.894146i \(0.352216\pi\)
−0.998241 + 0.0592880i \(0.981117\pi\)
\(608\) −3.34372e12 + 5.79149e12i −0.992346 + 1.71879i
\(609\) 0 0
\(610\) −3.97845e12 6.89087e12i −1.16340 2.01507i
\(611\) 3.49371e12 1.01415
\(612\) 0 0
\(613\) 3.14562e12 0.899777 0.449888 0.893085i \(-0.351464\pi\)
0.449888 + 0.893085i \(0.351464\pi\)
\(614\) 1.00088e12 + 1.73357e12i 0.284200 + 0.492248i
\(615\) 0 0
\(616\) 6.60323e10 1.14371e11i 0.0184775 0.0320040i
\(617\) −9.20559e11 + 1.59445e12i −0.255722 + 0.442924i −0.965091 0.261913i \(-0.915647\pi\)
0.709369 + 0.704837i \(0.248980\pi\)
\(618\) 0 0
\(619\) 1.08436e11 + 1.87817e11i 0.0296870 + 0.0514193i 0.880487 0.474070i \(-0.157216\pi\)
−0.850800 + 0.525489i \(0.823882\pi\)
\(620\) −1.68316e12 −0.457469
\(621\) 0 0
\(622\) −1.23157e12 −0.329915
\(623\) −2.85313e12 4.94177e12i −0.758797 1.31428i
\(624\) 0 0
\(625\) 1.66484e12 2.88359e12i 0.436428 0.755915i
\(626\) −1.46840e12 + 2.54335e12i −0.382174 + 0.661944i
\(627\) 0 0
\(628\) 3.36216e12 + 5.82343e12i 0.862581 + 1.49403i
\(629\) −6.72851e12 −1.71392
\(630\) 0 0
\(631\) 3.08505e11 0.0774693 0.0387346 0.999250i \(-0.487667\pi\)
0.0387346 + 0.999250i \(0.487667\pi\)
\(632\) −3.97163e10 6.87906e10i −0.00990243 0.0171515i
\(633\) 0 0
\(634\) −3.60531e12 + 6.24458e12i −0.886219 + 1.53498i
\(635\) −6.59682e11 + 1.14260e12i −0.161010 + 0.278877i
\(636\) 0 0
\(637\) 1.24033e12 + 2.14832e12i 0.298477 + 0.516978i
\(638\) −7.65808e11 −0.182990
\(639\) 0 0
\(640\) −1.16062e12 −0.273451
\(641\) 3.37713e12 + 5.84935e12i 0.790108 + 1.36851i 0.925900 + 0.377769i \(0.123309\pi\)
−0.135792 + 0.990737i \(0.543358\pi\)
\(642\) 0 0
\(643\) −4.57285e11 + 7.92042e11i −0.105496 + 0.182725i −0.913941 0.405847i \(-0.866977\pi\)
0.808444 + 0.588572i \(0.200310\pi\)
\(644\) 1.70864e12 2.95946e12i 0.391440 0.677993i
\(645\) 0 0
\(646\) 7.67782e12 + 1.32984e13i 1.73457 + 3.00436i
\(647\) −1.29528e12 −0.290600 −0.145300 0.989388i \(-0.546415\pi\)
−0.145300 + 0.989388i \(0.546415\pi\)
\(648\) 0 0
\(649\) −2.08422e12 −0.461151
\(650\) 6.59739e11 + 1.14270e12i 0.144965 + 0.251086i
\(651\) 0 0
\(652\) −5.69544e11 + 9.86480e11i −0.123428 + 0.213783i
\(653\) 2.61023e12 4.52106e12i 0.561785 0.973040i −0.435556 0.900162i \(-0.643448\pi\)
0.997341 0.0728783i \(-0.0232185\pi\)
\(654\) 0 0
\(655\) 3.06997e12 + 5.31734e12i 0.651700 + 1.12878i
\(656\) 3.89877e12 0.821978
\(657\) 0 0
\(658\) 3.27453e12 0.680977
\(659\) −2.43495e12 4.21746e12i −0.502928 0.871098i −0.999994 0.00338473i \(-0.998923\pi\)
0.497066 0.867713i \(-0.334411\pi\)
\(660\) 0 0
\(661\) −8.69844e11 + 1.50661e12i −0.177229 + 0.306970i −0.940930 0.338600i \(-0.890047\pi\)
0.763701 + 0.645570i \(0.223380\pi\)
\(662\) 2.73668e12 4.74007e12i 0.553814 0.959233i
\(663\) 0 0
\(664\) −2.07630e11 3.59625e11i −0.0414508 0.0717949i
\(665\) −5.33221e12 −1.05733
\(666\) 0 0
\(667\) −1.81350e12 −0.354773
\(668\) 3.57708e12 + 6.19569e12i 0.695080 + 1.20391i
\(669\) 0 0
\(670\) 3.10203e12 5.37287e12i 0.594715 1.03008i
\(671\) 1.39580e12 2.41760e12i 0.265811 0.460398i
\(672\) 0 0
\(673\) −2.50421e12 4.33741e12i −0.470546 0.815010i 0.528886 0.848693i \(-0.322610\pi\)
−0.999433 + 0.0336827i \(0.989276\pi\)
\(674\) −9.38042e10 −0.0175087
\(675\) 0 0
\(676\) 1.23857e13 2.28119
\(677\) −3.72041e12 6.44394e12i −0.680678 1.17897i −0.974774 0.223194i \(-0.928352\pi\)
0.294096 0.955776i \(-0.404982\pi\)
\(678\) 0 0
\(679\) −7.66006e11 + 1.32676e12i −0.138299 + 0.239540i
\(680\) −6.62853e11 + 1.14810e12i −0.118885 + 0.205915i
\(681\) 0 0
\(682\) −5.63499e11 9.76009e11i −0.0997386 0.172752i
\(683\) 9.49272e12 1.66916 0.834579 0.550888i \(-0.185711\pi\)
0.834579 + 0.550888i \(0.185711\pi\)
\(684\) 0 0
\(685\) 4.47391e12 0.776390
\(686\) 4.57602e12 + 7.92590e12i 0.788914 + 1.36644i
\(687\) 0 0
\(688\) −3.63455e12 + 6.29523e12i −0.618448 + 1.07118i
\(689\) 3.40801e12 5.90284e12i 0.576121 0.997871i
\(690\) 0 0
\(691\) −6.51591e11 1.12859e12i −0.108724 0.188315i 0.806530 0.591193i \(-0.201343\pi\)
−0.915253 + 0.402879i \(0.868010\pi\)
\(692\) 3.22523e12 0.534667
\(693\) 0 0
\(694\) −5.13711e12 −0.840623
\(695\) −3.03477e12 5.25638e12i −0.493395 0.854585i
\(696\) 0 0
\(697\) 4.98331e12 8.63135e12i 0.799780 1.38526i
\(698\) 5.22689e11 9.05324e11i 0.0833478 0.144363i
\(699\) 0 0
\(700\) 3.24001e11 + 5.61186e11i 0.0510041 + 0.0883416i
\(701\) 1.24667e13 1.94993 0.974966 0.222354i \(-0.0713741\pi\)
0.974966 + 0.222354i \(0.0713741\pi\)
\(702\) 0 0
\(703\) 8.87418e12 1.37034
\(704\) −1.20898e12 2.09402e12i −0.185500 0.321295i
\(705\) 0 0
\(706\) −3.27356e12 + 5.66998e12i −0.495906 + 0.858935i
\(707\) −2.59105e11 + 4.48783e11i −0.0390022 + 0.0675537i
\(708\) 0 0
\(709\) −1.49539e12 2.59010e12i −0.222253 0.384953i 0.733239 0.679971i \(-0.238008\pi\)
−0.955492 + 0.295018i \(0.904674\pi\)
\(710\) −1.01115e12 −0.149332
\(711\) 0 0
\(712\) 1.87112e12 0.272861
\(713\) −1.33441e12 2.31127e12i −0.193369 0.334925i
\(714\) 0 0
\(715\) 1.79676e12 3.11209e12i 0.257107 0.445322i
\(716\) −4.31241e12 + 7.46931e12i −0.613212 + 1.06212i
\(717\) 0 0
\(718\) 7.85937e11 + 1.36128e12i 0.110364 + 0.191156i
\(719\) 4.07204e12 0.568240 0.284120 0.958789i \(-0.408299\pi\)
0.284120 + 0.958789i \(0.408299\pi\)
\(720\) 0 0
\(721\) −4.61444e12 −0.635931
\(722\) −4.83479e12 8.37411e12i −0.662156 1.14689i
\(723\) 0 0
\(724\) −4.29836e12 + 7.44498e12i −0.581405 + 1.00702i
\(725\) 1.71942e11 2.97812e11i 0.0231132 0.0400333i
\(726\) 0 0
\(727\) 5.16042e12 + 8.93811e12i 0.685141 + 1.18670i 0.973392 + 0.229145i \(0.0735930\pi\)
−0.288251 + 0.957555i \(0.593074\pi\)
\(728\) 1.57503e12 0.207825
\(729\) 0 0
\(730\) −6.80159e12 −0.886457
\(731\) 9.29119e12 + 1.60928e13i 1.20349 + 2.08451i
\(732\) 0 0
\(733\) 5.46852e12 9.47176e12i 0.699684 1.21189i −0.268892 0.963170i \(-0.586657\pi\)
0.968576 0.248718i \(-0.0800093\pi\)
\(734\) −3.10352e12 + 5.37546e12i −0.394660 + 0.683571i
\(735\) 0 0
\(736\) −5.00152e12 8.66289e12i −0.628278 1.08821i
\(737\) 2.17664e12 0.271758
\(738\) 0 0
\(739\) 5.74543e12 0.708635 0.354317 0.935125i \(-0.384713\pi\)
0.354317 + 0.935125i \(0.384713\pi\)
\(740\) 4.18577e12 + 7.24997e12i 0.513136 + 0.888778i
\(741\) 0 0
\(742\) 3.19420e12 5.53252e12i 0.386852 0.670048i
\(743\) −1.26711e12 + 2.19470e12i −0.152534 + 0.264196i −0.932158 0.362051i \(-0.882077\pi\)
0.779625 + 0.626247i \(0.215410\pi\)
\(744\) 0 0
\(745\) 1.49406e12 + 2.58780e12i 0.177691 + 0.307770i
\(746\) −3.27386e12 −0.387022
\(747\) 0 0
\(748\) −5.08224e12 −0.593606
\(749\) −4.30748e12 7.46077e12i −0.500097 0.866194i
\(750\) 0 0
\(751\) −1.36927e12 + 2.37164e12i −0.157076 + 0.272063i −0.933813 0.357762i \(-0.883540\pi\)
0.776737 + 0.629825i \(0.216873\pi\)
\(752\) 2.25564e12 3.90688e12i 0.257211 0.445502i
\(753\) 0 0
\(754\) −4.56659e12 7.90957e12i −0.514542 0.891213i
\(755\) −1.30876e12 −0.146589
\(756\) 0 0
\(757\) −1.27669e13 −1.41304 −0.706519 0.707694i \(-0.749736\pi\)
−0.706519 + 0.707694i \(0.749736\pi\)
\(758\) −1.11388e12 1.92929e12i −0.122553 0.212269i
\(759\) 0 0
\(760\) 8.74232e11 1.51422e12i 0.0950530 0.164637i
\(761\) 1.98620e12 3.44020e12i 0.214680 0.371838i −0.738493 0.674261i \(-0.764462\pi\)
0.953174 + 0.302423i \(0.0977957\pi\)
\(762\) 0 0
\(763\) 2.04702e12 + 3.54554e12i 0.218656 + 0.378723i
\(764\) −1.08727e13 −1.15456
\(765\) 0 0
\(766\) −1.69068e13 −1.77432
\(767\) −1.24284e13 2.15267e13i −1.29669 2.24594i
\(768\) 0 0
\(769\) 2.92820e11 5.07180e11i 0.0301948 0.0522990i −0.850533 0.525922i \(-0.823721\pi\)
0.880728 + 0.473623i \(0.157054\pi\)
\(770\) 1.68404e12 2.91685e12i 0.172641 0.299024i
\(771\) 0 0
\(772\) −2.48519e12 4.30447e12i −0.251815 0.436156i
\(773\) −4.19065e12 −0.422157 −0.211079 0.977469i \(-0.567698\pi\)
−0.211079 + 0.977469i \(0.567698\pi\)
\(774\) 0 0
\(775\) 5.06075e11 0.0503915
\(776\) −2.51178e11 4.35053e11i −0.0248659 0.0430689i
\(777\) 0 0
\(778\) −3.23049e12 + 5.59538e12i −0.316126 + 0.547547i
\(779\) −6.57246e12 + 1.13838e13i −0.639454 + 1.10757i
\(780\) 0 0
\(781\) −1.77377e11 3.07226e11i −0.0170595 0.0295480i
\(782\) −2.29689e13 −2.19639
\(783\) 0 0
\(784\) 3.20318e12 0.302803
\(785\) 7.84724e12 + 1.35918e13i 0.737571 + 1.27751i
\(786\) 0 0
\(787\) −4.45343e12 + 7.71357e12i −0.413817 + 0.716752i −0.995303 0.0968040i \(-0.969138\pi\)
0.581486 + 0.813556i \(0.302471\pi\)
\(788\) −1.73170e12 + 2.99940e12i −0.159995 + 0.277119i
\(789\) 0 0
\(790\) −1.01290e12 1.75439e12i −0.0925216 0.160252i
\(791\) 3.01095e12 0.273469
\(792\) 0 0
\(793\) 3.32932e13 2.98969
\(794\) 9.62147e12 + 1.66649e13i 0.859111 + 1.48802i
\(795\) 0 0
\(796\) −3.72737e12 + 6.45599e12i −0.329074 + 0.569973i
\(797\) −7.69801e11 + 1.33333e12i −0.0675797 + 0.117051i −0.897835 0.440331i \(-0.854861\pi\)
0.830256 + 0.557383i \(0.188194\pi\)
\(798\) 0 0
\(799\) −5.76620e12 9.98736e12i −0.500529 0.866942i
\(800\) 1.89682e12 0.163728
\(801\) 0 0
\(802\) −1.82246e13 −1.55551
\(803\) −1.19314e12 2.06658e12i −0.101268 0.175401i
\(804\) 0 0
\(805\) 3.98795e12 6.90734e12i 0.334710 0.579735i
\(806\) 6.72040e12 1.16401e13i 0.560903 0.971512i
\(807\) 0 0
\(808\) −8.49621e10 1.47159e11i −0.00701252 0.0121460i
\(809\) −2.05894e13 −1.68996 −0.844979 0.534799i \(-0.820387\pi\)
−0.844979 + 0.534799i \(0.820387\pi\)
\(810\) 0 0
\(811\) −7.35060e12 −0.596663 −0.298331 0.954462i \(-0.596430\pi\)
−0.298331 + 0.954462i \(0.596430\pi\)
\(812\) −2.24267e12 3.88442e12i −0.181036 0.313563i
\(813\) 0 0
\(814\) −2.80268e12 + 4.85439e12i −0.223751 + 0.387547i
\(815\) −1.32931e12 + 2.30243e12i −0.105540 + 0.182801i
\(816\) 0 0
\(817\) −1.22541e13 2.12247e13i −0.962236 1.66664i
\(818\) 6.22210e12 0.485901
\(819\) 0 0
\(820\) −1.24004e13 −0.957794
\(821\) 3.51993e12 + 6.09669e12i 0.270389 + 0.468328i 0.968961 0.247212i \(-0.0795143\pi\)
−0.698572 + 0.715539i \(0.746181\pi\)
\(822\) 0 0
\(823\) −1.69886e11 + 2.94251e11i −0.0129080 + 0.0223573i −0.872407 0.488780i \(-0.837442\pi\)
0.859499 + 0.511137i \(0.170776\pi\)
\(824\) 7.56551e11 1.31039e12i 0.0571697 0.0990208i
\(825\) 0 0
\(826\) −1.16487e13 2.01762e13i −0.870699 1.50809i
\(827\) −1.68131e13 −1.24989 −0.624947 0.780668i \(-0.714879\pi\)
−0.624947 + 0.780668i \(0.714879\pi\)
\(828\) 0 0
\(829\) 6.50421e12 0.478299 0.239149 0.970983i \(-0.423131\pi\)
0.239149 + 0.970983i \(0.423131\pi\)
\(830\) −5.29525e12 9.17164e12i −0.387289 0.670804i
\(831\) 0 0
\(832\) 1.44186e13 2.49737e13i 1.04320 1.80688i
\(833\) 4.09423e12 7.09142e12i 0.294625 0.510306i
\(834\) 0 0
\(835\) 8.34888e12 + 1.44607e13i 0.594345 + 1.02944i
\(836\) 6.70294e12 0.474610
\(837\) 0 0
\(838\) −2.37496e13 −1.66363
\(839\) 1.05425e12 + 1.82601e12i 0.0734538 + 0.127226i 0.900413 0.435036i \(-0.143265\pi\)
−0.826959 + 0.562262i \(0.809931\pi\)
\(840\) 0 0
\(841\) 6.06342e12 1.05022e13i 0.417961 0.723930i
\(842\) −1.79554e13 + 3.10997e13i −1.23109 + 2.13232i
\(843\) 0 0
\(844\) 6.98037e12 + 1.20903e13i 0.473519 + 0.820159i
\(845\) 2.89081e13 1.95059
\(846\) 0 0
\(847\) −1.09819e13 −0.733166
\(848\) −4.40061e12 7.62209e12i −0.292235 0.506166i
\(849\) 0 0
\(850\) 2.17774e12 3.77195e12i 0.143094 0.247845i
\(851\) −6.63699e12 + 1.14956e13i −0.433798 + 0.751361i
\(852\) 0 0
\(853\) −8.71221e12 1.50900e13i −0.563453 0.975929i −0.997192 0.0748904i \(-0.976139\pi\)
0.433739 0.901039i \(-0.357194\pi\)
\(854\) 3.12046e13 2.00751
\(855\) 0 0
\(856\) 2.82489e12 0.179833
\(857\) −7.74931e11 1.34222e12i −0.0490737 0.0849982i 0.840445 0.541897i \(-0.182294\pi\)
−0.889519 + 0.456898i \(0.848960\pi\)
\(858\) 0 0
\(859\) −9.72767e12 + 1.68488e13i −0.609592 + 1.05584i 0.381715 + 0.924280i \(0.375333\pi\)
−0.991308 + 0.131565i \(0.958000\pi\)
\(860\) 1.15600e13 2.00225e13i 0.720635 1.24818i
\(861\) 0 0
\(862\) 8.60047e12 + 1.48965e13i 0.530566 + 0.918968i
\(863\) −1.23365e13 −0.757080 −0.378540 0.925585i \(-0.623574\pi\)
−0.378540 + 0.925585i \(0.623574\pi\)
\(864\) 0 0
\(865\) 7.52765e12 0.457180
\(866\) 8.75132e12 + 1.51577e13i 0.528741 + 0.915806i
\(867\) 0 0
\(868\) 3.30042e12 5.71649e12i 0.197347 0.341815i
\(869\) 3.55366e11 6.15512e11i 0.0211391 0.0366140i
\(870\) 0 0
\(871\) 1.29795e13 + 2.24811e13i 0.764146 + 1.32354i
\(872\) −1.34246e12 −0.0786280
\(873\) 0 0
\(874\) 3.02936e13 1.75610
\(875\) 7.38264e12 + 1.27871e13i 0.425770 + 0.737456i
\(876\) 0 0
\(877\) 1.18847e13 2.05849e13i 0.678406 1.17503i −0.297055 0.954860i \(-0.596004\pi\)
0.975461 0.220173i \(-0.0706622\pi\)
\(878\) 8.89592e12 1.54082e13i 0.505202 0.875036i
\(879\) 0 0
\(880\) −2.32009e12 4.01851e12i −0.130416 0.225888i
\(881\) 2.37158e13 1.32631 0.663156 0.748481i \(-0.269217\pi\)
0.663156 + 0.748481i \(0.269217\pi\)
\(882\) 0 0
\(883\) 1.17562e13 0.650795 0.325397 0.945577i \(-0.394502\pi\)
0.325397 + 0.945577i \(0.394502\pi\)
\(884\) −3.03059e13 5.24914e13i −1.66914 2.89103i
\(885\) 0 0
\(886\) −1.66744e13 + 2.88809e13i −0.909072 + 1.57456i
\(887\) 1.55671e13 2.69630e13i 0.844406 1.46255i −0.0417306 0.999129i \(-0.513287\pi\)
0.886136 0.463425i \(-0.153380\pi\)
\(888\) 0 0
\(889\) −2.58707e12 4.48095e12i −0.138916 0.240609i
\(890\) 4.77197e13 2.54943
\(891\) 0 0
\(892\) 7.80449e12 0.412765
\(893\) 7.60501e12 + 1.31723e13i 0.400192 + 0.693152i
\(894\) 0 0
\(895\) −1.00651e13 + 1.74333e13i −0.524342 + 0.908188i
\(896\) 2.27580e12 3.94180e12i 0.117964 0.204319i
\(897\) 0 0
\(898\) 1.25984e12 + 2.18211e12i 0.0646505 + 0.111978i
\(899\) −3.50296e12 −0.178861
\(900\) 0 0
\(901\) −2.24990e13 −1.13737
\(902\) −4.15148e12 7.19058e12i −0.208821 0.361688i
\(903\) 0 0
\(904\) −4.93654e11 + 8.55033e11i −0.0245847 + 0.0425819i
\(905\) −1.00323e13 + 1.73765e13i −0.497145 + 0.861080i
\(906\) 0 0
\(907\) 1.52208e13 + 2.63632e13i 0.746802 + 1.29350i 0.949348 + 0.314226i \(0.101745\pi\)
−0.202547 + 0.979273i \(0.564922\pi\)
\(908\) −3.12736e13 −1.52683
\(909\) 0 0
\(910\) 4.01685e13 1.94178
\(911\) 8.72437e12 + 1.51110e13i 0.419664 + 0.726879i 0.995905 0.0904006i \(-0.0288147\pi\)
−0.576242 + 0.817279i \(0.695481\pi\)
\(912\) 0 0
\(913\) 1.85779e12 3.21779e12i 0.0884867 0.153264i
\(914\) 9.08931e12 1.57432e13i 0.430798 0.746163i
\(915\) 0 0
\(916\) −9.01739e11 1.56186e12i −0.0423205 0.0733013i
\(917\) −2.40790e13 −1.12454
\(918\) 0 0
\(919\) 9.40533e12 0.434965 0.217483 0.976064i \(-0.430215\pi\)
0.217483 + 0.976064i \(0.430215\pi\)
\(920\) 1.30767e12 + 2.26496e12i 0.0601803 + 0.104235i
\(921\) 0 0
\(922\) −1.79306e13 + 3.10568e13i −0.817158 + 1.41536i
\(923\) 2.11543e12 3.66404e12i 0.0959382 0.166170i
\(924\) 0 0
\(925\) −1.25854e12 2.17985e12i −0.0565234 0.0979013i
\(926\) 4.59247e13 2.05256
\(927\) 0 0
\(928\) −1.31295e13 −0.581140
\(929\) −4.21514e12 7.30083e12i −0.185670 0.321589i 0.758132 0.652101i \(-0.226112\pi\)
−0.943802 + 0.330511i \(0.892779\pi\)
\(930\) 0 0
\(931\) −5.39985e12 + 9.35282e12i −0.235564 + 0.408008i
\(932\) 4.11374e12 7.12521e12i 0.178594 0.309333i
\(933\) 0 0
\(934\) 2.61345e13 + 4.52663e13i 1.12371 + 1.94632i
\(935\) −1.18619e13 −0.507577
\(936\) 0 0
\(937\) 2.45230e10 0.00103931 0.000519656 1.00000i \(-0.499835\pi\)
0.000519656 1.00000i \(0.499835\pi\)
\(938\) 1.21652e13 + 2.10708e13i 0.513106 + 0.888726i
\(939\) 0 0
\(940\) −7.17425e12 + 1.24262e13i −0.299710 + 0.519113i
\(941\) −1.76435e13 + 3.05594e13i −0.733553 + 1.27055i 0.221802 + 0.975092i \(0.428806\pi\)
−0.955355 + 0.295459i \(0.904527\pi\)
\(942\) 0 0
\(943\) −9.83106e12 1.70279e13i −0.404853 0.701227i
\(944\) −3.20966e13 −1.31548
\(945\) 0 0
\(946\) 1.54806e13 0.628459
\(947\) 8.68390e12 + 1.50410e13i 0.350865 + 0.607716i 0.986401 0.164355i \(-0.0525544\pi\)
−0.635536 + 0.772071i \(0.719221\pi\)
\(948\) 0 0
\(949\) 1.42296e13 2.46464e13i 0.569502 0.986406i
\(950\) −2.87220e12 + 4.97480e12i −0.114409 + 0.198162i
\(951\) 0 0
\(952\) −2.59951e12 4.50249e12i −0.102571 0.177659i
\(953\) −1.07207e13 −0.421024 −0.210512 0.977591i \(-0.567513\pi\)
−0.210512 + 0.977591i \(0.567513\pi\)
\(954\) 0 0
\(955\) −2.53767e13 −0.987234
\(956\) 1.28848e13 + 2.23170e13i 0.498902 + 0.864124i
\(957\) 0 0
\(958\) 1.33172e13 2.30661e13i 0.510820 0.884766i
\(959\) −8.77268e12 + 1.51947e13i −0.334926 + 0.580108i
\(960\) 0 0
\(961\) 1.06423e13 + 1.84329e13i 0.402512 + 0.697171i
\(962\) −6.68507e13 −2.51662
\(963\) 0 0
\(964\) 1.04966e12 0.0391474
\(965\) −5.80040e12 1.00466e13i −0.215320 0.372946i
\(966\) 0 0
\(967\) 2.20118e13 3.81256e13i 0.809537 1.40216i −0.103648 0.994614i \(-0.533051\pi\)
0.913185 0.407546i \(-0.133615\pi\)
\(968\) 1.80052e12 3.11859e12i 0.0659110 0.114161i
\(969\) 0 0
\(970\) −6.40587e12 1.10953e13i −0.232330 0.402407i
\(971\) −3.18653e13 −1.15035 −0.575177 0.818029i \(-0.695067\pi\)
−0.575177 + 0.818029i \(0.695067\pi\)
\(972\) 0 0
\(973\) 2.38030e13 0.851380
\(974\) −1.46777e13 2.54225e13i −0.522567 0.905113i
\(975\) 0 0
\(976\) 2.14951e13 3.72306e13i 0.758254 1.31333i
\(977\) 1.83610e13 3.18021e13i 0.644718 1.11669i −0.339648 0.940553i \(-0.610308\pi\)
0.984366 0.176132i \(-0.0563587\pi\)
\(978\) 0 0
\(979\) 8.37102e12 + 1.44990e13i 0.291244 + 0.504449i
\(980\) −1.01880e13 −0.352835
\(981\) 0 0
\(982\) 4.62913e13 1.58854
\(983\) 6.92373e12 + 1.19922e13i 0.236510 + 0.409647i 0.959710 0.280991i \(-0.0906631\pi\)
−0.723201 + 0.690638i \(0.757330\pi\)
\(984\) 0 0
\(985\) −4.04177e12 + 7.00056e12i −0.136807 + 0.236957i
\(986\) −1.50739e13 + 2.61087e13i −0.507901 + 0.879711i
\(987\) 0 0
\(988\) 3.99703e13 + 6.92305e13i 1.33454 + 2.31149i
\(989\) 3.66593e13 1.21843
\(990\) 0 0
\(991\) 4.28865e12 0.141250 0.0706252 0.997503i \(-0.477501\pi\)
0.0706252 + 0.997503i \(0.477501\pi\)
\(992\) −9.66095e12 1.67333e13i −0.316751 0.548628i
\(993\) 0 0
\(994\) 1.98272e12 3.43417e12i 0.0644203 0.111579i
\(995\) −8.69964e12 + 1.50682e13i −0.281383 + 0.487369i
\(996\) 0 0
\(997\) −2.54518e13 4.40837e13i −0.815811 1.41303i −0.908744 0.417354i \(-0.862958\pi\)
0.0929331 0.995672i \(-0.470376\pi\)
\(998\) −5.98290e12 −0.190908
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.c.h.28.1 6
3.2 odd 2 81.10.c.g.28.3 6
9.2 odd 6 81.10.c.g.55.3 6
9.4 even 3 27.10.a.b.1.3 3
9.5 odd 6 27.10.a.c.1.1 yes 3
9.7 even 3 inner 81.10.c.h.55.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.a.b.1.3 3 9.4 even 3
27.10.a.c.1.1 yes 3 9.5 odd 6
81.10.c.g.28.3 6 3.2 odd 2
81.10.c.g.55.3 6 9.2 odd 6
81.10.c.h.28.1 6 1.1 even 1 trivial
81.10.c.h.55.1 6 9.7 even 3 inner